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Abstract

Genome-wide association studies (GWAS) are used to discover genes underlying com-

plex, heritable disorders for which less powerful study designs have failed in the past. The

number of GWAS has skyrocketed recently with findings reported in top journals and the

mainstream media. Mircorarrays are the genotype calling technology of choice in GWAS

as they permit exploration of more than a million single nucleotide polymorphisms (SNPs)

simultaneously. The starting point for the statistical analyses used by GWAS, to determine

association between loci and disease, are genotype calls (AA, AB, or BB). However, the

raw data, microarray probe intensities, are heavily processed before arriving at these calls.

Various sophisticated statistical procedures have been proposed for transforming raw data

into genotype calls. We find that variability in microarray output quality across different

SNPs, different arrays, and different sample batches has substantial influence on the accu-

racy of genotype calls made by existing algorithms. Failure to account for these sources of

variability, GWAS run the risk of adversely affecting the quality of reported findings. In this

paper we present solutions based on a multi-level mixed model. Software implementation

of the method described in this paper is available as free and open source code in the

crlmm R/BioConductor.

KEYWORDS: Genotyping Uncertainty, Hierarchical Model, Genome-wide Association
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1. INTRODUCTION

A single nucleotide polymorphism (SNP) is a single nucleotide DNA variation occurring in the

genomes of individuals from the same species. For most SNPs, only two bases are observed. The

two possibilities are refereed to as alleles. Typically, one is less common and is referred to as

the minor allele. In this paper we will refer generically to the two alleles in any SNP as allele

A and allele B. Because we have have two copies of each autosomal chromosome (maternal

and paternal) there are three possible allele combinations at each SNP: AA, AB and BB.

These are referred to as genotypes. Variations in the DNA sequences of humans can affect how

humans develop diseases. Association studies enable testing for association between alleles and

phenotypes, e.g. disease status. In the past, association studies would screen through hundreds

of SNPs carefully selected to be near candidate genes. Today, microarray technology permits the

screening of millions of SNPs across the entire genome and has revolutionized these study which

are now referred to as genome wide association studies (GWAS).

Results from large GWAS, for diseases such as bipolar disorder, coronary artery disease,

Crohn’s disease, hypertension, rheumatoid arthritis, Types 1 and 2 diabetes (Wellcome Trust Case

Control Consortium 2007), diabetic nephropathy (Mueller, Rogus, Cleary, Zhao, Smiles, Steffes,

Bucksa, Gibson, Cordovado, Krolewski, Nierras and Warram 2006), and kidney disfunction (Bash,

Erlinger, Coresh, Marsh-Manzi, Folsom and Astor 2008), have received much attention. During

the last two years, we have seen a large increase of these studies and many more are in the works.

Currently, the typical data analysis procedure is to genotype a large number (thousands) of cases

and controls using microarrays and search for SNPs that are statistically associated with disease.

However, the process of converting raw intensities into genotype calls consists of complicated

statistical manipulation of noisy data and many genotype calls are uncertain. A common analysis

approach is simply to perform χ2-tests to evaluate the association of the declared genotypes and

disease, without accounting for uncertainty. As shown by Ruczinski, Li, Carvalho, Fallin, Irizarry

and Louis (2009) via simulation, this failure in properly accounting for genotype uncertainty can

produce inefficient or invalid associations. Of course, a valid quantification of uncertainty is a

prerequisite to using it in association studies and we focus on this aspect.

In Section 2, we outline the statistical problem and describe previous work. In Section 3, we
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outline the model and describe estimation procedures. In Section 4, we demonstrate the utility

of our methodology with three datasets. Finally, in Section 5, we summarize and discuss our

findings.

2. CONVERTING RAW INTENSITIES TO GENOTYPE CALLS

The first step, referred to as preprocessing, converts raw microarray intensities into quantities

proportional to the amount of DNA in the target sample associated with each allele A and B

for each SNP. We denote these summarized intensities by IA and IB. We do not consider this

first step and refer the reader to Carvalho, Bengtsson, Speed and Irizarry (2007), Affymetrix

(2006), Affymetrix (2007) and Korn, Kuruvilla, McCarroll, Wysoker, Nemesh, Cawley, Hubbell,

Veitch, Collins, Darvishi, Lee, Nizzari, Gabriel, Purcell, Daly and Altshuler (2008) for details.

We focus on the second step (genotype calling): mapping the observed intensities, (IA, IB), into

posterior probabilities of the three possible genotypes (AA, AB, and BB) and thereby providing a

confidence measure that can be used to decide which calls to omit or to introduce the appropriate

genotype uncertainty when assessing association.

2.1 Current Approaches

A naive approach to genotyping is to set confidence thresholds and call genotypes based on the

Is being above or below these thresholds. For example, to call an AA genotype one might

require that IA − IB > C. Unfortunately, the probe effect, described in detail in the microarray

literature (Li and Wong 2001a; Li and Wong 2001b; Irizarry, Hobbs, Collin, Beazer-Barclay,

Antonellis, Scherf and Speed 2003; Naef and Magnasco 2003; Wu, Irizarry, Gentleman, Martinez-

Murillo and Spencer 2004), requires a different cut-off for each SNP. This requirement stems

from the fact that the abundance of each SNP allele is measured with different probes, having

different sequences and therefore different hybridization properties, resulting in large SNP to

SNP variability in the distribution of intensities IA and IB (see Figure 1). Competing genotype

calling algorithms use different strategies for determining these SNP-specific cutoffs. Many use

unsupervised clustering, for example Di, Matsuzaki, Webster, Hubbell, Liu, Dong, Bartell, Huang,

Chiles, Yang, mei Shen, Kulp, Kennedy, Mei, Jones and Cawley (2005) with the Dynamic Model

(DM) based algorithm and Wellcome Trust Case Control Consortium (2007) with CHIAMO. The
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more successful algorithms train on data for which genotypes are known, for example BRLMM

(Affymetrix 2006), CRLMM (Carvalho et al. 2007), BRLMM-P and (Affymetrix 2007), and

Birdseed (Korn et al. 2008). For most SNP’s on these training arrays we have independent

genotype calls for 270 HapMap samples (The International HapMap Consortium 2003). These

calls are based on consensus results from various technologies and are considered a gold-standard.

RLMM, BRLMM and CRLMM The major manufacturers of SNP microarrays are Affymetrix

and Illumina. We focus on the Affymetrix platform as this company has provided access to raw

data in ways that greatly facilitate method and software development. (Illumina has agreed to

make their raw data available, but in our experience their file formats and description of data are

somewhat clumsy and difficult to manage. A beta version of our methods for Illumina is currently

being developed). The manufacturer provides a default algorithm and during the last five years,

Affymetrix has upgraded their SNP array product four times, at an amazing pace for the last

upgrade, as Table 1 shows. Changes to their default algorithm have come along with changes in

technology.

The default algorithm for the Affymetrix’s 100K and 500K products initially was BRLMM

(Affymetrix 2006), a Bayesian version of the Robust Linear Model with Mahalanobis distance

(RLMM) algorithm (Rabbee and Speed 2006). But, Carvalho et al. (2007) noticed that this al-

gorithm did not perform well across data from different laboratories and so developed a procedure

that corrected for various batch-related effects resulting in the algorithm termed the corrected

RLMM or CRLMM. Subsequently, Affymetrix has upgraded their product and their algorithm

twice. The latest product is referred to as the SNP 6.0 array with Birdseed (Korn et al. 2008)

as the default algorithm. However, Lin, Carvalho, Cutler, Arking, Chakravarti and Irizarry (2008)

found that Birdseed has limitations similar to BRLMM in cross-lab instability of their calls. They

also found CRLMM provided confidence measures that better correlated with observed accuracy.

Therefore, we treat CRLMM as the leading genotyping algorithm and use the CRLMM model as

a starting point for our work.

[ TABLE 1 ABOUT HERE ]

[ FIGURE 1 ABOUT HERE ]
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CRLMM uses HapMap calls to define known genotypes, which in turn permit us to define

a training set. With the training data in place, Carvalho et al. (2007) describe a supervised

learning approach based on a two-stage hierarchical model. Unlike other algorithms, CRLMM

models M ≡ log2(IA) − log2(IB) instead of the intensity pair. This choice makes CRLMM

more robust to probe effects because the probe effects of the two allele probes have similar

additive effects and so partially cancel. This is demonstrated by Figure 2. To account for a well

described dependence of M on the overall intensity S ≡ {log2(IA) + log2(IB)}/2, (Carvalho

et al. 2007; Affymetrix 2006; Affymetrix 2007), Carvalho et al. (2007) fit splines using a mixture

model and correct the bias with the fitted curves. Then, for a given SNP, the distribution of M ,

conditioned on genotype, is modeled as Gaussian. To account for the remaining probe effect,

each SNP i = 1, . . . , I has a different mean µi and standard deviation (s.d.) σi. Sample means

and standard deviations from the training data are used to estimate the µis and σis. However,

due to low minor allele frequencies, even this large training dataset provides relatively few data

points for the rare genotype in some SNPs.

A hierarchical model is used to improve the precision of the model parameters for these SNPs.

Carvalho et al. (2007) make use of an empirical Bayes approach in which the means, conditioned

on genotype, follow a multivariate normal distribution and the variances a inverse gamma dis-

tribution. The approach permits CRLMM to borrow strength from other SNPs. To make calls,

CRLMM treats the estimated parameters as known and computes posterior probabilities for each

genotype given the observed log-ratio M . The posteriors are then used as a confidence measure.

Lin et al. (2008) found that the confidence measures provided by CRLMM were not optimal

and propose an ad-hoc adjustment based on a training approach. Currently, CRLMM uses these

adjusted confidence measures.

[ FIGURE 2 ABOUT HERE ]

3. THE ENHANCED CRLMM MODEL

3.1 The need for an enhanced approach

The current approach to determine association between SNPs and disease is to perform an asso-

ciation test between genotypes and outcomes, e.g., a χ2-test for discrete outcomes. The SNPs
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with too low a confidence score are “set aside,” but the confidence cutoff is quite arbitrary and

can affect results. Importantly, because there is more uncertainty associated with heterozygous

calls (AB) than with homozygous calls (AA, BB), specifying a single cutoff for both (the cur-

rent practice) can lead to bias due to informative missingness. Since CRLMM, and other calling

algorithms are model based as are assessments of association, a natural extension is to develop

association tests based on genotype probabilities rather than hard calls. Marchini, Howie, Myers,

McVean and Donnelly (2007) and Plagnol, Cooper, Todd and Clayton (2007) use such probability

based calls to combine results across different platforms. Ruczinski et al. (2009) demonstrate

that using probability based calls improves the power of GWAS.

3.2 Problems with probabilities based on CRLMM

The posterior probabilities currently provided by CRLMM have three crucial limitations:

1. The posteriors are overly optimistic in favor of the genotype attaining the highest probability.

The main reason for this is that the actual tails of the conditional distributions of M are

longer than predicted by the Gaussian assumption. Figure 3 shows one example in which

one observation has posterior of almost 1 and, yet, the call is wrong. This occurs because

the posterior is a very small number divided by an even smaller one.

[ FIGURE 3 ABOUT HERE ]

2. The statistical uncertainty of estimates from the training step is ignored, resulting in over-

confident calls for minor alleles.

3. We have observed that the genotype parameters shift from batch to batch and these batch

effects are not in the current CRLMM model. As a result, batches of questionable quality

are not detected by the CRLMM algorithm.

The third point is particularly troublesome. A logistics problem with these large GWAS is that

hybridizations need to be processed in batches. Because DNA samples are stored in 96 well plates

and robots make it convenient to run all samples in a plate at once, plates are usually confounded

with hybridization times. To make matters worst, it is rarely the case that a GWAS randomizes
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or controls for plate when storing samples. Therefore, it is common that plate and outcome of

interest are at least partially confounded. Therefore, if genotyping algorithms do not appropriately

assess these batch effects, it will be difficult if not impossible, to distinguish real from artifactual

associations. The new methods presented in this paper, successfully detect problematic batches,

by simply inspecting some of the estimated model parameters.

To address these deficits, we have developed an enhancement to the CRLMM model that

provides much improved posterior probabilities and a powerful probability-based approach to

detecting problematic SNPs and batches.

3.3 The Enhanced Hierarchical Model

We structure our analysis via the hierarchical model,

Zij iid trinomial

(
1

3
,
1

3
,
1

3

)
[µi|Zij = g] iid N3(0,V)

[λij|µi, Zij = g] iid N3(0,Uj)

[Mijk|µig, λijg] = fjkg(Sijk) + µig + λijg + σigεijkg (1)

[εijkg|µ,λ] iid t6(0)

σ2
ij iid dgs

2
g

1

χ2
dg

.

Index i = 1, . . . , I represents SNP, j = 1, . . . , J represents the batch, k = 1, . . . , K represents

the sample, and g = AA,AB or BB is the genotype. The Z’s are unobserved, true genotypes,

the M ’s the observed log ratios, µi = (µiAA, µiAB, µiBB)′, λij = (λijAA, λijAB, λijBB)′, the dg

are the degrees of freedom. The s2
g are the variance of a typical SNP and are estimated from the

training data.

Data exploration demonstrates that, for large and small intensity values, M for the AA and

BB genotypes are shrunken towards 0 (Carvalho et al. 2007, Figure 8). As done by Carvalho

et al. (2007), we account for this intensity-dependent bias with the deterministic function fjkg,

requiring that fjkAB = 0 and fjkAA = −fjkBB for all j, k. Differences across genotypes (e.g.,

M ’s for AA are on average larger than Ms for AB) are absorbed into f . These functions are

estimated in a separate step, as described in detail by Carvalho et al. (2007), and are treated as

known.
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Introduction of the λij provides the first improvement to the CRLMM model. A second

improvement is to make the measurement error level more robust to outliers by assuming that

the εijkg are iid t6(0) random variables. Use of 6 degrees of freedom was selected empirically

and can be changed. The σ2
ig account for different SNPs having different scales of error.

3.4 Estimating parameters

Note that model (1) has I× (2+J)×3+12 parameters. With I = 906, 600 SNPs, these are too

many for a global estimation procedure to be practical. In this section we describe an effective

approximate modular procedure. In a first step, we take advantage of the existing training data

to estimate the µ’s. Then, for each new batch j, we treat the µ’s as known and estimate the λj.

Both steps implement a two-stage approach wherein robust least squares parameter estimates

are produced, along with their standard errors, and then these are fed into a second stage that

shrinks to improve precision. Our approach permitted us to produce priors without the need of

a non-linear algorithm. This was an important feature given the size of the typical datasets: one

million SNPs and several hundred samples distributed across dozens of batches. This approach

resulted in a powerful software tool that outperforms the default algorithm in computation speed.

Estimating SNP-specific shifts To estimate V we use an empirical Bayes approach (Carlin and

Louis 2009). We start by obtaining robust versions of the sample means and variances of the

training data to estimate the µ’s and σ’s by µ̂ig and σ̂ig. These robust estimates are used to

account for the t-distributed errors. Since the training dataset is considered the reference from

which batches deviate, we assume λ = 0, and thus µ̂ig and σ̂ig are unbiased estimates. Then,

V is estimated by the sample variance-covariance of µ̂i ≡ (µ̂iAA, µ̂iAB, µ̂iBB)′, i = 1, . . . , I,

producing V̂. Note that some genotypes will have very few points available in the training data

to use in estimating the µ’s and σ’s and the estimate will be imprecise. Now, to borrow strength

across SNPs we use V̂ to shrink the µ̂i using the posterior distribution formula for a multivariate

Gaussian:

µ̃i = (V̂−1 + W−1
i )−1W−1

i µ̂i (2)
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with Wi a diagonal matrix with entries s2
g/Nig, g = 1, . . . , 3 and Nig the number of points

available in the training data to estimate µig. To shrink the variance estimates we use

σ̃2
ig =

(Nig − 1)σ̂2
ig + dgs

2
g

(Nig − 1) + dg
, for Nig > 1. (3)

When Nig ≤ 1, we simply use the posteriors s2
g. These computations use the training data and

most users will not have access to it. Therefore, we save the µ̃i’s, σ̃ig’s, and Nig’s and include

them as part of the software that implements the enhanced CRLMM.

Estimating batch-specific shifts Here we describe the two-stage approach used to estimate λj

for each batch j = 1, . . . , J . The general idea was to use the previously estimated SNP-specific

shift parameters, µ̃i’s and σ̃ig’s, to produce preliminary posteriors for each genotype. These were

used to create a pseudo-training dataset. The λij were then estimated following a procedure

similar to the one used to estimate µ. Some details follow.

The first step is to obtain starting values for the posteriors by assuming there is no batch

specific shift, λ = 0 and that the SNP-specific shifts µ are known:

p
(0)
ijkg = Pr(Zijg = g|Mijk,µi = µ̃i,λi = 0, σig = σ̃ig).

We then assign a genotype to each SNP for each sample in the batch by simply maximizing these

posteriors:

Ẑ
(0)
ijk = arg max

g
p

(0)
ijkg.

A pseudo-training dataset was created with these calls.

The expected value of Mijk conditioned on Zijk = g is fjkg(Sijk) + µig + λijg. We therefore

assume that the average (in practice we compute a robust average) deviation

λ̂ijg ≡
1

N
(0)
ijg

∑
k∈Xijg

(Mijk − fjkg(Sijk)− µ̃ig),

with Xg ≡ {k such that Ẑ
(0)
ijk = g} and Nijg is the number of elements in Xg, is an unbiased

estimate of λijg.

In the second stage, Uj is estimated with the sample variance-covariance of λ̂i ≡ (λ̂iAA, λ̂iAB, λ̂iBB)′,

i = 1, . . . , I. With Ûj, the estimate of Uj, in place, we shrink the λ̂ig as done in (2):

λ̃i = (Û−1
j + W−1

i )−1W−1
i λ̂i (4)
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with Wi as above.

3.5 Producing posteriors

Using the current CRLMM method, posterior calls were particularly over-confident. This is

consistent with the fact that the estimated µ̃i are assumed to be known. We developed a

procedure that permits us to account for the uncertainty associated with estimating the SNP-

specific and batch-specific shifts. In this Section, we illustrate the idea by demonstrating the

approach when there are no batch-specific shifts and the ε’s are normally distributed. In the

Appendix, we describe the details needed for the full model, including the batch-specific shifts

and the t-distribution assumption.

Consider the simplified model with no batch effect (thus j is omitted)

[Mik|Zik = g, µik = µ̂ik] = fkg(Sik) + µ̂ik + εikg, (5)

with ε normally distributed with mean 0 and variance σ2
ig. In our approach, we estimate with a

shrunken version of the sample average, but for simplicity we will assume we used the sample

average. In this case, the estimated SNP-specific shifts, µ̂ig, are normally distributed with mean

zero and variance σ2
ig/Nig, with Nig the number of points available in the training data to estimate

µig as in (4). We can then show that

E [Mik|Zik = g] = Eµig [E (Mik|Zik = g, µig)]

= Eµig [fkg(Sik) + µig]

= fk,g(Sik) (6)

V [Mik|Zik = g] = V [E (Mik|Zik = g, µig)] + E [V (Mik|Zik = g, µig)]

= V [fkg(Sik) + µig] + E
(
σ2
ig

)
=

σ2
ig

Nig

+ σ2
ig

=

(
1 +

1

Nig

)
σ2
ig. (7)

The posterior probabilities are produced by normalizing the joint densities of the log-ratios M

and genotypes g:

Pr(Zik = g|Mik = m) =
P (Zik = g)φMik|Zik=g(m)∑3
g=1 P (Zik = g)φMik|Zik=g(m)

. (8)
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with φMik|Zik=g(m) representing a normal density with mean and variance shown in equations (6)

and (7) respectively. A similar calculation, delineated in the Appendix, provides posteriors for the

full model.

3.6 Quality scores

Carvalho et al. (2007) present a powerful procedure for detecting problematic arrays based on

the estimated f . Here we present a quality assessment procedure for SNPs and hybridization

batches. The quality of batch j can be quantified by the diagonal entries of Ûj. We demonstrate

the utility of this approach in the results section. For SNPs, we can quantify quality by assigning

a posterior probability of being an outlier to each shift, i.e. µi or λij. Using the fitted prior

distributions for µi and λi we introduce a density function h0 for outlying µ and compute the

posterior probability:

Pr(Shift i is outlier|µi) =
h0(µi)

h0(µi) + φ(µi)

with φ(µ) = (2π)−3/2|V|−1/2 exp(µ′V−1µ). A practical choice for h is the three dimensional

uniform distribution covering all possible values of µ. We perform a similar computation for λij

for each batch j. To illustrate the advantage of the empirical Bayes approach, we plotted the

λijAA versus λijAB and λijAA versus λijBB (Figure 4). The large number of SNPs permitted

us to borrow strength across SNPs. The non-zero correlations permitted us to borrow strength

across genotypes.

[ FIGURE 4 ABOUT HERE ]

3.7 Software

The methodology described here is available via the crlmm R/BioConductor package. To demon-

strate its performance, we compared CRLMM to Birdseed, the standard genotyping tool for SNP

6.0 arrays, on the 270 HapMap samples. On this set, the maximum amount of memory used by

CRLMM, during preprocessing, was 3.2 GB. After preprocessing, the memory usage was reduced

to 2 GB. CRLMM needed 52 minutes to complete the task. Birdseed used 845MB for most of

the process, increasing slowly to 900 MB and took 150 minutes. The comparisons were executed

on a four-processors system (3GHz Dual-Core AMD Opteron Processor 2222) with 32GB RAM.
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4. RESULTS

We assessed the performance of the enhanced CRLMM with a comparison to CRLMM and

Birdseed, the default algorithm provided by the manufacturer. We use three datasets:

A) 143 Hapmap samples hybridized by Affymetrix.

B) 55 HapMap samples hybridized at Johns Hopkins.

C) 3,050 samples from the GoKinD dataset (Mueller et al. 2006) made available through the

Genetic Association Information Network (GAIN).

We used HapMap samples because knowing the “truth” permitted us to effectively assess our

methodology. Note that, although the same samples, the hybridizations used here were not the

same as the set used to train our algorithm. The Dataset C provided a large set with 34 different

batches defined by the 96-well plate in which the samples were stored. To assess performance

with this dataset we computed the concordance between calls obtained by running the algorithm

on all samples to calls obtained by running the algorithms by batch. We obtained calls for each

dataset with the birdseed, CRLMM and the enhanced CRLMM.

4.1 Overall accuracy

We first compared over-all accuracy using Datasets A and B. We calculated accuracy, i.e. pro-

portion of correct calls, for calls with confidence scores above a given cutoff. Various cutoffs

were considered. We then plotted accuracy against the proportion of calls below the confidence

cutoffs. The accuracy versus drop rate (ADR) plots demonstrated that, overall, the the enhanced

CRLMM outperformed the other two algorithms (Figure 5).

[ FIGURE 5 ABOUT HERE ]

4.2 Posteriors

To assess the validity of the posteriors, we compared observed accuracy to reported posteriors.

Specifically, we stratified calls by their associated posterior and each strata we computed the

proportion of correct calls. We then plotted these against each other with the expectation

that they fall on the identity line. Although the current CRLMM does not use posteriors as

13
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a confidence measure, we obtained the posteriors by modification to the CRLMM code. The

enhanced CRLMM improved the posteriors provided by the current CRLMM which clearly were

optimistic (Figure 6).

[ FIGURE 6 ABOUT HERE ]

4.3 SNP quality metrics

For Datasets A and B we computed SNP quality scores as described in the Methods Section.

Namely, for each SNP, we computed the posterior probability of the estimated λ not being an

outlier. To demonstrate the utility of this metric we stratified SNPs by the quality score reported

for Datasets A and B, and created ADR plots for each strata (Figure 7). Note, that by restricting

attention to SNPs with QC scores above 0.25, we obtained near perfect results. For Datasets A

and B, 98.63% and 99.18% of the SNPs surpassed this cutoff.

[ FIGURE 7 ABOUT HERE ]

4.4 Batch quality metrics

For Dataset C we generated calls in two ways: by using and ignoring batch information. We

then computed the concordance between these two sets of calls for each batch. We considered

batches with lower concordance to be problematic. The percentage of samples with signal to

noise ratios, as defined by Carvalho et al. (2007), below 5 was the best predictor of low quality

batches (Figure 8A). The quality score, based on the distribution of the λjs and summarized by

Uj, predicted low quality as well (Figure 8B).

[ FIGURE 8 ABOUT HERE ]

Our batch quality score also effectively predicted the differences in accuracy observed in

Figure 5. Note that Datasets A and B had batch quality scores of 0.0337 and 0.0745 respectively.

5. DISCUSSION

We have presented a multi-level enhancement to the CRLMM model described by Carvalho et al.

(2007). Our model accounts for three levels of variability in SNP array data: 1) SNP specific
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shifts, 2) hybridization batch shifts to each SNP and 3) heavy tailed measurement error. By

explicitly modeling these sources of uncertainty, the estimated posterior probabilities are much

improved as compared to those offered by the current version of CRLMM. We also incorporate

the variability associated with estimating model parameters with training data. Our approach

produced priors with superior properties to those produced by the current CRLMM model. The

refinements will improve the accuracy of downstream results obtained from probability based

association tests such as the one described by Ruczinski et al. (2009).

We have also described methodology useful for detecting problematic SNPs and hybridization

batches. We find the latter contribution particularly important. Adapting analysis tools to deal

with hybridization batch effects should be a priority of analysis groups working with genome-

wide association study (GWAS) data. Due to experimental logistics, GWAS rarely control or

randomize for well-plate, for example when using external controls. Therefore, an undetected

problematic batch could make it difficult, if not impossible, to distinguish reported associations

from artifactual ones such driven by hybridization batches. We have presented a powerful solution

that predicts problematic batches and can be easily incorporated into any analysis pipeline.

A. INCORPORATING BATCH EFFECTS AND USING A MORE ROBUST DISTRIBUTION

FOR RESIDUALS

Here, we describe further details on how to derive posterior probabilities that account not only

for the uncertainty induced by the estimation of the SNP-specific shifts, but also for batch effects

and heavier tails for the density of the residuals in model (1), which we recapitulate:

[Mijk|Zij = g, µig, λijg] = fjkg(Sijk) + µig + λijg + σigεijkg,

where:

[µi|Zij = g] iid N3 (0,V)

[λij|µi, Zij = g] iid N3 (0,Uj)

[εijkg|µi,λij] iid tν

σ2
ig iid dgs

2
g

1

χ2
dg
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As described earlier, i = 1, . . . , I represents SNP, j = 1, . . . , J represents the batch, k =

1, . . . , K represents the sample, and g = AA,AB or BB is the genotype. Note that, fjkg(Sijk)

is a deterministic function estimated during preprocessing.

In order to obtain the posteriors Pr(Zij = g|Mijk = m), we initially derive the joint distri-

bution of the log-ratio and genotype. This is easily achieved by integrating the complete joint

density over µig, λijg and σig.

f (Mijk = m,Zij = g) =

=

∫ ∞
0

∫ ∞
−∞

∫ ∞
−∞

f (Mijk = m,Zij = g, µig, λijg, σig) dµig dλijg dσig

=

∫∫∫
f (Mijk = m|Zij = g, µig, λijg, σig) f (µig|Zij = g, λijg, σig)×

×f (λijg|Zij = g, σig) f (σig|Zij = g)Pr(Zij = g) dµig dλijg dσig (A.1)

The conditional densities of [Mijk|Zij = g, µig, λijg, σig] and [σig|Zij = g] can be derived with

simple variable transformations:

FMijk|Zij=g,µig ,λijg ,σig(m) = Fεijkg

(
m− fjkg(Sijk)− µig − λijg

σig

)
fMijk|Zij=g,µig ,λijg ,σig(m) =

1

σig
fεijkg

(
m− fjkg(Sijk)− µig − λijg

σig

)
(A.2)

Fσig |Zij=g(s) = Fσ2
ig |Zij=g(s

2)

fσig |Zij=g(s) = 2sfσ2
ig |Zij=g

(
s2
)

(A.3)

Using results (A.2) and (A.3), the joint density (A.1) is rewritten below, on Equation (A.4)

and later simplified on Equation (A.5).

f (Mijk = m,Zij = g)

=

∫ ∞
0

∫ ∞
−∞

∫ ∞
−∞

f (Mijk = m,Zij = g, µig, λijg, σig) dµig dλijg dσig

= Pr(Zij = g)

∫ ∞
0

∫ ∞
−∞

∫ ∞
−∞

(d0s
2
0/2)

d0/2 Γ
(
ν+1
2

)
π3/2√uggvj,ggνΓ

(
d0
2

)
Γ
(
ν
2

) 1

σ2+ν
ig

×

×

[
1 +

1

ν

(
m− fjkg(Sijk)− µig − λijg

σig

)2
]− ν+1

2

×

× exp

{
−1

2

(
λ2
ijg

uj,gg
+
µig
vgg

+
d0s

2
0

σ2
ig

)}
dµig dλijg dσig (A.4)
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f (Mijk = m,Zij = g)

∝ Pr(Zij = g)
1

√
uggvj,gg

∫ ∞
0

∫ ∞
−∞

∫ ∞
−∞

1

σ2+ν
ig

×

×

[
1 +

1

ν

(
m− fjkg(Sijk)− µig − λijg

σig

)2
]− ν+1

2

×

× exp

{
−1

2

(
λ2
ijg

uj,gg
+
µig
vgg

+
d0s

2
0

σ2
ig

)}
dµig dλijg dσig. (A.5)

The posterior probabilities can be found by using the Bayes theorem and the Law of Total

Probabilities (A.6).

Pr(Zij = g|Mijk = m) =
f (Mijk = m,Zij = g)∑3
g=1 f (Mijk = m,Zij = g)

(A.6)

Because the integral on Equation (A.5) does not have a closed-form, either the integrand

should be approximated or Monte-Carlo methods be used. In particular, a saddle-point approxi-

mation for the kernel of the Student-t density will be effective.
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Product Release Date SNPs

10K Array July/2003 10,000

100K Array Set April/2004 116,000

500K Array Set September/2005 500,000

SNP 5.0 Array February/2007 500,000

SNP 6.0 Array May/2007 906,600

Table 1: General information about Affymetrix SNP arrays platforms. The coverage has increased

significantly over the past five years. The 100K and 500K array sets are comprised of two arrays

each, Xba+Hind and Nsp+Sty, respectively. The SNP counts are approximate.
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Figure 1: The intensity of both alleles is plotted against each other, i.e. IA versus IB, for four

randomly selected SNP’s. The three circles illustrate the distribution of the data for each genotype

(AA: green; AB: orange; BB: violet) for the first SNP. Note that these regions are incompatible

with the data for the three other SNPs. This figure illustrates that the SNP to SNP variability

is much larger than the within SNP variability and that naive genotyping algorithms that define

global thresholds are not appropriate.
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Figure 2: The advantage of modeling M instead of (IA, IB): Here we plot M versus S for the

same data shown in Figure 1. The across SNP variability is smaller for M than for S. However,

the probe effect is not completely removed as seen in the SNP in the bottom right pane. Note

that for this SNP the cluster centers are substantially shifted.

22

http://biostats.bepress.com/jhubiostat/paper180



33

3

3

3

3

2
22

1
1

1
1

1

1

2
2

3

2 2
2

2

2

2

3 3
3

3
3

2
2

3

22
2

1 1

3
3

3

3

33

2

1

2
2

1

1
1

2

3

1
1

11

22 2
2

2
2

22

1

22
22

33

22

1

2 22

3

2
2

1

2

3

2222

1

2 22

3

33

2

3

2

2
2

2 2

3

2

1

2

1

222

1

22

1

2

1

3 3

2
2

1

3

2

3

2 2
2

3

3

2

33
3 3

2

33
3

3 3

3
333

0.0 0.2 0.4 0.6 0.8 1.0 1.2

−
2

−
1

0
1

2
3

S

M

●

Figure 3: An example of a SNP with three clear clusters: The calls derived from the algorithm are

represented by the colors (AA: green; AB: orange and BB: violet). The observation with the red

circle around it was incorrectly called AA and, under the normal assumption for the residuals, the

posterior was greater than 0.999. With the assumption that the residuals follow a t-distribution,

the posterior was penalized and reduced to 0.500.
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Figure 4: Plots of λ̂ for a given batch. Note that they are correlated. We take advantage

of this correlation to predict or improve precision of shifts when not enough training data is

available. The ellipses delimit the 95% confidence regions of the estimated distribution. SNPs

with Points outside these regions are associated with abnormal movements and are flagged as

possible outliers. Panel A shows λ̂AA versus λ̂AB. Panel B λ̂AA versus λ̂BB. The plot for λ̂AA

versus λ̂AB is similar to that shown Panel A.

24

http://biostats.bepress.com/jhubiostat/paper180



0.00 0.05 0.10 0.15 0.20

0.
99

70
0.

99
75

0.
99

80
0.

99
85

0.
99

90
0.

99
95

Dataset B − Batch QC Score = 0.0337

Drop Rate

A
cc

ur
ac

y

Posterior
Previous
Birdseed

0.00 0.05 0.10 0.15 0.20

0.
99

70
0.

99
75

0.
99

80
0.

99
85

0.
99

90
0.

99
95

Dataset B − Batch QC Score = 0.0745

Drop Rate

A
cc

ur
ac

y

Posterior
Previous
Birdseed

Figure 5: Accuracy versus drop rate (ADR) plots for Datasets A and B. For the first set, the

enhanced CRLMM outperforms both Birdseed and the previous CRLMM implementation. For the

second set, it outperforms the other two methods roughly at a drop rate of 6%. Also note that

the accuracy on the second dataset is lower when compared to the first one, indicating significant

variation on the quality of the two sets.
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Figure 6: For Dataset A, calls were stratified by their associated posterior. For each strata the

observed accuracy was computed by comparing to HapMap gold standard calls. The new CRLMM

is compared to the current CRLMM which is clearly to optimistic.
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Figure 7: ADR plots for Datasets A and B. SNP’s were stratified by their quality scores and

accuracy versus drop rate curves were produced for each stratum. The scores are shown to

successfully identify SNP’s with lower accuracies.
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Figure 8: Batch quality plots. A) The accuracy with a 5% drop rate is plotted against the

percentage of sample flagged by the SNR score. B) The accuracy with a 5% drop rate is plotted

against our batch quality score.
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