689 research outputs found

    Analysis of Heterogeneous Data Sources for Veterinary Syndromic Surveillance to Improve Public Health Response and Aid Decision Making

    Get PDF
    The standard technique of implementing veterinary syndromic surveillance (VSyS) is the detection of temporal or spatial anomalies in the occurrence of health incidents above a set threshold in an observed population using the Frequentist modelling approach. Most implementation of this technique also requires the removal of historical outbreaks from the datasets to construct baselines. Unfortunately, some challenges exist, such as data scarcity, delayed reporting of health incidents, and variable data availability from sources, which make the VSyS implementation and alarm interpretation difficult, particularly when quantifying surveillance risk with associated uncertainties. This problem indicates that alternate or improved techniques are required to interpret alarms when incorporating uncertainties and previous knowledge of health incidents into the model to inform decision-making. Such methods must be capable of retaining historical outbreaks to assess surveillance risk. In this research work, the Stochastic Quantitative Risk Assessment (SQRA) model was proposed and developed for detecting and quantifying the risk of disease outbreaks with associated uncertainties using the Bayesian probabilistic approach in PyMC3. A systematic and comparative evaluation of the available techniques was used to select the most appropriate method and software packages based on flexibility, efficiency, usability, ability to retain historical outbreaks, and the ease of developing a model in Python. The social media datasets (Twitter) were first applied to infer a possible disease outbreak incident with associated uncertainties. Then, the inferences were subsequently updated using datasets from the clinical and other healthcare sources to reduce uncertainties in the model and validate the outbreak. Therefore, the proposed SQRA model demonstrates an approach that uses the successive refinement of analysis of different data streams to define a changepoint signalling a disease outbreak. The SQRA model was tested and validated to show the method's effectiveness and reliability for differentiating and identifying risk regions with corresponding changepoints to interpret an ongoing disease outbreak incident. This demonstrates that a technique such as the SQRA method obtained through this research may aid in overcoming some of the difficulties identified in VSyS, such as data scarcity, delayed reporting, and variable availability of data from sources, ultimately contributing to science and practice

    Hand eye coordination in surgery

    Get PDF
    The coordination of the hand in response to visual target selection has always been regarded as an essential quality in a range of professional activities. This quality has thus far been elusive to objective scientific measurements, and is usually engulfed in the overall performance of the individuals. Parallels can be drawn to surgery, especially Minimally Invasive Surgery (MIS), where the physical constraints imposed by the arrangements of the instruments and visualisation methods require certain coordination skills that are unprecedented. With the current paradigm shift towards early specialisation in surgical training and shortened focused training time, selection process should identify trainees with the highest potentials in certain specific skills. Although significant effort has been made in objective assessment of surgical skills, it is only currently possible to measure surgeons’ abilities at the time of assessment. It has been particularly difficult to quantify specific details of hand-eye coordination and assess innate ability of future skills development. The purpose of this thesis is to examine hand-eye coordination in laboratory-based simulations, with a particular emphasis on details that are important to MIS. In order to understand the challenges of visuomotor coordination, movement trajectory errors have been used to provide an insight into the innate coordinate mapping of the brain. In MIS, novel spatial transformations, due to a combination of distorted endoscopic image projections and the “fulcrum” effect of the instruments, accentuate movement generation errors. Obvious differences in the quality of movement trajectories have been observed between novices and experts in MIS, however, this is difficult to measure quantitatively. A Hidden Markov Model (HMM) is used in this thesis to reveal the underlying characteristic movement details of a particular MIS manoeuvre and how such features are exaggerated by the introduction of rotation in the endoscopic camera. The proposed method has demonstrated the feasibility of measuring movement trajectory quality by machine learning techniques without prior arbitrary classification of expertise. Experimental results have highlighted these changes in novice laparoscopic surgeons, even after a short period of training. The intricate relationship between the hands and the eyes changes when learning a skilled visuomotor task has been previously studied. Reactive eye movement, when visual input is used primarily as a feedback mechanism for error correction, implies difficulties in hand-eye coordination. As the brain learns to adapt to this new coordinate map, eye movements then become predictive of the action generated. The concept of measuring this spatiotemporal relationship is introduced as a measure of hand-eye coordination in MIS, by comparing the Target Distance Function (TDF) between the eye fixation and the instrument tip position on the laparoscopic screen. Further validation of this concept using high fidelity experimental tasks is presented, where higher cognitive influence and multiple target selection increase the complexity of the data analysis. To this end, Granger-causality is presented as a measure of the predictability of the instrument movement with the eye fixation pattern. Partial Directed Coherence (PDC), a frequency-domain variation of Granger-causality, is used for the first time to measure hand-eye coordination. Experimental results are used to establish the strengths and potential pitfalls of the technique. To further enhance the accuracy of this measurement, a modified Jensen-Shannon Divergence (JSD) measure has been developed for enhancing the signal matching algorithm and trajectory segmentations. The proposed framework incorporates high frequency noise filtering, which represents non-purposeful hand and eye movements. The accuracy of the technique has been demonstrated by quantitative measurement of multiple laparoscopic tasks by expert and novice surgeons. Experimental results supporting visual search behavioural theory are presented, as this underpins the target selection process immediately prior to visual motor action generation. The effects of specialisation and experience on visual search patterns are also examined. Finally, pilot results from functional brain imaging are presented, where the Posterior Parietal Cortical (PPC) activation is measured using optical spectroscopy techniques. PPC has been demonstrated to involve in the calculation of the coordinate transformations between the visual and motor systems, which establishes the possibilities of exciting future studies in hand-eye coordination

    Driver exposure to particulate matter: field study, data analysis and modelling

    Get PDF
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Proceedings of the GIS Research UK 18th Annual Conference GISRUK 2010

    Get PDF
    This volume holds the papers from the 18th annual GIS Research UK (GISRUK). This year the conference, hosted at University College London (UCL), from Wednesday 14 to Friday 16 April 2010. The conference covered the areas of core geographic information science research as well as applications domains such as crime and health and technological developments in LBS and the geoweb. UCL’s research mission as a global university is based around a series of Grand Challenges that affect us all, and these were accommodated in GISRUK 2010. The overarching theme this year was “Global Challenges”, with specific focus on the following themes: * Crime and Place * Environmental Change * Intelligent Transport * Public Health and Epidemiology * Simulation and Modelling * London as a global city * The geoweb and neo-geography * Open GIS and Volunteered Geographic Information * Human-Computer Interaction and GIS Traditionally, GISRUK has provided a platform for early career researchers as well as those with a significant track record of achievement in the area. As such, the conference provides a welcome blend of innovative thinking and mature reflection. GISRUK is the premier academic GIS conference in the UK and we are keen to maintain its outstanding record of achievement in developing GIS in the UK and beyond

    Cognitive Foundations for Visual Analytics

    Full text link

    NanoSAR: In Silico Modelling of Nanomaterial Toxicity

    Get PDF
    The number of engineered nanomaterials (ENMs) being exploited commercially is growing rapidly, due to the novel properties of ENMs. Clearly, it is important to understand and ameliorate any risks to health or the environment posed by the presence of ENMs. However, there still exists a critical gap in the literature on the (eco)toxicological properties of ENMs and the particular characteristics that influence their toxic effects. Given their increasing industrial and technological use, it is important to assess their potential health and environmental impacts in a time and cost effective manner. One strategy to alleviate the problem of a large number and variety of ENMs is through the development of data-driven models that decode the relationships between the biological activities of ENMs and their physicochemical characteristics. Although such structure-activity relationship (SAR) methods have proven to be effective in predicting the toxicity of substances in bulk form, their practical application to ENMs requires more research and further development. This study aimed to address this research need by investigating the application of data-driven toxicity modelling approaches (e.g. SAR) that are beneficial over animal testing from a cost, time and ethical perspective to ENMs. A large amount of data on ENM toxicity and properties was collected and analysed using quantitative methods to explore and explain the relationship between ENM properties and their toxic outcomes, as a part of this study. More specifically, multi-dimensional data visualisation techniques including heat maps combined with hierarchical clustering and parallel co-ordinate plots, were used for data exploration purposes while classification and regression based modelling tools, a genetic algorithm based decision tree construction algorithm and partial least squares, were successfully applied to explain and predict ENMs’ toxicity based on physicochemical characteristics. As a next step, the implementation of risk reduction measures for risks that are outside the range of tolerable limits was investigated. Overall, the results showed that computational methods hold considerable promise in their ability to identify and model the relationship between physicochemical properties and biological effects of ENMs, to make it possible to reach a decision more quickly and hence, to provide practical solutions for the risk assessment problems caused by the diversity of ENMs

    Recommendations for the quantitative analysis of landslide risk

    Get PDF
    This paper presents recommended methodologies for the quantitative analysis of landslide hazard, vulnerability and risk at different spatial scales (site-specific, local, regional and national), as well as for the verification and validation of the results. The methodologies described focus on the evaluation of the probabilities of occurrence of different landslide types with certain characteristics. Methods used to determine the spatial distribution of landslide intensity, the characterisation of the elements at risk, the assessment of the potential degree of damage and the quantification of the vulnerability of the elements at risk, and those used to perform the quantitative risk analysis are also described. The paper is intended for use by scientists and practising engineers, geologists and other landslide experts.JRC.H.5-Land Resources Managemen
    corecore