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Abstract

The topic of this thesis is automatic analysis of craniofacial images. The meth-
ods proposed and applied contribute to the scientific knowledge about different
craniofacial anomalies, in addition to providing tools for detailed and robust
analysis of craniofacial images for clinical and research purposes.

The basis for most of the applications is non-rigid image registration. This
approach brings one image into the coordinate system of another resulting in
a deformation field describing the anatomical correspondence between the two
images. A computational atlas representing the average anatomy of a group
may be constructed and brought into correspondence with a set of images of
interest. Having established such a correspondence, various analyses may be
carried out. This thesis discusses two types of such analyses, i.e. statistical
deformation models and novel approaches for the quantification of asymmetry.
The analyses are applied to the study of three different craniofacial anomalies.

The craniofacial applications include studies of Crouzon syndrome (in mice),
unicoronal synostosis plagiocephaly and deformational plagiocephaly. Using
the proposed methods, the thesis reveals novel findings about the craniofacial
morphology and asymmetry of Crouzon mice. Moreover, a method to plan
and evaluate treatment of children with deformational plagiocephaly, based on
asymmetry assessment, is established. Finally, asymmetry in children with uni-
coronal synostosis is automatically assessed, confirming previous results based
on manual reference points and providing a higher level of detail.
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Resumé

Denne afhandling omhandler automatisk analyse af kraniofaciale billeder. De
anvendte og foresl̊aede metoder bidrager til forst̊aelsen af kraniofaciale misdan-
nelser, samt skaffer værktøjer til detaljeret og robust analyse af kraniofaciale
billeder til kliniske og forskningsbaserede form̊al.

Ikke-rigid billedregistrering er den grundlæggende metode som er brugt i de
fleste af anvendelserne i afhandlingen. Denne metode transformerer et billede
over i koordinatsystemet til et andet billede. Transformationen giver et deform-
ationsfelt som beskriver den anatomiske korrespondance mellem de to billeder.
Et atlas, som repræsenterer den gennemsnitlige anatomi af en gruppe af billeder,
kan konstrueres og bringes i korrespondance med et sæt billeder af interesse. Ved
hjælp af en s̊adan korrespondance kan adskillige analyser gennemføres. Denne
afhandling diskuterer to typer af analyser, nemlig statistiske deformationsmod-
eller og nye metoder til kvantificering af asymmetri. Analyserne er benyttet til
at studere tre forskellige kraniofaciale misdannelser.

De kraniofaciale anvendelser inkluderer studier af Crouzon syndrom (hos mus),
enkeltsidig coronal synostose plagiocefali og lejringsbetinget plagiocefali. Ved
hjælp af de foresl̊aede metoder fremkommer der i afhandlingen ny viden om
kraniofacial morfologi og asymmetri i Crouzon-mus. Desuden er der udviklet en
metode til planlægning og evaluering af behandling af spædbørn med lejrings-
betinget plagiocefali. Endelig er asymmetri hos børn med enkeltsidig coronal
synostose plagiocefali undersøgt automatisk, og tidligere studier, baseret p̊a
landmarks, er bekræftet i højere rumlig opløsning.
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Chapter 1

Introduction

The skull of a newborn baby is composed of five major bones, separated by
growth zones, also commonly called sutures. For the brain to grow normally,
the sutures remain open and gradually grow together, forming the adult skull.
Several factors can disturb the normal growth process. Conditions associated
with disturbed craniofacial development are often referred to as craniofacial
anomalies.

In the treatment of children with craniofacial anomalies, 3D images play an in-
tegrated and crucial role. By use of volumetric 3D imaging techniques, such as
Computed Tomography (CT) and Magnetic Resonance Imaging (MRI), detailed
views of the internal anatomy are presented. Currently, most of the analysis of
these images is restricted to a qualitative inspection by a specialist, while quan-
titative analysis relies on time-consuming manual measurements on a limited
number of reference points.

The aim of this thesis is to automate the analysis using modern image processing
techniques. Using such methods greatly increases the level of detail and repro-
ducibility of the quantitative analyses during diagnosis and treatment. Further-
more, in order to better understand abnormal craniofacial shape and growth
caused by different craniofacial anomalies, population studies may be carried
out, studying the craniofacial anatomy and pathology in detail.

Hence, the overall goal of this thesis is to provide answers to questions such as,
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1. What craniofacial syndrome does a particular individual have and how
severe is it? (differential dignosis)

2. What changes took place since the last examination? (evaluation of growth
and treatment progression)

3. What are the typical features of a particular type of craniofacial anomaly,
and how do they vary in a population? (population studies)

In order to answer these questions, it is essential to be able to compare image
data from one time point to another or from patient to patient. To do so, de-
tailed anatomical information about every image element or correspondence of
the anatomies are needed. A strong candidate methodology, with the potential
to provide answers to the questions above, is non-rigid image registration. This
approach accurately deforms one image into the coordinate system of another,
enabling a quantitative comparison on a voxel-to-voxel basis. Additionally, the
deformations resulting from the registration may be analysed to assess the shape
and geometry of the different parts of the anatomy. The possibility of using de-
formations for analysing difference in (craniofacial) anatomy was noted already
in 1917 by D´Arcy Thompson [219] and Figure 1.1 shows some of his examples.

Figure 1.1: From [219]. Comparison of the shape of (a) a human skull, (b) a chim-
panzee skull and (c) a dog skull. The deformation grids represent the correspondence
to a human skull.

While D’Arcy Thompson’s approach was manual and in 2D, modern non-rigid
image registration is able to provide 3D deformation fields fully automatically.
Although one of the pioneering theoretical developments of non-rigid registration
algorithms was first applied to the craniofacial region [30], few advances have
been made in applying this technology to craniofacial data until recent promising
demonstrations by [119] and [26]. This thesis further adds to these applications
by presenting the use of non-rigid registration to study and analyse craniofacial
anomalies.
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1.1 Objectives

The main topic of this thesis is application of non-rigid registration to craniofa-
cial images in order to partly or fully answer the three questions stated above.

In particular, the thesis focuses on the analysis of craniofacial shape and asym-
metry in three craniofacial anomalies: Crouzon syndrome (in mice), unicoronal
synostosis plagiocephaly and deformational plagiocephaly.

From a technical point of view the objectives are the creation and applications
of a computational atlas. This includes the analysis of shape and geometry
from deformation fields using statistical modelling techniques. Moreover, it
involves the point-wise quantification and statistical modelling of asymmetry
from deformation fields.

1.2 Thesis overview

This thesis is composed of two parts. The first gives a background and overview
of the contributions and basic methods applied in the thesis. The second part
includes a selection of papers and technical reports written during the project
period. Each paper comprises a chapter and a brief description of each of them
is given below. The chapters are all inter-connected and the main theme is
the analysis of shape and asymmetry using deformation fields from non-rigid
registration. The chapters reach from a direct analysis of the deformations in
Chapter 7, to statistical deformation models in Chapters 8 and 9 and quantifica-
tion of asymmetry from deformations in Chapters 10 and 11. Reading the thesis
in full should be carried out by reading Chapter 1- 5 and before proceeding to
the discussion in Chapter 6, Part II should be read.

• Chapter 7 describes the creation of computational, craniofacial mouse
atlases for studying the Crouzon mouse model. Two types of atlases are
constructed, using affine and non-rigid registration. It is demonstrated
how linear parameters may be assessed and the performance with respect
to the two different atlases is analysed. Furthermore, deformation fields
from non-rigid registration of a normal atlas to a Crouzon atlas are in-
spected and analysed.

• Chapter 8 presents craniofacial statistical deformation models using prin-
cipal components analysis (PCA). Intra- and inter-group models are cre-
ated and discussed. With respect to the ability to discriminate between
the mouse groups studied in this chapter, only the first mode of variation
for the inter-group models is applicable.
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• Chapter 9 discusses statistical deformation models in more detail. It
presents the use of sparse principal components analysis (SPCA) to lo-
calise the discriminative modes of variations. Compared to PCA and in-
dependent component analysis (ICA), SPCA performs better with respect
to discriminative ability in the particular mouse models studied here.

• Chapter 10 describes a novel method for defining asymmetry in surface
scans of infants with deformational plagiocephaly. Bilateral asymmetry is
defined in each point of a deformed symmetric template by the ratio of
left and right distances to a pre-defined midpoint. Finally, a statistical
model of asymmetry is presented.

• Chapter 11 presents another asymmetry measure, based on the deforma-
tion field acquired by image registration of a subject image to a symmetric
reference image. Asymmetry is defined in each voxel (or each point) by
comparing the displacement vectors on the left and right side of the head.
This approach gives a measure of asymmetry in length units (mm), while
the approach from Chapter 10 gives a relative measure of asymmetry (in
terms of a dimensionless number).

1.3 Publications

The publications related to part II of the thesis are listed below. The citation
of the paper covering each chapter is written in bold face.

Chapter 7

[162] H. Ólafsdóttir, T.A. Darvann, N.V. Hermann, E. Oubel, B.K. Ersbøll, A.F.
Frangi, P. Larsen, C.A. Perlyn, G.M. Morriss-Kay, and S. Kreiborg. Compu-
tational mouse atlases and their application to automatic assessment of cranio-
facial dysmorphology caused by the Crouzon mutation Fgfr2C342Y. Journal of
Anatomy, 211(1):37–52, 2007.

[158] H. Ólafsdóttir, E. Oubel, A.F. Frangi, T.A. Darvann, N.V. Hermann, S. Krei-
borg, P. Larsen, B.K. Ersbøll, C.A. Perlyn, and G.M. Morriss-Kay. Automatic
assessment of global craniofacial differences between Crouzon mice and wild-type
mice in terms of the cephalic index. In P. Larsen T.A. Darvann, N.V. Hermann
and S. Kreiborg, editors, MICCAI 2006 workshop: Craniofacial Image Analysis
for Biology, Clinical Genetics, Diagnostics and Treatment, pages 49–57, 2006.

[157] H. Ólafsdóttir, T.A. Darvann, E. Oubel, A.F. Frangi, N.V. Hermann, B.K.
Ersbøll, and C.A. Perlyn. Towards describing Crouzon syndrome via a craniofa-
cial atlas. In S.I. Olsen, editor, 15th Danish Conference on Pattern Recognition
and Image Analysis (DSAGM), pages 108–114, 2006.



1.3 Publications 7

Chapter 8

[160] H. Ólafsdóttir, T.A. Darvann, Ersboll B.K., N.V. Hermann, E. Oubel, R. Larsen,
A.F. Frangi, P. Larsen, C.A. Perlyn, G.M. Morriss-Kay, and S. Kreiborg. Cran-
iofacial statistical deformation models of wild-type mice and Crouzon mice. In
J.P.W. Pluim and J.M. Reinhardt, editors, Medical Imaging 2007: Image Pro-
cessing, volume 6512, page 65121C. SPIE, 2007.

Chapter 9

[163] H. Ólafsdóttir, M.S. Hansen, K. Sjöstrand, T.A. Darvann, N.V. Hermann, E. Oubel,
B.K. Ersbøll, R. Larsen, A.F. Frangi, P. Larsen, C.A. Perlyn, G.M. Morriss-Kay,
and S. Kreiborg. Sparse statistical deformation model for the analysis of cran-
iofacial malformation in the Crouzon mouse. In B.K. Ersbøll and K.S. Peder-
sen, editors, Scandinavian Conference on Image Analysis 2007, volume 4522 of
LNCS, pages 112–121. Springer, 2007.

[91] M.S. Hansen, H. Ólafsdóttir, T.A. Darvann, N.V. Hermann, E. Oubel, R. Larsen,
B.K. Ersbøll, A.F. Frangi, P. Larsen, C.A. Perlyn, G.M. Morris-Kay, and S. Krei-
borg. Estimation of independent non-linear deformation modes for analysis of
craniofacial malformations in Crouzon mice. In J.A. Fessler M. Wernick, editor,
2007 IEEE International Symposium on Biomedical Imaging. IEEE, 2007.

Chapter 10
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Chapter 2

Skull Anatomy and
Craniofacial Anomalies

This chapter gives a brief introduction to the basic anatomy of the skull and
introduces the craniofacial anomalies studied in this thesis.

2.1 Skull Anatomy

The skull of an infant is composed of five major bones, two frontal bones, two
parietal bones and the occipital bone. The bones are separated by growth zones,
also referred to as cranial sutures allowing the skull and brain to grow normally.
The growth zones are gradually closing until adulthood. The major sutures are
the metopic suture, which extends from the top of the head to the forehead and
separates the frontal bones; the coronal suture, which extends from one ear to
the other and separates the frontal bones from the parietal bones; the sagittal
suture, which extends from the front of the head to the back of the head and
separates the parietal bones; and finally the lambdoid suture, which extends
across the back of the head and separates the parietal bones from the occipital
bone.

The sutures meet at soft areas called fontanelles, made of strong membranes.
The space where the parietal bones and the frontal bones meet is called the
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anterior fontanelle. This opening in the skull closes when the child is approx-
imately two years old. The second soft area is named the posterior fontanelle.
Here, the parietal bones and the occipital bone meet and this fontanelle closes
earlier, typically when the child is only two months old. Figure 2.1 shows a
drawing of the major bones and sutures of the skull.

Figure 2.1: Schematic figure of a child´s skull, seen from above. (a) Bones labelled.
(b) Sutures and fontanelles labelled.

All structures of the skull are of interest in this thesis, and the most important
parts are labelled in Figure 2.2.

Figure 2.2: The human skull at approximately eighteen months of age. A surface
representation of one of the CT scans used in this thesis. (a) Frontal view, (b) Cut,
top view, (c) Right lateral view.

Since a large part of this thesis is devoted to the Crouzon mouse model, the
mouse skull is shown for comparison in Figure 2.3.
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Figure 2.3: Schematic drawing of an adult mouse skull. (a) Top view, (b) Basal
view, (c) Right lateral view. From [38]

2.2 Craniofacial Anomalies

As mentioned previously, the skull growth can be disturbed by several factors,
leading to abnormal brain growth, dysmorphology, and in many cases an asym-
metric head. Conditions associated with disturbed craniofacial development are
referred to as craniofacial anomalies. The most common categories include:

• Cleft lip and/or palate. A congenital1 condition characterised by an open-
ing of the lip (cleft lip) or the palate (cleft palate).

• Craniosynostosis. A congenital condition where the growth zones close
prematurely, leading to abnormalities in the growth of the brain and skull.
Both syndromic (fusion of one or more sutures with additional physical
deviations, e.g. Crouzon syndrome) and non-syndromic (fusion of one or
more sutures only) craniosynostoses exist.

• Deformational (Positional) Plagiocephaly. Repeated pressure to the same
area of the head leads to asymmetric head shape.

• Hemifacial Microsomia. Underdeveloped (smaller) tissues on one side of
the face.

Three different craniofacial anomalies are studied in this thesis. These include
Crouzon syndrome (in a mouse model) [43] (Chapter 7-9 and 11), unicoronal
synostosis plagiocephaly (UCS) (Chapter 11), and deformational plagiocephaly

1A medical condition present at birth
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(DP) (Chapter 10). The first two craniofacial anomalies involve craniosynosto-
sis, i.e. one or more of the cranial sutures fuse too early, leading to disturbed
brain and skull growth. In Crouzon syndrome, fusion usually occurs in several
of the cranial sutures, while for UCS, only one of the coronal sutures (See Fig-
ure 2.1) fuses. DP, which is the least severe condition of the three, is a result of
the infant repeatedly being positioned on the same side of the head, e.g. during
sleep. DP, as well as UCS results in a plagiocephalic head, i.e. flattening on one
side of the skull. However, in DP, the sutures remain normal. In accordance
with this, UCS is an example of a craniofacial malformation while DP is an
example of a craniofacial deformation.

The incidence of Crouzon syndrome is one in 20,000 births [37] and the incidence
of UCS is one in 9,000 to one in 14,000 depending on the study [36]. Before
1992, the incidence of DP was estimated to be one in 300 [151]. However, while
the incidence of sudden infant death syndrome (SIDS) has reduced remarkably
during the past decade due to the “back to sleep” campaign [110], the incidence
of DP is now estimated to occur in one in twelve infants [14].

All three conditions lead to abnormal and asymmetric head shapes. Figure 2.4
shows children with the three different types of craniofacial anomalies.

Figure 2.4: Children with (a) Crouzon syndrome (by courtesy of Sven Kreiborg), (b)
Unicoronal synostosis (from [2]), (c) Deformational Plagiocephaly (from [1]).

The three types of craniofacial anomalies are treated differently. Crouzon syn-
drome and UCS are treated by one or more surgical procedures, involving acqui-
sition of CT scans for surgery planning and evaluation. DP is normally treated
by altering the child´s sleeping position. However, after the infant has reached
six months of age, the skull is not as soft and for severe DP cases, an orthotic
helmet is applied at some treatment centers. A CT scan of infants with DP is
usually not acquired, unless the clinician suspects the infant to have craniosyn-
ostosis. In the DP study presented in this thesis (Chapter 10), a 3D surface
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imaging system is used for a detailed assessment of the shape of the head.
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Chapter 3

Overview of Methods

This chapter provides a brief overview of the methods applied in this thesis.
Where appropriate, references to in-depth material and alternative approaches
are given.

3.1 Image Registration

An important problem in the field of image analysis is that of achieving voxel-
wise correspondence between images (volumes). This problem occurs in various
situations within medical image analysis, and image registration is often the key
to the solution. The most common types of image registration applications are
listed below.

• Registration of images acquired of the same individual at different time
points by the same imaging modality. This can be applied for monitoring
changes in a particular organ or a body part for e.g. screening or treatment
evaluation.

• Registration of images acquired of the same individual by different modal-
ities, which is useful when combining or fusing information from different
modalities.
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• Registration of images acquired of different individuals by the same modal-
ity. This is most often used for population studies or atlas building, i.e.
creation of an average image from a population, or for segmentation.

In these situations, the subsequent analysis is either based on the corresponding
voxel intensities (known as voxel-based morphometry), or the deformation fields
required to map one image to another are analysed (known as deformation- or
tensor-based morphometry).

In this short introduction the three main parts of an image registration algorithm
will be highlighted. Affine and non-rigid (also referred to as non-linear or curved)
transformations will be discussed but the overview will be limited to algorithms
based on image information only, i.e. independent of landmark or segmentation
information.

Formally, given two 3D images (volumes), target (or reference), A and a source
(template), B:

Definition 3.1 The goal of an image registration algorithm is to find a map-
ping, T : R3 → R3 such that the image similarity D(A,B(T )) is maximised.

Here, B(T ) refers to the image B after transforming by T (see Section 3.1.1.2
for details). Three entities are required to solve the stated problem.

• A transformation model, T.

• A measure of image similarity, D.

• An optimisation method to maximise the similarity measure with respect
to the parameters of the transformation model.

The three entities will be touched upon in the following sections. For the inter-
ested reader, extensive surveys on image registration have been made by Maintz
and Viergever [140] and by Zitova and Flusser [240].

3.1.1 Transformation Models

Here, linear and non-rigid transformation models will be considered. A gener-
alised description of a linear transformation is achieved by an affine transforma-
tion, which includes translation, rotation, scaling and shearing. Mathematically,
it is denoted (in 3D)

Taffine(x, y, z) = Ax + t, (3.1)
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where x is a vector holding the point (voxel) coordinates (x, y, z), t is a vector
holding the translation parameters, (tx, ty, tz) and A is a 3× 3 matrix holding
the remaining parameters (see e.g. [199] for details).

The non-linear models are more complicated, but necessary to adequately solve
many medical registration problems. Affine transformations are not sufficient
when matching local differences from image to image, such as those encoun-
tered when dealing with intersubject registration. Some of these transformation
models are derived from physical or mechanical systems, such as demons [216]
elastic [10] and fluid [29] registration.

Another way of describing non-linear transformations is provided by splines.
Thin-plate splines [145] are popular for surface- or landmark-based registra-
tion [17] but have also been used for voxel-based image registration [146]. One
drawback of this approach is that the thin-plate splines radial basis functions
have infinite support, i.e. it becomes hard to match local deformations in de-
tail. On the other hand, free-form deformations (FFDs) based on cubic B-
splines [126] have local support. The use of FFDs for non-rigid image registra-
tion was presented by Rueckert et al. [185]. Due to its local support, robustness,
and simple terminology the B-spline approach is used for all image registrations
in this thesis.

The FFD is defined by an px × py × pz mesh of control points c with spacing
(δx, δy, δz). The underlying image is then deformed by manipulating the mesh
of control points. The FFD model can be written as the tensor product of the
one-dimensional (1D) cubic B-splines:

Tlocal(x, y, z) =
3∑

l=0

3∑
m=0

3∑
n=0

Bl(u)Bm(v)Bn(w)ci+l,j+m,k+n (3.2)

where i = bx/pxc − 1, j = by/pyc − 1, k = bz/pzc − 1, u = x/px − bx/pxc,
v = y/py − by/pyc and w = z/pz − bz/pzc. B0 through B3 represent the basis
functions of the B-spline:

B0(u) = (1− u)3/6

B1(u) = (3u3 − 6u2 + 4)/6

B2(u) = (−3u3 + 3u2 + 3u+ 1)/6

B3(u) = u3/6.

An example of a B-spline-based non-rigid image registration is given in Fig-
ure 3.1.
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Figure 3.1: Example of a B-spline-based non-rigid registration. A 3D CT image of
a child with UCS (source) is registered to a 3D CT image of a normal child (target).
Single-slice axial views are presented. (a) Source image, (b) source image registered to
target image, (c) target image. (d) Resulting deformation grid and (e) corresponding
deformation vectors at control point positions.

3.1.1.1 Regularisation

The cost function of an image registration algorithm typically consists of the
similarity measure. However, often a regularisation term is added to ensure
proper interpretation of the deformation fields. As D´Arcy Thompson puts it,

“We shall strictly limit ourselves to cases where the transformation
necessary to effect a comparison shall be of a simple kind, and where
the transformed, as well as the original coordinates shall constitute
an harmonious and more or less symmetrical system.”[219] (p. 1034).

Properties such as smoothness and volume preservation often act as regulari-
sation terms. Examples of regularisation are the bending energy [15] to ensure
smooth deformations, the Laplacian energy term [3, 214] and a term to preserve
volume and prevent folding [184].

With respect to the B-spline-based approach, the properties of cubic B-splines
already give considerable smoothing. A fast way to further regularise the defor-
mation is to apply multi-level B-splines [188]; i.e. given control point resolutions
Φ1 . . .ΦH , at levels 1, . . . ,H, the final local transformation is the sum of the
transformations at each level,

Tlocal =
H∑

h=1

Th
local

Each level is optimised separately after precomputing the previous spline at
Th−1

local. In the same paper, a framework to fix a fraction of the control points
was introduced [188]. Keeping e.g. background control points (outside of the
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spline local support neighbourhood of the object boundaries) fixed, further adds
to the regularisation. In this thesis, no penalty terms were added, the properties
of the B-splines, the multi-level property and fixing control points were found
sufficient to acquire convincing registrations and deformation fields.

3.1.1.2 Transforming images

While voxel coordinates are discrete, the range of a typical transformation model
is continuous. This means that intensities cannot be transformed directly from
source to target. The standard solution to this problem is to sample values from
the source into the voxel locations of the target. The resampling is carried out
by interpolation schemes, taking into account the voxels closest to the trans-
formed point (e.g. nearest neighbour, bilinear, spline or sinc interpolation). This
means, unless the inverse of the transformation model is used, that the oppo-
site transformation is obtained, i.e. deforming the source image into the target
image gives the deformation field from the coordinate system of the target to
the coordinate system of the source. Hence, the notation B(T (xi)), refers to
the interpolated source intensity at position T (xi), where xi is the original voxel
position in image A.

3.1.2 Similarity Measures

A voxel similarity measure indicates how well the source image matches the
target image. The choice of similarity measure is highly dependent on the
relationship between the two images to be registered. A few types will be
mentioned here.

When registering images acquired by the same imaging modality, a linear or
an identity relationship can be assumed. The simplest similarity measure in
this context is the difference in voxel-intensities, or sum of squared differences
(SSD) [86].

DSSD =
1
M

∑
i

(A(xi)−B(T (xi)))
2
, (3.3)

where A is the target image and B is the source, xi is the voxel position (x, y, z)
and M is the total number of voxels. T denotes the transformation used to
match the source to the target. A minimisation of the SSD expression leads to
the best matching of the two images. Figure 3.2 shows the squared difference
images from Figure 3.1 before and after registration.
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(a) (b)

Figure 3.2: Squared difference images (a) before and (b) after non-rigid registration
of the images from Figure 3.1. The figures are inverted for better visualisation. Hence,
white denotes no difference, black denotes largest difference.

Another popular measure is the correlation coefficient (equivalent to normalised
cross correlation) [130].

DCC =
∑

i (A(xi)− µA)(B(T (xi))− µB))√
(
∑

i(A(xi)− µA)2) (
∑

i(B(T (xi))− µB)2)
(3.4)

When this expression is maximised, the two images are maximally correlated
and hence, the best registration in this sense is obtained.

When the images to register are of different imaging modality or they highly
differ in intensity (e.g. when a contrast agent is involved), information theoretic
measures are useful. For image A with voxel intensities a ∈ A the marginal
entropy is defined as

H(A) = −
∑
a∈A

p{a}log(p{a}), (3.5)

where p{a} is the marginal probability or the probability of finding intensity a
in image A. The joint entropy is defined on the overlapping region between the
two images A and B with voxel intensities a ∈ A and b ∈ B,

H(A,B) = −
∑
a∈A

∑
b∈B

p{a, b}log(p{a, b}), (3.6)

[191], where p{a, b} is the estimated joint probability or the probability of the
occurrence of a particular pair of voxel intensities. Figure 3.3 shows the joint
probability (2D histogram) before and after registration of the images in Fig-
ure 3.1.

The use of joint entropy as a similarity measure suffers from the fact that it is
highly dependent on the overlap between the images favoring e.g. positions where
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(a) (b)

Figure 3.3: Joint probabilities (a) before and (b) after non-rigid registration of the
images from Figure 3.1. Note the larger spread of the signal before registration, in-
dicating poor matching. After registration, the signal is more dense. The figures are
inverted for better visualisation. Hence, black denotes high probability, while white
denotes low probability.

large amount of background/noise is included in the overlap. This often leads
to incorrect registrations. Mutual information (MI) [139, 233] partly overcomes
this by incorporating the marginal entropy in the overlapping region of each of
the images.

DMI = H(A) +H(B)−H(A,B). (3.7)

This does not fully solve the overlapping problem and by dividing by the joint
entropy, Studholme et al. introduced a normalised version of MI, normalised
mutual information (NMI) [204]

DNMI =
H(A) +H(B)
H(A,B)

. (3.8)

So far this is the most robust and widely used voxel similarity measure in the
literature, especially for inter-modality registration. Nevertheless, some authors
have made attempts to improve the NMI by incorporating spatial information,
e.g. gradient information [177], feature maps [239] or higher-order features [167,
186]. An interesting survey of mutual information-based registration was made
by Pluim et al. [178].

Other authors have replaced NMI by non-entropy-based similarity measures,
which are easier to optimise. Such attempts include measures based on e.g.
gradient information [72, 83, 84] and normal vectors [236].

3.1.3 Optimisation Methods

Finding the optimal non-rigid transformation to deform the source into the
target is a difficult optimisation problem and several techniques have been eval-
uated. Gradient descent methods have been used with good results [185, 231]
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despite of slow convergence, in some cases. The Gauss-Newton algorithm utilises
the second derivatives in an approximation of the Hessian. It gives a faster con-
vergence and has been used by a few authors, [e.g. 7]. The properties of these
two methods are combined in the Levenberg-Marquardt algorithm used for im-
age registration in [e.g. 107, 215]. A few attempts have been made to speed up
these algorithms, [e.g. 11, 67, 229]. For further discussion of numerical methods
and acceleration techniques for image registration, refer to [147].

3.2 Computational Atlases

As mentioned before, image registration has many applications. One is the
creation of a computational atlas. The term atlas has many meanings in the field
of biomedical research. An experienced medical practitioner defines pathology
by estimating the deviation from a typical normal subject in his/her mind. This
reference frame could be referred to as a “mental atlas”. This type of atlas is
obviously qualitative and highly subjective. Often, the anatomy of a single
normal, healthy subject is referred to as an atlas and used as a reference frame
when estimating deviations due to pathology. A less biased way of defining
such a reference frame is to use the average of a set of normal subjects. This
can for example be a set of points delineating an anatomical structure averaged
over a set of subjects [e.g. 210]. Inclusion of more anatomical details results in
shape- and intensity-based atlases constructed from a set of images in 2D, 3D
[e.g. 18, 31, 34, 82, 106, 187] or even 4D [e.g. 174]. This type of atlas will be
referred to as a computational atlas. The creation of such an atlas requires that a
set of images from the group of interest are mapped into a common coordinate
system. This is typically done by non-rigid image registration. The details
of an atlas construction algorithm are listed in Section 7.2.3. Computational
atlases have many applications. They can be used for automatic segmentation
or landmarking or they can be used for population studies by analysing the
deformation fields acquired to match subjects onto an atlas. This property will
be discussed further in the following section.

3.3 Statistics on Deformation Fields

The result of an image registration algorithm is a deformed source image with
voxel-wise correspondence to the target image. Additionally, a deformation
field, required to establish correspondence, is obtained. The deformation field
can be used to analyse the shape differences between anatomical structures in
the two images. An example of such a deformation field is given in Figure 3.1.
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One anatomical interpretation of the figure might be that the two scans differ
mainly in the orbital and nasal region.

A structured way to analyse the deformation fields is to use prior knowledge
from a set of registrations in combination with a statistical analysis. Among
the pioneers in this relation were Grenander and Miller [80, 81] who used the
term computational anatomy. They divided the process into three main steps
(slightly rephrased here),

• Computation of deformation fields

• Computation of probability laws to determine anatomical variation

• Inference on population, clinical interpretations and classification

Here, the concept of computational anatomy will be divided into two categories,
Statistical Deformation Models (SDMs) and Deformation Based Morphometry
(DBM). SDMs are statistical models of the deformations created to extract and
visualise the most important variations. The model can then be used to recon-
struct the most important variations. In DBM, hypothesis testing is carried
out, either directly on the deformation fields or on the principal scores obtained
from SDMs. Basically, the two approaches differ in the way that SDMs pro-
vide statistical modes of variation, while DBM typically provides volumetric
maps of p-values indicating significant deformations. The two approaches will
be discussed in the following subsections.

3.3.1 Statistical Deformation Models

SDMs are closely related to statistical shape models. In both cases, the vari-
ability in anatomy of a population is of interest. This is typically modelled
by principal components analysis (PCA). The key difference between the two
approaches is that shape models require shapes represented by points which
correspond over the set. This is highly dependent on manual labour, espe-
cially in 3D, although many authors have suggested approaches to overcome
this [56, 70, 76, 226].

Statistical deformation models aim at capturing the anatomical variability by
modelling of deformation fields. The deformation fields are typically acquired by
a set of non-rigid registrations, each initiated in a common reference anatomy,
ideally an atlas with normal, average anatomy. Apart from being fully auto-
matic, this technique provides anatomical variability in the full volume, not only
in a limited set of landmarks or predefined segmentations.
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A couple of approaches exist for doing this. Bookstein´s principal warps are
closely related to statistical deformation models. However, even though the
modelling is carried out on the deformation fields, the thin-plate splines involved
are landmark-dependent [15].

In some studies, the analysis is carried out directly on the deformation fields,
e.g. in [106]. Other approaches, such as [187] and [41] model the parameters of
the warps, which give a more compact representation of the deformation fields.
A compact representation is also obtained in [60, 66], where deformation fields
are established from sparse, manual delineations, and statistics are carried out
in tangent space and extrapolated to the full volume.

In analogue with using shape models to constrain segmentation algorithms, [39],
SDMs have been used in a few studies to constrain the search space of image
registration algorithms [137, 235, 237].

In two chapters of this thesis (Chapters 8 and 9) the approach by Rueckert et al.
[187] is applied. In this case, the parameters of the B-splines (the control points
displacements, see (3.2)), which compactly represent the local deformation field
between the atlas and the image of interest, are modelled. The control point dis-
placements are then used as input to a PCA in order to model the deformations
of the group of subjects defined in the domain of the atlas. Concatenating the
3D control point displacements for subject s into a row vector Cs = [c1, ..., cp],
where p = 3pxpypz, gives the sth row of the n× p data matrix to analyse (n is
the number of observations, s = 1, . . . , n), the mean deformation is estimated
by

C̄ =
1
n

n∑
s=1

Cs

and the covariance matrix by

1
n− 1

n∑
s=1

(Cs − C̄)(Cs − C̄)T .

An eigenanalysis of the covariance matrix gives a matrix of eigenvectors Φ and
the corresponding eigenvalues λ. Now, a new spline parameter instance can be
generated by the model,

Ĉ = C̄ + Φb,

by varying the b-parameter, typically within the limit of two standard devia-
tions (±2

√
λ). This spline parameter instance may now be applied to deform the

atlas to represent an instance from the set of observations. In this thesis, exper-
iment with alternative approaches to PCA have been carried out. PCA has the
drawback of including each input point from the data matrix in the model pro-
viding results which may be hard to interpret. Independent component analysis
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(ICA) was used in [91] to generate more localised modes of variation. Sparse
PCA (SPCA) [242] shares these properties of ICA, while preserving much of the
simplicity of PCA. This approach was taken in Chapter 9.

3.3.2 Deformation Based Morphometry

In order to infer whether the variations obtained by SDMs are significant, many
authors have applied deformation based morphometry. The term was first intro-
duced by Ashburner et al. [8]. This approach applies PCA to the parameters of
deformation and analyses the new variables using multivariate statistics. This
generates p-values indicating the significance of the findings. Similar approaches
are applied in [45–47, 99]. Later, the expression tensor based morphometry
has been used on equal terms with deformation based morphometry, indicating
voxel-wise hypothesis testing on the deformation fields (further discussed in the
following section).

In most of these studies, statistics are carried out on the determinant of the
Jacobian, det(J), of the deformation field, which indicates whether a relative
expansion (det(J)>1) or contraction (det(J)<1) of the volume has occurred [35,
73, 74, 132, 207, 213, 218, 221, 234]. Analysing the Jacobian is useful when
exploring where volume changes occur. However, analysis of the full tensor
gives more information on exactly how the anatomy is changing, as in the SDMs
discussed above. Other approaches have argued that the information loss can
be compensated for by analysing the strain matrix, JT J [133].

Another point of criticism of the Jacobian approach is that the information is
too local and highly dependent on the type of transformation model [183, 206].
To overcome this, a regional approach has been suggested in [74] and smoothing
of the Jacobian map in [206].

3.4 Large Scale Hypothesis Testing

An important issue of analysing multiple findings from image analysis algorithms
is to test for the statistical significance of those findings. This is a non-trivial
task since the findings from voxel to voxel are highly correlated. Hence, mul-
tiple comparisons need to be corrected for. This is e.g. highly important in
deformation-based morphometry discussed in the previous section.

Many authors have studied this topic in relation to image analysis applications.
The approaches include e.g. general linear models [8, 71], modelling by Gaussian
random fields [21, 212] and permutation testing [150, 168].
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In general, the problem is to simultaneously test several correlated hypotheses.
This was addressed by Efron [62] with application to the analysis of DNA mi-
croarrays. In [51] this was adapted to the statistical analysis of deformation
fields. In Chapter 11 of this thesis, this approach is used to estimate the sig-
nificance of point-wise asymmetry. The remainder of this chapter discusses the
details of this approach.

Efron’s approach aims at improving the estimation of false discovery rate (fdr) [12]
by replacing the theoretical null-hypothesis by an estimated empirical null-
hypothesis.

The methodology requires that the statistical distribution (theoretical or em-
pirical) of the input values is estimated. A p-value, pi in each point i, is then
estimated and the corresponding z-value is estimated,

zi = ψ−1(pi), i = 1, . . .M (3.9)

where ψ is the standard normal cumulative distribution function and M is the
number of points under consideration (e.g. all vertices of a surface or all voxels
in an image). The theoretical null-hypothesis states that zi ∼ N(0, 1).

Now, it can be assumed that the z-values fall into two classes, “uninteresting”
and “interesting” and zi has density f0(z) or f1(z) with prior probabilities p0 and
p1 = 1− p0 depending on the class. Fitting a smooth curve to the z-histograms
gives an estimate of the mixture density, f(z),

f(z) = p0f0(z) + p1f1(z). (3.10)

Following Bayes theorem, the a posteriori probability that zi falls into the un-
interesting class is

P{Uninteresting|z} =
p0f0(z)
f(z)

(3.11)

Now, Efron defines local false discovery rate by

fdr(z) =
f0(z)
f(z)

(3.12)

providing an upper bound to P{Uninteresting|z} (since p0 is ignored). Instead
of using the theoretical null-hypothesis for f0(z), Efron proposed to use the em-
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pirical null-hypothesis, obtained by estimating the mean and standard deviation
from f(z). Now, the input values can be classified as interesting or uninterest-
ing, assigning a certain threshold to the fdr (Efron suggests that fdr(zi) ≤ 0.10
gives an interesting finding).

3.4.1 Example: Comparing Displacements

To give an example of the use of local false discovery rate, we compare point-
wise deformations from the surface of a wild-type mouse atlas to 10 wild-type
mice and 10 Crouzon mice (the data from Chapter 7-9 and 11). The analysis is
based on the magnitude of the displacement vectors as in [51]. It is assumed that
each component of the three-dimensional deformation vector follows a normal
distribution. Hence, the squared magnitude will follow a χ2 distribution with
three degrees of freedom. The significance of the differences between groups
may be estimated by an F-test, since the ratio of two χ2 distributions follows
an F-distribution. Now, the χ2 distribution for each group is a sum of χ2(3)
distributions for each observation and the degrees of freedom is equal to the
sum of degrees of freedom for the individual distributions. Given the squared
magnitude of the deformation vector, Di, the F-statistic becomes,

|D̄i
G1|/(2NG1)

|D̄i
G2|/(2NG2)

∼ F (2NG1, 2NG2), i = 1 . . .M

where
D̄i

G1 =
1

NG1

∑
j∈G1

Dj
i

is the mean squared magnitude in point i across subjects j in group G1 and
NG1 is the number of observations (subjects) in group G1. By evaluating the
F-statistic in each point of the surface, p-values may be obtained and inserted
into (3.9) and (3.12). Figure 3.4 shows the z-value histogram of this experiment,
labelling the components of the fdr.

For a discussion of this result, refer to Chapter 6.
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Figure 3.4: Example of local fdr-analysis. A group-wise comparison of deformation
vector magnitudes in each point of a wild-type mouse atlas. (a) Example of a z-value
histogram. The blue curve denotes the fitting spline, f(z), the pink curve denotes
the empirical null-hypothesis, f0(z) and the green curve denotes the observations with
fdr(z) ≤ 0.10. (b) 1-fdr displayed on the atlas surface. The positions where 1−fdr >
0.9 correspond to the bins under the green curve in (a).



Chapter 4

Images of Craniofacial
Anomalies. From Manual to

Automated Analysis

The aim of this chapter is to describe the developments in the field of craniofacial
image analysis with respect to automation and detail of the analysis. The
following review will focus on the topics of this thesis, namely morphometry
and asymmetry.

4.1 Morphometry

Roentgencephalometry, first introduced by Broadbent in 1931 [19], is a widely
used technique for investigating craniofacial malformations. The Broadbent
technique refers to quantitative measurements based on a set of reference points.
The reference points are set by annotating X-rays (cephalograms), most often
acquired in lateral view and the measurements are used to assess craniofacial
growth and development and to evaluate the effect of treatment. [e.g. 117]. A
more advanced version of roentgencephalometry is a three-dimensional recon-
struction from X-rays in three projections, [e.g. 20].
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The reference points used for Roentgencephalometry are typically defined manu-
ally. Several authors, however, have attempted to automate the tedious process
of manual landmarking (see reviews in [57, 131]). The cephalometric measure-
ments (manual or automatic) are typically analysed by a statistical comparison
of measurements for a group of affected subjects to a control group. This was
e.g. done in [96] and [97], where several hundred landmarks were annotated in
three projections and t-tests comparing distances and angles were carried out to
study cleft lip and palate (CLP). A more complete analysis of reference points
is done by finite element scaling analysis (FESA) [182] or Euclidean Distance
Matrix Analysis (EDMA) taking into account all inter-landmark distances [129].
This approach was applied in [195] to study craniofacial growth in children with
CLP. To further assess local shape changes, some authors have applied statis-
tical shape modelling [58] (also referred to as geometrical morphometry in the
literature) to the landmarks. This includes studies of children with CLP [53],
studies of children with malocclusions [9, 87, 194] and analysis of mandibular
growth [69].

Although roentgen cephalometry has its advantages due to low radiation doses,
CT provides a complete representation of the anatomy and is preferred for
diagnosis and surgery planning in many situations. In addition to this, 3D tech-
niques include laser scans and photogrammetry, which provide 3D facial surface
reconstructions. Within the field of anthropology and evolution, 3D landmarks
are placed on dry skulls, digitised and analysed, typically using shape modelling
or EDMA [e.g. 94, 111, 154]. Keeping the focus on craniofacial malformations,
the maxillary arch of children with CLP was analysed in [53], the craniofacial
morphology of mice with CLP was assessed in [88] using shape modelling and
EDMA and a similar study for various mouse mutants was presented in [89].
Shape models of the mandible from MR images were created to investigate the
effect of surgery in [25].

A few approaches have assessed 3D shape variation with dense point-correspond-
ence (as opposed to the sparse landmark representations mentioned above). This
includes the work of Hammond et al. which applied shape modelling to facial
3D photogrammetry data for the classification of different groups of children
with congenital craniofacial malformations [90]. In [102] 3D growth models of
facial surface data were constructed and in [79], shape models of soft-tissue
surfaces from CLP children were created. A method for 3D surface registration
of mandibles was developed in [5] and applied to growth modelling in [6, 98].
An atlas of the human ear from laser surface scans using level sets was created
in [68] and different types of shape models of the human ear from similar scans
were presented in [51, 170].

All of the above mentioned approaches are solely based on landmark- or surface-
data. Very little attention has been paid to utilising the full volumetric informa-
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tion stored in CT images. Among the pioneers in non-rigid image registration
were Christensen et al. and one of their first applications was the creation of a
computational cranial atlas [31]. Later, non-rigid image registration was applied
to create point-correspondence on the surface of mandibles [119]. Deformation
fields in the maxilla and mandible for evaluating the effect of surgery were in-
vestigated in [26]. This thesis further adds to these types of applications by
including the creation of a craniofacial computational mouse atlas [162] and the
statistical modelling of deformation fields to analyse shape differences between
Crouzon mice and wild-type mice [91, 160, 163].

4.2 Asymmetry

The simplest methods for determining craniofacial asymmetry are direct an-
thropometry of the head using a caliper [e.g. 113, 200], measurement systems
using a head ring [27] or a thermoplastic strip molding the head shape [228].

Another way of measuring cranial asymmetry is from reference points on cephalo-
grams. Methods for determining asymmetry by comparison of left and right side
landmarks were developed early [28, 190, 211, 227, 230], some of which are still
in use today [e.g. 108, 124, 224]. Similar methods have been adopted to 2D
photographs, [e.g. 61, 78].

Van Valen, one of the pioneers with respect to measuring craniofacial asym-
metry, discussed the terms directional and fluctuating asymmetry [227]. These
terms were revisited by Bookstein [16] and Mardia et al. [141]. They defined
asymmetry using Procrustes shape distance after aligning landmarks from origi-
nal and reflected shapes. They defined the directional asymmetry as the squared
mean Procrustes distance between two configurations (original/mirrored shape)
while the fluctuating asymmetry resembled its standard deviation. Further,
they developed elaborate statistical tests for their measure and evaluated its
performance on several data sets, including craniofacial data. These meth-
ods have been used in a few other craniofacial studies, e.g. to study craniofa-
cial asymmetry in schizophrenia patients with direct anthropometric measure-
ments [95] and (with some extensions) to study the asymmetry of the jaw of
cichlid fishes [112]. Lele and Richtsmeier defined asymmetry and tested for
significance using EDMA [128]. Their approach was applied in [144] to study
asymmetry in parents of children with orofacial clefting using direct anthropo-
metric landmarks.

Measurements on 3D scans, generated by either 3D photogrammetry systems,
laser scanners or CT, obviously give more possibilities. Laser scans were anal-
ysed in [176], manual measurements on CT scans were used to determine asym-
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metry in [22, 103]. Based on landmark data a 3D asymmetry vector indi-
cating angle and size of facial asymmetry was applied in [64, 65]. Another
landmark-based asymmetry measure was introduced and applied to 3D pho-
togrammetry data in [85]. Facial asymmetry in infants with CLP was assessed
using landmarks on 3D photogrammetry surfaces [100]. Several different meth-
ods for asymmetry assessment from 3D laser scans were discussed in [153], e.g.
landmark-based approaches, volume measurements and closest point differences.
The conclusion was that different applications required different methods of
asymmetry assessment. Craniofacial morphology and asymmetry were studied
in [118] comparing patients with dentofacial deformity.

All of the above approaches represent a sparse way of analysing craniofacial
asymmetry except maybe the closest point difference approach discussed in [153].
A few 3D continuous approaches exist. 3D asymmetry was estimated in mandib-
les using spherical harmonics coefficients in [77]. Craniofacial asymmetry was
defined as the deviation of a midsagittal surface from a midsagittal plane in [32].
This thesis further adds to these applications by two different approaches:
Point-wise asymmetry in infants with deformational plagiocephaly was mea-
sured in [121] by comparing left and right distances of a deformed symmetric
surface to midpoint. Moreover, volumetric asymmetry in Crouzon mice and
UCS children was assessed in [164, 166] by comparing the displacement vectors
on the left and right side resulting from an image registration to a symmetric
volume.

4.3 Concluding Remarks

From the previous sections, it is evident that there is high interest in the ana-
lysis of craniofacial images. However, most of the methods rely on a qualitative
assessment or a quantitative manual analysis using a sparse set of landmarks.
Even though cephalometry is still valid due to the low dose of radiation, com-
pared to CT, the tendency is clearly a shift towards 3D analysis. In this relation,
going from a sparse set of reference points to utilising the full 3D volume or sur-
face data in an automatic framework provides much greater detail and higher
reproducibility. This may lead to more knowledge about different craniofacial
anomalies, in addition to providing powerful tools for treatment planning and
evaluation.
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Contributions

The main contribution of this thesis is to demonstrate the feasibility, accu-
racy and efficiency of applying non-rigid image registration to study craniofa-
cial anomalies. In particular, the thesis has focused on the study of deformation
fields resulting from non-rigid image registration. This involves atlas building,
visual examination of deformation fields, statistical modelling, and the extrac-
tion of geometrical information, such as asymmetry. Furthermore, the statistical
significance of findings from deformation fields, has been investigated. Non-rigid
image registration based on B-splines [185, 188] has been the basis for most of
the contributions, i.e. Chapters 7-9 and 11 while thin-plate spline surface regis-
tration has been used in Chapter 10. Figure 5.1 gives example results from the
different papers presented.

Chapter 7 describes the creation of computational mouse atlases and provides
interpretations of group differences from automatically obtained linear measure-
ments and deformation fields. The contribution here is mainly clinical. Com-
pared to other approaches investigating Crouzon syndrome this is by far the
most automated and detailed study. Previous findings are confirmed and a new
trait concerning an angulation in the cranial base of Crouzon mice is observed.

Chapters 8 and 9 are based on the theory of statistical deformation models
(SDMs) [187]. Chapter 8 applies SDMs to the analysis of shape variability within
and between groups. It confirms the findings from Chapter 7 and concludes that
the shape of the Crouzon mouse skull varies more and is more asymmetric than
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the shape of the wild-type mouse skull. The main contribution of Chapter 9
is the use of sparse principal components analysis (SPCA) for the modelling of
deformation fields. Due to the ability of SPCA to localise the largest variability
in many modes of the model, it reveals more aspects of the between-group
variation, including angulation in cranial base, nose bending and deformation
in the middle ear and the back of the head. Further, it is concluded that
SPCA outperforms both principal components analysis (PCA) and independent
component analysis (ICA) with respect to discriminating between the groups of
mice.

Chapters 10 and 11 introduce two different approaches to quantify bilateral
asymmetry. In addition to presenting novel asymmetry measures, both of these
chapters contribute to the understanding of the craniofacial malformations stud-
ied with respect to locating the most important areas of asymmetry. In Chap-
ter 10, a thin-plate spline procedure is applied for registering a symmetric surface
to each subject surface. The ratio of left/right distances to a midpoint in each
point of the surface is then defined as the asymmetry. Furthermore, a statistical
model of asymmetry in children with deformational plagiocephaly is created, re-
vealing the first two modes of asymmetry variation to be located in the posterior
and anterior head, respectively. Chapter 11 directly uses the deformation vec-
tors from a B-spline-based image registration of a symmetric template volume
to a patient volume, resulting in a voxel-wise measure of asymmetry. This is
applied to studying asymmetry in the Crouzon mouse skull and in children with
unicoronal synostosis. With respect to Crouzon syndrome, the most important
findings are the asymmetry in the nose, zygoma and posterior skull region. For
children with unicoronal synostosis, previous studies on the condition are con-
firmed since asymmetry is detected in the mid-face, posterior skull and anterior
cranial fossa. However, the proposed approach provides higher spatial resolu-
tion than previous studies. The findings are verified by point-wise statistical
hypothesis testing with correction for multiple comparisons.
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Figure 5.1: Example results from the thesis. (a) Visual inspection of deformation
fields to explore differences between wild-type and Crouzon mice (Chapter 7). (b-
c) Two modes of a sparse statistical deformation model for the two groups of mice
(Chapter 9). (d) Mean cranial asymmetry from the group of normal and Crouzon mice,
displayed on the symmetric skull along with the statistical significance of the group
difference (Chapter 11). (e) Mean cranial asymmetry of a normal skull and a UCS skull
along with the statistical significance of the group difference. (f) Point-wise asymmetry
quantification in an infant with deformational plagiocephaly (Chapter 10). (g) Point-
wise asymmetry quantification in a child with unicoronal synostosis (Chapter 11).
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Chapter 6

Discussion and Conclusion

This thesis has focused on the use of non-rigid image registration for the study
of craniofacial anomalies. This involves the concept of a computational atlas as
well as the analysis of deformation fields to estimate anatomical variability and
craniofacial asymmetry.

The analysis of such deformation fields is obviously highly dependent on the ac-
curacy of the image registrations. The findings presented in this thesis are based
on the belief that as long as the registrations are equally accurate as manual
annotations by a human observer, the analyses are reliable. Given the registra-
tion accuracy with respect to two (or more) manual observers as in Chapter 7,
findings larger than the error should be dependable. However, comparison to
manually annotated landmarks is always limited to the sparse distribution of
the landmarks. Even though a large number of landmarks is employed, they
will never be directly comparable to a voxel-wise correspondence as obtained
from the non-rigid registration. A way to get a higher detail in the error ana-
lysis is to check the point to surface distance, given that one or more segmented
surfaces from the volume exist. This is done in Chapter 11. Even though such
an approach does not measure point-correspondences, it gives a good spatial
distribution of the registration errors and a lower bound for the point-to-point
(correspondence) error. Although both validation approaches give convincing
assessment of the registration errors, alternative validation methods exist. Val-
idation of non-rigid image registration algorithms is, in fact, an active area
of research and many different approaches have been suggested, [e.g. 44, 189].
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Additionally, an interesting benchmarking study, including several validation
criteria, is being carried out [33]. In conclusion, it may be argued that there is
room for improvement regarding the validation aspects of this thesis.

One issue with non-rigid registration is its high computational cost. Even though
computing power has increased, advanced imaging techniques acquire images of
increasingly higher resolution demanding more computation time. Acceleration
of non-rigid registration algorithms is of great interest to the image analysis
community. Different approaches focusing on the optimisation techniques have
been suggested [11, 107, 147]. Another group of methods includes model-based
approaches, such as active appearance models [40]. They provide extremely fast
registration, but the drawback is obviously the need for creation of a training
set of corresponding landmarks, which, especially in 3D, is cumbersome. Recent
approaches have aimed at unifying the two different groups of methods [42, 225,
237], i.e. applying image registration to the model building and register by the
model parameters. These studies are very promising and given sufficient training
data, this is clearly one way towards fast image registration.

The issue of the data set size takes us to the statistical models constructed
in this thesis. Unfortunately the mouse data is limited to ten specimens from
each group, which limits the variability of the statistical deformation models.
However, since the two groups are strikingly different in shape, we are, despite
the small data set, confident that the findings from the inter-group models in
Chapters 8 and 9 are reliable. The within-group models in Chapter 8 would
probably show more types of variation given more observations. The statistical
asymmetry model from Chapter 10 includes 38 patients with deformational
plagiocephaly (DP). This number should be sufficient to describe the asymmetry
variation. However, more data exist and the plan is to extend this study to
include more observations.

Chapters 10 and 11 introduce two approaches for a point-wise quantification of
asymmetry of the head. The approach from Chapter 10 measures asymmetry
in each point by the ratio of the corresponding left and right distances to a
midpoint. This gives convincing results but the main drawback of this approach
is that the use of ratios assigns higher asymmetry to points far away from the
mid-point. Detected asymmetry in regions close to the center, such as the nose,
is minimal. Applying the approach from Chapter 11 to the same data revealed
asymmetry in regions not detected by the ratio-approach. In the case of DP
the posterior and anterior asymmetry are most important and in that sense, the
ratio-measure is still valid. However, for the general application, the measure
from Chapter 11 should be used. The asymmetry-measures are being integrated
for clinical use at St. Louis Children’s Hospital for the treatment planning and
evaluation of infants with DP.
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Multiple hypothesis testing is of great interest in modern image analysis. Cur-
rently, the largest field herein is probably brain image analysis, including fMRI
analysis [e.g. 50, 71, 179, 193] and deformation based morphometry [e.g. 35, 74,
207, 234]. However, in many other applications, voxel- or point-wise metrics
are derived introducing the need for estimating the statistical significance. An
ideal example is the analysis performed in Chapter 11, where the significance of
point-wise asymmetry across groups is estimated using local false discovery rate.
This approach was originally introduced in relation to DNA micro-arrays [62].
This application shares many properties with image data and the advantage of
the method is that it is simple and gives easily interpretable results. In addition
to the analysis in Chapter 11, an example of this approach was given in Chap-
ter 3.4.1. The preliminary results in Figure 3.4 do to a great extent confirm
the main findings of Chapter 7, that Crouzon mice differ from wild-type mice
in the cranial base and nose. However, the conclusions about differences in the
zygomatic bone are not confirmed. Perhaps this has to do with the limited size
of the dataset or possibly, an analysis of the Jacobians may give more significant
regions. Based on the experiments carried out in this thesis, it is concluded that
the local fdr approach should be applicable to many other image analysis tasks.

Chapter 4 revealed that the use of non-rigid registration within the field of
craniofacial image analysis is rare. One of the reasons is perhaps that, as opposed
to e.g. the brain or the heart, the skull is rigid by nature. However, skull growth
and differences in skull shape across individuals are highly non-rigid, motivating
the approach. Another factor is the amount of existing data. To image the skull
in 3D, typically CT images are required, which due to the radiation, does not
allow for large control groups. On the other hand, the use of mouse models to
analyse different craniofacial anomalies is steadily growing [223]. This allows for
larger data sets, including a set of controls and highly detailed images, since the
amount of radiation is not an issue when the animal has already been sacrificed.

6.1 Conclusion

This thesis has demonstrated the feasibility, accuracy and efficiency of applying
non-rigid image registration to study craniofacial anomalies. Through the adap-
tion of non-rigid registration to the particular field of craniofacial anomalies, a
new framework for automated craniofacial image analysis has been created. The
presented framework has to a great extent provided answers to the questions
stated in Chapter 1. The severity of a particular craniofacial anomaly is pro-
vided by quantification of the abnormality, using e.g. the statistical deformation
models or one of the asymmetry approaches, convincingly demonstrated on three
different applications. The same may be stated about the second question about
treatment progress. The DP data includes infants imaged before and after hel-
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met treatment and the asymmetry measure is of great assistance in evaluating
the progress. The third question about typical features of a population has been
answered with respect to the shape of a Crouzon skull and the typical differences
of a Crouzon and a wild-type mouse skull. Moreover, it has been involved in
the statistical model of DP asymmetry.

In conclusion, this thesis has contributed through scientific results regarding
craniofacial anomalies. In addition, it has provided tools of high relevance
with respect to treatment planning and evaluation of children with craniofa-
cial anomalies.
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Chapter 7

Computational Mouse Atlases
and their Application to

Automatic Assessment of
Craniofacial Dysmorphology

caused by the Crouzon
Mutation Fgfr2C342Y

Hildur Ólafsdóttir, Tron A. Darvann, Nuno V. Hermann, Estanislao Oubel,
Bjarne K. Ersbøll, Alejandro F. Frangi, Per Larsen, Chad A. Perlyn, Gillian

M. Morriss-Kay, Sven Kreiborg

Abstract

Crouzon syndrome is characterised by premature fusion of sutures and
synchondroses. Recently the first mouse model of the syndrome was gen-
erated, having the mutation Cys342Tyr in Fgfr2c, equivalent to the most
common human Crouzon/Pfeiffer syndrome mutation. In this study, a
set of micro-computed tomography (CT) scans of the skulls of wild-type
mice and Crouzon mice were analysed with respect to the dysmorphology
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caused by Crouzon syndrome. A computational craniofacial atlas was built
automatically from the set of wild-type mouse micro-CT volumes using (i)
affine and (ii) non-rigid image registration. Subsequently, the atlas was de-
formed to match each subject from the two groups of mice. The accuracy
of these registrations was measured by a comparison of manually placed
landmarks from two different observers and automatically assessed land-
marks. Both of the automatic approaches were within the inter-observer
accuracy for normal specimens, and the non-rigid approach was within
the inter-observer accuracy for the Crouzon specimens. Four linear mea-
surements, skull length, height and width and interorbital distance, were
carried out automatically using the two different approaches. Both auto-
matic approaches assessed the skull length, width and height accurately
for both groups of mice. The non-rigid approach measured the interor-
bital distance accurately for both groups while the affine approach failed
to assess this parameter for both groups. Using the full capability of the
non-rigid approach, local displacements obtained when registering the non-
rigid wild-type atlas to a non-rigid Crouzon mouse atlas were determined
on the surface of the wild-type atlas. This revealed a 0.6 mm bending in
the nasal region and a 0.8 mm shortening of the zygoma, which are sim-
ilar to characteristics previously reported in humans. The most striking
finding of this analysis was an angulation of approximately 0.6 mm of the
cranial base, which has not been reported in humans. Comparing the two
different methodologies, it is concluded that the non-rigid approach is the
best way to automatically assess linear skull parameters. Furthermore, the
non-rigid approach is essential when it comes to analysing local, non-linear
shape differences.
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7.1 Introduction

Crouzon syndrome was first described nearly a century ago when calvarial defor-
mities, facial anomalies, and abnormal protrusion of the eyeballs were reported
in a mother and her son [43]. Later, the condition was characterised as a com-
bination of a few traits: premature fusion of the cranial sutures (craniosynos-
tosis), orbital deformity, maxillary hypoplasia, beaked nose, crowding of teeth,
and high arched or cleft palate.

Shape deviations due to Crouzon syndrome in humans have been addressed in a
few studies. The methods used for the analyses include roentgencephalometric
measurements [117], finite element scaling analysis [182], Euclidean distance
matrix analysis (EDMA) [129] smooth surface curvature measures [49], and
basic cephalometry [23]. The major findings from these studies with respect to
malformations in Crouzon patients are reported in Table 7.1.

Genetic alteration of the murine genome has become a standard tool in the field
of craniofacial developmental biology. Numerous mouse models for craniofacial
anomalies now exist, each with a unique phenotype [223]. The use of 3D micro-
CT is becoming an increasingly popular technique for anatomic analyses of
these models, with comparison to unaffected mice and other mutant mice being
performed [171, 181, 198].

Heterozygous mutations in the gene encoding fibroblast growth factor receptor
type 2 (FGFR2 ) have been found responsible for Crouzon syndrome [180]. Re-
cently a mouse model was created to study one of those mutations
(FGFR2Cys342Tyr) [63]. This model was analysed in a recent study using micro-
CT head scans of a group of (unaffected) wild-type mice and a group of Crouzon
mice. The study proved the mouse model applicable to reflect the craniofacial
deviations occurring in humans with Crouzon syndrome confirming many of the
morphological traits seen in previous studies on humans (see Table 7.1). This
was achieved by a comparison of linear measurements obtained manually on the
surfaces and by applying EDMA to a set of landmarks on the surfaces [173].

To further and automatically assess local deviations of mutant mice from normal,
this study adopts the concept of a computational atlas. The term atlas has
many meanings in the field of biomedical research. An experienced medical
practitioner defines pathology by estimating the deviation from a typical normal
subject in his/her mind. This reference frame could be referred to as a “mental
atlas”. This type of atlas is obviously only qualitative and very subjective.
Traditional anatomical atlases can be found in textbooks [e.g. 201] but they
provide only a two-dimensional schematic representation of the anatomy and
can be interpreted in different ways depending on the user. Often, the anatomy
of a single normal, healthy subject is referred to as an atlas and used as a
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Table 7.1: Overview of malformations due to Crouzon syndrome in humans (first six
studies) and in mice (Perlyn 2006))

Region Kreiborg
et al.
1981

Richtsmeier
1987

Lele and
Richtsmeier
1991

Kreiborg
et al.
1993

Carinci
et al.
1994

Cutting
et al.
1995

Perlyn
et al.
2006

Calvaria Short Short
Wide
High

Calvarial
contour
flattened
in the
lateral
parietal
regions

Maxilla Short and
narrow

Short Short

Reduced
Posterior
maxillary
height

Posterior
palate
shifted
rela-
tively
to cra-
nial
base

Maxilla
retrog-
nathic in
relation
to the
anterior
cranial
base and
backward
inclined
Short zy-
goma

Nasal
Region

Short
nasal
bones

Reduced
height
and
depth of
nasophar-
ynx

Reduced
size of
cavities
and
height,
reduced
volume
and
height
of
rhinophar-
ynx

Short
cavity

Sphenoid
bone

Reduced
Ante-
riopos-
terior
length

Cranial
base

Short and
narrow

Narrow
floor

Short
anteri-
orly

short
clivus
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Table 7.1: continued. Overview of malformations due to Crouzon syndrome in hu-
mans (first six studies) and in mice (Perlyn 2006))

Region Kreiborg
et al.
1981

Richtsmeier
1987

Lele and
Richtsmeier
1991

Kreiborg
et al.
1993

Carinci
et al.
1994

Cutting
et al.
1995

Perlyn
et al.
2006

Midface Concave
and
wide
Piriform
aper-
ture in
center
more
re-
cessed
than
the per-
ifery of
midface

Sella
turcica

High Large
pituitary
fossa

Enlarged

Forehead Steep Recessed
above a
frontal
sinus
bulge

Occiput Flattened Small
Anterior
fontanelle

Protrusion

Orbital
region

high
orbital
opening
Lateral
and in-
ferior
orbital
margins
retruded

Shallow
and
concave
orbits,
tilted
inferi-
orly

Floor
of orbit
short,
closer to
nasal cav-
ity than
normal
High in-
terorbital
distance

Wide
orbits

High
Inter-
canthal
dis-
tance
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reference frame when estimating deviations due to pathology. A more correct
way of defining such a reference frame is to use the average of a set of normal
subjects. This can for example be a set of points delineating an anatomical
structure averaged over a set of subjects [e.g. 210]. Inclusion of more anatomical
details results in shape- and intensity-based atlases constructed from a set of
images in 2D, 3D [e.g. 18, 31, 106] or even 4D [e.g. 174]. This type of atlas will
be referred to as a computational atlas in the remainder of this paper.

Computational atlases have many applications. In most cases, they are de-
formable, meaning that it is possible to deform them into the corresponding
anatomy of any subject within a population. These properties allow automatic
linear or volumetric measurements and segmentation of different structures and
organs [e.g. 48, 59, 138, 169, 238]. By creating probabilistic atlases, deviations
from normal can be assessed in a statistical manner [e.g. 125, 143, 220].

The primary goal of the present study was to build automatically a compu-
tational atlas from the set of wild-type mice and apply it to study craniofacial
malformations. Using recent techniques from image analysis, this paper presents
the automatic construction of two types of craniofacial wild-type mouse atlases
directly from the micro-CT data. The deformable nature of the atlases allows
for automatic assessment of linear parameters of the skull and in this paper,
four parameters are studied and analysed with respect to Crouzon dysmorphol-
ogy. In order to assess the local malformations, the amount of deviations when
deforming a wild-type mouse atlas into a Crouzon mouse atlas is determined
and analysed.

The paper is organised as follows. The methods section covers data acquisition
followed by an introduction to the image analysis methods and atlas construc-
tion. This section is concluded by stating how these factors are combined into
a method allowing for automatic assessment of 3D landmarks and local shape
deviations. The results section provides experimental results by a qualitative
and a quantitative validation of the automatic assessments and an analysis of
the global and local deviation of Crouzon mice from wild-type mice.

7.2 Materials and Methods

7.2.1 Data Material

Micro-CT scans of a control group of ten wild-type mice and ten Crouzon
(Fgfr2C342Y/+) mice were studied.

The production of the Fgfr2C342Y/+ and Fgfr2C342Y/C342Y mutant mouse (Crou-
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zon mouse) was carried out as described by [63]. All procedures were in agree-
ment with the United Kingdom Animals (Scientific Procedures) Act, guide-
lines of the Home Office, and regulations of the University of Oxford. Mutant
mice of breeding age were determined by phenotype. Female Fgfr2C342Y/+

mice were bred with males heterozygous for the same mutation. Since the
Fgfr2C342Y/C342Y mice have too severe symptoms to survive the first post-natal
day, the heterozygotes (Fgfr2C342Y/+) were used as phenotypes for the study of
Crouzon syndrome. Figure 7.1(a) shows two of the mice used in this study.

For micro-CT scanning, ten wild-type and ten Fgfr2C342Y/+ specimens at six
weeks of age (42 days) were killed via CO2 asphyxiation and whole mount skele-
tal preparations were made. They were sealed in conical tubes and shipped to
the micro-CT imaging facility at the University of Utah, USA. Three-dimensional
(3D) volumes of the skull of size 720×480×480 voxels were obtained at approx-
imately 46µm × 46µm × 46µm resolution per voxel using a General Electric
Medical Systems EVS-RS9 micro-CT scanner. Prior to processing the images,
the neck part was removed from all 20 images since the mice were decapitated
at different positions prior to scanning. The hyoid bone was also removed due
to its random position and scanning artifacts. Additionally, due to different jaw
positions and the fact that the deviation in mandible shape is a secondary effect
of the syndrome, the mandible was also masked out for all 20 specimens. Fig-
ure 7.1(b,c) gives an example of the imaging data appearance, after extracting
surfaces from the micro-CT images.

Figure 7.1: (A) Photograph of a Crouzon mouse (left) and a wild-type mouse (right).
Skulls extracted from micro-CT images of a Crouzon mouse (B), wild-type mouse (C).
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7.2.2 Image Registration

In order to build a computational atlas from the micro-CT images, the cor-
responding regions across subjects must be averaged. However, the original
images are not defined in a common coordinate system so the different regions
do not correspond. Therefore, image registration is needed. The goal of im-
age registration is to warp one image, the source, into the coordinate system of
another image, the target, using an optimal transformation T. A basic image
registration algorithm requires the following:

• A transformation model, T.

• A measure of image similarity.

• An optimisation method to optimise the similarity measure with respect
to the transformation parameters.

In this study, two different transformation types are used, an affine transforma-
tion and non-rigid deformations based on B-splines [185, 188]. The first captures
global, linear differences between the images while the latter covers local, non-
linear differences. In both cases, normalised mutual information [204] (NMI)
is used as a similarity measure and gradient descent optimisation is applied.
These terms will be covered in the following.

7.2.2.1 Affine Registration

Affine registration applies an affine transformation to map the source image into
the target. Affine transformation is a linear transformation, defined by

Taffine(x, y, z) = Ax + t, (7.1)

where, in 3D, x is a vector holding the 3D point coordinates (x,y,z), t is a vector
holding the three translation parameters and A is a 3× 3 matrix of parameters,
including rotation, scaling and shearing [199]. In this study, the affine transfor-
mation is restricted to 9 transformation parameters. These represent translation
and rotation in addition to anisotropic scaling. An anisotropic scaling model
was chosen, since the largest differences between the two groups of mice are
length, width and height of the skull. Due to the small number of parameters
being optimised, the registration is fast but the drawback is that only global
differences between the images are taken into account while local differences are
ignored.



7.2 Materials and Methods 55

7.2.2.2 Nonrigid Registration based on B-splines

To obtain more accurate registration focusing on local differences, non-linear
transformations are required. A widely used method for this purpose is the non-
rigid registration algorithm using B-spline-based free-form deformations (FFDs)
[185]. In this case, a composition of a global and a local transformation,

T(x, y, z) = Tglobal(x, y, z) + Tlocal(x, y, z), (7.2)

is applied. The global model has already been described by the affine trans-
formation. In 3D, the local transformation model, the FFD is defined by an
nx×ny ×nz mesh of control points Φ with spacing (δx, δy, δz). The underlying
image is then deformed by manipulating the mesh of control points. The FFD
model can be written as the tensor product of the one-dimensional (1D) cubic
B-splines:

Tlocal(x, y, z) =
3∑

l=0

3∑
m=0

3∑
n=0

Bl(u)Bm(v)Bn(w)φi+l,j+m,k+n (7.3)

where i = bx/nxc − 1, j = by/nyc − 1, k = bz/nzc − 1, u = x/nx − bx/nxc,
v = y/ny − by/nyc and w = z/nz − bz/nzc. B0 through B3 represent the basis
functions of the B-spline:

B0(u) = (1− u)3/6

B1(u) = (3u3 − 6u2 + 4)/6

B2(u) = (−3u3 + 3u2 + 3u+ 1)/6

B3(u) = u3/6.

The transformation creates a dense deformation vector field which can be as-
sessed at any point in the image.

7.2.2.3 Normalised Mutual Information as a Similarity Measure

In order to bring images into correspondence by image registration, the degree
of similarity between the two images needs to be defined. The NMI is based on
entropy measures in the two images. The marginal entropy in an image relates
to the information content, or more intuitively it measures the uncertainty of
guessing a voxel intensity. In image A with voxel intensities a ∈ A the marginal
entropy is defined as

H(A) = −
∑
a∈A

p{a}log(p{a}) , (7.4)
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where p{a} is the marginal probability. The joint entropy is defined on the
overlapping region between the two images A and B with voxel intensities a ∈ A
and b ∈ b,

H(A,B) = −
∑
a∈A

∑
b∈B

p{a, b}log(p{a, b}) , (7.5)

where p{a, b} is the joint probability. This corresponds to the information con-
tent of the combined scene or the probability of guessing a pair of voxel in-
tensities. Mutual information describes the difference between the sum of the
marginal entropies and the joint entropy and by dividing by the joint entropy,
NMI is defined as

NMI(A,B) =
H(A) +H(B)
H(A,B)

. (7.6)

The strength of entropy measures, such as NMI, is their ability to cope with two
different modalities [e.g. 205, 233] but they have been widely used with good
results in intramodality applications as well [e.g. 175, 187, 192].

7.2.3 Atlas Construction

Two types of computational, deformable atlases were constructed from the set
of wild-type mice in an iterative manner using (i) affine registration only, (ii)
non-rigid registration (a composition of an affine registration and B-spline-based
non-rigid registration). From this point on the atlases will be referred to as the
affine atlas and the non-rigid atlas. Additionally, a non-rigid Crouzon atlas
was built for average shape comparison purposes. All three atlases were built
according to the procedure listed in Algorithm 7.1.

Algorithm 7.1 Atlas construction
1: atlas = a selected reference mouse from the group (wild-type or Crouzon)
2: repeat
3: Register all mice from the given group to atlas
4: atlas = Intensity average of all registered mice
5: until atlas stops changing
6: Register atlas to all mice from the given group
7: Transform atlas by T̄ = the average transformation obtained in step 6

Lines 3 and 6 in the algorithm are carried out using either affine or non-rigid
registration depending on the type of atlas being constructed. In line 5, the
root-mean-square (rms) error between the voxel intensities of the current atlas
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and the previous atlas is calculated and an appropriate threshold value chosen to
define the state where the atlas stops changing. Lines 6 and 7 from Algorithm 7.1
are intended to reduce the bias in shape towards the choice of reference subject
as previously done with good results [82, 187]. The affine and the non-rigid atlas
are shown in Figure 7.2 and the non-rigid Crouzon atlas is shown in Figure 7.3(a-
c). Finally, Figure 7.3(d,e) shows the non-rigid wild-type atlas and the non-rigid
Crouzon atlas as surfaces extracted from the volumes.

Figure 7.2: Comparison of affine (A-C) and non-rigid (D-F) wild-type mouse atlas.
Three slices, an axial (A,D), sagittal (B,E) and coronal (C,F), through each atlas are
shown.
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Figure 7.3: Nonrigid Crouzon atlas. Three volume slices, an axial (A), sagittal (B),
and coronal (C), through the atlas are shown. A comparison of the non-rigid wild-type
mouse atlas (D), and the non-rigid Crouzon atlas (E) shown in surface representation.

7.2.4 Assessment of Global Linear Parameters

Having constructed a computational atlas, it was then possible to carry out
various measurements on it. Subsequently, corresponding measurements for
any subject can be determined automatically. This is done by propagating the
measurements on the atlas onto the subject according to the transformation,
T, required to register the subject image to the atlas image. For the affine
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atlas, affine transformations (Tglobal) are used to estimate the measurements
and similarly for the non-rigid atlas, non-rigid deformations (Tglobal+Tlocal) are
used.

To give an example of the capability of the automatic registrations, a few linear
measurements of the skull are examined. In practice any linear measurement can
be carried out on the atlas and measured automatically in any of the subjects.
The parameters studied here are:

• L = Skull length
• W = Skull width
• H = Skull height
• IOD = Inter-orbital distance

The skull parameters were defined on the mouse skull following as closely as
possible the definitions in humans. Figure 7.4 gives a graphical illustration of
the parameters. Additionally, it shows 36 anatomical landmarks which are used
for a quantitative validation of the registration accuracy. In this study, only 26
of the landmarks were used, since 10 landmarks were located on the mandible
which has been removed from the images.

Figure 7.4: A: Landmarks shown on a mouse skull. B: Landmarks shown on a
transparent mouse skull along with skull parameter definitions: L = skull length –
distance between nasion (31) and most distant point on occipital bone (33), W =
skull width – distance between the left (35) and right (34) most lateral points on the
skull. H = skull height – distance between intersection of sutura coronalis and sutura
sagittalis (32) and skull base point (23), IOD = intraorbital distance.
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7.2.5 Assessment of Local Deviations

Utilising the full capability of the non-rigid approach, the deformation field from
a given registration can be used to calculate the displacement in mm in each
point on the target skull and in that way assess local differences between the
source and the target.

7.3 Experimental Results

All 20 cases were registered (i) to the affine wild-type atlas by affine transfor-
mations and (ii) to the non-rigid wild-type atlas by non-rigid transformations.
Each affine registration took 99 seconds on average while each non-rigid registra-
tion took 5230 seconds (87 minutes and 10 seconds) on average1. Secondly, the
Crouzon atlas was registered to the wild-type atlas in order to assess the average
local shape differences between the two groups. For the non-rigid registrations,
control point spacings of 3, 1.5 and 0.75 mm were used. In all cases, four land-
marks were used to roughly align the mice with respect to their mid-sagittal
planes (MSPs) and standard horizontal planes prior to registration. This was
done to intitialise the registration close to the region of capture for NMI.

The registration accuracy was estimated both qualitatively in terms of differ-
ence images and quantitatively in terms of anatomical landmarks (as displayed
in Figure 7.4). The automatic assessment of the four linear parameters was
evaluated directly with focus on the accuracy and with respect to global dif-
ferences between the groups. Finally, the local differences obtained from the
Crouzon atlas to wild-type atlas registration were quantified and visualised on
the surface of the wild-type atlas.

7.3.1 Qualitative Validation of Registration Accuracy

A visual impression of the accuracy when registering the affine atlas to a Crouzon
mouse is provided by difference images in Figure 7.5. Similar visualisation is
shown for the non-rigid atlas in Figure 7.6.

1Using a Silicon Graphics Altix 350 with 16 Intel Itanium (1.5 GHz) true 64 bits processors
with 32 GB of shared memory
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Figure 7.5: Affine registration of a Crouzon mouse to the affine atlas. Difference
between the affine atlas and a Crouzon mouse is shown before (A-C) and after (D-F)
registration in axial (A,D), sagittal (B,E) and coronal (C,F) slices.

7.3.2 Quantitative Validation of Registration Accuracy

The registration accuracy was further examined in a quantitative manner. For
this purpose, 26 of the anatomical landmarks from Figure 7.4 were applied. Two
independent observers annotated the set of images according to Figure 7.4. The
average of the two annotations was used as gold-standard (GS). The GS land-
marks on the atlas were then propagated automatically to all subjects using the
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Figure 7.6: Nonrigid registration of a Crouzon mouse to the non-rigid atlas. Dif-
ference between the non-rigid atlas and a Crouzon mouse is shown before (A-C) and
after (D-F) registration in axial (A,D), sagittal (B,E) and coronal (C,F) slices.

previously obtained optimal transformations for each approach. Subsequently,
landmark errors were estimated. These are defined by the point-to-point er-
ror, i.e. the Euclidean distance from an automatically obtained landmark to the
corresponding GS landmark. A statistical analysis of the landmark errors as
described in the Appendix section was performed. The analysis revealed that
both automatic approaches performed on equal terms with the observers for the
wild-type mice and both had lower variance. For the Crouzon mice, landmark
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#31 was defined as an outlier (see Section 7.4) and excluded from the analysis.
The statistical tests concluded that the affine approach performed significantly
worse than the observers while the non-rigid was as accurate as the observers.
The landmark errors were scaled to provide a reasonable comparison as de-
scribed in Appendix 7.A. The scaled errors are shown in Figure 7.7 using box
and whisker plots2.
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Figure 7.7: Landmark errors for wild-type mice (A-C) and Crouzon mice (D-F). Inter-
observer errors (scaled by 1/

√
2) (A,D). Landmark errors between gold standard and

automatic landmarks (scaled by
√

2/3) using the affine approach (B,E) and the non-
rigid approach (C,F). The scaling factors are applied to obtain reasonable comparisons
as explained in the Appendix.

7.3.3 Automatic Assessment of Linear Skull Parameters

The skull parameters listed in Section 7.2.4 were assessed automatically using (i)
affine and (ii) non-rigid registration. Figure 7.8 shows boxplots demonstrating
the deviation of each of the methods from GS for each group of mice (scaled as
suggested in Appendix 7.A).

Having assessed the accuracy of the automatic measurements, it is interesting

2The following definition of a box- and whisker plot is used here. The box surrounds
measurements between the upper and the lower quartile of the data. The line inside the
box denotes the median of the data. The maximum length of the whiskers is 1.5 times the
interquartile range (IQR). Outliers (those lying outside the limits of the whiskers) are marked
by a ”+”.
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to know the true values of the parameters and see how they deviate between
the two groups of mice. This is illustrated in Figure 7.9 for the GS as well as
the two automatic assessments. Additionally, the group means and percentage
increase or decrease are given for each of the three approaches in Table 7.2.
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Figure 7.8: Automatic assessment of skull parameters. Absolute differences between
the two different observers annotating wild-type mice (A), gold standard and affine
approach on wild-type mice (B); gold standard and non-rigid approach on wild-type
mice (C); the two different observers annotating Crouzon mice (D); gold standard
and affine approach on Crouzon mice (E); gold standard and non-rigid approach on
Crouzon mice (F). The plots are scaled as suggested in the Appendix section.

Table 7.2: Average skull parameter values for the wild-type (WT) mice and Crouzon
mice assessed by the three different approaches. Additionally, percentage differ-
ence (% diff.) between the group means is given.

Gold standard Affine approach Non-rigid approach
WT Crouzon % diff. WT Crouzon % diff. WT Crouzon % diff.

L [mm] 24.37 20.41 -16.25 24.70 20.36 -17.55 24.39 20.39 -16.40
W [mm] 10.13 10.87 7.31 10.15 10.80 6.37 10.10 10.84 7.28
H [mm] 6.83 7.53 10.28 6.94 7.44 7.16 6.72 7.44 10.81

IOD [mm] 4.04 4.51 11.64 4.38 4.66 6.37 4.08 4.57 11.77

7.3.4 Automatic Assessment of Local Deformations Be-
tween Wild-type Atlas and Crouzon atlas

In order to estimate the local deformations between the wild-type and Crouzon
groups, the deformation field from the non-rigid wild-type atlas to the non-
rigid Crouzon atlas was established. The obtained vector field was used to
estimate displacement (in mm) at each point of the surface of the wild-type
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Figure 7.9: Skull length (A-C), skull width (D-F), skull height (G-I) and interorbital
distance (J-L) estimated using gold standard landmarks (A,D,G,J), the affine approach
(B,E,H,K) and the non-rigid approach (C,F,I,L).

atlas. Figure 7.10 shows the effect of the scaling component from Tglobal while
Figure 7.11 shows the local displacements from Tlocal.
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Figure 7.10: The vector field illustrating the displacement due to anisotropic scaling
component of the affine registration (Tglobal) of the wild-type atlas to the Crouzon
atlas visualised on the surface of the wild-type atlas. Colors denote displacements (in
mm) according to color scale bars at the bottom.

7.4 Discussion

Judged from Figure 7.2 the non-rigid atlas is more accurate than the affine atlas,
i.e. all structures are sharper than in the more blurry affine atlas. However,
the affine atlas is much simpler to deal with considering the small number of
parameters and the low computation time. The appropriate type of atlas should
be selected carefully with respect to the application in question. Figures 7.5
and 7.6 imply that the non-rigid registration increases the accuracy from affine
registration considerably. The post-affine-registration difference images indicate
that local differences around the zygoma, the maxillary molars and at the most
anterior part of the internal cranial base have not been matched accurately.
In the post-non-rigid-registration difference image, however, all local structures
appear to have been matched accurately during the registration.

The quantitative assessment of registration accuracy in Figure 7.7(a-c) indicates
that for wild-type cases, both of the automatic methods are more consistent than
the human observers. This was confirmed in the statistical analysis of the vari-
ances. In the inter-observer plot in Figure 7.7(a) there are even large outlier
errors in some of the landmarks (2,3,4 and 34). This is often the risk when us-
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Figure 7.11: The vector field obtained from non-rigid registration (Tlocal) of the
wild-type atlas to the Crouzon atlas visualised on the surface of the wild-type atlas.
Colors denote displacements (in mm) according to color scale bar at the bottom. A
right side view of the skull zoomed in at the region around the forehead and maxilla
(A). A top view of the skull zoomed in at the cranial base (B).

ing manual assessments, since human errors cannot be prevented entirely. For
both of the automatic methods (see Figure 7.7(b,c)), all errors are below 1 mm.
Figure 7.7(d-e) implies that for the Crouzon cases, the non-rigid approach out-
performs both the affine approach and the inter-observer errors. As confirmed
in the statistical analysis, the non-rigid approach is both more robust and gives
lower errors, apart from landmark #31 which seems to be problematic for both
of the automatic approaches. According to Figure 7.4 this landmark is placed
at nasion, e.g. at the intersection of the sutura sagittalis and the sutura fron-
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tonasalis. The fact that these sutures are not visible in some of the Crouzon
cases, depending on the severity of the symptoms, makes it hard to match the
region automatically, no matter which similarity measure is chosen. Experienced
human observers seem to be better at guessing the position of this particular
landmark. In practice this single cumbersome landmark could be assessed by a
human observer after applying the non-rigid approach to automatically estimate
all other landmark positions.

Figure 7.8 shows that all the absolute differences in skull parameters between
observers are around 0.3 mm or lower for both groups of mice (Figure 7.8(a,d)).
The absolute errors between the affine approach and the GS are slightly higher
for both groups of mice (Figure 7.8(b,e)). For the non-rigid approach, the errors
are around 0.1 mm and the variance of errors is very low for all parameters and
both groups implying that the non-rigid approach is the most consistent (Figure
7.8(c,f)).

Testing the automatic assessments versus the GS in a t-test (5% level of sig-
nificance) revealed equal means for the non-rigid approach and GS. The affine
approach differed from the GS when assessing the IOD for both groups but
was equally good when assessing the remaining three parameters. This might
indicate that the affine approach is not adequate when assessing parameters
other than those directly related to the anisotropic scaling involved in the affine
registration.

Figure 7.9 implies that all three approaches (GS, affine, non-rigid) show the
two groups to be different in terms of all four parameters. This was confirmed
by a t-test revealing highly significant differences in the group means. Note,
however, that because the affine approach failed to assess the IOD accurately,
the group differences in IOD due to the affine approach are not relevant. The
values from the GS and the non-rigid approach from Table 7.2 indicate that for
Crouzon mice, the skull is approximately 16% shorter, 7% wider and 10-11%
higher. The IOD is 11-12% higher for Crouzon cases. These findings are in
good agreement with earlier studies on humans and mice, as seen in Table 7.1
(calvaria, orbital region) [117, 173].

Figure 7.10 indicates that the scaling differences between the two groups occur
mainly in the sagittal axis, as expected due to the large difference in skull
length between the two groups. Judged from Figure 7.11(a), the zygoma is
approximately 0.8 mm shorter in the Crouzon cases (since it is decreased by 0.4
mm at both“ends”). Furthermore, Figure 7.11(b) reveals that the largest local
differences (0.6 mm and larger deviation) occur at the cranial base and in the
nasal region. The average Crouzon case has an angulation in the cranial base
and a bending in the nasal region. As seen in Table 7.1, shortening of nasal bone
and cavities have previously been reported for humans and mice [23, 117, 173].
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Moreover, the shortening of the zygoma has been reported in humans [117].
However, the angulation of the cranial base is a new finding and it is believed
that it is worth a further study with respect to humans.

With respect to the methodology, it is concluded that the non-rigid approach
outperforms the affine approach, with respect to both landmark accuracy and
the automatic linear measurements on the skull. When examining local, non-
linear deviations, a non-rigid approach becomes essential. Future work includes
a further analysis of the local deformations, incorporating statistical tests on
the deformation field to estimate the significance of the findings.
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7.A Comparing the Error of an Automatic Method
with the Error of an Observer in the Ab-
sence of a Gold Standard.

It is often desirable to be able to compare an automatic or semi-automatic
method with the human error. In many cases this is complicated by the fact
that one does not know the truth, i.e. one does not have a so-called gold stan-
dard. Probably the most commonly cited reference for this and similar kinds of
situation is that of Bland & Altman [13].

Here we will specialise to the present case where two human observers placed
points on a 3D structure. This is to be compared to the placement of the same
points by an automatic method. In such a setting it is possible to estimate the
observer error (variance) and the error (variance) of the automatic method.

For simplicity assume the one-dimensional case where we ask each of the ob-
servers to mark the position of a point x. We assume the correct - but unknown
- position is µ. We further assume that each human observer has his own bias
and error variance and that they are independent of each other. Similarly the
automatic method is assumed to have it’s own bias and error variance. We also
assume independence between the automatic method and the observers.3 Fi-
nally, the assumption of normality is useful in order to set up formal statistical
tests. The above can be written

X1 ∈ N
(
µ1, σ

2
1

)
, X2 ∈ N

(
µ2, σ

2
2

)
, XA ∈ N

(
µA, σ

2
A

)
, (7.7)

where X1, X2 and XA are independent. At least the following two quantities
are considered important:

1. comparison of the two observers shown as the difference between them:
D1,2 = X1 −X2

2. comparison of the automatic method with the average of the observers:
DA,12 = XA − (X1 +X2)/2

It can easily be shown that these quantities are distributed as:

D1,2 ∈ N
(
µ1 − µ2, σ

2
1 + σ2

2

)
,

DA,12 ∈ N
(
µA −

µ1 + µ2

2
, σ2

A +
σ2

1 + σ2
2

4

)
,

(7.8)

3In many cases the latter assumption is questionable, since the automatic method is often
”trained” using the data from the observers with whom we wish to compare. However, we
assume it is valid if we use cross-validation. Alternatively, the automatic method could be
trained against a third observer.
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where D1,2 and DA,12 are independent. From the above we note that it is
possible to test the differences in bias (H01 : µ1 = µ2 and H02 : µA = (µ1+µ2)/2)
using t-tests.

Furthermore, if we introduce the average observer variance as σ2 = (σ2
1 + σ2

2)/2
we get:

D1,2 ∈ N
(
µ1 − µ2, 2σ2

)
DA,12 ∈ N

(
µA −

µ1 + µ2

2
, σ2

A +
σ2

2

)
,

(7.9)

whereD1,2 andDA,12 are independent. From this we see that with no knowledge
of the correct position (no gold standard), the average observer variance can be
estimated as half the variance of the differences between the observer positions.
Furthermore, the automatic method variance can be estimated by subtracting
off the estimated observer variance from the empirical variance of the differences
between the automatic method and the average of the two observers. Finally,
we note that the two types of differences are independent and thus uncorrelated.

A formal F-test of the hypothesis that e.g. the variance of the automatic method
is equal to that of an observer (H0 : σ2

A = σ2) can now be performed by adjusting
the respective empirical variances by factors 1/2 and 2/3.

The adjustment can also be performed directly on the differences using the
factors 1/

√
2 and

√
2/3 respectively. This is useful for plotting purposes since

plots of the two types of differences can be compared more easily - especially
when we can assume no bias (or at least that they are equal).

The above was derived for 1D. Similar derivations can be done for 3D. However,
if positioning-error in the x, y, and z-dimension can be assumed independent
of each other and with the same variance, then the variance estimates can be
pooled. This is equivalent to having three times the number of observations.
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Chapter 8

Craniofacial Statistical
Deformation Models of

Wild-type Mice and Crouzon
Mice

Hildur Ólafsdóttir, Tron A. Darvann, Bjarne K. Ersbøll, Nuno V. Hermann,
Estanislao Oubel, Rasmus Larsen, Alejandro F. Frangi, Per Larsen, Chad A.

Perlyn, Gillian M. Morriss-Kay, Sven Kreiborg

Abstract

Crouzon syndrome is characterised by premature fusion of cranial sutures
and synchondroses leading to craniofacial growth disturbances. The gene
causing the syndrome was discovered approximately a decade ago and re-
cently the first mouse model of the syndrome was generated. In this study, a
set of micro-CT scans of the heads of wild-type (normal) mice and Crouzon
mice were investigated. Statistical deformation models were built to assess
the anatomical differences between the groups, as well as the within-group
anatomical variation. Following the approach by Rueckert et al. we built
an atlas using B-spline-based non-rigid registration and subsequently, all
cases were non-rigidly registered to the atlas. The parameters of these
registrations were then used as input to a PCA. Using different sets of
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registration parameters, different models were constructed to describe (i)
the difference between the two groups in anatomical variation and (ii) the
within-group variation. These models confirmed many known traits in the
wild-type and Crouzon mouse craniofacial anatomy. However, they also
showed some new traits.

8.1 Introduction

Crouzon syndrome was first described nearly a century ago when calvarial de-
formities, facial anomalies, and abnormal protrusion of the eyeballs were re-
ported in a mother and her son [43]. Later, the condition was characterised
as a constellation of premature fusion of the cranial sutures (craniosynostosis),
orbital deformity, maxillary hypoplasia, beaked nose, crowding of teeth, and
high arched or cleft palate. Heterozygous mutations in the gene encoding fi-
broblast growth factor receptor type 2 (FGFR2 ) have been found responsible for
Crouzon syndrome [180]. Recently a mouse model was created to study one of
these mutations (FGFR2Cys342Tyr)[63]. Incorporating advanced small animal
imaging techniques such as micro-CT, allows for detailed examination of the
craniofacial growth disturbances. Studying the craniofacial shape differences
in detail contributes to the understanding of the syndrome, surgery planning
and diagnosis in humans. A recent study, performing linear measurements on
micro-CT scans, proved the mouse model applicable to reflect the craniofacial
deviations occurring in humans with Crouzon syndrome [173]. Previously, we
have extended this study to assess the local deformations between the groups
by constructing a deformable shape- and intensity-based atlas of representing
each group of mice. The deformation field between the two atlases was then
examined [162].

In order to analyse and interpret deformation fields in a meaningful way, it is
desirable to reduce the large number of dimensions and at the same time localise
the deviations with respect to the atlas. This leads us to Statistical Deformation
Models (SDMs). These are closely related to statistical shape models but the
fact that the whole correspondence field is modelled makes them more powerful.

The focus of this paper will be to use the SDMs to (i) describe the anatomical
variability between the two groups, i.e. extract the differences, and (ii) describe
the anatomical variability within each of the two groups.
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8.2 Data Material

Production of the Fgfr2C342Y/+ and Fgfr2C342Y/C342Y mutant mouse (Crouzon
mouse) has been previously described [63]. All procedures were carried out in
agreement with the United Kingdom Animals (Scientific Procedures) Act, guide-
lines of the Home Office, and regulations of the University of Oxford.

For three-dimensional (3D) CT scanning, 10 wild-type and 10 Fgfr2C342Y/+

specimens at six weeks of age (42 days) were sacrificed using Schedule I methods
and fixed in 95% ethanol. They were sealed in conical tubes and shipped to the
micro-CT imaging facility at the University of Utah. Images of the skull were
obtained at approximately 46µm × 46µm × 46µm resolution using a General
Electric Medical Systems EVS-RS9 micro-CT scanner. Prior to analysis of the
images the mandible was masked out for all 20 specimens. This was due to
different jaw positions and the fact that the deviation in mandible shape is a
secondary effect of the syndrome. Figure 8.1 shows an example of the living
mice and the imaging data appearance.

Figure 8.1: (a) Photo of a Crouzon mouse (left) and a wild-type mouse (right). Skulls
extracted from CT images of (b) a Crouzon mouse, (c) a wild-type mouse.

8.3 Methods

The steps taken to automatically build a SDM are the following.

1. Build an atlas from a set of images using non-rigid image registration.

2. Match the anatomy of the atlas to the corresponding anatomies of the
cases to be included in the model using non-rigid image registration.



76 Craniofacial Statistical Deformation Models

3. Build a Statistical Deformation Model applying a PCA to the resulting
deformation fields.

8.3.1 Registration and Atlas Building

For steps 1 and 2 above, the non-rigid registration algorithm based on B-splines
[185, 188] was applied. This algorithm uses a transformation model which is a
combination of a global and a local transformation model,

T(x) = Tglobal(x) + Tlocal(x). (8.1)

The global transformation model consists of an affine transformation matrix.
The local transformation model describing the non-rigid part of the model is
written by the tensor product of 1D cubic B-splines,

Tlocal(x, y, z) =
3∑

l=0

3∑
m=0

3∑
n=0

Bl(u)Bm(v)Bn(w)ci+l,j+m,k+n (8.2)

where c are the parameters (control points) of the B-splines ordered in a px× py× py

lattice. i, j and k are the control point positions and u, v and w are the (x, y, z)
image coordinates transformed into the lattice coordinates.

8.3.2 Statistical Deformation Model

Statistical deformation models are closely related to statistical shape models.
The key difference is that shape models require shapes represented by points
which correspond over the set. This is dependent on manual labour although
many authors have suggested approaches to reduce this.[56, 70, 76] Statistical
deformation models aim at modelling the deformation fields acquired by the set
of non-rigid registrations, each initiated in the common reference (atlas image or
a selected image from the set to be modelled). In this way, anatomical variability
in the full volume is obtained, not only in a segmented shape.

In this paper, we follow the approach by Rueckert et al. [187]. They take
advantage of the fact that the parameters of the B-splines (the control points
displacements) compactly represent the correspondence field between the image
of interest and the target. Now the control points displacements can be used
as input to PCA in order to model the deformations of the group of subjects
defined in the domain of the atlas. Concatenating the 3D control points for
subject s into a row vector Cs = [c1, ..., cp], where p = 3pxpypz, gives the sth
row of the n× p data matrix to analyse, where n is the number of observations.



8.3 Methods 77

We define the mean deformation

C̄ =
1
n

n∑
s=1

Cs

and the covariance matrix

1
n− 1

n∑
s=1

(Cs − C̄)(Cs − C̄)T .

An eigenanalysis on the covariance matrix gives the matrix of eigenvectors Φ
and the corresponding eigenvalues, λ. Now, a new control point instance can
be generated by the model,

Ĉ = C̄ + Φb.

Typically, the number of eigenvectors, t, included in the model is chosen so
that they explain at least 95% of the variance in the model. Now b is the
t-dimensional vector of model parameters.

8.3.3 Modelling Approaches

In order to describe as compactly and descriptively as possible the different
types of variations of interest, the types of atlases and transformation models
in the registrations need to be considered.

To model the differences between groups, we use a wild-type mouse atlas, built
from the group of wild-type mice. Depending on the kind of variation we are
interested in modelling, we use different global transformation models (Tglobal)
in the registrations. In our previous study, we used nine degrees of freedom
(rotation, translation and anisotropic scaling), noting that the largest differences
between the groups occur in skull length, width and height [162]. The local
model in this case provides the local differences between the groups left, when
height, width and length have been removed. This gives us an interesting view
of the group differences, but is perhaps not very intuitive. Including height,
width and length differences in the local model gives a more intuitive model.
Hence, the registrations were repeated using a global model with six degrees of
freedom (rotation and translation) and a local model covering the height, width
and length differences. We will refer to the two different combined local models
as model A and model B, with height, width and length differences excluded
and included, respectively.

In order to describe the within-group variation compactly, an atlas descriptive of
the group in question was used as a reference for the registrations (the wild-type
atlas for the wild-type mouse model and a Crouzon atlas for the Crouzon mouse
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model). Seven degrees of freedom were used in the global model, i.e. translation,
rotation and an isotropic scaling. Hence, the effect of pose and size was removed
from the local model. We could possibly have used the deformations of model A,
but this was not considered appropriate since there is no hypothesis stating that
within-group variation systematically involves anisotropic scaling differences.
Table 8.1 summarises the different modelling approaches.

Table 8.1: Modelling approaches
Model Reference anatomy DOF in Tglobal Covered by local model
A Wild-type atlas 9 Local deformations
B Wild-type atlas 6 Height, length, width, local deformations
Wild-type Wild-type atlas 7 Local deformations
Crouzon Crouzon atlas 7 Local deformations

8.4 Experimental Results

Each type of registration from Table 8.1 was carried out hierarchically, using
local models with control point spacing of 3, 1.5 and 0.75 mm for model A and
the within-group models. For model B, control point spacing of 6, 3, 1.5 and
0.75 mm for model B was applied since the length differences required more
than 3mm spacing to be covered by the local transformation only.

8.4.1 Registration Accuracy

Sufficient accuracy of the image registration algorithm is essential for the defor-
mation model to be valid. In our previous work, manual annotations from two
observers were used to assess the registration accuracy of model A. Using the
optimal transformations from the image registrations, landmarks were obtained
automatically. The landmark positions were statistically compared to those
annotated by the human observers. This showed that the automatic method
provided as good accuracy as the human observers and moreover, it was more
precise, judged from the significantly lower standard deviation. [162] Following
the same approach for model B, Figure 8.2 shows the landmark errors for 26
landmarks set by the two observers as compared to the automatically obtained
landmarks. We show this for Crouzon cases only since it is considered a more
challenging task. For the wild-type cases even better results are obtained. The
plots are scaled to obtain reasonable comparisons as suggested in our previous
work [162]. Statistical comparison of the landmark position revealed the same
main conclusions as the ones from the previous study on model A. Additionally,
similar results were obtained for the within-group models. In conclusion, we
have established a good basis for reliable deformation models.
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Figure 8.2: (a) Landmark errors for Crouzon mice between (a) automatic approach
using model B and gold standard; (b) observer I and observer II.

8.4.2 SDM of Crouzon and Wild-type Mice

A SDM was built for both types of local transformation, i.e. without and with
(anisotropic) scaling differences (model A and model B). In each case, a PCA
was applied to the matrix of control points with n = 20 observations. For model
A, p = 15525 and for model B, p = 21675. For model A, 15 principal modes
were required to retain 95% of the variation in local deformation from average
anatomy. For model B, on the other hand, 10 principal modes were required.
A plot of the cumulative variance across modes for each model is shown in
Figure 8.3. The observations, projected into the space of the first six modes of
variation, are shown in Figure 8.4 for models A, and B.
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Figure 8.3: Cumulative variance across the modes of the statistical deformation
model. (a) Model A (b) Model B .
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Figure 8.4: Projection of observations into the space of the first six principal com-
ponents for model A (a-c) and model B (d-f). Crosses denote Crouzon cases while
circles denote wild-type cases. (a,d) Mode 2 vs. mode 1; (b,e) Mode 4 vs. mode 3;
(c,f) Mode 6 vs. mode 5.

Figures 8.5 and 8.6 show the first mode of variation for models A and B, respec-
tively shown by extracting the skull surface from the atlas and deforming it by
the model. This mode is discriminating for the two groups.

8.4.3 Within-group SDMs

A SDM of the wild-type mouse anatomy was built using the control point vectors
from the wild-type local model, which form a data matrix with n = 10 and
p = 15525. Eight modes of variation were required to capture 95% of the total
variance. Figure 8.7 shows the first and second mode of variation in the wild-
type mouse craniofacial SDM.

A similar data matrix was obtained from the Crouzon local model. The cran-
iofacial Crouzon SDM required eight modes of variation to capture 95% of the
total variance.
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(a) (b)

(c) (d)

(e) (f)

Figure 8.5: First mode of deformation variation, after removing height, length and
width differences (model A). (a,c,e) Atlas deformed towards the most extreme wild-
type case, (b,d,f) Atlas deformed towards the most extreme Crouzon case. (a,b): top
view; (c,d): side view; (e,f): front view.

8.5 Discussion

Figure 8.3 shows that the main difference between model A and B is the pro-
portion of variance explained by the first mode. As expected, the first mode
of model B explains a large proportion of variance, since the length, width and
height differences are considerable. Figure 8.4 shows that for both of the com-
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(a) (b)

(c) (d)

(e) (f)

Figure 8.6: First mode of deformation variation, with height, width and length
included in the local model (model B) (a,c,e) Atlas deformed towards the most extreme
wild-type case, (b,d,f) Atlas deformed towards the most extreme Crouzon case. (a,b):
top view; (c,d): side view; (e,f): front view.

bined models (A and B), only the first mode of variation is discriminating for
the two groups. The remaining modes describe other types of variation than
the one related to group differences. It is also noted from this figure that the
variability in the Crouzon mouse group is for most modes considerably larger
than for wild-type cases. This is often the case when comparing a control group
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(a) (b)

(c) (d)

Figure 8.7: Second and fifth mode of variation for wild-type mouse SDM. Atlas
deformed (a) -2 std. dev. (b) +2 std. dev. along the second principal component.
Atlas deformed (c) -2 std. dev. (d) +2 std. dev. along the fifth principal component.
Note the different shape of the zygoma in (a,b), the curved form of the calvaria and
bending of nose in (c,d).

to a diseased group.

For model A, it is noted that in the Crouzon case, the maxillary molar teeth
are located posteriorly relative to the wild-type (see Figure 8.5, (c,d) causing
a malocclusion. Additionally, the Crouzon mice have a shorter cranial base
(see Figure 8.5, (c,d)), a shorter nose (as measured from sutura frontonasalis,
see Figure 8.5, (a,b)). These three traits have earlier been observed in human
subjects [117]. Furthermore, this model describes a constriction of the cranial
base, meaning that while the calvaria becomes higher, the cranial base becomes
shorter and over bent (see Figure 8.5, (c-f)). This confirms a result from our
previous study where the deformation field between a Crouzon mouse atlas to
the wild-type mouse atlas was inspected. [162] This interesting effect has not
been reported before, and calls for a further investigation. As expected, the
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(a) (b)

(c) (d)

(e) (f )

Figure 8.8: Second, third and sixth mode of variation for Crouzon mouse SDM.
Crouzon atlas deformed (a) -2 std. dev. (b) +2 std. dev. along the second principal
component, top view. Crouzon atlas deformed (c) -2 std. dev. (d) +2 std. dev. along
the third principal component, side view. Crouzon atlas deformed (e) -2 std. dev.
(f) +2 std. dev. along the sixth principal component, bottom view. Note the different
shape and symmetry of zygoma in (a,b), different curving of calvaria and nose bending
in (c,d) and nose orientation in (e,f)

largest variation in model B is due to differences in length, height and width.

The fact that only the first mode of variation differentiates between the groups
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makes the model more difficult to interpret and probably some differences be-
tween the groups are not represented in this mode. Ongoing and future work is
therefore to use more powerful techniques than PCA to distribute the variation
across modes.

The wild-type mouse SDM in Figure 8.7 indicates that wild-type mice vary in
shape of the zygoma (Figure 8.7(a,b)) and the curvature of the calvaria and
nose bending (Figure 8.7(c,d)).

The Crouzon SDM in Figure 8.8 shows that Crouzon mice vary in shape and
asymmetry of zygoma (Figure 8.8 (a,b)). Judged from the third mode, Crouzon
mice have different degree of curved calvaria and bending of the nose (Figure 8.8
(c,d)). The sixth mode mainly describes the orientation and asymmetry of the
nose (Figure 8.8 (e,f)). The asymmetric behavior noted in the second and sixth
mode (and more not shown here) is understandable due to the syndrome´s
nature of full or partial cranial suture fusing, at different sides of the skull. The
fact that both wild-type mice and Crouzon mice vary in shape of zygoma and
curving of calvaria indicates that this is a normal, biological variation. However,
the Crouzon variation is more extreme, which is in agreement with the previous
observation of large variability in the Crouzon group.

8.6 Conclusion

The combined SDMs confirmed many known traits in the craniofacial anatomy,
which already had been reported with respect to human Crouzon subjects.
Model A revealed more detailed anatomical differences, while model B gave
the most obvious differences, and in that sense was more intuitive, while the
actual local differences were hardly visible. The within-group models showed
similar variation, but the Crouzon model had more extreme variation. Some
of the Crouzon modes were asymmetric, which is probably due to asymmetric
fusion of sutures, both in terms of the location of sutures and the timing of
fusion.

In conclusion, we have built reliable SDMs using the appropriate registration
models, which confirm known traits in the Crouzon mouse anatomy. Addition-
ally, traits, which have not, yet, been reported in humans, were discovered and
should be further investigated in the future.
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Abstract

Crouzon syndrome is characterised by the premature fusion of cranial su-
tures. Recently the first genetic Crouzon mouse model was generated.
In this study, Micro CT skull scans of wild-type mice and Crouzon mice
were investigated. Using non-rigid registration, a wild-type craniofacial
mouse atlas was built. All subjects were registered to this reference atlas
providing parameters controlling the deformations for each subject. Our
previous PCA-based statistical deformation model on these parameters re-
vealed only one discriminating mode of variation. Aiming at distributing
the discriminating variation over more modes we built a different model
using Independent Component Analysis (ICA). Here, we focus on a third
method, sparse PCA (SPCA), which aims at approximating the properties
of a standard PCA while introducing sparse modes of variation. The re-
sults show that SPCA outperforms both ICA and PCA with respect to the
Fisher discriminant, although many similarities are found with respect to
ICA.
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9.1 Introduction

Crouzon syndrome was first described nearly a century ago when calvarial de-
formities, facial anomalies, and abnormal protrusion of the eyeball were re-
ported in a mother and her son [43]. Later, the condition was characterised
as a constellation of premature fusion of the cranial sutures (craniosynostosis),
orbital deformity, maxillary hypoplasia, beaked nose, crowding of teeth, and
high arched or cleft palate. Heterozygous mutations in the gene encoding fi-
broblast growth factor receptor type 2 (FGFR2 ) have been found responsible for
Crouzon syndrome [180]. Recently a mouse model was created to study one of
these mutations (FGFR2Cys342Tyr)[63]. Incorporating advanced small animal
imaging techniques such as Micro CT, allows for detailed examination of the
craniofacial growth disturbances. Studying the craniofacial shape differences
in detail contributes to the understanding of the syndrome, surgery planning
and diagnosis in humans. A recent study, performing linear measurements on
Micro CT scans, proved the mouse model applicable to reflect the craniofacial
deviations occurring in humans with Crouzon syndrome [173]. Previously, we
have extended this study to assess the local deformations between the groups
by constructing a deformable shape and intensity-based atlas of wild-type (nor-
mal) mouse skulls [162]. Deforming the anatomy of this atlas to all mice, the
craniofacial shape differences may be analyzed.

To analyse and interpret these deformations in a meaningful way, it is desirable
to reduce the large number of dimensions and at the same time localise the
growth deviations with respect to the atlas. This leads us to statistical defor-
mation models (SDMs). These are closely related to statistical shape models
but the fact that the whole correspondence field is modelled makes them more
powerful. A standard PCA has been a popular approach to build SDMs [e.g.
137, 148, 187] but recently different techniques have been applied, e.g. wavelet-
based PCA [237].

With respect to the mouse study, PCA was previously performed [160]. This
analysis revealed only one discriminating mode of variation, mainly reflecting
global differences between the groups. This kind of variation can be hard to
interpret and in a recent study, we showed that applying Independent Compo-
nent Analysis (ICA) to the deformation fields resulted in several discriminating
modes, revealing the local differences between the groups. Sparse Principal
Components Analysis (SPCA) [242] has proven successful when applied in clas-
sical shape modelling [196]. In this paper we introduce the use of SPCA to build
a Sparse Statistical Deformation Model and provide a comparison to a standard
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PCA and ICA with focus on the discriminative ability. We believe this is the
first time SPCA is applied to statistically model deformation fields.

9.2 Data Material

Production of the Fgfr2C342Y/+ and Fgfr2C342Y/C342Y mutant mouse (Crou-
zon mouse) has been previously described [63]. All procedures were carried out
in agreement with the United Kingdom Animals (Scientific Procedures) Act,
guidelines of the Home Office, and regulations of the University of Oxford.

For three-dimensional (3D) CT scanning, 10 wild-type and 10 Fgfr2C342Y/+

specimens at six weeks of age (42 days) were sacrificed using Schedule I methods
and fixed in 95% ethanol. They were sealed in conical tubes and shipped to the
Micro CT imaging facility at the University of Utah. Images of the skull were
obtained at approximately 46µm × 46µm × 46µm resolution using a General
Electric Medical Systems EVS-RS9 Micro CT scanner. Figure 9.1 shows an
example of the living mice and the imaging data appearance.

Figure 9.1: (a) Photo of a Crouzon mouse (left) and a wild-type mouse (right). Skulls
Extracted from CT images of (b) a Crouzon mouse, (c) wild-type mouse.

9.3 Methods

The steps taken to automatically assess the local shape deviations between
groups, statistically, from the Micro CT images are the following.
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1. Build a craniofacial wild-type mouse atlas from the Micro CT images using
non-rigid image registration

2. Match the anatomy of the atlas to all 20 cases (wild-type and Crouzon
mice) using non-rigid image registration

3. Use the resulting deformation parameters as input to a SPCA

9.3.1 Atlas Building and Registration

The first two steps of the procedure were presented in [162]. The non-rigid
registration algorithm based on B-splines [185, 188] was applied. This algorithm
uses a transformation model which is a combination of a global and a local
transformation model, T(x) = Tglobal(x)+Tlocal(x). The global transformation
model consists in our case of a rigid transformation matrix (with 6 degrees of
freedom). The local transformation model describing the non-rigid part of the
model is written by the tensor product of the 1D cubic B-splines,

Tlocal(x, y, z) =
3∑

l=0

3∑
m=0

3∑
n=0

Bl(u)Bm(v)Bn(w)ci+l,j+m,k+n (9.1)

where c are the parameters of the B-splines ordered in a px×py×py lattice. u, v
and w are the (x, y, z) image coordinates translated into the lattice coordinates.

9.3.2 A Sparse Statistical Deformation Model

The third step of the procedure listed above is the main focus of this paper. The
control points (parameters) of the B-splines in Equation 9.1 provide a compact
representation of the correspondence fields. As shown in [187] it is sufficient
to perform a statistical analysis on these control points to obtain a compact
description of the deformations. Using a common reference frame, e.g. an atlas,
as the reference in the registrations, the control points for a subject reflect its
local deviation from this reference frame. Concatenating the 3D control points
for subject i into a row vector Ci = [c1, ..., cp], where p = 3pxpypz, gives the ith
row of the n× p data matrix to analyse (n is the number of observations).

SPCA approximates the properties of a standard PCA while introducing sparsity
in the modes of variation. Zou et al. [242] take advantage of formulating PCA
as a regression problem leading to the SPCA criterion



9.3 Methods 91

(Â, B̂) = argminA,B

∑n
i=1 ||xi −ABT xi||2 + λ

∑k
j=1 ||bj ||2 +

∑k
j=1 δj ||bj ||1

s.t. AT A = I
(9.2)

Here xi denotes the ith column of XT . This formulation assumes k modes
to be retained in the model. The columns of B represent the principal axes
(loading vectors bj , j = 1, ..., k) and B projects observation i onto those axes.
The matrix A takes the observation back to the original space. Hence, the first
term measures the reconstruction error of the model. The second term, the
L2 penalty is included to ensure a unique solution, also in cases where p > n,
and the third term, L1 penalty, introduces sparsity. These two latter terms are
adopted from Elastic Net regression [241]. The constraint weight, λ, must be
chosen beforehand, and has the same value for all PCs, while δ may be set to
different values for each PC, providing good flexibility.

The problem in Equation 9.2 is usually solved iteratively by fixing A in each
iteration, solving for B using the LARS-EN algorithm [241] and recalculating
A. However, when we have p � n as in our case, Zou et al. [242] have shown
that by letting λ→∞, B can be determined by soft thresholding1

bj = (|aT
j XT X| − δj

2
)+ · sign(aT

j XT X), j = 1, 2, ..., k (9.3)

where k is the number of modes and aj is the jth column of A. This approach
was taken here enforcing the same fixed level of sparsity in each loading vector
by dynamically changing (δj) in each iteration. To maximise the total adjusted
variance [242] explained by the SPCA, the modes were ordered allowing for
perturbations as suggested in [196].

Since the aim of our sparse deformation model is to discriminate between the
two groups of mice the final ordering of modes was defined with respect to
the Fisher discriminant. That is, the observations were projected onto the
principal directions, the Fisher discriminant between the groups calculated for
each mode and the principal directions ordered with respect to decreasing Fisher
discriminant score. In general, for class 1 and 2, the Fisher discriminant is
defined as

F =
(µ1 − µ2)2

σ2
1 + σ2

2

, (9.4)

where µi is the mean of class i and σ2
i is the variance of class i.

1(z)+ denotes that if z < 0, z is set to 0 and if z >= 0, z is kept unchanged. The term is
denoted hinge-loss.
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9.4 Experimental Results

The accuracy of the image registration algorithm is essential for the deformation
model to be valid. In [162], the manual annotations from two observers were used
to assess the registration accuracy. Using the optimal transformations from the
image registrations, landmarks were obtained automatically. The landmark po-
sitions were statistically compared to those annotated by the human observers.
This showed that the automatic method provided as good accuracy as the hu-
man observers and, moreover, it was more precise, judged from the significantly
lower standard deviation.

The SPCA was applied to the matrix of control points (p = 21675). A threshold
of 2000 points was used to obtain equal sparsity in each mode of variation. Fig-
ure 9.2 (a-c) shows the observations projected onto the first six sparse principal
directions (ordered by Fisher discriminant score). To evaluate the ability of the
sparse SDM to assess the local group differences, it was compared to a standard
PCA and our previous approach [91] using ICA [104]. Figure 9.2(d-i) shows
scatter plots of the first six modes for ICA and PCA, sorted with respect to the
Fisher discriminant.

The score plots already give an idea about the discrimination ability of the dif-
ferent approaches. To give a more quantitative measure, the Fisher discriminant
was assessed in a leave-one-out fashion for all three approaches. This is plotted
with error bars for each of the approaches in Figure 9.3.

With emphasis on the group differences, each mode of the sparse model was
visualised by selecting the extremes from each group in model space (Figure
9.2) and project back into the space of control points. This set of control
points generated from the model was then applied to the atlas surface to obtain
the shapes of the two extremes. Subsequently the surfaces were extracted for
visualisation. Figure 9.4 shows mode 1,3,4 and 6. Mode 2 was excluded from
this visualisation due to an overlap in variation with mode 1.

Deforming the atlas along the discriminating modes of the ICA model reveals
many similarities between ICA and SPCA. To give an example, Figure 9.5 shows
IC 5 which is closely related to SPC 4.

9.5 Discussion and Conclusions

The score plots in Figure 9.2 indicate that both SPCA and ICA are capable of
discriminating between the two groups in up to six deformation modes. The
standard PCA only discriminates between the groups in the first mode. Fig-
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Figure 9.2: Projection of observations into the space of the first six components
(ordered by Fisher discriminant) using (a-c) SPCA, (d-f) PCA and (g-i) ICA. Crosses
denote Crouzon cases while circles denote wild-type cases. (a,d,g) Mode 2 vs. mode
1; (b,e,h) Mode 4 vs. mode 3; (c,f,i) Mode 6 vs. mode 5.

ure 9.3 confirms these speculations. It is evident that PCA is only capable of
discriminating between the groups in one mode of variation. SPCA performs
slightly better than the ICA, but the ICA seems to be more robust judged from
the error bars. Considering the low number of points in the sparse model, this
is understandable.

Visualising the sparse deformation modes in Figure 9.4 indicates that compared
to wild-type mice, the skulls of Crouzon mice are higher and longer (SPC 1),
they are asymmetric with respect to zygoma and nose (SPC 3), they have dif-
ferent shape of the middle ear and back of the head (SPC 4), and they have
an angulated cranial base (SPC 6). These observations correspond up to some
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Figure 9.3: The Fisher discriminant plotted vs. deformation mode number for PCA,
ICA and SPCA. The values are obtained in a leave-one-out experiment providing the
error bars (one standard deviation).

degree with what has previously been seen in humans using manual measure-
ments [e.g. 117]. The asymmetric behaviour seen in SPC 3 can be explained by
the full or partial fusion of cranial sutures at different sides and different times.
The different shape of the middle ear and the increased angulation of the cra-
nial base has not been reported in humans to our knowledge and may therefore
be an important contribution to the understanding of the growth disturbances.
The angulation was found in mice both using ICA [91] and PCA (with global
transformation model extended to 9 DOFs) [160]. The difference in shape of
the middle ear and back of the head was also captured by the ICA approach as
seen in Figure 9.5. In fact SPC 4 and IC 5 are extremely similar, but SPCA
seems to create slightly stronger evidence for the group difference. In general,
the ICA modes introduce more noise than sparse PCA, since many elements are
close to 0, while in SPCA, the sparsity property avoids this. Another advan-
tage of SPCA is that it is solely based on second order statistics making it less
committed than ICA, which uses higher order statistics.

In conclusion, with respect to discriminative ability, SPCA and ICA give similar
results when applied to model deformations. Both of the approaches outperform
a standard PCA. However, due to the simplicity and flexibility of SPCA, it
should be the preferred method for this type of analysis.
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(a) SPC 1, Wild-type (b) SPC 1, Crouzon

(c) SPC 3, Wild-type (d) SPC 3, Crouzon

(e) SPC 4, Wild-type (f) SPC 4, Crouzon

(g) SPC 6, Wild-type (h) SPC 6, Crouzon

Figure 9.4: Sparse Principal Deformation modes 1,3,4 and 6, visualised on surfaces
after deforming to the extremes of each mode. The colors are intended to enhance
the regions where changes have occurred in the deformed surfaces. The colors de-
note displacement with respect to atlas (in mm), with positive values (red) pointing
outwards.
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(a) IC 5, Wild-type (b) IC 5, Crouzon

Figure 9.5: Independent Deformation mode 5 visualised on surfaces after deforming
to the extremes of the mode. The colors are intended to enhance the regions where
changes have occurred in the deformed surfaces. The colors denote displacement with
respect to atlas (in mm), with positive values (red) pointing outwards.
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Abstract

Deformational plagiocephaly is a term describing cranial asymmetry and
deformation commonly seen in infants. The purpose of this work was to
develop a methodology for assessment and modelling of head asymmetry.
The clinical population consisted of 38 infants for whom 3-dimensional
surface scans of the head had been obtained both before and after their
helmet orthotic treatment. Non-rigid registration of a symmetric template
to each of the scans provided detailed point correspondence between scans.
A new asymmetry measure was defined and was used in order to quantify
and localize the asymmetry of each infant’s head, and again employed to
estimate the improvement of asymmetry after the helmet therapy. A sta-
tistical model of head asymmetry was developed (PCA). The main modes
of variation were in good agreement with clinical observations, and the
model provided an excellent and instructive quantitative description of the
asymmetry present in the dataset.
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10.1 Introduction

Deformational Plagiocephaly (DP) is a term describing cranial asymmetry and
deformation commonly seen in infants. Its incidence has been estimated to be
as high as 15% in the USA [134]. The deformity is thought to result from pro-
tracted external intrauterine pressure to the skull, followed by continued postna-
tal molding due to infant positioning. The incidence has increased exponentially
due to the ”back to sleep” campaign to promote supine infant positioning to
reduce sudden infant death syndrome. DP is manifested most commonly as ei-
ther left-right asymmetry or brachycephaly (foreshortening of the head). Both
are treated non-surgically. Treatments include parental education on how to
prevent further deformation (e.g., alternating sleep positions [101]) and orthotic
molding helmet therapy [e.g. 127, 152]. It is widely held that correction is best
accomplished in infancy due to the sequence of skull mineralization, however
little is known concerning the outcomes from different treatment regimens. DP
affects the occiput at the back of the head and, to a lesser extent, the forehead
contour. Ear position is often skewed so that the ear is anteriorly positioned on
the same side as the occipital flattening. When viewed from above, the head
shape can be inscribed within a parallelogram. The purposes of this work were
to develop a new methodology for head asymmetry assessment and to develop
a statistical model of the asymmetry (using Principal Components Analysis) in
order to quantify and localize the asymmetry of each infant’s head before and
after the helmet therapy and to determine the effect of helmet treatment.

10.2 Material

3D full-head surfaces of 38 patients with DP were captured at two stages, before
and after treatment utilizing a 3dMD cranialTM system (www.3dMD.com) at the
Division of Plastic & Reconstructive Surgery, Washington University School of
Medicine, St. Louis, MO, USA. All infants commenced their helmet treatments
before 6 months of age, and were treated for a maximum of 6 months. Figure
10.1 presents examples of these scans.
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a)

b)

c)

Figure 10.1: Five different views of three of the captured 3D full head surfaces.
a) Right-sided flattening posteriorly and left-sided flattening anteriorly. b) Brachy-
cephaly. c) Left-sided flattening posteriorly and right-sided flattening anteriorly.

10.3 Methods

10.3.1 Template Matching

The method used for computation and modelling of asymmetry (described in the
forthcoming sections) requires establishment of detailed point correspondence
between surface points on the left and right sides of the head, respectively.
This is achieved through a process of template matching, whereby a symmetric
”ideal” head surface (template) is oriented and deformed to assume the shape
of the patient’s head surface [54]. The process consists of three steps:
1. Non-isotropic scaling of the template to the patient surface.
2. Rigid orientation of the patient surface to the scaled template surface, using
ear-landmarks and nasion.
3. Non-rigid deformation of the scaled template surface to the oriented patient
surface using a Thin Plate Spline (TPS) controlled by 22 manually placed facial
and ear landmarks, and 40 constructed landmarks on the top of the head. The
latter landmarks are determined by intersecting the surfaces with 40 radial lines
(equidistant in terms of angle) originating from the midpoint between the ears.
They are necessary in order to control the deformation at the top and back of
the head where there are no visible anatomical landmarks.

10.3.2 Asymmetry Computation

The definition of the asymmetry AP of a point P involves the computation of
the ratio between two distances: 1) the distance d from the origin (midpoint
between the ear landmarks) to the surface point P on one side of the midsagittal



100 A Statistical Model of Head Asymmetry

Figure 10.2: Computation of the asymmetry: Illustration of the distances d and d′

between the origin and the points P and P ′, respectively, in an axial view.

plane, and 2) the distance d′ from the origin to the corresponding point P ′ on
the other side of the midsagittal plane (Figure 10.2).

Since, intuitively, the amount of asymmetry at P and P ′ should be equal, except
for a sign introduced in order to distinguish a point in a ”bulged” area from a
point in a ”flattened” area, AP and AP ′ are defined by:

if d > d′ then AP = 1− (
d′

d
) and AP ′ = −AP (10.1)

if d′ > d then AP ′ = 1− (
d

d′
) and AP = −AP ′ (10.2)

The change in head asymmetry is calculated as the difference between the asym-
metry absolute values at the two stages (before and after treatment):

Change = |AP,stage1| − |AP,stage2| (10.3)

Hence, a positive change (improvement) implies that AP,stage2 is closer to 0 than
AP,stage1 (i.e., closer to perfect symmetry).

10.3.3 Modelling Asymmetry using Principal Components
Analysis

PCA is a popular method for shape modelling (an excellent description is found
in [202]). The PCA is performed as an eigenanalysis of the covariance matrix
of the (aligned) asymmetry measures.
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The asymmetry values for each scan are ordered according to the mesh points
of the template scan (cf. section 3.1.) and stored in a vector of size M :

a = [|AP1| , |AP2| , . . . , |APM/2| , |AP ′1| , |AP ′2| , . . . , |AP ′M/2|] (10.4)

Here the first and last M/2 elements are asymmetry values for the points on
the right and left sides of the midsagittal plane, respectively. The maximum-
likelihood estimate of the covariance matrix can be written as:

Σa =
1
N

N∑
i=1

(ai − ai) (ai − ai)T =
1
N

AAT (10.5)

where a is the maximum-likelihood estimate of the mean asymmetry of the N
data-vectors. The principal axes of the M-dimensional point cloud of asymmetry
are now given as eigenvectors, Φa, of the covariance matrix:

Σa Φa = Φa Λa (10.6)

where Λa is a diagonal matrix containing the eigenvalues of the covariance ma-
trix, and the columns of Φa contain its eigenvectors. An asymmetry instance
can be generated by modifying the mean asymmetry by adding a linear combi-
nation of eigenvectors:

a = a + Φa ba (10.7)

where ba is a matrix containing the asymmetry model parameters.

As the number of observations (N = 76 scans) is much smaller than the number
of surface points (M = 190076), the eigenanalysis is carried out using a reduced
covariance matrix:

Σreduc =
1
N

ATA (10.8)

The eigenanalysis of this matrix gives the eigenvalues and eigenvectors of the
covariance matrix. The eigenvalues and the eigenvectors may then be computed
by:

Λa = Λreduc (10.9)
Φa = AΦreduc (10.10)

In practice, the eigenanalysis may be carried out by Singular Value Decompo-
sition (SVD).

10.3.4 Projection of 3D Surfaces into 2D Flat Maps

A more compact means of presentation is to construct a flat map (Figure 10.3b)
by a simple transformation from rectangular to spherical coordinates. The flat
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Figure 10.3: Flat map construction. a) Asymmetry values in an example subject
shown as color coding. b) Corresponding flat map with contours (black: negative,
white: positive). Some landmarks are shown as star symbols. Lower limit of helmet
region is shown as dashed curve.

map has right ear landmark at longitude = 0 degrees, midface at 90 degrees, left
ear landmark at 180 degrees and center of the back of the head at 270 degrees.
Regions below the helmet area are shown in light gray, below the dashed curve.
Levels of asymmetry are indicated by contours in the flatmap. There are 16
contour intervals, spanning the range of asymmetry as indicated by the color
bar. The contours are equidistant in terms of asymmetry and are drawn in black
for negative values, and in white for positive values. Hence, black contours show
”bulged” areas (negative), white contours ”flattened” areas (positive), and areas
exhibiting no asymmetry are displayed in light gray.

10.4 Results

10.4.1 Asymmetry

Figure 10.4 presents the results of the asymmetry computations in three ex-
ample subjects. Top views of the head before (a) and after (b) treatment are
shown together with corresponding asymmetry flat maps. In addition, a map
of change (c) is shown.
Figure 10.4.1. shows an asymmetric DP patient with right-sided flattening pos-
teriorly, as well as a left-sided flattening anteriorly (a). The typical parallelo-
gram shape is also reflected in the asymmetry flat map. Note the improvement
in asymmetry after treatment (b,c).
Figure 10.4.2. shows a typical brachycephalic patient (a). Brachycephalic pa-
tients are generally not very asymmetric, as their deformation mainly causes a
foreshortening of the skull. Note improved shape after treatment (b,c).
The third patient, Figure 10.4.3, has left-sided flattening posteriorly as well as
a right-sided flattening anteriorly (a). Note the improvement after treatment
(b,c).
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Figure 10.4: Results of the asymmetry computation and changes for: 1. Right-sided
flattening posteriorly and left-sided flattening anteriorly. 2. Brachycephaly. 3. Left-
sided flattening posteriorly and right-sided flattening anteriorly. (a) Scans at stage 1.
(b) Scans at stage 2. (c) Changes between the two stages. In the flat maps showing
asymmetry (middle column), positive and negative values denote ”flattening” and
”bulging” respectively. In the flat maps of change, positive values denote improvement.
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10.4.2 Statistical Model

A statistical model was created by performing PCA on the 76 scans. The input
of the PCA was the vector of asymmetry measures at each point in the helmet
region. The decay of eigenvalues (Figure 10.5a) indicates that 96 % of the
asymmetry variation can be modelled using the first eight parameters. The
mean asymmetry (Figure 10.5b) emphasizes posterior and anterior regions with
high asymmetry, while the anterior parts exhibit smaller magnitude.
Figure 10.5(c-j) displays the first eight modes showing only Φba (cf. Equation
10.7) with ba = −3 standard deviations. As the images corresponding to ba =
+3 standard deviations are exactly the same as ba = −3 standard deviations
but with opposite colors, they are not displayed. The first mode (c) localized
the main asymmetry variation to the posterior region of the head. The second
mode (d) represents variations occurring in the anterior region of the head, but
spatially more spread out than the posterior region. The variations of the third
mode occurred above the ears, also seen in Figure 10.4c. Modes four (f) and
five (g) revealed variability mainly in the posterior area of the head, probably
the result of variation in the location of the affected area posteriorly. In general,
higher modes represented higher spatial frequencies of variation.
The scores of the three first modes (Figure 10.6) demonstrate the direction and
amount of asymmetry progress for each individual. In Figure 10.6a, the scores
for PC2 are plotted against the scores for PC1. The amount of posterior and
anterior asymmetry may be read off the x- and y-axes, respectively. The least
amount of asymmetry is found in the upper-left corner of this figure. This is the
region where good treatment outcomes are located, as well as the brachycephalic
heads. Individuals that improve in terms of posterior asymmetry move leftwards
in the diagram, whereas individuals that improve in terms of anterior asymmetry
move upward. Analogously, in Figure 10.6b, individuals that improve in terms
of asymmetry above the ear move downward.

10.4.3 Validation of the Asymmetry Model

The usefulness of the asymmetry model depends on its ability to capture and
describe clinically relevant information in a compact way. Two of the most
important parameters describing head asymmetry in DP could be stated as
“magnitude of posterior asymmetry” and “magnitude of anterior asymmetry”.
In the previous section there was strong evidence that the first two modes were
related to these particular clinical parameters. To check the strength of the
relation between the model modes and the clinical parameters, a search for
local extrema of asymmetry was conducted in the asymmetry flat maps. Figure
10.7 shows the correlation between scores and local minima.
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Figure 10.5: Presentation of the asymmetry model. (a) Eigenvalues (as percentage
of the total variation). (b) Mean asymmetry. (c)–(j) Modes 1 to 8. Modes are shown
as variation at −3 standard deviations from the mean. Within the same mode, regions
displayed with opposite contour colors (black and white) vary in opposite directions.
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Figure 10.6: Score plots of the asymmetry model: (a) PC2 vs. PC1. (b) PC3 vs.
PC1.

Correlation: Posterior Asymmetry vs. PC 1
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Correlation: Anterior Asymmetry vs. PC 2
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Figure 10.7: Correlation between clinical parameters and model PC scores.

10.5 Discussion

The computed asymmetry corresponded well (Figure 10.4) to observed asymme-
try in the scans. Limitations of the method of establishing point correspondence
between scans were the use of the ears (that are often affected in DP) for the
registration, and the use of constructed landmarks instead of anatomical land-
marks on top of the head. None of these limitations seem to have severely
affected a valid asymmetry measurement. PCA is often used for summarizing
data. The new variables created by PCA, however, are not guaranteed to be
interpretable. The success of the asymmetry model (Figure 10.7) could be due
to the less complex, ”global” types of asymmetry variation present in the DP
dataset. The excellent properties of the model makes using the model attrac-
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tive compared to other methods of asymmetry assessment. Other methods, as
direct anthropometry of the head [e.g. 113], measurement systems using a head
ring or strip [e.g. 27, 228], or even measurements on 3D scans [e.g. 176], pro-
duce a multitude of parameters, making the interpretation difficult in terms of
asymmetry and less intuitive. Contrary to [128] and [16], which use a sparse set
of inter-landmark distances, computing the asymmetry at every surface point
provides the opportunity to create a high spatial resolution asymmetry model.

10.6 Conclusion

A new 3D asymmetry measure was developed, providing a detailed surface map
of asymmetry covering the whole head. The asymmetry measure was seen to
reflect observed asymmetry in DP very well. A statistical model was created
by performing PCA on the asymmetry maps in 38 patients. PCA modes were
seen to correspond very well to clinically relevant parameters. In particular, the
first and second modes corresponded to variation at the back and front of the
head, respectively. The method is suitable for monitoring asymmetry treatment
in individuals, as well as for classifying asymmetry in population studies.
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Abstract

This paper presents a volumetric measure of asymmetry. The measure is derived
from the deformation fields acquired by non-rigid registration of a patient vol-
ume to a symmetric reference volume. Compared to related methods, the main
advantage of the proposed approach is that it is free of defining the mid-sagittal
plane in every subject. The proposed measure is evaluated using representative
data for two different craniofacial anomalies, Crouzon syndrome in mice, and
human unicoronal synostosis (UCS). Example results for individuals are pre-
sented along with mean group asymmetries. Using multiple hypothesis testing,
point-wise significance maps are derived. This shows that Crouzon mice are
significantly more asymmetric than controls in the regions of the nose, zygoma,
and posterior skull. Furthermore, children with UCS are significantly more
asymmetric than normal children in the mid-face, posterior skull and anterior
cranial fossa. The image registrations are validated by determination of point to
surface errors. The average registration accuracy is 0.83-1.72 mm for the UCS
dataset. For the Crouzon data the average accuracy is 0.041-0.047 mm. The
asymmetry measure is validated by a comparison to a visual rating by a clinical
expert for the Crouzon mouse application, revealing a sensitivity of 66% and
specificity of 95%.

11.1 Introduction

In biology, symmetry refers to a balanced distribution of duplicate body parts
or shapes. The body of most organisms exhibits some type and amount of
symmetry. The human body reveals an organization according to a bilateral
symmetry; the vertical plane passing through the middle, the midsagittal plane
(MSP), divides the body into right and left, mirrored halves. Asymmetry may
be defined as the difference or the lack of symmetry between these halves.

The skull of the newborn child is composed of a collection of bone plates con-
nected with wide growth zones (consisting mainly of connective tissue), which
are often referred to as sutures. Growth perpendicular to these sutures permits
the rapid expansion of the neural mass which occurs especially during the first
two years of life. Figure 11.1 shows a schematic drawing of the sutures in an
infant’s skull. To further facilitate the discussion in the remainder of this paper,
Figures 11.2 and 11.3 show the main regions of the skull of a human and a
mouse, respectively.

Conditions involving disturbances in the development of the cranium and facial
skeleton are often referred to as craniofacial anomalies. Asymmetry is an im-
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Figure 11.1: Schematic drawing of a normal child’s skull, seen from above.

Figure 11.2: The normal human skull at approximately eighteen months of age. A
surface representation of one of the CT scans used in the paper. (a) Frontal view, (b)
Cut, top view, (c) Right lateral view.

portant measure for diagnosing and evaluating severity of the anomaly, as well
as for evaluating the outcome of treatment.

Estimation of asymmetry from images may be divided into two types. Struc-
tural asymmetry deals with the asymmetry of the shape of the organ or body
part of interest while radiometric asymmetry concerns the dissimilarity of the
corresponding voxel intensities on each side of the symmetry plane. Structural
asymmetry is of primary interest for craniofacial applications while radiometric
asymmetry is of additional interest for e.g. brain studies.

This paper presents a novel approach for volumetric quantification of asym-
metry. The approach taken is to create a symmetric reference volume and
subsequently registering the volume of interest to this reference. Having estab-
lished a left/right correspondence in each subject volume, it is now possible to
assess both types of asymmetries. The main focus of this paper will, however,
be on structural asymmetry. A volumetric measure of structural asymmetry
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Figure 11.3: Schematic drawing of a normal mouse skull. (a) Top view, (b) Basal
view, (c) Right lateral view. From [38]

is obtained by a comparison of the resulting left and right side displacement
vectors. Using the proposed approach, asymmetry is quantified in two different
craniofacial anomalies; Crouzon syndrome, using a mouse model, and unicoro-
nal synostosis (UCS) in human data. This paper is an extension of our previous
papers [121, 164]. In [164], the approach from [121] was improved by using
deformation vectors instead of distances of deformed surface points to a fixed
midpoint. Compared to [164], the asymmetry measure in the present study is
extended from a surface-based measure to a full volumetric measure. Further,
the paper introduces the decomposition of the asymmetry vector into its indi-
vidual x-, y-, and z-components for more complete clinical interpretations and it
includes point-wise estimates of statistical significance. Finally, the measure is
evaluated in an additional application, namely the quantification of asymmetry
in a group of infants with UCS.

11.1.1 Related Work

Many approaches for estimating radiometric asymmetry exist, especially in the
brain literature (see an extensive review of asymmetry studies in brain image
analysis in [222]). The following overview is limited to the discussion of existing
approaches for estimating structural asymmetry.

The simplest forms of determining structural head asymmetry include direct
anthropometry of the head, [e.g. 95, 113] or manual measurements on 3D scans,
[e.g. 176]. Using image data, some authors have defined asymmetry with respect
to a sparse set of inter-landmark distances [16, 128]. Methods providing denser
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measurements are provided in a few papers. In [32], deviation of the midsagittal
surface with respect to the midsagittal plane was assessed, and in a previous
study of ours, asymmetry in children with deformational plagiocephaly was
measured. Here, the ratio of left and right distances to a midpoint of a deformed
symmetric template was used to define the asymmetry [121].

The estimation of structural asymmetry has received some attention in the
field of brain image analysis. In [8], asymmetry was defined by dividing the
registration coefficients, obtained from a registration to a symmetric template,
into symmetric and asymmetric before applying a Principal Components Ana-
lysis (PCA). In [120] structural asymmetry was defined by warping group-
representative left and right hemispheric images to each other. In [232], hip-
pocampal asymmetry was studied by analysing deformation fields from left to
right halves. Hippocampal asymmetry was also the subject of [208, 209], where
thickness measures from medial representations were applied. In [105], voxel-
wise structural and radiometric asymmetry was assessed in tumour brain images
by defining a symmetry plane in each image and registering to the reflection and
in [66] asymmetry was estimated from brain variability maps from sulcal lines
registration.

This paper introduces a novel asymmetry measure based on the deformation vec-
tors resulting from non-rigid registration of a given subject image to a perfectly
symmetric atlas image. The relationship between the corresponding vectors on
the left and right side of the mid-sagittal plane is used to define the asymmetry.
The main advantage of the proposed method, compared to most of the above
mentioned approaches, is that it avoids defining a symmetry plane in each sub-
ject. This is important since defining such a symmetry plane in a skull affected
by malformation is prone to errors.

11.1.2 Clinical Applications

Craniosynostosis involves the premature closing of one or more of the cranial
sutures. This results in a disturbed brain growth and abnormal head shape.
Craniosynostosis can be divided into two groups, syndromic and non-syndromic
craniosynostosis. The present study will deal with examples from both groups,
Crouzon syndrome and unicoronal synostosis.

Crouzon syndrome was first described nearly a century ago when calvarial and
facial anomalies, and abnormal protrusion of the eyeballs were reported in a
mother and her son [43]. Later, the condition was characterised as a constella-
tion of premature fusion of the cranial sutures (craniosynostosis), orbital defor-
mity, maxillary hypoplasia, beaked nose, crowding of teeth, and high arched or
cleft palate. The fusion of the sutures at different time points and on different
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sides of the skull leads to asymmetric head shape. Heterozygous mutations in
the gene encoding fibroblast growth factor receptor type 2 (FGFR2 ) have been
found responsible for Crouzon syndrome [180]. Recently a mouse model was
created to study one of these mutations (FGFR2Cys342Tyr)[63] and applying
advanced small animal imaging techniques such as Micro CT, a detailed exam-
ination of the craniofacial growth disturbances is allowed.

Unicoronal synostosis is defined by the premature closure of one of the coronal
sutures. This may result in a highly asymmetric head shape, growth distur-
bances, increased intracranial pressure and developmental delays. During treat-
ment, one or more surgeries are carried out and a CT scan is usually required.
Typically, the scans are qualitatively inspected with respect to head shape and
symmetry, and the state (patent or fused) of the coronal suture is assessed.

Asymmetry is highly relevant for both syndromic and non-syndromic craniosyn-
ostosis. Firstly, it is interesting to study which regions of the head are asym-
metric and how this is related to the suture fusion. Secondly, an accurate and
localised assessment of asymmetry will improve surgery planning and treatment
evaluation of children with craniosynostosis and other related diseases.

Asymmetry in UCS patients has been previously investigated in a few studies
using reference points or visual inspection. The main findings include asymme-
try in the anterior and middle cranial fossae [22, 75, 114, 136, 142, 149], the
orbital region [24, 114, 135, 142, 149] and the mandible [109, 114, 142, 149].
In [149], more landmarks were used, compared to previous studies, and asym-
metries were additionally reported in the maxilla, zygomatic bone and parietal
bone.

We found one study concerning asymmetry in Crouzon patients, concluding that
one out of 19 Crouzon patients had asymmetric cranial base [115].

11.2 Methods

11.2.1 Creation of a Symmetric Template Volume

The proposed method is based on the registration of a subject of interest to a
symmetric template volume. The template volume is created preferably from
a shape- and intensity-based atlas of normal subjects (see e.g. [187],[106]),
otherwise from a selected representative image. The key point is that it is fully
symmetric. The symmetric property is obtained by defining the mid-sagittal
plane, e.g. by the average of ear landmarks. Subsequently, one half of the image
is reflected across the plane. The resulting image is the perfectly symmetric
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volume, where each voxel on the right side has a corresponding voxel on the left
side.

11.2.2 B-spline-based Non-rigid Registration

To create a left/right correspondence for all subject images, all subject images
are matched to the anatomy of the symmetric reference image. A widely used
non-rigid registration algorithm based on B-splines [185, 188] is applied in this
study. This algorithm uses a transformation model which is a combination of
global and local transformations. The global transformation model consists in
our case of an affine transformation model with either 7 or 9 degrees of freedom
depending on the application. The more interesting local transformation model
describing the non-rigid part of the model is described by a free-form deforma-
tion model. This is defined by an px × py × pz mesh of control points c with
spacing (δx, δy, δz). The underlying image is then deformed by manipulating
the mesh. The model is written as the tensor product of 1D cubic B-splines,

Tlocal(x, y, z) =
3∑

l=0

3∑
m=0

3∑
n=0

Bl(u)Bm(v)Bn(w)ci+l,j+m,k+n (11.1)

where B0 to B3 are the pre-defined basis functions of the B-spline, i, j and k are
control point indices and u, v and w are (x, y, z) image coordinates translated
into the lattice coordinates.

11.2.3 Volumetric Quantification of Asymmetry

For asymmetry calculations, only the local displacements are considered, in
order to make the measure insensitive to pose and scale differences. From the
non-rigid registration, asymmetry can be calculated at any point in the deformed
symmetric atlas.

The basic idea of the proposed asymmetry measure is to compare a displacement
vector on one side to the corresponding displacement vector on the other side.
More formally, asymmetry, AL, of a point L on the left side involves the com-
parison of the local displacement vector, dL in point L and the corresponding
vector, dR in point R on the right side. Since the task is to quantify bilateral
asymmetry, one of the vectors is mirrored across the midsagittal plane,

dRm(x, y, z) = dR(−x, y, z).

Now the asymmetry vector may be defined by the difference vector between the
two vectors and an absolute value of asymmetry is defined by the magnitude of
the asymmetry vector,
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aL = dL− dRm

|AL| = ||aL||.
(11.2)

This, obviously gives AL = 0 if the left and right displacement vectors are per-
fectly symmetric. Figure 11.4 illustrates the vectors involved in the calculation
of the asymmetry measure.

Figure 11.4: Schematic figure of vectors involved in asymmetry calculation. Corre-
sponding displacement vectors in points L and R, on the left (dL) and right side (dR)
shown on the symmetric template surface. dRm denotes the mirrored version of dR.
The asymmetry vector is the difference vector, aL = dL − dRm. The magnitude of
the asymmetry vector defines the absolute asymmetry, |AL|.

Mirroring dL instead of dR would give aR = dR − dLm. Obviously, |AR| =
||aR|| = |AL|, i.e. absolute asymmetry in L is equal to the one in R. This
is illustrated in Figure 11.5. However, in order to determine the direction of
asymmetry, AR and AL are distinguished by a sign.

Figure 11.5: Illustration of ||aR|| = ||aL||. Vectors involved in asymmetry calculation
shown at the origin.
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11.2.3.1 Determining the Direction of Asymmetry

We define the direction of asymmetry by a sign, indicating whether an expansion
or contraction, with respect to the corresponding point on the other side, has
occurred. Previously, we have used the surface normal vector to determine the
sign [164]. In order to extend the surface-based measure to a volumetric mea-
sure, another approach is needed. Using the Jacobian as in many deformation
studies [35, 132, 207, 221] is not suitable here since the information provided by
the proposed asymmetry vector in point L, aL, on one hand, and the Jacobians
of the deformations in points L and R, on the other hand, are very different. For
example, a uniform displacement field across the MSP results in large values of
Ai, as expected, while providing Jacobians close to 1. Using e.g. the difference
between the corresponding left and right Jacobians to determine the sign of Ai

would give inadequate information.

Instead, a more direct approach is taken where a comparison of the left and
right distances to the midpoint (MP) is carried out. The midpoint is defined
in the symmetric atlas as the average of ear landmarks. This is slightly related
to our previous approach defining asymmetry as the ratio of distances to the
midpoint [121]. Formally, we define

if ||(L+ dL)−MP || > ||(R+ dR)−MP || → AL = ||dL− dRm||
otherwise → AL = −||dL− dRm||.

(11.3)
The opposite sign is assigned to AR,

AR = −AL. (11.4)

The use of a reference point, such as the MP instead of using the distance
to MSP ensures that all asymmetry components are taken into account when
determining the sign (not only the transversal component).

A comparison of the MP-method and a Jacobian approach to determine the
sign of asymmetry is provided by an example illustration in Figure 11.6.

Each component of the asymmetry vector may be visualised to give a more
complete clinical interpretation. This means that transversal (x-component),
sagittal (y-component) and vertical (z-component) asymmetry can be analysed
separately. Determining a sign for each component is done by setting the other
two components to zero in (11.3).
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Figure 11.6: Determination of the sign of asymmetry comparing the use of Jacobians
versus distance to midpoint. Illustration on an example case (a) Jacobians (det(Jac))
of deformation in each point visualised on the deformed symmetric surface. (b-c)
Asymmetry (Ai) in each point of the deformed symmetric surface, where the sign
is determined by (b) difference of Jacobians in corresponding left and right points,
(c) distance to midpoint (MP). Note that where |Ai| is large, as in the nose region,
the Jacobians are close to 1, indicating uniform displacement fields. This leads to
inaccurate determination of the sign of Ai in (b).

11.2.4 Testing for Significance

After estimating asymmetry in each point of a volume it is important to know
whether or not the finding is significant. This is a non-trivial task due to the
spatial correlation between points and the fact that multiple hypotheses tests
need to be carried out simultaneously. Many authors have addressed this prob-
lem [8, 21, 62, 71, 150, 212]. We will follow the approach by Efron [62]. This
approach aims at improving the estimation of false discovery rate (fdr) [12]
by replacing the theoretical null-hypothesis by an estimated empirical null-
hypothesis. Given (uncorrected) p-values at each point, their corresponding
z-values are estimated,

zi = Φ−1(pi), i = 1, . . .M (11.5)

where Φ is the standard normal cumulative distribution function and M is the
number of points under consideration (i.e. all vertices of a surface or all voxels in
an image). The theoretical null-hypothesis states that zi ∼ N(0, 1). Now, local
false discovery rate can be estimated at each point to distinguish “interesting”
(significant) values from “uninteresting”. This is defined by
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fdr(z) = f0(z)/f(z) (11.6)

where f(z) is the value of the curve fitted to the z-histogram (including both
classes, interesting and uninteresting) and f0(z) is the null-hypothesis density.
Instead of using the theoretical null-hypothesis for f0(z), Efron proposed to use
the empirical null-hypothesis, obtained by estimating the mean and standard
deviation from f(z). Now, the input values may be classified as interesting or
uninteresting, by assigning a certain threshold to the fdr (Efron suggests that
fdr(zi) ≤ 0.10 gives an interesting finding).

This simple methodology requires the estimation of a statistical distribution for
the input data and corresponding p-values in each point. In the asymmetry case,
we will use absolute asymmetry values and test for significance of difference in
mean asymmetry in each point of group G1, compared to group G2.

H0,i : Āi
G1 = Āi

G2, i = 1, . . . ,M

H1,i : Āi
G1 6= Āi

G2, i = 1, . . . ,M
(11.7)

where
Āi

G1 =
1

NG1

∑
j∈G1

Aj
i

is the mean asymmetry in point i across subjects j in group G1 and NG1 is the
number of observations (subjects) in group G1. Since the absolute asymmetry
values in the left half are equal to the corresponding values on the right half,
we will only use one half when checking for significance.

Now we need to estimate the probability distribution of the asymmetry values.
Assuming that the displacement vector components are normally distributed,
it is noted that the squared magnitude of the asymmetry vector approximately
follows a χ2 distribution. The two vectors (dL and dRm) span a plane, which
gives two degrees of freedom, i.e.

|Ai|2 ∼ χ2(2). (11.8)

The significance of the differences between groups may now be estimated by an
F-test, since the ratio of two χ2 distributions follows an F-distribution. Now, the
χ2 distribution for each group is a sum of χ2(2) distributions for each observation
and the degrees of freedom is equal to the sum of degrees of freedom for the
individual distributions,

|Āi
G1|/(2NG1)

|Āi
G2|/(2NG2)

∼ F (2NG1, 2NG2).
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By evaluating the F-statistic in each point of the surface or volume, p-values
are obtained and inserted into (11.5) and (11.6).

11.3 Data Material

11.3.1 Crouzon Data

Micro-CT scans of 10 wild type and 10 Fgfr2C342Y/+ mice were used in the
study. Production of the Fgfr2C342Y/+ and Fgfr2C342Y/C342Y mutant mouse
(Crouzon mouse) was done as described in [63]. All procedures were carried
out in agreement with the United Kingdom Animals (Scientific Procedures)
Act, guidelines of the Home Office, and regulations of the University of Oxford.
Images of the skulls were obtained at approximately 46µm × 46µm × 46µm res-
olution using a General Electric Medical Systems EVS-RS9 Micro-CT scanner.
All mice were six weeks old (42 days).

11.3.2 UCS Data

20 CT scans of children with UCS were available resulting from a collaboration
between three hospitals, Copenhagen University Hospital, Denmark; Helsinki
University Central Hospital, Finland; and St. Louis Children’s Hospital, MO,
USA. The control group of 10 children stems from St. Louis Children’s Hospital.
The controls were suspected to have head injury after a fall or such, but were
diagnosed as having no craniofacial anomaly. The data varied considerably in
resolution and size, ranging from 0.3× 0.3× 0.6 mm per voxel to 1× 1× 3 mm
pr. voxel. The age of the children at the time of scanning ranged from 2-20
months.

11.4 Experimental Results

The method was tested and validated on the two different craniofacial applica-
tions. For the Crouzon data, affine registration was performed using 9 degrees
of freedom, involving anisotropic scaling since the main differences in the mouse
skull were the height, width and length of the skull. This was followed by non-
rigid registrations, which were run on resampled data, 0.2 mm pr. voxel and
using a control point grid spacing of 3, 1.5, and .75 mm. The UCS data were
treated similarly, except that the affine registration included 7 degrees of free-
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dom (isotropic scaling) and the non-rigid registration was carried out using a
resolution of 1 mm per voxel with control point spacing of 16, 8, and 4 mm.

11.4.1 Example Results

Figure 11.7 presents example results of the asymmetry computations for the
Crouzon mouse application.

Figure 11.7: Example results for wild-type mice (first three columns) and Crouzon
mice (last three columns). Row (a) Asymmetry values displayed on the deformed
symmetric atlas, given in mm according to the colorscale. The scale ranges from blue
(contracted) to red (expanded). Note that AR = −AL, i.e. each value on the left
side has a corresponding negative value on the right side. (b) Original surfaces for
comparison.

UCS asymmetry was calculated at both soft tissue and skull surfaces. Fig-
ures 11.8 and 11.9 give examples of soft-tissue asymmetries for two normal and
two UCS cases. Figure 11.10 shows skull asymmetries for the same cases. In
order to demonstrate the completeness of the asymmetry measure, each com-
ponent of the asymmetry vector is shown (x,y,z), providing transversal, sagittal
and vertical asymmetry, respectively.
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Figure 11.8: Example results for UCS data shown on the deformed symmetric soft-
tissue surface in front view. First and second case are normal, third and fourth case
have UCS. (a) Transversal, (b) sagittal and (c) vertical asymmetries are shown. (d)
Original surfaces for comparison.

11.4.2 Group Comparison

Figure 11.11 provides a comparison of the groups of mice in terms of abso-
lute mean asymmetry. To test if the groups are significantly different in each
point, approximately 500,000 simultaneous hypotheses (each vertex from half
of the surface) were evaluated according to the local fdr method discussed in
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Figure 11.9: Example results for UCS data shown on the deformed symmetric soft-
tissue surface in top view. First and second case are normal, third and fourth case
have UCS. (a) Transversal, (b) sagittal and (c) vertical asymmetries are shown. (d)
Original surfaces for comparison.

Section 11.2.4. The UCS data were treated similarly in Figure 11.12 except that
group asymmetries are shown for both soft tissue and skull. To further investi-
gate the asymmetry in a UCS skull, Figure 11.13 provides a similar demonstra-
tion for the total asymmetry in the cranial base.

To conclude the group comparison, Figure 11.14 provides box-and-whisker plots
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Figure 11.10: Example results for UCS data shown on the deformed symmetric skull
surface in front view. First and second case are normal, third and fourth case have
UCS. (a) Transversal, (b) sagittal and (c) vertical asymmetries are shown. (d) Original
surfaces for comparison.

for group differences in mean absolute asymmetries for both applications.
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Figure 11.11: Difference between groups. Mean absolute asymmetry of (a) wild-type
and (b) Crouzon mice, displayed on the symmetric atlas in top views. (c) Significance
of group difference, given as 1-fdr.



126 A Volumetric Quantification of Asymmetry

Figure 11.12: Group comparison of mean total asymmetries for the UCS study. (a-
c) Soft tissue surfaces in front and top views. (d-e) Skull surfaces in front and top
views. The surfaces are colored by (a,d) Mean normal absolute asymmetry in mm (left
colorbar), (b,e) mean UCS absolute asymmetry in mm (left colorbar), (c,f) Significance
of group difference, given as 1-fdr (right colorbar).
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Figure 11.13: (a,b) Mean total asymmetries in the cranial base, given in mm: (a)
Normal group, (b) UCS group, (c) Significance of differences, given as 1-fdr.
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Figure 11.14: Group differences in asymmetry for Crouzon and UCS studies: (a-c)
Total asymmetry, (d-f) transversal asymmetry (x), (g-i) sagittal asymmetry (y), (j-l)
vertical asymmetry (z). (a,d,g,j) Crouzon skulls. (b,e,h,k) UCS skulls. (c,f,i,l) UCS
soft tissue. H0 : µCrouzon = µnormal and H0 : µUCS = µnormal are rejected for all
cases. Highest p-value: 0.002 for (h)
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11.5 Validation

11.5.1 Registration Accuracy

Previously, we have evaluated landmark errors for the mouse registrations by
estimating landmark positions automatically using the registration results and
comparing to manual assessment. Statistical analysis showed that the automatic
approach performed on equal terms with the inter-observer variability [162].

For this study, we estimated the accuracy by the point to surface distance,
i.e. the distance from each point on the deformed atlas surface to the closest
point on the original subject surface. For the mice, only the skull surface was
investigated, since the soft tissue was not present. For the UCS data, both soft
tissue and skull surface were evaluated. Table 11.1 summarises the results from
this analysis.

Table 11.1: Point to surface errors for registration of both datasets. RMS errors are
given in mm ± one standard deviation.

Normal children UCS children Normal mice Crouzon mice
Skull 0.84± 0.51 0.83± 0.43 0.041± 0.032 0.047± 0.032
Soft 1.72± 1.76 1.36± 1.34 – –

A further analysis of these errors involved their position on the surfaces. Fig-
ure 11.15 shows the root-mean-square error, for normal and UCS data, displayed
on the symmetric surface.

Figure 11.15: RMS errors in mm displayed in each point of the symmetric surface
for (a) normal soft tissue, (b) normal skull, (c) UCS soft tissue, (d) UCS skull.
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11.5.2 Clinical Expert Rating

The asymmetry measure was validated with respect to a clinical expert for the
Crouzon mouse dataset. The expert rated nine different regions of anatomi-
cal interest on the skull of the original Crouzon surfaces. These were the nose
(viewed from above and below), zygoma, anterior skull, mid skull, posterior
skull, basal maxilla, anterior cranial base and posterior cranial base. The ex-
pert marked each region by 0 or 1 depending on whether the given region was
symmetric or asymmetric, relatively. Similar ratings were obtained from the
automatic method where regions with |Ai| > 0.25 mm were marked by 1 and
the remaining regions by 0. Figure 11.16 gives the number of regions where the
automatic approach and the expert rating agreed.
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Figure 11.16: Validation with respect to expert rating. The gold standard is defined
by the expert (black bars), who agrees with herself in rating of the nine regions for
each mouse. The gray bars denote the number of regions where the automatic method
agrees with the expert.

A further analysis of these results revealed a specificity of 66% and sensitivity
of 95%.

11.6 Discussion

Judged from Figure 11.7, the three Crouzon mice are more asymmetric than the
three wild-type mice. The wild-type mice have a few asymmetric regions of up to
approximately 0.4 mm. It is quite hard for a layman to detect any asymmetry
merely by looking at the original wild-type mouse surfaces in row (b) (first
three). The measured asymmetries in Crouzon mice are much higher, or more
than 0.8 mm in some regions. Regions of highest asymmetry are located in
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the regions of the nose, the posterior skull, the anterior skull and the zygomatic
bone. In most cases, these detections are easily verified by looking at the original
surfaces.

Figure 11.11 reveals that, on average, the Crouzon mouse skull is more asym-
metric than the wild-type mouse skull in the posterior skull, the zygomatic
bone and the nose. The nose finding is significant while only small regions in
the posterior skull and zygomatic bone are significantly more asymmetric in
the Crouzon skull. Perhaps larger significant regions would be revealed given a
larger data set.

The two children from the control group in Figure 11.8, 11.9 and 11.10, are
mostly symmetric. For case 1, the detected asymmetry in the chin seems to
be related to scanning artifacts (see the original surface) rather than the actual
anatomy. For both UCS children, transversal asymmetries are detected in the
mid-face. For case 3, mandibular transversal asymmetry is also present. This
may especially be seen from the skull representation in Figure 11.10 but it is
also seen to affect the asymmetry of the chin in the soft-tissue representation in
Figure 11.8. Sagittal asymmetry is present in the forehead and eyes and vertical
asymmetry is seen at the zygoma in Figure 11.10, especially for case 3. This
trend is reflected, although slightly less evident, in the cheeks of cases 3 and
4 in Figure 11.8. The majority of these findings is in good agreement with a
qualitative inspection of the original surfaces.

The group comparison of total absolute asymmetries in the UCS data in Fig-
ure 11.12 indicates that for soft tissue, UCS children are on average more asym-
metric than the controls in the midface, ears and posterior head, although only
the midface and posterior head findings are significant. For the skull, UCS skulls
are on average more asymmetric than normal skulls in the midface (including
nasal and orbital region), maxilla, mandible and the parietal bone (at poste-
rior skull). These findings are significant in the midface, maxilla and a small
region of the parietal bone. These significant differences are observed despite
of the limited number of controls. In fact, there was a large variation in the
control group and perhaps, given more controls, significant regions differing in
asymmetry would be larger.

The comparison of interior cranial base asymmetries in Figure 11.13 indicates
that UCS skulls are on average more asymmetric in the anterior and mid-cranial
fossae. The middle part of the anterior cranial fossae is strongly significant, while
only parts of the mid-cranial fossae are found to be significant.

These results for the UCS data confirm previous findings with respect to asym-
metry in the orbital region and cranial fossae in [22, 75, 114, 135, 136, 142, 149].
Further, the approach detects asymmetry in part of the posterior head in ad-
dition to the maxilla and part of the mandible as reported in [109, 114, 149].
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However, the mandibular findings were not significant. In the present study,
we have only looked at group differences with respect to total absolute asym-
metries. It still remains to investigate the group difference in terms of the
individual asymmetry components (transverse, sagittal and vertical) leaving a
great potential for a further clinical study on the condition.

Figure 11.14 strongly indicates that Crouzon mice are more asymmetric than
wild-type mice in all types of asymmetry (total, transverse, sagittal and verti-
cal). The same is evident from the UCS plots, both for soft tissue and skull, i.e.
UCS heads are more asymmetric than normal. The largest variation appears to
be in the sagittal asymmetry for both UCS and normal children. Paired t-tests
confirmed the group means to be different for both applications and all types of
asymmetries.

The registration accuracy was validated by a point to surface approach in Ta-
ble 11.1 and Figure 11.15. Even though only a lower bound on the point to
point (correspondence) accuracy is provided, the approach has the advantage of
demonstrating the error spatially, as opposed to landmark validation. The re-
sults strongly indicate good registration accuracy for both applications. The soft
tissue results are slightly worse than the skull results for the UCS data set. This
has to do firstly with the scan quality (see e.g. case 1 and 2 in Figure 11.8(d)).
Secondly, even though pre-processing was carried out, the data varied heavily
from scan to scan, with respect to the presence of the neck and shoulders. This
constituted a larger part for the soft tissue than for the skull. However, the
neck is of minimal interest for the asymmetry calculations and these errors were
considered irrelevant. Thirdly, there are more complicated structures in the soft
tissue than in the skull, such as the ears, which are not matched accurately as
seen in Figure 11.15(a,c). The mouth region is also difficult since some children
have open mouths while others have closed mouths during scanning. Moreover,
the errors are high on the top of the skull. This is due to the different size of the
fontanelle, the opening between the parietal bone and the frontal bone. Such
large differences are hard to match. If e.g. the fontanelle is fully closed in the
source skull, the non-rigid registration does not allow it to open to match the
target skull. The same applies to the open/closed mouth example. One way to
solve this problem would be to include landmarks in the difficult regions. The
quantification of registration accuracy is an important indicator of the reliabil-
ity of the subsequent asymmetry determination. Fortunately, none of the above
mentioned regions with relatively high registration error is of particular interest
for the study of asymmetry in UCS and it is therefore concluded that the overall
registration accuracy is sufficient for further analysis.

The expert validation of cranial asymmetry in Crouzon mice in Figure 11.16 in-
dicates that the method localizes and quantifies asymmetry in close agreement
with a clinical expert. With the selected threshold of asymmetry (|Ai > 0.25|),
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a sensitivity of 95% was reached. The specificity was only 66% indicating a high
number of false positives. This indicates that selecting a higher level of detec-
tion (threshold) would further improve the results but this kind of validation is
obviously subjective. It is our belief that a clinical expert rating for the Crouzon
mice was necessary since only one previous study was found where asymmetry
due to Crouzon syndrome was mentioned. This, in addition to the fact that we
confirm the locations of asymmetry with respect to previous studies on UCS,
leads to the conclusion that the proposed approach accurately locates correct
regions of asymmetry.

11.7 Conclusions

It has been shown that the proposed asymmetry measure is able to convincingly
assess asymmetries in craniofacial data. Previous findings with respect to UCS
were confirmed and good agreement with respect to a clinical expect rating
on Crouzon skulls was obtained. The presented approach differs from previous
studies on UCS in the level of detail. Instead of relying on a sparse set of
reference points, it provides a full volumetric quantification. The presented
results are of high value for craniofacial surgery planning and evaluation. With
respect to other medical applications, the essence of the presented methodology
is that it is free of defining the mid-sagittal plane in every subject and should
be easily extendable to any application where bilateral asymmetry is of interest.
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[160] H. Ólafsdóttir, T.A. Darvann, Ersboll B.K., N.V. Hermann, E. Oubel, R. Larsen, A.F.
Frangi, P. Larsen, C.A. Perlyn, G.M. Morriss-Kay, and S. Kreiborg. Craniofacial sta-
tistical deformation models of wild-type mice and Crouzon mice. In J.P.W. Pluim and
J.M. Reinhardt, editors, Medical Imaging 2007: Image Processing, volume 6512, page
65121C. SPIE, 2007.
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Frangi, P. Larsen, C.A. Perlyn, D. Govier, H.D. Hove, J. Hukki, A.A. Kane, G.M.
Morriss-Kay, S. Kreiborg, B.K. Ersbøll, and R. Larsen. A volumetric quantification of
asymmetry using non-rigid registration. Transactions on Medical Imaging (submitted),
2008.

[167] E. Oubel, H. Neemuchwala, A. Hero, L. Boisrobert, M. Laclaustra, and A.F. Frangi.
Assessment of artery dilation by using image registration based on spatial features.
Progress in Biomedical Optics and Imaging - Proceedings of SPIE, 5747(II):1283–1291,
2005.

[168] D. Pantazis, R.M. Leahy, T.E. Nichols, and M. Styner. Statistical surface-based mor-
phometry using a non-parametric approach. Biomedical Imaging: Macro to Nano, 2004.
IEEE International Symposium on, pages 1283–1286, 2004.

[169] H. Park, P.H. Bland, and C.R. Meyer. Construction of an abdominal probabilistic atlas
and its application in segmentation. IEEE Transactions on Medical Imaging, 22(4):
483–492, 2003.

[170] R.R. Paulsen, R. Larsen, S. Laugesen, C. Nielsen, and B.K. Ersbøll. Building and testing
a statistical shape model of the human ear canal. In Medical Image Computing and
Computer-Assisted Intervention, Lecture Notes in Computer Science. Springer, 2002.

[171] M.J. Paulus, S.S. Gleason, M.E. Easterly, and C.J. Foltz. A review of high-resolution
X-ray computed tomography and other imaging modalities for small animal research.
Lab Animal, 30(3):36–45, 2001.

[172] A. Van Pelt, T.A. Darvann, D. Govier, S. Naidoo, M.J. Tenebaum, N.V. Hermann,
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