252 research outputs found

    Fundamentals of Earth Observation Policy: Examples for German and European Missions

    Get PDF
    Several European countries have developed their national high resolution earth observation systems. Some of them are operated in close cooperation with industrial partners, others are dual-use missions earmarked to fulfil the needs of national security. In addition, the European Space Agency and the European Commission have initiated the Global Monitoring for Environment and Security (GMES) project. Therein, a fleet of satellites (SENTINELs) will deliver data for European wide information services, augmented by data from national and non-European earth observation systems. This new scenario needs clear guidance and regulations. Besides the principles for operations of earth observation missions – as set out in UN principles on earth observation – the operators of very high resolution missions require clear governmental acts which international users can be served and which data might be restricted in distribution. For national science and the SENTINEL-missions, a policy for free and open access is being developed to guarantee a maximum use of the data. Exemplified on the German national missions and the European GMES scenario, data policies and regulations for existing and new earth observation missions will be explained

    High Resolution 3D Earth Observation Data Analysis for Safeguards Activities

    Get PDF
    This paper provides an overview of the investigations performed at DLR with respect to the application of high resolution SAR and optical data for 3D analysis in the context of Safeguards. The Research Center Jülich and the adjacent open cut mines were used as main test sites, and a comprehensive stack of ascending and descending TerraSAR data was acquired over two years. TerraSAR data acquisition was performed, and various ways to visualize and analyze stacks of radar images were evaluated. Building height estimation was performed using a combination of ascending-descending radar images, as well as height-form-shadow and height-from-layover. A tutorial on building signatures from SAR images highlighted the sensor specific imaging characteristics. These topics were particularly relevant in safeguards activity with a “small-budget” as only a single image – or a couple - were employed. Interferometric coherence map interpretation allows the detection of traffic on dirt roads. Digital surface models (DSM) were generated from TanDEM-X interferometric data and from optical VHR data. Sub-meter Worldview-2 and GeoEye-1 data was processed into highly detailed DSM with a grid spacing of 1 m, showing building structures. 3D change and volume detection was performed with both optical and radar DSMs. The TanDEM-X DSMs proved useful for volume change detection and computation in mining areas, and DSMs generated from optical satellite data show details on the building level. Virtual 3D fly-throughs were found to be a good tool to provide an intuitive understanding of site structure and might be useful for inspector briefing

    The TerraSAR-X Orthorectification Service and its Benefit for Land Use Applications

    Get PDF
    The German Aerospace Center (DLR) currently develops the TerraSAR-X Payload Ground Segment. On request level 1b products will be distributed to the user. Two of the four basic products available are generated by the geocoding system. This system supports ellipsoid and terrain correction in order to provide orthorectified images. A new product called Enhanced Ellipsoid Corrected (EEC) will be offered that considers Digital Elevation Models (DEMs) of a moderately coarser resolution than the resolution of the TerraSAR-X modes. SRTM/X-band DEMs with approximately 25 m resolution will be the backbone for this operational and fully automated service. For high precision terrain correction first results of an experimental processor are presented using a high resolution DEM, tie-pointing and image adjustment

    Classification accuracy increase using multisensor data fusion

    Get PDF
    The practical use of very high resolution visible and near-infrared (VNIR) data is still growing (IKONOS, Quickbird, GeoEye-1, etc.) but for classification purposes the number of bands is limited in comparison to full spectral imaging. These limitations may lead to the confusion of materials such as different roofs, pavements, roads, etc. and therefore may provide wrong interpretation and use of classification products. Employment of hyperspectral data is another solution, but their low spatial resolution (comparing to multispectral data) restrict their usage for many applications. Another improvement can be achieved by fusion approaches of multisensory data since this may increase the quality of scene classification. Integration of Synthetic Aperture Radar (SAR) and optical data is widely performed for automatic classification, interpretation, and change detection. In this paper we present an approach for very high resolution SAR and multispectral data fusion for automatic classification in urban areas. Single polarization TerraSAR-X (SpotLight mode) and multispectral data are integrated using the INFOFUSE framework, consisting of feature extraction (information fission), unsupervised clustering (data representation on a finite domain and dimensionality reduction), and data aggregation (Bayesian or neural network). This framework allows a relevant way of multisource data combination following consensus theory. The classification is not influenced by the limitations of dimensionality, and the calculation complexity primarily depends on the step of dimensionality reduction. Fusion of single polarization TerraSAR-X, WorldView-2 (VNIR or full set), and Digital Surface Model (DSM) data allow for different types of urban objects to be classified into predefined classes of interest with increased accuracy. The comparison to classification results of WorldView-2 multispectral data (8 spectral bands) is provided and the numerical evaluation of the method in comparison to other established methods illustrates the advantage in the classification accuracy for many classes such as buildings, low vegetation, sport objects, forest, roads, rail roads, etc

    All-weather avalanche activity monitoring from space?

    Get PDF
    Information on avalanche activity or on non-activity on local and regional scale is of great value for avalanche warning services, traffic authorities and experts responsible for safety in communities or ski resorts. In particular during bad weather condition, such information is available only very limited or not at all. The aim of ESA IAP feasibility study "Improved Alpine Avalanche Forecast Service" was to investigate existing technology to overcome this gap. Of particular interest were radar-based techniques that have the potential to operate independently of daylight and weather conditions

    Geometric Accuracy Assessment of Very High-Resolution Optical Data Orthorectified using TerraSAR-X DSM to Support Disaster Management in Indonesia

    Get PDF
    Advanced remote sensing satellite data with detail spatial resolution can be an alternative to aerial photography and outweigh in providing rapid and vast spatial, remote area, and consist of multispectral bands to produce continues information. The various types of very high spatial resolution satellite, benefit in producing information for large-scale mappings, such as updating an urban map and supporting disaster management for mitigation, preparedness, emergency response, and recovery effectively and efficiently. Large-scale mapping information for disaster management, particularly for quick response is essential to map the impacted sites, measure the number of houses and infrastructure damaged and determine the evacuation area. However, in producing large-scale mapping, the information should refer to the geospatial specification standard, such as accurate geometric, detail thematic information and completeness. This study aims to identify the use of Pleiades imagery for supporting large-scale mapping, including for disaster management by assessing the geometry accuracy from a standard product acquired from the ground station and precise orthorectification using different types of DSM, including TerraSAR-X and improvement using ground control points. The results show that the improved accuracy to meet geometric accuracy standard for scale 1:5000 can be achieved using a primary product data which process using an insertion of GCPs and selecting the better DSM, while for the standard ortho product can be achieved using shifting the coordinate position of the image. Assessment of the thematic extraction visually shows that the imagery meets the information for large-scale mapping, but detail attribution requires information from field data

    A revised radiometric normalisation standard for SAR

    Full text link
    Improved geometric accuracy in SAR sensors implies that more complex models of the Earth may be used not only to geometrically rectify imagery, but also to more robustly calibrate their radiometry. Current beta, sigma, and gamma nought SAR radiometry conventions all assume a simple “flat as Kansas” Earth ellipsoid model. We complement these simple models with improved radiometric calibration that accounts for local terrain variations. In the era of ERS-1 and RADARSAT-1, image geolocation accuracy was in the order of multiple samples, and tiepointfree establishment of the relationship between radar and map geometries was not possible. Newer sensors such as ASAR, PALSAR, and TerraSAR-X all support accurate geolocation based on product annotations alone. We show that high geolocation accuracy, combined with availability of high-resolution accurate elevation models, enables a more robust radiometric calibration standard for modern SAR sensors that is based on gamma nought normalised using an Earth terrain-model

    High resolution radargrammetry with COSMO-SkyMed, TerraSAR-X and RADARSAT-2 imagery: development and implementation of an image orientation model for Digital Surface Model generation

    Get PDF
    Digital Surface and Terrain Models (DSM/DTM) have large relevance in several territorial applications, such as topographic mapping, monitoring engineering, geology, security, land planning and management of Earth's resources. The satellite remote sensing data offer the opportunity to have continuous observation of Earth's surface for territorial application, with short acquisition and revisit times. Meeting these requirements, the SAR (Synthetic Aperture Radar) high resolution satellite imagery could offer night-and-day and all-weather functionality (clouds, haze and rain penetration). Two different methods may be used in order to generate DSMs from SAR data: the interferometric and the radargrammetric approaches. The radargrammetry uses only the intensity information of the SAR images and reconstructs the 3D information starting from a couple of images similarly to photogrammetry. Radargrammetric DSM extraction procedure consists of two basic steps: the stereo pair orientation and the image matching for the automatic detection of homologous points. The goal of this work is the definition and the implementation of a geometric model in order to orientate SAR imagery in zero Doppler geometry. The radargrammetric model implemented in SISAR (Software per Immagini Satellitari ad Alta Risoluzione - developed at the Geodesy and Geomatic Division - University of Rome "La Sapienza") is based on the equation of radar target acquisition and zero Doppler focalization Moreover a tool for the SAR Rational Polynomial Coefficients (RPCs) generation has been implemented in SISAR software, similarly to the one already developed for the optical sensors. The possibility to generate SAR RPCs starting from a radargrammetric model sounds of particular interest since, at present, the most part of SAR imagery is not supplied with RPCs, although the RPFs model is available in several commercial software. Only RADARSAT-2 data are supplied with vendors RPCs. To test the effectiveness of the implemented RPCs generation tool and the SISAR radargrammetric orientation model the reference results were computed: the stereo pairs were orientated with the two model. The tests were carried out on several test site using COSMO-SkyMed, TerraSAR-X and RADARSAT-2 data. Moreover, to evaluate the advantages and the different accuracy between the orientation models computed without GCPs and the orientation model with GCPs a Monte Carlo test was computed. At last, to define the real effectiveness of radargrammetric technique for DSM extraction and to compare the radrgrammetric tool implemented in a commercial software PCI-Geomatica v. 2012 and SISAR software, the images acquired on Beauport test site were used for DSM extraction. It is important underline that several test were computed. Part of this tests were carried out under the supervision of Prof. Thierry Toutin at CCRS (Canada Centre of Remote Sensing) where the PCI-Geomatica orientation model was developed, in order to check the better parameters solution to extract radargrammetric DSMs. In conclusion, the results obtained are representative of the geometric potentialities of SAR stereo pairs as regards 3D surface reconstruction

    Circum-Arctic changes in the flow of glaciers and ice caps from satellite SAR data between the 1990s and 2017

    Full text link
    We computed circum-Arctic surface velocitymaps of glaciers and ice caps over the Canadian Arctic, Svalbard and the Russian Arctic for at least two times between the 1990s and 2017 using satellite SAR data. Our analyses are mainly performed with offset-tracking of ALOS-1 PALSAR-1 (2007–2011) and Sentinel-1 (2015–2017) data. In certain cases JERS-1 SAR (1994–1998), TerraSAR-X (2008–2012), Radarsat-2 (2009–2016) and ALOS-2 PALSAR-2 (2015–2016) data were used to fill-in spatial or temporal gaps. Validation of the latest Sentinel-1 results was accomplished by means of SAR data at higher spatial resolution (Radarsat-2Wide Ultra Fine) and ground-basedmeasurements. In general, we observe a deceleration of flow velocities for the major tidewater glaciers in the Canadian Arctic and an increase in frontal velocity along with a retreat of frontal positions over Svalbard and the Russian Arctic. However, all regions have strong accelerations for selected glaciers. The latter developments can be well traced based on the very high temporal sampling of Sentinel-1 acquisitions since 2015, revealing new insights in glacier dynamics. For example, surges on Spitsbergen (e.g., Negribreen, Nathorsbreen, Penckbreen and Strongbreen) have a different characteristic and timing than those over Eastern Austfonna and Edgeoya (e.g., Basin 3, Basin 2 and Stonebreen). Events similar to those ongoing on Eastern Austofonna were also observed over the Vavilov Ice Cap on Severnaya Zemlya and possibly Simony Glacier on Franz-Josef Land. Collectively, there seems to be a recently increasing number of glaciers with frontal destabilization over Eastern Svalbard and the Russian Arctic compared to the 1990s
    corecore