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A multilevel model to address batch effects in copy

number estimation using SNP arrays

Robert B. Scharpf, Ingo Ruczinski, Benilton Carvalho,

Betty Doan, Aravinda Chakravarti, and Rafael A. Irizarry

Abstract

Submicroscopic changes in chromosomal DNA copy number dosage are common and

have been implicated in many heritable diseases and cancers. Recent high-throughput

technologies have a resolution that permits the detection of segmental changes in DNA

copy number that span thousands of basepairs across the genome. Genome-wide as-

sociation studies (GWAS) may simultaneously screen for copy number-phenotype and

SNP-phenotype associations as part of the analytic strategy. However, genome-wide

array analyses are particularly susceptible to batch effects as the logistics of prepar-

ing DNA and processing thousands of arrays often involves multiple laboratories and

technicians, or changes over calendar time to the reagents and laboratory equipment.

Failure to adjust for batch effects can lead to incorrect inference and requires ineffi-

cient post-hoc quality control procedures that exclude regions that are associated with

batch. Our work extends previous model-based approaches for copy number estima-

tion by explicitly modeling batch effects and using shrinkage to improve locus-specific

estimates of copy number uncertainty. Key features of this approach include the use

of diallelic genotype calls from experimental data to estimate batch- and locus-specific

parameters of background and signal without the requirement of training data. We

illustrate these ideas using a study of bipolar disease and a study of chromosome 21

trisomy. The former has batch effects that dominate much of the observed variation
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in quantile-normalized intensities, while the latter illustrates the robustness of our

approach to datasets where as many as 25% of the samples have altered copy num-

ber. Locus-specific estimates of copy number can be plotted on the copy-number scale

to investigate mosaicism and guide the choice of appropriate downstream approaches

for smoothing the copy number as a function of physical position. The software is

open source and implemented in the R package CRLMM available at Bioconductor

(http:www.bioconductor.org).

1 Introduction

Segmental changes in DNA copy number arise through genomic rearrangements that cause

insertions or deletions of genomic fragments. Such rearrangements are thought to arise most

commonly via non-allelic homologous recombination in regions that contain low copy repeats

(Gu et al., 2008), and can occur in the germline during meiosis as well as during mitosis

in somatic cells. Many of the genomic rearrangements that effect DNA copy number are

likely to be neutral with respect to phenotype. For instance, an extensive list of deletions

and amplifications have been catalogued in apparently normal HapMap individuals (Redon

et al., 2006; Kidd et al., 2008). However, genomic rearrangements that occur in regions that

disrupt gene function or effect the copy number of genes that are dosage sensitive can effect

phenotypes. See Lupski for a recent review (Lupski, 2009). Alterations of DNA copy number

are implicated in many diseases, including autism spectrum disorders (Szatmari et al., 2007;

Marshall et al., 2008), bipolar disease (Zhang et al., 2008), autoimmune disorders such as

type I diabetes (McKinney et al., 2008), and cancer (Ma et al., 2009; Cappuzzo et al., 2009;

Woo et al., 2009). For other heritable diseases such as schizophrenia, the role of recurrent

copy number variants in disease remains elusive (Sutrala et al., 2007; Need et al., 2009).

Copy number variants (CNV) spanning regions of the genome greater than one megabase

(Mb) are detectable by cytogenetic techniques such as spectral karyotyping and fluorescence

in situ hybridization (FISH). However, many changes to DNA copy number are thought
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to involve smaller segments of the genome that are below the level of resolution attainable

by cytogenetic methods. High throughput genotyping arrays enable the measurement of

genotype and copy number across the genome. The resolution for detecting CNV in current

platforms is on the order of thousands of basepairs, and can therefore be used to identify

segmental changes that are not detectable by spectral karyotyping (resolution: 5 - 10 Mb)

or array comparative genomic hybridization (resolution: 100 kb). Screening for alterations

in copy number has identified genomic regions known to be involved in disease, such as the

neurexins in autism (Szatmari et al., 2007), as well as novel targets that suggest a role of

less well understood pathways in disease etiology. High throughput genotyping platforms

provide a useful genomic screen whereby loci exhibiting patterns of variation between nor-

mal and disease individuals can be identified and followed. While most genotype calling

algorithms are highly concordant for the vast majority of SNPs, copy number estimation

is more sensitive to differences in the preprocessing and normalization steps, as well as to

technological artifacts that can effect the observed intensities in a systematic way.

This paper is organized as follows. In Section 2, we discuss several key features for de-

veloping locus-level estimates of copy number. The relevance of other hybridization-based

technologies, such as gene expression microarrays, and recent adaptations to the problem

of copy number estimation are reviewed. Section 3 motivates the need for extending these

methods. Specifically, the need to adjust for batch effects in model-based approaches for

copy number estimation and the importance of shrinkage. Section 4 defines a theoretical

framework for copy number in hybridization-based platforms and the challenges of adapting

this model to high-throughput arrays. Section 5 describes an estimation algorithm that is

motivated by many of the fundamental features of standard approaches, such as maximum

likelihood and empirical Bayes. In Section 6, we illustrate the main innovations of our ap-

proach using two experimental datasets and compare our results with software recommended

by the array manufacturer. Concluding remarks are provided in Section 7.
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2 Previous work

This paper describes the first of a three-tiered approach for the analysis of chromosomal

alterations in high-throughput platforms (Scharpf et al., 2008). Briefly, first tier methods

provide locus-specific estimates of copy number. Existing methods include those that pro-

vide estimates of total copy number relative to a reference (Bignell et al., 2004; Bengtsson

et al., 2008), allele-specific copy number relative to a reference (Nannya et al., 2005; Huang

et al., 2006), or absolute estimates of allele-specific copy number (LaFramboise et al., 2006;

Wang et al., 2007). Second tier algorithms smooth the locus-specific estimates within an

individual as a function of the genomic physical position to identify alterations spanning

multiple loci. This includes segmentation algorithms (Olshen et al., 2004; Hupe et al., 2004),

regression-based smoothing methods (Huang et al., 2006; Rigaill et al., 2008), hidden Markov

models (Colella et al., 2007; Lamy et al., 2007; Wang et al., 2007; Korn et al., 2008; Scharpf

et al., 2008), or a combination. For instance, Rigaill et al. employs an iterative approach

that involves segmentation (Hupe et al., 2004) and regression. A critical choice governing

the suitability of a smoothing algorithm is whether cell contamination is thought to have oc-

curred. Specifically, a mixture of cell populations can give rise to non-integer copy numbers.

While hidden Markov models (HMMs) can jointly model the genotype and copy number in-

formation to identify copy-neutral regions of homozygosity in addition to copy number gains

and losses (Colella et al., 2007; Wang et al., 2007; Scharpf et al., 2008), HMMs typically

assume integer copy number states. Continuous state HMMs or HMMs that estimate the

fraction of contaminated cells (Lamy et al., 2007) may represent viable alternatives. As seg-

mentation algorithms can theoretically detect any non-integer change in the copy number,

nonparametric methods are often preferable when there is evidence of two or more cell pop-

ulations. Finally, third tier methods assess the contribution of chromosomal alterations to

phenotypes in studies involving many individuals (Purcell et al., 2007; Barnes et al., 2008).

A common approach employed by tier 1 methods for copy number estimation is to es-

timate the ratio or log ratio of the intensities at each loci relative to a reference (Bignell
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et al., 2004; Golden Helix, 2009; Bengtsson et al., 2008). Disadvantages of this approach

include (i) the explicit requirement of a reference set (ii) a deviation from a ratio of one can

represent an alteration in either the reference or in the test sample, making it more difficult

to hypothesize about a dosage effect on phenotype, and (iii) information on the allelic copy

number at polymorphic loci is often ignored. Our preference is a quantitation of the allelic

copy number dosage in both normal and disease samples.

Two critical features when estimating copy number at each locus are probe- and batch-

effects. Probe-effects represent variation in the observed fluorescence intensities that arise as

a result of characteristics of the probe, namely the sequence. Probe-effects are present in vir-

tually all hybridization-based platforms, including gene expression microarrays. Model-based

approaches for normalizing gene expression data have been useful for reducing nonbiological

variation in the raw intensities that arise as a results of differences at the sequence level,

such as GC content (Wu et al., 2004). In contrast to probe effects, batch effects comprise

systematic differences in the intensities across samples. Robust-to-outlier methods for nor-

malizing the intensities across arrays include quantile-normalization, whereby each sample

is normalized to the same reference distribution (Bolstad et al., 2003).

A general framework for modeling the observed fluorescence intensities in gene expression

arrays has been recently described (Wu and Irizarry, 2007). Specifically, Wu and Irizarry

decompose the observed probe-level fluorescence intensities into optical background, non-

specific binding, and specific binding,

Observedgij = Backgroundgij + Nonspecificgij + Specificgij , (1)

for gene g = 1, . . . , G, probe i = 1, . . . , Ig, and array j = 1, . . . J . In the context

of hybridization-based technologies, each component has an error term that is approxi-

mately log-Normal. Probe and batch-effects have also been observed in genotyping platforms

(LaFramboise et al., 2006; Rabbee and Speed, 2006; Beroukhim et al., 2007; Carvalho et al.,
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2007; Wang et al., 2008; Korn et al., 2008). Existing models for copy number estimation that

fit into the general framework proposed by Wu and Irizarry include the probe-level (feature-

level) model proposed by LaFramboise et al. (2006) and a locus-level model proposed by

Wang et al. (2008), whereby statistical summaries of the feature-level intensities are treated

as the observed data. The decision to model the intensities at the feature-level or at the

locus-level has important practical and computational implications that we discuss further.

A feature-level model. LaFramboise et al. (2006) developed a probe-level allele-specific

quantitation (PLASQ) algorithm that models the feature-level intensities as a linear function

of copy number on the log scale. The quantile-normalized log intensity for each feature on

the array is decomposed as background, specific hybridization, nonspecific hybridization, and

error. An iteratively reweighted least squares approach is used to estimate the parameters

in a set of normal samples where the number of copies of allele A and allele B are treated

as known covariates. In a set of test samples, the parameters for background, specific-

hybridization, and cross-hybridization are now assumed to be known and the allele-specific

copy number is estimated via iteratively reweighted least squares.

While fundamentally sound, there are several practical drawbacks to this approach. First,

a set of normal controls is not always available. Because of genome-wide batch effects (Sec-

tions 3 and 6), the use of historical controls as part of any copy number estimation algorithm

has limited value. A second drawback is computational. An iterative estimation procedure

embedded within a feature-level model for the observed intensities is computationally in-

tensive. Notably, PLASQ was first developed for the Affymetrix 100k arrays. The more

recent Affymetrix 5.0 and 6.0 platforms have an order of magnitude more probes. Finally,

the advantage of a feature-level model for platforms that contain sets of identical probes

for each locus, such as the Affymetrix 6.0, is less clear. An approach that first summarizes

the normalized probe-level intensities to the level of the locus has clear practical advantages

that may outweigh the benefits of modeling the probe-level variation. A more thorough
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comparison of these two approaches has not been explored.

Locus-level models. Locus-level models for the summarized intensities have been used

by several algorithms (Huang et al., 2006; Wang et al., 2008). Algorithms that provide

allele-specific estimates of copy number generally use a variation of the following approach.

First, diallelic genotypes are called on a set of samples from a normal training set. The allele-

specific copy number is assumed to be known from the diallelic genotype calls on this training

set. In particular, the number of copies of the A and B alleles, denoted as (cA, cB), is (2, 0) for

genotypes AA, (1, 1) for genotypes AB, and (0, 2) for genotypes BB. Secondly, a procedure is

used to estimate parameters that roughly correspond to the level of background, nonspecific

hybridization, and specific hybridization. Several different approaches for estimating these

parameters have been proposed, including recent approaches that take into account the

correlation of the summarized intensities for the A and B alleles (Wang et al., 2008). For

instance, Wang et al. compute the within-genotype average for each allele at each locus,

and then regress the within-genotype averages on the allele-specific copy obtained from the

diallelic genotypes. The coefficients from this regression can be used to predict the locations

for other copy numbers. In addition, Wang et al. describe an approach for obtaining the

posterior mean copy number that can be used for classification of discrete copy number

classes.

While more amenable computationally for recent arrays, existing locus-level models for

copy number estimation do not accommodate batch effects that persist after preprocessing.

One approach is to fit the software separately to each plate. For instance, this is an approach

advocated by Birdsuite (Korn et al., 2008; McCarroll et al., 2008). In our experience, batch

effects persist in the smoothed estimates returned by the Birdseye HMM and the Canary

algorithms, two components of their suite of software (see Sections 6 and 7). Furthermore,

Birdsuite does not currently provide locus-level estimates of copy number whereby one can

more effectively assess cell contamination and batch effects. The software proposed by Wang
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et al. has a similar drawback of PLASQ in recommending a training dataset for precomputing

parameter estimates.

In summary, we believe locus-level models are attractive with fewer computational draw-

backs than feature-level models. Improvements are needed to account for batch effects that

persist after preprocessing, as well the potential to improve locus-level estimates of the uncer-

tainty by borrowing strength from the millions of other loci interrogated by these platforms.

3 Motivation

Our present work is motivated by the observation of large batch effects in several genome

wide data sets and the need for improved estimates of copy number uncertainty. The former

has the potential of confounding copy number-phenotype association analyses; improvements

to the latter can be utilized by downstream algorithms that smooth locus-level estimates as

a function of the physical position.

Batch effects. Batch-effects can occur as a result of differences between laboratories in

the handling and preparation of biological samples, as well as changes in reagents and experi-

mental conditions over time within a laboratory. Batch-effects have been previously observed

and described for genotyping methods. Genotype calls for most algorithms are concordant

for over 99.5% of the measured SNPs in the Affymetrix SNP arrays when the performance

is assessed on individuals in the HapMap study. Nevertheless, important differences emerge

as a result of batch effects. To illustrate, Figure 1 compares two approaches for genotyping

Affymetrix 6.0 data where the same HapMap samples were processed at two different labs

denoted as Lab A and Lab B. The plotting symbols denote the true genotypes assigned by

HapMap and the ellipses denote the prediction regions for the genotype calls in the two

labs. The default software for genotyping the Affymetrix 6.0 data, Birdseed, uses plots of

the A versus B allele intensities to make genotype calls (left panel). For Lab A, Birdseed

makes zero mistakes, but for Lab B Birdseed makes 41 mistakes. The reason for the num-
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ber of mistakes is the large shift in the A and B intensities between labs. The right panel

displays a plot of the log-ratio versus the total intensity that is used for genotyping by the

Corrected Robust Linear Model with Maximum-likelihood based distances (CRLMM) algo-

rithm (Carvalho et al., 2007). Because the log-ratio is less susceptible to batch effects, the

CRLMM algorithm makes fewer mistakes in Lab B (right panel). Hence, while genotyping

can be made robust to batch effect, estimates of copy number that are based on the signal

abundance are much more susceptible to batch effects.

[Figure 1 about here.]

Batch effects can be addressed in several ways. One approach is to consider batch effects

as part of the quality control step in the analysis of genome wide arrays. For instance, Zhang

et al. (2008) excluded regions for which copy number alterations detected by the Birdsuite

software were associated with batch in their analysis of the Bipolar data. This approach

is sensible if a relatively small number of loci are affected by batch. In such instances,

smoothing the locus-level estimates using a HMM or a segmentation procedure may reduce

the impact of batch effects on downstream analyses. An alternative approach is to apply a

post-hoc correction to the signal intensities that effectively gives each batch the same mean

signal intensity, as in the GISTIC algorithm (Beroukhim et al., 2007). A third approach

is to adjust for batch-effects as part of the estimation procedure for copy number. For

instance, the Golden Helix software for copy number estimation provides a correction for

log ratios from a principal components analysis (PCA) on the raw intensity ratios (Golden

Helix, 2009). In our experience, large studies involving arrays processed over an extended

period of time have batch effects that are genome-wide in scale. In these instances, quality

control and post-hoc procedures provide inefficient protection for false positives.

One way to explore and diagnose batch effects is to perform PCA on the locus-level

summaries after preprocessing, as suggested by Golden Helix. A related approach that

involves less computation is simply to group samples that are processed at the same time

and by the same lab. For instance, in the bipolar dataset we follow a similar practice as Korn
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et al. in defining batch as the 96 well chemistry plate on which the samples were stored prior

to hybridization to the SNP array. Here, we focused on the set of European ancestry controls

for bipolar disease. Figures 2(a) and 2(b) provide complementary views of the batch effect

at one locus on chromosome 15. The boxplots in Figure 2(b) show the distribution of the

total intensities for SNP A-4251622 by chemistry plate. The two plates that are highlighted

in Figure 2(a) are also highlighted in the boxplots. A F-statistic from a one way analysis of

variance (ANOVA) for the total intensities by plate at this locus is approximately 14. Figure

3 plots the distribution of all F-statistics for chromosome 15, demonstrating that moderate

to strong batch-effects persist after quantile normalization at most loci. The batch effects

we observed on chromosome 15 were typical of the other autosomes in this dataset (data not

shown).

[ Figure 2(a) - 2(f) about here.]

[ Figure 3 about here.]

Shrinkage. Shrinkage of the variance estimates is likely to be useful for several reasons.

First, the technology used to estimate the amount of DNA hybridized to the array affects

the measured fluorescence of many probes in similar ways. Secondly, many SNPs have a

low minor allele frequency or unobserved diallelic genotypes that complicate our estimation

procedure. Third, shrinkage reduces the sensitivity of our approach to extreme values, such

as variance estimates near zero. By borrowing strength from the millions of measurements

at other loci, we can improve locus-specific estimates of the uncertainty. These estimates

can then be propagated to higher level analyses that smooth copy number estimates as a

function of the genomic physical position. For instance, the emission probabilities of an

HMM can incorporate locus-specific estimates of the uncertainty.
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4 Model

Batch effects appear to an unavoidable feature of studies involving a large number of arrays,

one that copy number estimation algorithms should take into account. Because batch can

be easily identified and visualized (e.g., Figures 2(a), 2(b), and 3), we argue that batch can

effects can be successfully modeled. Here, we introduce a model for copy number estimation

based loosely on an approach described by Wang et al. (2008). Our method differs from Wang

et al. in several important ways. First, we model batch as a fixed effect. More generally,

one can think of batch as a variable selection problem to be inferred at each locus (see

Section 7). For the purpose of this paper, we treat batch as known. Secondly, we avoid using

training data to estimate model parameters. Instead, we estimate model parameters using an

algorithm that relies only on the experimental data (Section 5). Third, we provide prediction

regions for loci with low minor allele-frequencies and potentially unobserved genotypes. In

addition, we provide a solution for estimating copy number for nonpolymorphic probes in

the most recent generation of genotyping platforms. Fourth, we shrink locus-level estimates

of the variance and correlation across alleles that are often very noisy though a hierarchical

model. Fifth, we propose an iterative estimation procedure that improves estimates of copy

number at loci where many of the subjects in the experimental data have altered copy

number. Finally, software for fitting this model for the Affymetrix 6.0 and Illumina platforms

is publicly available from the Bioconductor website.

4.1 A multilevel model.

Polymorphic loci. We propose a multilevel model for the locus-level intensities that is

motivated by past work with other hybridization based technologies. Specifically, we model

the observed intensity I of the A and B alleles at locus i, sample j, and batch p as follows:
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IA,ijp

IB,ijp


 =







OpticalA,ip + NonspecificA,ip

OpticalB,ip + NonspecificB,ip


 ×




δA,ijp

δB,ijp





 +




SpecificA,ijp

SpecificB,ijp

×
εA,ijp

εB,ijp




≡




νA,ip

νB,ip

×
δA,ip

δB,ip


 +




φA,ipcA,ijp

φB,ipcB,ijp

×
εA,ijp

εB,ijp


 . (2)

The average fluorescence arising from optical background and nonspecific hybridization are

collectively parametrized by ν and referred to as background. The slope, φ, in model (2)

provides an estimate of the change in the average intensity at a given locus per each integer

increase in the allelic copy number. Both the background and slope are allowed to depend

on the SNP i and the batch p. See Figure 4 for an illustration of these parameters in the

context of an A versus B intensity scatterplot of a single SNP.

[Figure 4 about here.]

The errors δ and ε account for array to array variation within a batch of the background

and slope terms, respectively. These terms are each approximately log-normal and assumed

to be independent across loci and independent of each other:

log (δk,ijp) ∼ N
(
0, τ 2

k,ip

)
and log (εk,ijp) ∼ N

(
0, σ2

k,ip

)
for k ∈ {A, B}.

Note, however, that the error terms are not independent across alleles. In particular, Figure

4 suggests that the correlation of the A and B intensities is most pronounced for samples

with allelic copy numbers greater than 0. The correlation reflects cross-hybridization of the

probe for the A allele to the B allele target sequence (and vice versa). As in Wang et al.,

we assume that the joint distribution of the log intensities conditional on the allelic copy

number is approximately bivariate normal:
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log2(IA,ijp)

log2(IB,ijp)

∣∣∣∣∣
CA,ijp = cA

CB,ijp = cB


 ∼ N







log2(νA,ip + cAφA,ip)

log2(νB,ip + cBφB,ip)


 , Σip


 . (3)

Note that the covariance of the A and B intensities is allowed to depend on both the

SNP i and batch p, an important feature when modeling probe effects in high throughput

hybridization-based technologies. The diagonal elements of Σ are as follows:

(Σi,p)11 = τ 2
A,ipI[cA=0] + σ2

A,ipI[cA>0] and (Σi,p)22 = τ 2
B,ipI[cB=0] + σ2

B,ipI[cB>0]. (4)

The correlation of the A and B intensities, ρi,p, is SNP- and batch-specific.

At the next level of the model specification, prior distributions are selected for Σ. A

commonly used prior is an inverse Wishart. However, we view this prior as too restrictive

as a single degree of freedom is required for the variances. As Σ is a 2 × 2 matrix, we

have considerable flexibility for exploring different priors for the standard deviations and

correlation. We use independent inverse chi-squared priors with dA and dB degrees of freedom

for the background,

1

τ 2
A,ip

∝
1

dAt2A,p

χ2
A,dA

and
1

τ 2
B,ip

∝
1

dBt2B,p

χ2
B,dB

, (5)

and slope variances,

1

σ2
A,ip

∝
1

dAs2
A,p

χ2
A,dA

and
1

σ2
B,ip

∝
1

dBs2
B,p

χ2
B,dB

. (6)

The terms t2A,p, t2B,p, s2
A,p, and s2

B,p in equations (5) and (6) correspond to the typical variance

of the background and slope terms, respectively. Note that these values are the same for

all loci and depend only on the batch p. For the correlation structure, we use the following
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prior:

ρi,p ∼ Beta (α, β) , where

α and β are estimated empirically and place more mass at typical values. The motivation

for an informative prior on the correlation is that cross-hybridization of the A and B alleles

gives rise to positive correlations. In our experience, negative correlations (after conditioning

on the allelic copy number) are spurious and usually occur when an insufficient number of

observations are available to estimate the correlation.

Nonpolymorphic loci. For nonpolymorphic probes, only one allele is interrogated at

each locus. We generically denote this allele as T . Again, we propose a theoretical model

for the observed intensity for allele T at locus i, sample j and batch p as a convolution

of fluorescence from optical background and non-specific binding of other probes, νT , and

fluorescence arising from specific hybridization of the probe to the target sequence, φT .

Explicitly,

IT,ijp = νT,ipδT,ijp + cT,ijpφT,ipεT,ijp, where (7)

log(δT,ijp) ∼ N(0, τT,ijp) and

log(εT,ijp) ∼ N(0, σT,ijp).

Again, the background and signal parameters are allowed to depend on both the nonpolymor-

phic locus i and batch p. The error terms corresponding to background and signal account

for array to array variation within a batch and are assumed to be log-normal, independent

across loci, and independent of each other. Inverse chi-squared priors for δT and εT variances

complete the specification of the hierarchical model:
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1

τ 2
T,ip

∝
1

dT t2T,p

χ2
T,dT

and
1

σ2
T,ip

∝
1

dTs2
T,p

χ2
T,dT

.

Challenges. There are several challenges to fitting models (2) and (7). First, the param-

eters ν and φ can not be reliably estimated a priori from training data because of batch

effects. Therefore, νA, νB, νT , φA, φB, φT , cA, cB, and cT are allowed to depend on both

the locus and batch and must be estimated from the experimental dataset. Secondly, the er-

ror terms δA, δB, δT , εA, εB, and εT that capture within-batch variation of the background

and signal intensities across arrays are not Gaussian. In principle, these parameters can be

estimated using maximum likelihood or empirical Bayes. However, least squares and method

of moments approaches to parameter estimation are well known to be biased, particularly

when the variance of these parameters is large. The standard approach is a generalized

linear model with an exponential link function, as employed by LaFramboise et al. (2006).

Such an approach requires an iterative estimation procedure that we view as impractical for

platforms that interrogate millions of loci. Third, for polymorphic loci the covariance matrix

is a function of the allelic copy number. Fourth, outliers are common and robust-to-outlier

approaches are needed. Again, least squares and method of moments are not robust to

outliers. Taken together, the size of current genotyping platforms, the inevitability of batch

effects in studies involving a large number of arrays, errors that are non-Gaussian, and the

need for robustness has led us to develop an ad-hoc approach motivated by the fundamental

features of the standard approaches.

5 Copy number estimation algorithm.

We prescribe a general strategy for copy number estimation that (i) develops näıve estimates

of the allelic copy number that are taken to be known, (ii) uses a linear model to estimate

batch- and locus-specific parameters for the background and slope terms and (iii) updates
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the näıve estimates of allelic copy number. Robust-to-outlier procedures for preprocessing

and copy number estimation are emphasized. Several problems remain after steps (i)-(iii),

including unobserved genotypes at many polymorphic loci and variance estimates that are

based on a small number of observations. We propose solutions to each of these problems

that take advantage of the large number of observations available from other loci.

Our approach assumes that systematic artifacts that affect the overall location and scale

of the intensities across arrays have been removed. For this, we quantile-normalize the arrays

to a target reference distribution and then summarize these values to the level of the locus.

For example, the Affymetrix 6.0 platform has 3 and occasionally 4 identical probes for each

allele at polymorphic loci and one probe for each nonpolymorphic locus. For the polymorphic

loci, we quantile normalize the raw intensities and then summarize the normalized intensities

by taking the median. (The median is typically more robust to outliers than a trimmed

mean.) For the nonpolymorphic probes, the Affymetrix 6.0 platform has only one probe per

target sequence and we use the quantile-normalized intensities directly.

5.1 Allele-specific copy number

The parameters for νk, φk, and ck in model (2) are unknown for allele k ∈ {A, B}. As a

first step, we genotype all of the samples on the array using the CRLMM software (Carvalho

et al., 2007, 2009), obtaining genotype calls of AA, AB, and BB for the polymorphic loci.

The genotype calls provide a näıve estimate of the allele-specific copy number — an integer

value of 0, 1, or 2 for each allele. We denote the näıve estimates for the A and B alleles by c⋆
A

and c⋆
B, respectively. We use quantile-based estimators, the median and the median absolute

deviation (MAD), to obtain robust estimates of the mean (µ̂GT
k,ip) and variance (ξ̂GT

k,ip) on the

intensity scale for genotype GT . For example, µ̂AA

B,ip is computed as the median of intensities

IB,ijp for samples j with genotype AA. Inverse chi-squared priors with degrees of freedom

dξ,
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1

ξGT
k,ip

∝
1

dξs
2
ξk,p

χ2
ξk,dξ

, (8)

are used to shrink locus-specific estimates of the variance to a typical value that is allowed

to be batch-specific, s2
ξk,p. Note that the within-genotype centers are approximately normal

regardless of the distribution of I. We (and others) have observed that the relationship of

the within-genotype centers is approximately linear with the integer copy number (Huang

et al., 2006; Wang et al., 2008). Using the näıve estimate of the integer copy number in the

design matrix, we use weighted least squares regression to estimate νA and φA:

1

ξ̂A,ip
×




µ̂BB

A,ip

µ̂AB

A,ip

µ̂AA

A,ip




= diag
(

1

ξ̂A,ip

)




1 0

1 1

1 2




×




νAip

φAip


 + mA,ijp. (9)

The errors mA,ijp are approximately independent multi-Gaussian. We repeat the procedure

for the B-allele to obtain batch- and locus-specific estimates of νB and φB. The näıve esti-

mates of allele-specific copy number are updated by subtracting the estimated background

from the observed intensity and scaling by the slope coefficient. Specifically,

ĉA,ijp = max

{
1

φ̂A,ip

(IA,ijp − ν̂A,ip) , 0

}
and (10)

ĉB,ijp = max

{
1

φ̂B,ip

(IB,ijp − ν̂B,ip) , 0

}
. (11)

As discussed in Section 7, the assumption that the median intensity is linear with copy

number appears reasonable for a limited range. We have observed departures from linearity

for larger copy numbers as the fluorescence becomes more saturated. In practice, we constrain

ĉA,ijp + ĉB,ijp ≤ 6. The above prescription for copy number estimation is predicated on the

assumption that at any given locus the majority of samples have normal copy number. In
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Section 6, we explore the robustness of this approach to misspecification of the initial values

for allele-specific copy number.

5.2 Unobserved genotypes and nonpolymorphic loci

For many loci, the minor allele is rare and one or more of the three possible diallelic genotypes

are not observed. For SNPs with genotype GT not observed, we impute µGT

A and µGT

B via

regression. For example, to impute µAA

A for SNPs with genotype AA unobserved, we regress

µ̂AA

A on µ̂AB

A and µ̂BB

A using a set of SNPs for which all three genotypes were observed. With

estimates of the coefficients for µ̂AB

A and µ̂BB

A , we predict the value of µAA

A from the observed

µ̂AB

A and µ̂BB

A at this locus. We repeat the procedure for the B allele to impute µAA

B . For

a polymorphic locus with two genotypes not unobserved, there is no information regarding

the slope parameters φA or φB. Again, we impute the unobserved within-genotype medians

via regression using SNPs with all three genotypes observed. The variance terms for the

unobserved genotype GT, ξ̃GT
A and ξ̃GT

B , are obtained from the prior in equation (8).

For nonpolymorphic loci, the parameters for background, νT , and slope, φT , in Model

(7) are more difficult to estimate as there are no genotype clusters to guide their estimation.

For each nonpolymorphic probe, we assume that the median of the observed intensities

across samples in the batch corresponds to normal copy number. One approach is to impute

terms for the background and slope using the nonpolymorphic loci on chromosome X and

chromosome Y. This approach requires that there are both men and women in each batch.

An alternative approach, one that is currently implemented in the R package crlmm, is to

impute φT from polymorphic loci at which all three genotypes were observed. Briefly, for

SNPs with three diallelic genotypes observed, we fit a linear model using µ̂AA
A and µ̂BB

B as the

explanatory variables and the corresponding slopes, φ̂A and φ̂B, as the response variables.

The slope parameter for nonpolymorphic loci, φ̂T , is predicted using the observed µ̂T at

nonpolymorphic loci and the corresponding coefficient estimated from the polymorphic loci.

Note that the background fluorescence, νT , is determined by the relationship µ̂T − 2φT .

18

http://biostats.bepress.com/jhubiostat/paper197



The variance for non-normal copy number are obtained from the prior. Transforming the

nonpolymorphic intensities to the copy number scale is achieved by

cT,ijp = max

{
1

φ̂T,ip

(IT,ijp − ν̂ip) , 0

}
. (12)

Contamination. In many applications, DNA is isolated from a mixture of two or more cell

types that may have harbor different somatic alterations. As the DNA in the cell populations

may differ, noninteger copy numbers are plausible. Hidden Markov models that assume

integer copy number states are not appropriate. The transformations in equations (10), (11),

and (12) allow one to plot ĉA + ĉB and ĉT as a function of the physical position to assess

contamination. When contamination is likely to have occurred, a variety of nonparametric

segmentation approaches are available that can be used to identify noninteger copy number

gain and loss.

5.3 Uncertainty.

Estimates of the uncertainty are important for downstream algorithms that smooth estimates

of the copy number as a function of the physical position. As mentioned previously, a critical

choice governing the suitability of a smoothing algorithm is the presence of a mixture of cell

populations that can result in noninteger copy number. In the absence of cell contamination,

we advocate a HMM that can be fit directly to bivariate normal scatterplots of the log A and

log B intensities, an approach originally developed elsewhere (Korn et al., 2008). When cell

contamination is likely, we prefer nonparametric segmentation algorithms that can identify

any noninteger shift in copy number. Because most segmentation algorithms do not readily

incorporate estimates of uncertainty, our focus in this section is improving estimates of the

uncertainty for the prediction regions of allele-specific copy number. For instance, see the

prediction regions in Figure 4.
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Integer copy number. As HMMs can incorporate locus-specific estimates of the location

and scale in the emission probabilities, HMMs for detecting copy number alterations can

therefore be applied directly to the bivariate normal scatterplots without first transforming

the intensities to the copy number scale (Korn et al., 2008). Conditional on the allelic copy

number, the logarithm of the IA and IB intensities is approximately bivariate normal with a

mean and covariance that is locus- and batch-specific, as in model (3). Again, our procedure

utilizes näıve estimates of the allelic copy number from the diallelic genotype calls to provide

an estimate of Σ. To illustrate this approach, we describe the estimation of Σ for a SNP

with diallelic genotype AA, (c⋆
A = 2, c⋆

B = 0). From equation (4), the diagonal elements of

Σip are

(Σip)11 = σ2
A,ip and (Σip)22 = τ 2

B,ip.

The background variance τ 2
B,ip is estimated as the MAD of the log intensities for the B allele

across all subjects with genotype AA at locus i. The signal variance σ2
A,ip is estimated as the

MAD of the log intensities for the A allele across all subjects with genotype AA at locus i.

Implicitly, we assume that the variance of δA is small relative to the variance of εA such that

Var {log(IA,ijp|c
⋆
A > 0} ≈ σ̂2

A,ip. The assumption that the variance is constant for c⋆
A greater

than zero appears reasonable on the log-scale. Similarly, an initial estimate for the correlation

of the log intensities for the A and B alleles, ρip, is estimated empirically among subjects

with genotype AA. The within-genotype empirical estimates for the variance terms and the

correlation parameter provide an initial estimate of Σ. These estimates can be very noisy

when based on a small number of observations. Therefore, we shrink the initial estimates of

Σ using inverse chi-squared priors as described in Section 4. Specifically, shrinkage estimates
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for the background and signal variances for (c⋆
A = 2, c⋆

B = 0) are obtained by

σ̃2
A,ip =

(NAA,ip − 1)σ̂2
A,ip + dAs2

A,p

NAA,ip − 1 + dA

and

τ̃ 2
B,ip =

(NAA,ip − 1)τ̂ 2
B,ip + dBt2B,p

NAA,ip − 1 + dB

.

The count NGT,ip denotes the number of subjects with genotype GT at locus i in batch p.

The degrees of freedom for the priors, dA and dB, can be estimated as described in Lönnstedt

and Speed (2001). Typical values of the variance, denoted by t and s, are estimated across

all loci and allowed to depend on the batch. In addition to the variances, we also shrink the

empirical estimate of the correlation ρi,p. As motivated in section 4, we suggest a Beta prior

that puts most of the mass on typical values. The resulting covariance matrix, Σ̃i,p, can be

used to plot prediction regions for any (c⋆
A > 0, c⋆

B = 0). For instance, see the ellipses for the

genotype AA in Figure 4. The covariance matrix for (c⋆
A = 0, c⋆

B > 0), (c⋆
A > 0, c⋆

B > 0) and

(c⋆
A = 0, c⋆

B = 0) are obtained using a similar procedure. By scaling Σ̃i,p by a sample-specific

estimate of the variance across all loci, the variance estimate can incorporate information on

the overall noise of the sample relative to other samples.

5.4 Common copy number variants

Our approach for estimating copy number uses robust estimates of the within-genotype

location and scale of the intensities. In particular, we use medians for the location and

median absolute deviations for the variance to prevent outliers from influencing our estimates

of ν and φ. However, many regions of the genome appear to contain common variants in

apparently normal individuals (McCarroll et al., 2008; Kidd et al., 2008), and many diseases

may have regions that are commonly altered. For genomic locations where a large number of

subjects contain a copy number alteration, estimates of ν and φ can be biased. We propose

an update for the background and slope parameters that provides additional robustness to

regions with a large number of alterations. An important feature of this procedure is that
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we do not require any a priori knowledge of the genomic locations of the common variants

as these are often not well characterized or highly variable for diseases such as cancer.

The general strategy is to estimate the parameters νA, φA, νB, φB, νT , and φT as

described previously. For each loci, we determine which samples are least likely to have a

normal copy number. Specifically, we calculate the posterior probability of belonging to a

prediction region corresponding to an aggregate copy number of 0, 1, 2, or 3. For SNPs,

we assume that for a fixed total copy number, any of the integer (cA, cB) combinations are

equally likely. At each locus, we tabulate the frequency for which the posterior probability of

an amplification or deletion is greater than the posterior probability of normal copy number.

If the frequency is uneven for amplifications and deletions, we recompute the within-genotype

location and scale parameters after trimming the tail of the distribution that has a greater

frequency; otherwise, we trim both tails and recompute. See Section 6 for an application.

6 Results

We illustrate our approach for copy number estimation using two datasets that were assayed

on the Affymetrix 6.0 genotyping platform: a GWAS for bipolar disease (dbGaP accession

number phs000017.v3.p1) and a dataset containing 26 individuals with chromosome 21 tri-

somy and 70 apparently healthy controls. (Three healthy controls in the trisomy dataset

were excluded because of a low signal to noise ratio.) For the bipolar disease dataset, batch

is a confounder of case-control status. Our focus is on the estimation of copy number for the

1094 European ancestry controls that were processed on 29 different chemistry plates over

a two month period. For the chromosome 21 trisomy data, we analyzed the 96 samples as

a single batch and assess the robustness of our estimation algorithm to a dataset where as

many as 27% of the samples are known to have three chromosomal copies. A difficulty in

comparing our method to the software suggested on the Affymetrix website for copy number

analysis is that these algorithms (Birdseye and Canary) do not provide locus-level estimates
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of copy number. Rather, Birdseye provides output from a hidden Markov model for detec-

tion of de-novo CNV regions and a separate algorithm, Canary, for estimating copy number

in regions that are thought to contain common copy number variants (Korn et al., 2008;

McCarroll et al., 2008).

Batch effects. The European ancestry controls for bipolar disease were hybridized to

Affymetrix 6.0 chips and scanned over a period of two months. As described in Section

5, we preprocessed the raw intensities using quantile normalization and summarized the

intensities to the level of the locus using a median. The control samples were genotyped

using the software CRLMM. Figures 2(a) and 2(b) for SNP A-4251622 on chromosome 15

provide a visualization of the batch effect: the F-statistic from a one-way analysis of variance

(ANOVA) for the sum of the quantile normalized A and B intensities across plate is 16.84

for SNP A-4251622. We found evidence of batch effects at most loci on chromosome 15.

For instance, Figure 3 plots the distribution of F-statistics for all of the polymorphic loci.

We observed similar batch effects at nonpolymorphic loci and at polymorphic loci on other

chromosomes (data not shown). Robust multi-array normalization procedures alone are not

sufficient for removing batch effects in SNP microarray data.

Figures 2(c) and 2(d) plot copy number estimates without correcting for batch effects.

Note that the copy number estimates (2(d)) are highly dependent on chemistry plate and

boxplots of the estimates follow a similar pattern as the total quantile normalized intensity

(2(b)). As much of the variation in the A versus B scatterplots is attributable to batch

differences, the ellipses in Figure 2(c) that reflect our uncertainty of the prediction region

are inflated. By allowing the parameters νA, νB, νT , φA, φB, and φT to depend on batch, we

obtain prediction regions that more accurately reflect the uncertainty of the copy number

estimates 2(e) and are more robust to differences across batch 2(f). Our approach does not

use a reference set for estimating locus-specific parameters and this has many advantages in

light of large batch effects as well as biological differences in populations that preclude their
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extrapolation.

We also fit the Birdsuite software separately for each plate in the Bipolar controls. The

Birdsuite software uses separate algorithms for calling copy number: a HMM for discovery

of de-novo CNV (Birdseye) and one for calling copy number in regions that are believed

to contain common variants (Canary). By contrast, the current implementation of our

algorithm does not use external data and assumes that the typical copy number across

samples within a batch is two. A consequence is that Canary can call an amplification or

deletion in nearly all of the samples within a batch (see Supplementary Figure 1), whereas

our algorithm is unlikely to do so. Our approach may be preferable if the common variant

maps do not extrapolate well to a given population, but can result in many false negatives if

most of the samples are, in truth, amplified or deleted. An interesting feature of the Birdseye

segmentation is that we observe strong plate effects in regions that are thought to contain

common copy number variants. These regions contain groups of probes that tend to have

correlated intensity profiles across samples and, as a result, smoothing via a HMM does not

reduce the batch effect. The Canary algorithm can be helpful for reducing the batch effect

in such regions as a Tukey median polish provides an extra normalization step, but batch

effects often persist (1b).

Common copy number variants. To explore the robustness of our approach to the as-

sumption that the typical copy number is two at any given locus, we applied our algorithm

to the trisomy dataset where approximately 26% of the samples have three copies of chro-

mosome 21. As Discussed in Section 5, our algorithm uses diallelic genotype calls to develop

näıve estimates of copy number and parameter estimates for prediction regions. To reduce

the influence of samples that are not diallelic on the parameter estimates, we exclude samples

with a high posterior probability of a copy number alteration. Boxplots of locus-specific es-

timates of copy number for the SNPs on chromosome 21 before and after the bias correction

are plotted in Figures 6(a) and 6(b), respectively. Note that the initial estimates of copy
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number are biased towards small values as locus-specific prediction regions in the A versus

B scatterplots are shifted slightly towards higher values because 25% of the subjects have

three copies of chromosome 21. After a second iteration of our method whereby samples

that have a high posterior probability of belonging to a non-normal copy number state are

excluded, the parameters νA, νB, νT , φA, and φT are updated. Again, the set of samples that

are excluded in this step is locus-specific and does not use any phenotype information (e.g.,

trisomy status) of the subjects. While locus-specific estimates are not available from the

Birdsuite software, an overall copy number estimate for each chromosome is available from

the Birdseye algorithm for the purpose of assessing mosaicism. From the overall Birdseye

copy number for chromosome 21, one may incorrectly conclude that the samples were mo-

saic in copy number (dashed line in Figures 6(a) and 6(b)). The fact that the median copy

number from our locus-level estimates are less biased than the overall copy number reported

by Birdseye may reflect that we use more robust statistics for computing prediction regions

(Birdseye uses a trimmed mean).

[Figure 6 about here.]

To more formally compare our approach to Birdseye, we fit a HMM to our copy number

estimates using the same transition probabilities as that used by the Birdseye HMM (Korn

et al., 2008). Assuming that the true copy number is 2 in the normal samples and 3 for

the trisomy samples, we calculated the proportion of correct calls for each approach. Our

approach maintains high sensitivity and specificity for detecting alterations despite 25%

of the samples having a known copy number alteration. That is, näıve estimates of copy

number provided by the diallelic genotype calls can be incorrect in 25% of the samples, but

still provide unbiased estimates of copy number in regions that are commonly variant.

[Table 1 about here.]
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7 Discussion

In this paper, we propose a multilevel model that provides absolute estimates of allele-

specific copy number at polymorphic loci and total copy number at nonpolymorphic loci.

The parameters used in our model are not pre-computed from training data, nor does our

model require a reference set of normal samples. Rather, diallelic genotype calls of samples

in the experimental dataset provide näıve estimates of allele-specific copy number that are

used to derive robust-to-outlier parameters for the background and slope in a linear model

fit on the intensity scale. Conditional on the näıve estimates of copy number, the log A

and B intensities are correlated due to cross-hybridization of the probes for these alleles. As

locus-specific estimates of the covariance are often based on a small number of observations,

shrinking these estimates towards typical values provides additional robustness to unusually

small or large variance estimates. Finally, all of these parameters are batch-specific. The copy

number estimates obtained from this approach are shown to be robust to batch effects and

robust to a large proportion of individuals having a copy number alteration. The resulting

estimates can be plotted as a function of the physical position to assess issues such as cell

contamination and serve as a starting point for segmentation- or HMM-based approaches

for smoothing as a function of the physical position. Therefore, the copy number estimated

provided by this algorithm are complementary to nonparametric segmentation algorithms,

such as circular binary segmentation, or HMMs.

Our procedure for locus-level estimation of copy number reduces the impact of batch

effects in several ways. First, we quantile normalize the raw intensities for each sample to

a target reference distribution. By quantile-normalizing to a target distribution, we reduce

the occurrence of batch effects that may be induced by how the samples were grouped by

the software. Secondly, we do not rely on external data for training the model or a reference

set for estimating ratios. In our experience, external datasets are unlikely to provide useful

extrapolations due to (i) batch effects and (ii) biological differences between the external

samples and the test samples. Rather, we provide an absolute estimate of the copy number

26

http://biostats.bepress.com/jhubiostat/paper197



and a corresponding estimate of the uncertainty using only the experimental data. Third,

we fit a multilevel model to the summarized intensities that allows locus-specific parameters

for background and signal to depend on batch. Finally, we provide an iterative solution to

copy number estimation that can detect copy number alterations when as many as 25% of

the samples in a batch have non-normal copy number. This approach does not require prior

knowledge of the locations of regions that are commonly altered.

Our model is most useful for datasets with 25 or more samples processed together in a

batch. For datasets with fewer than 10-25 samples, our model-based approach will impute

the within-genotype center for a large number of loci with unobserved diallelic genotypes.

This extra layer of uncertainty from the imputation will provide less precise estimates of the

copy number and a reduced resolution for detecting alterations of copy number. In the set of

European ancestry bipolar controls, we defined batch as the chemistry plate on which these

samples were hybridized and discarded samples from four plates that each had fewer than 20

samples. Note that a principal component analysis for batch effect may have suggested an

alternative grouping, though in our experience the first few principal components correspond

to plate. Although our model does not explicitly require a reference set of normal controls,

we do assume that at any given locus the typical copy number is two. This assumption may

not be reasonably for many datasets, particularly cancers. Ideally, one would have an enough

normal controls processed in the same batch as the test samples so that the assumption of

normal copy number is tenable for each batch (e.g., 50% normal controls). SNP-specific A

versus B scatterplots are useful for identifying when model assumptions are unreasonable.

In the trisomy example, we demonstrate that our approach is robust to as many as 30% of

the samples in a batch having altered copy number.

Of the models previously proposed in the literature, the models of Wang et al. (2008)

and Korn et al. (2008) are the most similar to ours. The Wang model provides allele-specific

estimates of copy number that takes into account the correlation of A and B allele intensities.

However, the Wang model is designed for an earlier version of the Affymetrix platform that
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contained only SNP probes, proposes the use of training data to estimate model parameters,

does not adjust for batch effects, and does not use shrinkage to improve estimates of the

variance. Prediction regions obtained from their approach on the Bipolar controls would

be similar to Figures 2(c) and 2(d) with the exception that model parameters would have

been precomputed from a training dataset such as HapMap, and the variance estimates of

prediction regions would be more sensitive to extreme values. The Korn model is similar to

the Wang model with a few important differences. First, Korn et al. recommend fitting their

software by batch. For any of the previously proposed models, one could ’add’ a fixed effect

for plate by applying the software independently to each plate. However, fitting software by

plate is not always successful for removing batch effect. In part, this may occur because of a

software-induced batch effect that occurs during the preprocessing. In particular, we expect

that by not quantile normalizing samples in a batch to a target reference distribution, the

splitting of samples by the software during the preprocessing can exacerbate batch effects.

Secondly, Birdsuite does not provide locus-specific estimates of copy number, nor does their

algorithm appear particularly robust to a substantial proportion of samples having an altered

copy number. While a HMM fit to the bivariate normal A and B scatterplots is a nice feature,

this does not facilitate checks for cell contamination. If cell contamination is thought to

have occurred, one would have to explore a different approach for copy number estimation.

The main innovation of the Korn model are different algorithms for detecting de-novo and

common copy number variants. Such approaches are complementary to the work presented

here as these tools each involves borrowing strength from neighboring loci to improve the

locus-level estimates.

The multilevel model we propose for copy number estimation can be extended in several

ways. This paper proposes modeling batch as a fixed effect. A compromise between a

random- and fixed-effect for batch could be explored as a means to improve the copy number

prediction regions for loci with low minor allele frequencies. More generally, one could regard

batch as a problem of variable selection. Currently, our model assumes a linear relationship of
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copy number and the within-genotype medians. While this relationship appears reasonable

for zero to three copies of an allele, the relationship becomes more nonlinear for higher

copy numbers. Alternative approaches that take into account this nonlinearity should be

explored. Finally, adjusting for sequence characteristics such as GC-content and fragment-

length can be helpful for reducing the variance associated with the probe-effect. We will

explore methods that adjust for these factors along with batch effects in the future.

Our results provide a strong indication that a model-based approach for estimation of

absolute allele-specific copy number can be effective in large studies with pronounced batch

effects, and that borrowing strength across loci can be useful for improving estimates of the

variance. Estimates of the copy number and the corresponding uncertainty will be useful for

downstream assessments of copy number-phenotype association.
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Figure 1: A set of identical samples was genotyped by two different labs. Left: A scatter
plot of the A versus B allele intensities for a single SNP with plotting symbols denoting the
consensus HapMap genotype. The default genotyping algorithm for this platform provided
by Affymetrix, Birdseed, makes 41 mistakes in Lab B. Right: The CRLMM algorithm uses
the log ratio of the A and B allele intensities to call genotypes and makes only 6 mistakes in
Lab B. As the lab-effect is mostly in the direction of the total intensity (x-axis, right panel),
copy number estimates are far more susceptible to batch effects than genotype calls.
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Figure 2: The European ancestry controls for Bipolar disease were run on 29 plates; we
excluded 4 plates that had fewer than 20 samples. Column 1: Scatter plots of the quantile
normalized intensities of the A (x-axis) and B (y-axis) alleles for SNP A-4251622. High-
lighted in the scatter plots are the samples from two of the plates (IMAGE and THYME).
Column 2: Boxplots of log2(A) + log2(B) (b) or copy number (d and f) stratified by plate.
(c and d): Prediction regions for copy number two (c) and the corresponding copy number
estimates stratified by plate (d) in a model that does not adjust for batch effects. (e and f):
A multilevel model that allows the prediction regions to depend on plate improves estimates
of the uncertainty (ellipses for IMAGE and THYME are shown in panel e) and provides
copy number estimates that are more robust to batch differences.

36

http://biostats.bepress.com/jhubiostat/paper197



F
re

qu
en

cy

0 10 20 30 40

0
10

00
20

00
30

00
40

00

F24,1033

0.999 quantile under the null
F−statistic for SNP_A−4251622

Figure 3: For each SNP on chromosome 15 of the European ancestry controls for bipolar
disease, we performed an analysis of variance (ANOVA) for the quantile normalized A + B
intensities by plate. After excluding four plates with fewer than 20 samples, the ANOVA
provides an F-statistic with 24 and 1033 degrees of freedom for each of the 26,074 SNPs on
chromosome 15.
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Figure 4: Scatterplots of the A and B allele intensities for SNP A-1969022 on chromosome 21
in the trisomy dataset. (a) Our approach for copy number estimation uses näıve estimates of
allele-specific copy number based on the diallelic genotype calls. A weighted linear regression
is fit on the intensity scale to quantile-based estimators of the within-genotype location and
scale. Estimates of νA, νB, φA, and φB are locus- and batch-specific. The ellipses demarcate
a 95% confidence region for copy number 2. (b) Prediction regions for copy number 1, 2, and
3. Plotting symbols now denote the trisomy phenotype which is not known by the regression
model. Note that the prediction regions are robust to incorrect diallelic genotype calls –
here, 26 of the 96 subjects had chromosome 21 trisomy and, therefore, incorrect diallelic
genotypes.
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Figure 5: SNP-specific prediction regions for copy number 1, 2, and 3 before (dashed lines)
and after (solid lines) bias adjustment for the trisomy study. For loci in which many individ-
uals have a copy number alteration, the within-genotype estimates of location and scale for
normal copy number are biased. The bias adjustment step involves recomputing the within-
genotype centers and variance after removing samples that have a high-posterior probability
of non-normal copy number. The set of samples that are removed when recomputing the lo-
cation and scale is locus-specific and requires no a priori knowledge of common variants. For
many SNPs on chromosome 21, the bias adjustment provides updated centers and variances
for the ellipses that are slightly smaller than the original ellipses (a, b, c, d, e, f). Neverthe-
less, we slightly overestimate the A and B intensities for copy number 3. The overestimation
occurs because the shift in the median intensities for copy numbers greater than 3 becomes
increasingly nonlinear. (d) Finally, many SNPs simply exhibit a poor dose response in the
A and B allele intensities with increasing copy number.
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Figure 6: Top: boxplots of the copy number estimates for the polymorphic probes on chro-
mosome 21. 26 of the subjects have a chromosome 21 trisomy. Bottom: boxplots of the
copy number estimates after performing a bias correction for common CNV. As described
in Section 4, the bias correction does not use any phenotypic information of the samples
nor does it require a priori specification of regions that are thought to harbor common copy
number variants.
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%ĈN = 1 %ĈN = 2 %ĈN = 3

copy number 2
Birdseye/Canary 0.0042 0.9914 0.0043

CRLMM - HMM 0.0028 0.9926 0.0047

copy number 3
Birdseye/Canary 0.0006 0.0816 0.9177

CRLMM - HMM 0.0003 0.0496 0.9501

Table 1: The true copy number for loci on chromosome 21 is assumed to be 2 for the 70
normal samples and 3 for the 26 trisomy samples. In order to compare our method to the
default software that does not provide locus-level estimates of copy number, we fit a hidden
Markov model to the locus-level estimates using the same transition probabilities as used
by the Birdseye HMM. Our approach decreases the (1-%) sensitivity by approximately 40%
(95.01% versus 91.77%).
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Supplemental Materials

Software:

• R version 2.10.0

• R packages: Biobase 2.5.3, crlmm 1.3.6, ellipse 0.3-5, genomewidesnp6Crlmm 1.0.4,

RColorBrewer 1.0-2, xtable 1.5-5, affyio 1.13.3, annotate 1.23.0, AnnotationDbi 1.7.0,

Biostrings 2.13.10, DBI 0.2-4, genefilter 1.25.2, IRanges 1.3.26, mvtnorm 0.9-7,

oligoClasses 1.7.4, preprocessCore 1.7.4, RSQLite 0.7-1, splines 2.10.0, survival 2.35-4

• Birdsuite 1.5.3

Supplemental Figures
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(a) Birdseye segmentation.
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(b) Merged Birdseye and Canary.
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(c) Vanilla HMM fit to CRLMM copy number estimates.

Figure 1: We observed plate-effects in both the Birdseye HMM predictions (a) and the
merged canary predictions (b). The F-statistic in the 28.4 Mb region is genome-wide sig-
nificant for both the Birdseye and Canary algorithms (F-statistic > 13, p-value < 1.0−8).
(c) An image of HMM predictions from the CRLLM copy number estimates using the same
transition probabities as in the Birdseye HMM (F-statistic = 0.86, P-value = 0.66).
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