635 research outputs found

    Performance Limits of Axial Compressor Stages

    Get PDF
    This paper presents a framework for estimating the upper limit of compressor stage efficiency. Using a compressor stage model with a representative design velocity distribution with turbulent boundary layers, losses are calculated as the sum of selected local irreversibilities, rather than from correlations based on data from existing machines. By considering only losses that cannot be eliminated and optimizing stage design variables for minimum loss, an upper bound on stage efficiency can be determined as a function of a small number of stage design parameters. The impact of the stage analysis results are evaluated in the context of gas turbine cycle performance. The implication from the results of the stage level and cycle analyses is that compressor efficiency improvements that result in substantial increases in cycle thermal efficiency are still to be realized.Fundamental Aeronautics Program (U.S.) (Agreement Number NNX08AW63A

    Influence of cavity flow on turbine aerodynamics

    Get PDF
    In order to deal with high temperatures faced by the components downstream of the combustion chamber, some relatively cold air is bled at the compressor. This air feeds the cavities under the turbine main annulus and cool down the rotor disks ensuring a proper and safe operation of the turbine. This thesis manuscript introduces a numerical study of the effect of the cavity flow close to the turbine hub on its aerodynamic performance. The interaction phenomena between the cavity and main annulus flow are not currently fully understood. The study of these phenomena is performed based on different numerical approaches (RANS, LES and LES-LBM) applied to two configurations for which experimental results are available. A linear cascade configuration with an upstream cavity and various rim seal geometries (interface between rotor and stator platform) and cavity flow rate available. A rotating configuration that is a two stage turbine including cavities close to realistic industrial configurations. Additional losses incurred by the cavity flow are measured and studied using a method based on exergy (energy balance in the purpose to generate work)

    Impacts of Anthropogenic Noise on Litter Chemistry and Decomposition Processes in a Semi-Arid Ecosystem

    Get PDF
    Chronic anthropogenic noise in ecosystems can change avian/arthropod/plant interactions, but it is unclear how changes in herbivory pressure affects functional traits of plants. We asked how anthropogenic noise, mediated through changes in arthropod abundance, altered timing of leaf senesce, chemical composition (i.e. C/N ratios, total phenolics) and decomposition rates of leaf litter in Wyoming big sagebrush (Artemisia tridentata spp. wyo.). Additionally, we asked if changes in arthropod abundance altered secondary metabolites (i.e. monoterpenes) in foliage. We broadcasted recorded gas compressor station noise (24hrs/day) from April through October 2015 in a sagebrush steppe ecosystem of Idaho, USA. We quantified quantity, chemical composition (i.e. C/N ratios, total phenolics) and decomposition rates of leaf litter and changes to monoterpene concentrations. We found that: (1) changes to top down forces resulting from noise treatments did not impact the leaf abscission rates, the chemical composition of leaf litter or litter decomposition and (2) time of year significantly affected quantity, chemical composition (i.e. C/N ratios and phenolic concentrations) and decomposition of leaf litter. Our research indicates that increases in anthropogenic noise over one growing season does not impact litter chemistry or decomposition processes. Future research should evaluate whether prolonged noise-induced changes in herbivory lead to changes in litter chemistry and decomposition

    Prédiction de la génération des pertes des écoulements compressibles anisothermes appliquée aux distributeurs hautes pressions de turbine avec les simulations aux grandes échelles

    Get PDF
    Afin d'améliorer l'efficacité des moteurs aéronautiques, une des solutions envisagées par les industriels est d'augmenter la température d'entrée de la turbine. Cependant, ces hautes températures induisent de fortes contraintes thermiques sur les pales de turbine ce qui réduit leur durée de vie. Pour surmonter ces problèmes thermiques, des systèmes de refroidissement efficaces sont nécessaires. Afin d'évaluer la performance de ces systèmes, une prédiction précise de la température de paroi des pales de turbine et des pertes générées par ces systèmes est requise. Profitant de l'opportunité de récents développements d'outils de prédiction haute-fidélité, cette thèse financée par Safran Helicopter Engines à travers le projet FUI CASCADE, a pour but de valider la prédiction de la température de paroi des pales de turbine refroidie et des pertes générées par ces systèmes avec la Simulation aux Grandes Echelles (SGE). Pour atteindre ces objectifs, différentes configurations académiques et industrielles refroidies par film de refroidissement ont été simulées et étudiées. Les résultats obtenus dans cette thèse montrent que la SGE est capable de prédire l'aérodynamique et l'environnement thermique pour de tels systèmes. Pour faciliter l'utilisation de la SGE dans l’industrie et limiter le coût CPU lié à la résolution de l'écoulement dans le système de refroidissement des pales, un modèle de jets de refroidissement a été proposé et évalué dans ce travail. Les résultats montrent que ce modèle permet de reproduire l'aérodynamique des jets de refroidissement et la température de paroi des pales sans mailler le système de refroidissement. Pour évaluer les pertes dans ce contexte, l’approche Second Law Analysis (SLA) est adoptée. Contrairement aux bilans de température et pression totales, cette approche donne directement accès aux champs de perte 3D qui sont construits à partir des termes sources de l’entropie résolus sur le maillage. Ainsi, le mécanisme de génération de perte peut être localement étudié et ne requière pas de procédure de moyenne contrairement aux modèles de perte 1D. Ces champs de perte sont décomposés en deux contributions : une contribution aérodynamique et une contribution thermique liée au mélange chaud-froid. L'étude de ces champs montre que les pertes aérodynamiques sont principalement générées dans les régions de fort cisaillement (couche limite et de mélange) alors que les pertes de mélange sont générées dans les films de refroidissement et dans le sillage des pales. Des analyses avancées des champs de perte mettent en évidence que les fluctuations turbulentes dominent la génération des pertes pour ces systèmes. Ce dernier résultat met en évidence les bénéfices de l'approche Second Law Analysis pour prédire les pertes à partir des champs obtenus avec la SGE. En effet et contrairement aux approches RANS, les contributions turbulentes des pertes sont directement résolues sur le maillage avec la SGE et ne requiert aucune stratégie de modélisation. La principale conclusion de cette thèse est que l'approche Second Law Analysis couplée avec la SGE est une méthodologie très prometteuse et pertinente pour la prédiction des écoulements et des pertes pour les futurs designs de pale de turbine industriel

    Novel turbomachinery concepts for highly integrated airframe/propulsion systems

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2007.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Includes bibliographical references (p. 251-260).Two novel turbomachinery concepts are presented as enablers to advanced flight missions requiring integrated airframe/propulsion systems. The first concept is motivated by thermal management challenges in low-to-high Mach number (4+) aircraft. The idea of compressor cooling combines the compressor and heat exchanger function to stretch turbopropulsion system operational limits. Axial compressor performance with blade passage heat extraction is assessed with computational experiments and meanline modeling. A cooled multistage compressor with adiabatic design point is found to achieve higher pressure ratio, choking mass flow, and efficiency (referenced to an adiabatic, reversible process) at fixed corrected speed, with greatest benefit occurring through front-stage cooling. Heat removal equal to one percent of inlet stagnation enthalpy flux in each of the first four blade rows suggests pressure ratio, efficiency, and choked flow improvements of 23%, 12%, and 5% relative to a baseline, eight-stage compressor with pressure ratio of 5. Cooling is also found to unchoke rear stages at low corrected speed. Heat transfer estimations indicate that surface area limitations and temperature differences favor rear-stage cooling and suggest the existence of an optimal cooling distribution.(cont.) The second concept is a quiet drag device to enable slow and steep approach profiles for functionally quiet civil aircraft. Deployment of such devices in clean airframe configuration reduces aircraft source noise and noise propagation to the ground. The generation of swirling outflow from a duct, such as an aircraft engine, is conceived to have high drag and low noise. The simplest configuration is a ram pressure driven duct with non-rotating swirl vanes, a so-called swirl tube. A device aerodynamic design is performed using first principles and CFD. The swirl-drag-noise relationship is quantified through scale-model aerodynamic and aeroacoustic wind tunnel tests. The maximum measured stable flow drag coefficient is 0.83 at exit swirl angles close to 500. The acoustic signature, extrapolated to full-scale, is found to be well below the background noise of a well populated area, demonstrating swirl tube conceptual feasibility. Vortex breakdown is found to be the aerodynamically and acoustically limiting physical phenomenon, generating a white-noise signature that is [approx.] 15 dB louder than a stable swirling flow.by Parthiv Narendra Shah.Ph.D

    Numerical Simulation of Air Flow in Aeroengine Compressors

    Get PDF
    The performance of an aeroengine is influenced by the performance of the compressor system. A typical compressor consists of multistage axial compressors followed by a centrifugal stage. Here, a high-speed centrifugal and an axial stage are investigated in terms of turbulence modelling, flow blockage and rotor-stator (R-S) gap using the commercial software ANSYS CFX. The curvature corrected Shear stress transport (SST-CC) model of Smirnov and Menter is investigated for the first time in a high-speed centrifugal stage in terms of curvature and rotation effects. The SST-CC predictions are compared with the standard SST, Speziale, Sarkar, and Gatski Reynolds stress model (RSM-SSG) and the experimental data in terms of the global performance as well as the velocity profiles at the impeller-diffuser interface. The comparisons show that SST-CC has the best agreement with the experiments at choke condition while SST has better performance at the stall condition. The production term shows the expected sensitivity to the convex and concave curvatures. A new method to quantify blockage for both axial and centrifugal compressors is developed. Both steady and unsteady simulations are used to examine the flow blockage in the axial transonic stage. The variation of the rotor tip blockage with respect to the blade loading shows good agreement with previous studies. The total planar blockage indicates that stall might initiate at the stator trailing edge. The differences between the steady and unsteady predictions are mainly attributed to the local differences in the total pressure profiles at the inlet guide vanes–rotor interface. It was previously argued that reducing the R-S gap improves the efficiency of axial compressors due to reduced viscous mixing of the rotor wake. However, the current simulations show that the smallest R-S gap has the highest levels of total pressure losses within the stator passage and the highest levels of unsteady stator forces at reduced mass flow rates. The unsteadiness in the stator flow field is attributed to the larger stator suction surface boundary layer separation associated with the smallest gap. The smallest R-S gap reduces the viscous mixing of the wake at the expense of the efficiency

    Effects of rotor tip clearance on an embedded compressor stage performance

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2012.Cataloged from PDF version of thesis.Includes bibliographical references (p. 111-114).Compressor efficiency variation with rotor tip gap is assessed using numerical simulations on an embedded stage representative of that in a large industrial gas turbine with Reynolds number being approximately 2 x 106 to 7 x 106. The results reveal three distinct behaviors of efficiency variation with tip gap. For relatively small tip gap (less than 0.8% span), the change in efficiency with tip gap is non-monotonic with an optimum tip gap for maximum efficiency. The optimum tip gap is set by two competing flow processes: decreasing tip leakage mixing loss and increasing viscous shear loss at the casing with decreasing tip gap. An optimum tip gap scaling is established and shown to satisfactorily quantify the optimal gap value. For medium tip gap (0.8% - 3.4% span), the efficiency decreases approximately on a linear basis with increasing tip clearance. However, for tip gap beyond a threshold value (3.4% span for this rotor), the efficiency becomes less sensitive to tip gap as the blade tip becomes more aft-loaded thus reducing tip flow mixing loss in the rotor passage. The threshold value is set by the competing effects between increasing tip leakage flow and decreasing tip flow induced mixing loss with increasing tip gap. Thus, to desensitize compressor performance variation with blade gap, rotor should be tip aft-loaded and hub fore-loaded while stator should be tip fore-loaded and hub aft-loaded as much as feasible. This reduces the opportunity for clearance flow mixing loss and maximizes the benefits of reversible work from unsteady effects in attenuating the clearance flow through the downstream blade-row. The net effect can be an overall compressor performance enhancement in terms of efficiency, pressure rise capability, robustness to end gap variation and potentially useful operable range broadening. Preliminary assessment of a stage redesign with a 4% chord more tip aft-loaded blade design for 1.7 % span tip clearance yields 0.2 point stage efficiency benefit.by Sitanun Sakulkaew.S.M
    • …
    corecore