56,458 research outputs found

    A systematic comparison of data- and knowledge-driven approaches to disease subtype discovery

    Get PDF
    bbab314Typical clustering analysis for large-scale genomics data combines two unsupervised learning techniques: dimensionality reduction and clustering (DR-CL) methods. It has been demonstrated that transforming gene expression to pathway-level information can improve the robustness and interpretability of disease grouping results. This approach, referred to as biological knowledge-driven clustering (BK-CL) approach, is often neglected, due to a lack of tools enabling systematic comparisons with more established DR-based methods. Moreover, classic clustering metrics based on group separability tend to favor the DR-CL paradigm, which may increase the risk of identifying less actionable disease subtypes that have ambiguous biological and clinical explanations. Hence, there is a need for developing metrics that assess biological and clinical relevance. To facilitate the systematic analysis of BK-CL methods, we propose a computational protocol for quantitative analysis of clustering results derived from both DR-CL and BK-CL methods. Moreover, we propose a new BK-CL method that combines prior knowledge of disease relevant genes, network diffusion algorithms and gene set enrichment analysis to generate robust pathway-level information. Benchmarking studies were conducted to compare the grouping results from different DR-CL and BK-CL approaches with respect to standard clustering evaluation metrics, concordance with known subtypes, association with clinical outcomes and disease modules in co-expression networks of genes. No single approach dominated every metric, showing the importance multi-objective evaluation in clustering analysis. However, we demonstrated that, on gene expression data sets derived from TCGA samples, the BK-CL approach can find groupings that provide significant prognostic value in both breast and prostate cancers.Peer reviewe

    Gene expression in large pedigrees: analytic approaches.

    Get PDF
    BackgroundWe currently have the ability to quantify transcript abundance of messenger RNA (mRNA), genome-wide, using microarray technologies. Analyzing genotype, phenotype and expression data from 20 pedigrees, the members of our Genetic Analysis Workshop (GAW) 19 gene expression group published 9 papers, tackling some timely and important problems and questions. To study the complexity and interrelationships of genetics and gene expression, we used established statistical tools, developed newer statistical tools, and developed and applied extensions to these tools.MethodsTo study gene expression correlations in the pedigree members (without incorporating genotype or trait data into the analysis), 2 papers used principal components analysis, weighted gene coexpression network analysis, meta-analyses, gene enrichment analyses, and linear mixed models. To explore the relationship between genetics and gene expression, 2 papers studied expression quantitative trait locus allelic heterogeneity through conditional association analyses, and epistasis through interaction analyses. A third paper assessed the feasibility of applying allele-specific binding to filter potential regulatory single-nucleotide polymorphisms (SNPs). Analytic approaches included linear mixed models based on measured genotypes in pedigrees, permutation tests, and covariance kernels. To incorporate both genotype and phenotype data with gene expression, 4 groups employed linear mixed models, nonparametric weighted U statistics, structural equation modeling, Bayesian unified frameworks, and multiple regression.Results and discussionRegarding the analysis of pedigree data, we found that gene expression is familial, indicating that at least 1 factor for pedigree membership or multiple factors for the degree of relationship should be included in analyses, and we developed a method to adjust for familiality prior to conducting weighted co-expression gene network analysis. For SNP association and conditional analyses, we found FaST-LMM (Factored Spectrally Transformed Linear Mixed Model) and SOLAR-MGA (Sequential Oligogenic Linkage Analysis Routines -Major Gene Analysis) have similar type 1 and type 2 errors and can be used almost interchangeably. To improve the power and precision of association tests, prior knowledge of DNase-I hypersensitivity sites or other relevant biological annotations can be incorporated into the analyses. On a biological level, eQTL (expression quantitative trait loci) are genetically complex, exhibiting both allelic heterogeneity and epistasis. Including both genotype and phenotype data together with measurements of gene expression was found to be generally advantageous in terms of generating improved levels of significance and in providing more interpretable biological models.ConclusionsPedigrees can be used to conduct analyses of and enhance gene expression studies

    Essential guidelines for computational method benchmarking

    Get PDF
    In computational biology and other sciences, researchers are frequently faced with a choice between several computational methods for performing data analyses. Benchmarking studies aim to rigorously compare the performance of different methods using well-characterized benchmark datasets, to determine the strengths of each method or to provide recommendations regarding suitable choices of methods for an analysis. However, benchmarking studies must be carefully designed and implemented to provide accurate, unbiased, and informative results. Here, we summarize key practical guidelines and recommendations for performing high-quality benchmarking analyses, based on our experiences in computational biology.Comment: Minor update

    Partial mixture model for tight clustering of gene expression time-course

    Get PDF
    Background: Tight clustering arose recently from a desire to obtain tighter and potentially more informative clusters in gene expression studies. Scattered genes with relatively loose correlations should be excluded from the clusters. However, in the literature there is little work dedicated to this area of research. On the other hand, there has been extensive use of maximum likelihood techniques for model parameter estimation. By contrast, the minimum distance estimator has been largely ignored. Results: In this paper we show the inherent robustness of the minimum distance estimator that makes it a powerful tool for parameter estimation in model-based time-course clustering. To apply minimum distance estimation, a partial mixture model that can naturally incorporate replicate information and allow scattered genes is formulated. We provide experimental results of simulated data fitting, where the minimum distance estimator demonstrates superior performance to the maximum likelihood estimator. Both biological and statistical validations are conducted on a simulated dataset and two real gene expression datasets. Our proposed partial regression clustering algorithm scores top in Gene Ontology driven evaluation, in comparison with four other popular clustering algorithms. Conclusion: For the first time partial mixture model is successfully extended to time-course data analysis. The robustness of our partial regression clustering algorithm proves the suitability of the ombination of both partial mixture model and minimum distance estimator in this field. We show that tight clustering not only is capable to generate more profound understanding of the dataset under study well in accordance to established biological knowledge, but also presents interesting new hypotheses during interpretation of clustering results. In particular, we provide biological evidences that scattered genes can be relevant and are interesting subjects for study, in contrast to prevailing opinion

    Simcluster: clustering enumeration gene expression data on the simplex space

    Get PDF
    Transcript enumeration methods such as SAGE, MPSS, and sequencing-by-synthesis EST "digital northern", are important high-throughput techniques for digital gene expression measurement. As other counting or voting processes, these measurements constitute compositional data exhibiting properties particular to the simplex space where the summation of the components is constrained. These properties are not present on regular Euclidean spaces, on which hybridization-based microarray data is often modeled. Therefore, pattern recognition methods commonly used for microarray data analysis may be non-informative for the data generated by transcript enumeration techniques since they ignore certain fundamental properties of this space.

Here we present a software tool, Simcluster, designed to perform clustering analysis for data on the simplex space. We present Simcluster as a stand-alone command-line C package and as a user-friendly on-line tool. Both versions are available at: http://xerad.systemsbiology.net/simcluster.

Simcluster is designed in accordance with a well-established mathematical framework for compositional data analysis, which provides principled procedures for dealing with the simplex space, and is thus applicable in a number of contexts, including enumeration-based gene expression data

    Essential guidelines for computational method benchmarking

    Get PDF
    In computational biology and other sciences, researchers are frequently faced with a choice between several computational methods for performing data analyses. Benchmarking studies aim to rigorously compare the performance of different methods using well-characterized benchmark datasets, to determine the strengths of each method or to provide recommendations regarding suitable choices of methods for an analysis. However, benchmarking studies must be carefully designed and implemented to provide accurate, unbiased, and informative results. Here, we summarize key practical guidelines and recommendations for performing high-quality benchmarking analyses, based on our experiences in computational biology
    corecore