1,625 research outputs found

    G-CSF Prevents the Progression of Structural Disintegration of White Matter Tracts in Amyotrophic Lateral Sclerosis: A Pilot Trial

    Get PDF
    Background: The hematopoietic protein Granulocyte-colony stimulating factor (G-CSF) has neuroprotective and regenerative properties. The G-CSF receptor is expressed by motoneurons, and G-CSF protects cultured motoneuronal cells from apoptosis. It therefore appears as an attractive and feasible drug candidate for the treatment of amyotrophic lateral sclerosis (ALS). The current pilot study was performed to determine whether treatment with G-CSF in ALS patients is feasible.Methods: Ten patients with definite ALS were entered into a double-blind, placebo-controlled, randomized trial. Patients received either 10 mu g/kg BW G-CSF or placebo subcutaneously for the first 10 days and from day 20 to 25 of the study. Clinical outcome was assessed by changes in the ALS functional rating scale (ALSFRS), a comprehensive neuropsychological test battery, and by examining hand activities of daily living over the course of the study (100 days). The total number of adverse events (AE) and treatment-related AEs, discontinuation due to treatment-related AEs, laboratory parameters including leukocyte, erythrocyte, and platelet count, as well as vital signs were examined as safety endpoints. Furthermore, we explored potential effects of G-CSF on structural cerebral abnormalities on the basis of voxel-wise statistics of Diffusion Tensor Imaging (DTI), brain volumetry, and voxel-based morphometry.Results: Treatment was well-tolerated. No significant differences were found between groups in clinical tests and brain volumetry from baseline to day 100. However, DTI analysis revealed significant reductions of fractional anisotropy (FA) encompassing diffuse areas of the brain when patients were compared to controls. On longitudinal analysis, the placebo group showed significant greater and more widespread decline in FA than the ALS patients treated with G-CSF.Conclusions: Subcutaneous G-CSF treatment in ALS patients appears as feasible approach. Although exploratory analysis of clinical data showed no significant effect, DTI measurements suggest that the widespread and progressive microstructural neural damage in ALS can be modulated by G-CSF treatment. These findings may carry significant implications for further clinical trials on ALS using growth factors

    Occasional essay: upper motor neuron syndrome in amyotrophic lateral sclerosis

    Get PDF
    The diagnosis of amyotrophic lateral sclerosis (ALS) requires recognition of both lower (LMN) and upper motor neuron (UMN) dysfunction.1 However, classical UMN signs are frequently difficult to identify in ALS.2 LMN involvement is sensitively detected by electromyography (EMG)3 but, as yet, there are no generally accepted markers for monitoring UMN abnormalities,4 the neurobiology of ALS itself, and disease spread through the brain and spinal cord,.5 Full clinical assessment is therefore necessary to exclude other diagnoses and to monitor disease progression. In part, this difficulty regarding detection of UMN involvement in ALS derives from the definition of ‘the UMN syndrome’. Abnormalities of motor control in ALS require reformulation within an expanded concept of the UMN, together with the neuropathological, neuro-imaging and neurophysiological abnormalities in ALS. We review these issues here

    Use of diffusion spectrum imaging in preliminary longitudinal evaluation of amyotrophic lateral sclerosis: Development of an imaging biomarker

    Get PDF
    Previous diffusion tensor imaging (DTI) studies have shown white matter pathology in amyotrophic lateral sclerosis (ALS), predominantly in the motor pathways. Further these studies have shown that DTI can be used longitudinally to track pathology over time, making white matter pathology a candidate as an outcome measure in future trials. DTI has demonstrated application in group studies, however its derived indices, for example fractional anisotropy, are susceptible to partial volume effects, making its role questionable in examining individual progression. We hypothesize that changes in the white matter are present in ALS beyond the motor tracts, and that the affected pathways and associated pattern of disease progression can be tracked longitudinally using automated diffusion connectometry analysis. Connectometry analysis is based on diffusion spectrum imaging and overcomes the limitations of a conventional tractography approach and DTI. The identified affected white matter tracts can then be assessed in a targeted fashion using High definition fiber tractography (a novel white matter MR imaging technique). Changes in quantitative and qualitative markers over time could then be correlated with clinical progression. We illustrate these principles toward developing an imaging biomarker for demonstrating individual progression, by presenting results for five ALS patients, including with longitudinal data in two. Preliminary analysis demonstrated a number of changes bilaterally and asymmetrically in motoric and extramotoric white matter pathways. Further the limbic system was also affected possibly explaining the cognitive symptoms in ALS. In the two longitudinal subjects, the white matter changes were less extensive at baseline, although there was evidence of disease progression in a frontal pattern with a relatively spared postcentral gyrus, consistent with the known pathology in ALS. © 2014 Abhinav, Yeh, El-Dokla, Ferrando, Chang, Lacomis, Friedlander and Fernandez-Miranda

    Assessment of White Matter Tract Damage in Patients with Amyotrophic Lateral Sclerosis: A Diffusion Tensor MR Imaging Tractography Study

    Get PDF
    BACKGROUND AND PURPOSE: Most DTI studies in ALS have been limited to the assessment of the CST damage. In this study, we used DTI tractography to investigate whether microstructural abnormalities occur in the major motor and extramotor WM tracts in mildly disabled patients with ALS. MATERIALS AND METHODS: Brain conventional MR imaging and DTI were performed in 24 patients with probable or definite ALS and mild disability (ALSFRS score, ≥20) and 20 healthy controls. The mean disease progression rate was 0.62 (range = 0.08–2.50). DTI tractography was used to segment the CST, the corpus callosum, and the major WM association tracts (ie, cingulum, uncinate fasciculus, inferior fronto-occipital, inferior longitudinal, and superior longitudinal fasciculi). RESULTS: Compared with healthy controls, patients with ALS showed significantly decreased FA and significantly increased MD and radial D of the CST bilaterally (P values from .005 to .01). Patients with ALS also had a significantly increased axial D of the right uncinate fasciculus relative to controls (P = .04). CST FA significantly correlated with the rate of disease progression (right CST: r = −0.50, P = .02; left CST: r = −0.41, P = .05). CONCLUSIONS: Patients with ALS and mild disability have preferential damage to the CST. The association of CST damage with the rate of disease progression suggests that DTI has the potential to provide in vivo markers of ALS evolution. The subtle involvement of the uncinate fasciculus may precede the appearance of behavioral symptoms in patients with ALS

    Emerging magnetic resonance imaging techniques and analysis methods in amyotrophic lateral sclerosis

    Get PDF
    Objective markers of disease sensitive to the clinical activity, symptomatic progression, and underlying substrates of neurodegeneration are highly coveted in amyotrophic lateral sclerosis in order to more eloquently stratify the highly heterogeneous phenotype and facilitate the discovery of effective disease modifying treatments for patients. Magnetic resonance imaging (MRI) is a promising, non-invasive biomarker candidate whose acquisition techniques and analysis methods are undergoing constant evolution in the pursuit of parameters which more closely represent biologically-applicable tissue changes. Neurite Orientation Dispersion and Density Imaging (NODDI; a form of diffusion imaging), and quantitative Magnetization Transfer Imaging (qMTi) are two such emerging modalities which have each broadened the understanding of other neurological disorders and have the potential to provide new insights into structural alterations initiated by the disease process in ALS. Furthermore, novel neuroimaging data analysis approaches such as Event-Based Modeling (EBM) may be able to circumvent the requirement for longitudinal scanning as a means to comprehend the dynamic stages of neurodegeneration . Combining these and other innovative imaging protocols with more sophisticated techniques to analyse ever-increasing datasets holds the exciting prospect of transforming understanding of the biological processes and temporal evolution of the ALS syndrome, and can only benefit from multicentre collaboration across the entire ALS research community

    Evaluation of Upper Motor Neuron Pathology in Amyotrophic Lateral Sclerosis by Mri;Towards Identifying Noninvasive Biomarkers of the Disease

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is the commonest adult motor neuron disease (MND) which causes progressive muscle paralysis and death usually within 5 years of symptom onset. As a result, only ̃30,000 individuals in the United States are afflicted at any one time even though 5,000 or more individuals are diagnosed yearly. The diagnosis of ALS requires evidence of degeneration in upper motor neurons (UMNs) in the brain and in lower motor neurons (LMNs) that exit the brainstem and spinal cord to innervate skeletal muscles. Diagnosis can be incorrect or delayed when disease is early or atypical because non-invasive objective tests of UMN involvement do not exist, unlike electromyography to assess the LMN. Although magnetic resonance imaging (MRI) of brain and spinal cord is used primarily to identify conditions which mimic ALS, novel MRI sequences and post-processing techniques can identify macroscopic and even sub-macroscopic changes in ALS brain related to neuronoaxonal degeneration (e.g., in corticospinal motor tracts). MRI-based techniques like diffusion tensor imaging (DTI) and proton magnetic resonance spectroscopy (1H-MRS), as well as nuclear medicine modalities like positron emission tomography (PET) and single photon emission tomography (SPECT) are being used to study brains of patients with ALS. Many previous MRI studies of ALS brain are limited either in methodology or information obtained being primarily qualitative, i.e. changes visible to the naked eye (macroscopic). This study employed both routine and novel MRI sequences to objectively assess gray and white matter pathology of the brain in ALS patients, including T2 relaxometry, DTI, and voxel based morphometry (VBM) of 3D high resolution T1-weighted images. DTI metrics showed significant (p\u3c 0.05) changes in rostral extent of corticospinal tract (CST) in ALS patients with predominantly UMN symptoms and signs, and the ALS-dementia patients, whereas more caudal involvement was observed in ALS patients with classic findings of UMN and LMN

    Assessing neuraxial microstructural changes in a transgenic mouse model of early stage Amyotrophic Lateral Sclerosis by ultra‐high field MRI and diffusion tensor metrics

    Get PDF
    bjective: Cell structural changes are one of the main features observed during the development of amyotrophic lateral sclerosis (ALS). In this work, we propose the useof diffusion tensor imaging (DTI) metrics to assess specific ultrastructural changes in the central nervous system during the early neurodegenerative stages of ALS.Methods: Ultra-high field MRI and DTI data at 17.6T were obtained from fixed, excised mouse brains, and spinal cords from ALS (G93A-SOD1) mice.Results: Changes in fractional anisotropy (FA) and linear, planar, and spherical anisotropy ratios (CL, CP, and CS, respectively) of the diffusion eigenvalues were measured in white matter (WM) and gray matter (GM) areas associated with early axonal degenerative processes (in both the brain and the spinal cord). Specifically, in WM structures (corpus callosum, corticospinal tract, and spinal cord funiculi) as the disease progressed, FA, CL, and CP values decreased, whereas CS values increased.In GM structures (prefrontal cortex, hippocampus, and central spinal cord) FA and CP decreased, whereas the CL a nd C values were unchanged or slightly smaller.Histological studies of a fluorescent mice model (YFP, G93A-SOD1 mouse) corroborated the early alterations in neuronal morphology and axonal connectivity measured by DTI.Conclusions: Changes in diffusion tensor shape were observed in this animal model at the early, nonsymptomatic stages of ALS. Further studies of CL, CP, and CSas imaging biomarkers should be undertaken to refine this neuroimaging tool for future clinical use in the detection of the early stages of ALSFil: Gatto, Rodolfo G.. University Of Illinois. Deparment Of Biological Science; Estados UnidosFil: Weissmann, Carina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; ArgentinaFil: Amin, Manish. University of Florida; Estados UnidosFil: Finkielsztein, Ariel. Northwestern University; Estados UnidosFil: Sumagin, Ronen. Northwestern University; Estados UnidosFil: Mareci, Thomas H.. University of Florida; Estados UnidosFil: Uchitel, Osvaldo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; ArgentinaFil: Magin, Richard L.. University Of Illinois. Deparment Of Biological Science; Estados Unido

    Measurement of structural integrity of the spinal cord in patients with amyotrophic lateral sclerosis using diffusion tensor magnetic resonance imaging

    Get PDF
    Background The value of conventional magnetic resonance imaging (MRI) for amyotrophic lateral sclerosis (ALS) is low. Functional and quantitative MRI could be more accurate. We aimed to examine the value of diffusion tensor imaging (DTI) with fractional anisotropy (FA) measurements of the cervical and upper thoracic spinal cord in patients with ALS. Patients and methods Fourteen patients with ALS and 15 sex- and age-matched controls were examined with DTI at a 3T MRI scanner. Region-of-interest (ROI) based fractional anisotropy measurements were performed at the levels C2-C4, C5-C7 and Th1-Th3. ROIs were placed at different anatomical locations of the axial cross sections of the spinal cord. Results FA was significantly reduced in ALS patients in anterolateral ROIs and the whole cross section at the C2-C4 level and the cross section of the Th1-Th3 level. There was a trend towards a statistically significant FA reduction in the anterolateral ROIs at the C5-C7 level in ALS patients. No significant differences between patients and controls were found in posterior ROIs. Conclusion FA was reduced in ROIs representing the motor tracts in ALS patients. DTI with FA measurements is a promising method in this circumstance. However, for DTI to become a valuable and established method in the diagnostic workup of ALS, larger studies and further standardisation are warranted

    the topography of brain microstructural damage in amyotrophic lateral sclerosis assessed using diffusion tensor mr imaging

    Get PDF
    BACKGROUND AND PURPOSE: ALS leads to macrostructural (ie, cortical atrophy and hyperintensities along the corticospinal tract) and microstructural (ie, gray matter intrinsic damage) central nervous system abnormalities. We used a multimodal voxelwise imaging approach to assess microstructural changes independent of macrostructural volume loss in patients with ALS compared with HCs. MATERIALS AND METHODS: Twenty-three patients with ALS and 14 HCs were studied. Conventional imaging and DTI were performed. Images were processed by using SPM5 to assess measures of gray and white matter atrophy as well as microstructural damage (ie, MD and FA). DTI alterations independent of volume loss were investigated. RESULTS: When we accounted for both gray and white matter atrophy, patients with ALS showed increased MD values in several gray and white matter areas mainly located in the orbitofrontal and frontotemporal regions bilaterally, in the right genu of the corpus callosum, and in the right posterior limb of the internal capsule. When we accounted for white matter volume loss, patients with ALS showed decreased FA along the corticospinal tract bilaterally and in the left inferior frontal lobe relative to HCs. The MD of the orbitofrontal regions bilaterally was associated significantly with disease duration. CONCLUSIONS: In patients with ALS, DTI detects microstructural changes independent of brain tissue loss. The affected regions included both motor and extramotor areas. The extent of ALS-related DTI abnormalities was greater than that disclosed by the volumetric analysis
    corecore