9 research outputs found

    Extent of Height Variability Explained by Known Height-Associated Genetic Variants in an Isolated Population of the Adriatic Coast of Croatia

    Get PDF
    BACKGROUND: Human height is a classical example of a polygenic quantitative trait. Recent large-scale genome-wide association studies (GWAS) have identified more than 200 height-associated loci, though these variants explain only 2∼10% of overall variability of normal height. The objective of this study was to investigate the variance explained by these loci in a relatively isolated population of European descent with limited admixture and homogeneous genetic background from the Adriatic coast of Croatia. METHODOLOGY/PRINCIPAL FINDINGS: In a sample of 1304 individuals from the island population of Hvar, Croatia, we performed genome-wide SNP typing and assessed the variance explained by genetic scores constructed from different panels of height-associated SNPs extracted from five published studies. The combined information of the 180 SNPs reported by Lango Allen el al. explained 7.94% of phenotypic variation in our sample. Genetic scores based on 20~50 SNPs reported by the remaining individual GWA studies explained 3~5% of height variance. These percentages of variance explained were within ranges comparable to the original studies and heterogeneity tests did not detect significant differences in effect size estimates between our study and the original reports, if the estimates were obtained from populations of European descent. CONCLUSIONS/SIGNIFICANCE: We have evaluated the portability of height-associated loci and the overall fitting of estimated effect sizes reported in large cohorts to an isolated population. We found proportions of explained height variability were comparable to multiple reference GWAS in cohorts of European descent. These results indicate similar genetic architecture and comparable effect sizes of height loci among populations of European descent

    Maximum Smoothed Likelihood Component Density Estimation in Mixture Models with Known Mixing Proportions

    Full text link
    In this paper, we propose a maximum smoothed likelihood method to estimate the component density functions of mixture models, in which the mixing proportions are known and may differ among observations. The proposed estimates maximize a smoothed log likelihood function and inherit all the important properties of probability density functions. A majorization-minimization algorithm is suggested to compute the proposed estimates numerically. In theory, we show that starting from any initial value, this algorithm increases the smoothed likelihood function and further leads to estimates that maximize the smoothed likelihood function. This indicates the convergence of the algorithm. Furthermore, we theoretically establish the asymptotic convergence rate of our proposed estimators. An adaptive procedure is suggested to choose the bandwidths in our estimation procedure. Simulation studies show that the proposed method is more efficient than the existing method in terms of integrated squared errors. A real data example is further analyzed

    Using the R Package crlmm for Genotyping and Copy Number Estimation

    Get PDF
    Genotyping platforms such as Affymetrix can be used to assess genotype-phenotype as well as copy number-phenotype associations at millions of markers. While genotyping algorithms are largely concordant when assessed on HapMap samples, tools to assess copy number changes are more variable and often discordant. One explanation for the discordance is that copy number estimates are susceptible to systematic differences between groups of samples that were processed at different times or by different labs. Analysis algorithms that do not adjust for batch effects are prone to spurious measures of association. The R package crlmm implements a multilevel model that adjusts for batch effects and provides allele-specific estimates of copy number. This paper illustrates a workflow for the estimation of allele-specific copy number and integration of the marker-level estimates with complimentary Bioconductor software for inferring regions of copy number gain or loss. All analyses are performed in the statistical environment R.

    Copy Number and Loss of Heterozygosity Detected by SNP Array of Formalin-Fixed Tissues Using Whole-Genome Amplification

    Get PDF
    The requirement for large amounts of good quality DNA for whole-genome applications prohibits their use for small, laser capture micro-dissected (LCM), and/or rare clinical samples, which are also often formalin-fixed and paraffin-embedded (FFPE). Whole-genome amplification of DNA from these samples could, potentially, overcome these limitations. However, little is known about the artefacts introduced by amplification of FFPE-derived DNA with regard to genotyping, and subsequent copy number and loss of heterozygosity (LOH) analyses. Using a ligation adaptor amplification method, we present data from a total of 22 Affymetrix SNP 6.0 experiments, using matched paired amplified and non-amplified DNA from 10 LCM FFPE normal and dysplastic oral epithelial tissues, and an internal method control. An average of 76.5% of SNPs were called in both matched amplified and non-amplified DNA samples, and concordance was a promising 82.4%. Paired analysis for copy number, LOH, and both combined, showed that copy number changes were reduced in amplified DNA, but were 99.5% concordant when detected, amplifications were the changes most likely to be ‘missed’, only 30% of non-amplified LOH changes were identified in amplified pairs, and when copy number and LOH are combined ∼50% of gene changes detected in the unamplified DNA were also detected in the amplified DNA and within these changes, 86.5% were concordant for both copy number and LOH status. However, there are also changes introduced as ∼20% of changes in the amplified DNA are not detected in the non-amplified DNA. An integrative network biology approach revealed that changes in amplified DNA of dysplastic oral epithelium localize to topologically critical regions of the human protein-protein interaction network, suggesting their functional implication in the pathobiology of this disease. Taken together, our results support the use of amplification of FFPE-derived DNA, provided sufficient samples are used to increase power and compensate for increased error rates

    Comparing genotyping algorithms for Illumina's Infinium whole-genome SNP BeadChips

    Get PDF
    The Brassica napus 60K Illumina Infinium™ SNP array has had huge international uptake in the rapeseed community due to the revolutionary speed of acquisition and ease of analysis of this high-throughput genotyping data, particularly when coupled with the newly available reference genome sequence. However, further utilization of this valuable resource can be optimized by better understanding the promises and pitfalls of SNP arrays. We outline how best to analyze Brassica SNP marker array data for diverse applications, including linkage and association mapping, genetic diversity and genomic introgression studies. We present data on which SNPs are locus-specific in winter, semi-winter and spring B. napus germplasm pools, rather than amplifying both an A-genome and a C-genome locus or multiple loci. Common issues that arise when analyzing array data will be discussed, particularly those unique to SNP markers and how to deal with these for practical applications in Brassica breeding applications

    Using the R Package crlmm for Genotyping and Copy Number Estimation

    Get PDF
    Genotyping platforms such as Affymetrix can be used to assess genotype-phenotype as well as copy number-phenotype associations at millions of markers. While genotyping algorithms are largely concordant when assessed on HapMap samples, tools to assess copy number changes are more variable and often discordant. One explanation for the discordance is that copy number estimates are susceptible to systematic differences between groups of samples that were processed at different times or by different labs. Analysis algorithms that do not adjust for batch effects are prone to spurious measures of association. The R package crlmm implements a multilevel model that adjusts for batch effects and provides allele-specific estimates of copy number. This paper illustrates a workflow for the estimation of allele-specific copy number and integration of the marker-level estimates with complimentary Bioconductor software for inferring regions of copy number gain or loss. All analyses are performed in the statistical environment R

    A MULTILEVEL MODEL TO ADDRESS BATCH EFFECTS IN COPY NUMBER USING SNP ARRAYS

    Get PDF
    Submicroscopic changes in chromosomal DNA copy number dosage are common and have been implicated in many heritable diseases and cancers. Recent high-throughput technologies have a resolution that permits the detection of segmental changes in DNA copy number that span thousands of basepairs across the genome. Genome-wide association studies (GWAS) may simultaneously screen for copy number-phenotype and SNP-phenotype associations as part of the analytic strategy. However, genome-wide array analyses are particularly susceptible to batch effects as the logistics of preparing DNA and processing thousands of arrays often involves multiple laboratories and technicians, or changes over calendar time to the reagents and laboratory equipment. Failure to adjust for batch effects can lead to incorrect inference and requires inefficient post-hoc quality control procedures that exclude regions that are associated with batch. Our work extends previous model-based approaches for copy number estimation by explicitly modeling batch effects and using shrinkage to improve locus-specific estimates of copy number uncertainty. Key features of this approach include the use of diallelic genotype calls from experimental data to estimate batch- and locus-specific parameters of background and signal without the requirement of training data. We illustrate these ideas using a study of bipolar disease and a study of chromosome 21 trisomy. The former has batch effects that dominate much of the observed variation in quantile-normalized intensities, while the latter illustrates the robustness of our approach to datasets where as many as 25% of the samples have altered copy number. Locus-specific estimates of copy number can be plotted on the copy-number scale to investigate mosaicism and guide the choice of appropriate downstream approaches for smoothing the copy number as a function of physical position. The software is open source and implemented in the R package CRLMM available at Bioconductor (http:www.bioconductor.org)

    TumorBoost: Normalization of allele-specific tumor copy numbers from a single pair of tumor-normal genotyping microarrays

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>High-throughput genotyping microarrays assess both total DNA copy number and allelic composition, which makes them a tool of choice for copy number studies in cancer, including total copy number and loss of heterozygosity (LOH) analyses. Even after state of the art preprocessing methods, allelic signal estimates from genotyping arrays still suffer from systematic effects that make them difficult to use effectively for such downstream analyses.</p> <p>Results</p> <p>We propose a method, TumorBoost, for normalizing allelic estimates of one tumor sample based on estimates from a single matched normal. The method applies to any paired tumor-normal estimates from any microarray-based technology, combined with any preprocessing method. We demonstrate that it increases the signal-to-noise ratio of allelic signals, making it significantly easier to detect allelic imbalances.</p> <p>Conclusions</p> <p>TumorBoost increases the power to detect somatic copy-number events (including copy-neutral LOH) in the tumor from allelic signals of Affymetrix or Illumina origin. We also conclude that high-precision allelic estimates can be obtained from a single pair of tumor-normal hybridizations, if TumorBoost is combined with single-array preprocessing methods such as (allele-specific) CRMA v2 for Affymetrix or BeadStudio's (proprietary) XY-normalization method for Illumina. A bounded-memory implementation is available in the open-source and cross-platform R package <it>aroma.cn</it>, which is part of the Aroma Project (<url>http://www.aroma-project.org/</url>).</p

    Quantifying uncertainty in genotype calls

    Get PDF
    Motivation: Genome-wide association studies (GWAS) are used to discover genes underlying complex, heritable disorders for which less powerful study designs have failed in the past. The number of GWAS has skyrocketed recently with findings reported in top journals and the mainstream media. Microarrays are the genotype calling technology of choice in GWAS as they permit exploration of more than a million single nucleotide polymorphisms (SNPs) simultaneously. The starting point for the statistical analyses used by GWAS to determine association between loci and disease is making genotype calls (AA, AB or BB). However, the raw data, microarray probe intensities, are heavily processed before arriving at these calls. Various sophisticated statistical procedures have been proposed for transforming raw data into genotype calls. We find that variability in microarray output quality across different SNPs, different arrays and different sample batches have substantial influence on the accuracy of genotype calls made by existing algorithms. Failure to account for these sources of variability can adversely affect the quality of findings reported by the GWAS
    corecore