17 research outputs found

    Network-aware Adaptation with Real-Time Channel Statistics for Wireless LAN Multimedia Transmissions in the Digital Home

    Full text link
    This paper suggests the use of intelligent network-aware processing agents in wireless local area network drivers to generate metrics for bandwidth estimation based on real-time channel statistics to enable wireless multimedia application adaptation. Various configurations in the wireless digital home are studied and the experimental results with performance variations are presented.Comment: 6 pages, 12 figure

    Perceptual Video Quality Assessment and Enhancement

    Get PDF
    With the rapid development of network visual communication technologies, digital video has become ubiquitous and indispensable in our everyday lives. Video acquisition, communication, and processing systems introduce various types of distortions, which may have major impact on perceived video quality by human observers. Effective and efficient objective video quality assessment (VQA) methods that can predict perceptual video quality are highly desirable in modern visual communication systems for performance evaluation, quality control and resource allocation purposes. Moreover, perceptual VQA measures may also be employed to optimize a wide variety of video processing algorithms and systems for best perceptual quality. This thesis exploits several novel ideas in the areas of video quality assessment and enhancement. Firstly, by considering a video signal as a 3D volume image, we propose a 3D structural similarity (SSIM) based full-reference (FR) VQA approach, which also incorporates local information content and local distortion-based pooling methods. Secondly, a reduced-reference (RR) VQA scheme is developed by tracing the evolvement of local phase structures over time in the complex wavelet domain. Furthermore, we propose a quality-aware video system which combines spatial and temporal quality measures with a robust video watermarking technique, such that RR-VQA can be performed without transmitting RR features via an ancillary lossless channel. Finally, a novel strategy for enhancing video denoising algorithms, namely poly-view fusion, is developed by examining a video sequence as a 3D volume image from multiple (front, side, top) views. This leads to significant and consistent gain in terms of both peak signal-to-noise ratio (PSNR) and SSIM performance, especially at high noise levels

    Component-wise Power Estimation of Electrical Devices Using Thermal Imaging

    Full text link
    This paper presents a novel method to estimate the power consumption of distinct active components on an electronic carrier board by using thermal imaging. The components and the board can be made of heterogeneous material such as plastic, coated microchips, and metal bonds or wires, where a special coating for high emissivity is not required. The thermal images are recorded when the components on the board are dissipating power. In order to enable reliable estimates, a segmentation of the thermal image must be available that can be obtained by manual labeling, object detection methods, or exploiting layout information. Evaluations show that with low-resolution consumer infrared cameras and dissipated powers larger than 300mW, mean estimation errors of 10% can be achieved.Comment: 10 pages, 8 figure

    Machine Learning for Multimedia Communications

    Get PDF
    Machine learning is revolutionizing the way multimedia information is processed and transmitted to users. After intensive and powerful training, some impressive efficiency/accuracy improvements have been made all over the transmission pipeline. For example, the high model capacity of the learning-based architectures enables us to accurately model the image and video behavior such that tremendous compression gains can be achieved. Similarly, error concealment, streaming strategy or even user perception modeling have widely benefited from the recent learningoriented developments. However, learning-based algorithms often imply drastic changes to the way data are represented or consumed, meaning that the overall pipeline can be affected even though a subpart of it is optimized. In this paper, we review the recent major advances that have been proposed all across the transmission chain, and we discuss their potential impact and the research challenges that they raise

    A reduced reference video quality assessment method for provision as a service over SDN/NFV-enabled networks

    Get PDF
    139 p.The proliferation of multimedia applications and services has generarted a noteworthy upsurge in network traffic regarding video content and has created the need for trustworthy service quality assessment methods. Currently, predominent position among the technological trends in telecommunication networkds are Network Function Virtualization (NFV), Software Defined Networking (SDN) and 5G mobile networks equipped with small cells. Additionally Video Quality Assessment (VQA) methods are a very useful tool for both content providers and network operators, to understand of how users perceive quality and this study the feasibility of potential services and adapt the network available resources to satisfy the user requirements

    A reduced reference video quality assessment method for provision as a service over SDN/NFV-enabled networks

    Get PDF
    139 p.The proliferation of multimedia applications and services has generarted a noteworthy upsurge in network traffic regarding video content and has created the need for trustworthy service quality assessment methods. Currently, predominent position among the technological trends in telecommunication networkds are Network Function Virtualization (NFV), Software Defined Networking (SDN) and 5G mobile networks equipped with small cells. Additionally Video Quality Assessment (VQA) methods are a very useful tool for both content providers and network operators, to understand of how users perceive quality and this study the feasibility of potential services and adapt the network available resources to satisfy the user requirements

    Quality-aware Content Adaptation in Digital Video Streaming

    Get PDF
    User-generated video has attracted a lot of attention due to the success of Video Sharing Sites such as YouTube and Online Social Networks. Recently, a shift towards live consumption of these videos is observable. The content is captured and instantly shared over the Internet using smart mobile devices such as smartphones. Large-scale platforms arise such as YouTube.Live, YouNow or Facebook.Live which enable the smartphones of users to livestream to the public. These platforms achieve the distribution of tens of thousands of low resolution videos to remote viewers in parallel. Nonetheless, the providers are not capable to guarantee an efficient collection and distribution of high-quality video streams. As a result, the user experience is often degraded, and the needed infrastructure installments are huge. Efficient methods are required to cope with the increasing demand for these video streams; and an understanding is needed how to capture, process and distribute the videos to guarantee a high-quality experience for viewers. This thesis addresses the quality awareness of user-generated videos by leveraging the concept of content adaptation. Two types of content adaptation, the adaptive video streaming and the video composition, are discussed in this thesis. Then, a novel approach for the given scenario of a live upload from mobile devices, the processing of video streams and their distribution is presented. This thesis demonstrates that content adaptation applied to each step of this scenario, ranging from the upload to the consumption, can significantly improve the quality for the viewer. At the same time, if content adaptation is planned wisely, the data traffic can be reduced while keeping the quality for the viewers high. The first contribution of this thesis is a better understanding of the perceived quality in user-generated video and its influencing factors. Subjective studies are performed to understand what affects the human perception, leading to the first of their kind quality models. Developed quality models are used for the second contribution of this work: novel quality assessment algorithms. A unique attribute of these algorithms is the usage of multiple features from different sensors. Whereas classical video quality assessment algorithms focus on the visual information, the proposed algorithms reduce the runtime by an order of magnitude when using data from other sensors in video capturing devices. Still, the scalability for quality assessment is limited by executing algorithms on a single server. This is solved with the proposed placement and selection component. It allows the distribution of quality assessment tasks to mobile devices and thus increases the scalability of existing approaches by up to 33.71% when using the resources of only 15 mobile devices. These three contributions are required to provide a real-time understanding of the perceived quality of the video streams produced on mobile devices. The upload of video streams is the fourth contribution of this work. It relies on content and mechanism adaptation. The thesis introduces the first prototypically evaluated adaptive video upload protocol (LiViU) which transcodes multiple video representations in real-time and copes with changing network conditions. In addition, a mechanism adaptation is integrated into LiViU to react to changing application scenarios such as streaming high-quality videos to remote viewers or distributing video with a minimal delay to close-by recipients. A second type of content adaptation is discussed in the fifth contribution of this work. An automatic video composition application is presented which enables live composition from multiple user-generated video streams. The proposed application is the first of its kind, allowing the in-time composition of high-quality video streams by inspecting the quality of individual video streams, recording locations and cinematographic rules. As a last contribution, the content-aware adaptive distribution of video streams to mobile devices is introduced by the Video Adaptation Service (VAS). The VAS analyzes the video content streamed to understand which adaptations are most beneficial for a viewer. It maximizes the perceived quality for each video stream individually and at the same time tries to produce as little data traffic as possible - achieving data traffic reduction of more than 80%

    Machine Learning for Multimedia Communications

    Get PDF
    Machine learning is revolutionizing the way multimedia information is processed and transmitted to users. After intensive and powerful training, some impressive efficiency/accuracy improvements have been made all over the transmission pipeline. For example, the high model capacity of the learning-based architectures enables us to accurately model the image and video behavior such that tremendous compression gains can be achieved. Similarly, error concealment, streaming strategy or even user perception modeling have widely benefited from the recent learning-oriented developments. However, learning-based algorithms often imply drastic changes to the way data are represented or consumed, meaning that the overall pipeline can be affected even though a subpart of it is optimized. In this paper, we review the recent major advances that have been proposed all across the transmission chain, and we discuss their potential impact and the research challenges that they raise

    Scalable video streaming in wireless mesh networks.

    Get PDF
    Wireless mesh network provides efficient and reliable services for large scale communications. Video streaming in wireless networks enhances the services by delivering multimedia information to end users. However, because of the dynamic conditions of networks and variety of users, how to smoothly deliver the multimedia data to users without wasting precious network resources is still a challenge. This thesis addressed this challenge by investigating several key issues in video streaming in wireless mesh networks. Firstly, a video streaming system, Swan Video Streaming system (SVS), over wireless mesh networks was designed and developed. Secondly, a scalable video coding scheme was adopted in SVS. Video bit streams were split into two layers, base layer and enhancement layer. These two layers of video streams were packed into two multicast groups to allow users to get access them separately based on their processing ability and network conditions. This prevents the waste of network bandwidth by eliminating the delivery of videos to all the users regardless of their conditions. Thirdly, to improve the video robustness and reduce the overhead of the network for real-time video streaming, the important parameter messages of scale coded videos are transmitted in a reliable manner. SDP (Session Description Protocol) and RTCP (Real-time Transport Control Protocol) were improved to transmit the control messages at the beginning of video transmission and during video transmission stages, respectively. A new rearrangement method in RTCP of received packets was also proposed to improve the efficiency of algorithm and reduce network overhead. In addition, based on the feedback from video server and receivers, server and receivers can adjust their output bit rate and receiving rate according to different conditions of network to reduce the congestion. The above approaches have been evaluated in the developed SVS testbed. Tests results show the approaches are effective and feasible in real application scenarios
    corecore