431 research outputs found

    A Quality of Service Framework for Internet Share Trading

    Get PDF
    The recent Quality of Service (QoS) architecture proposed by the Internet Engineering Task Force (IETF) enables a set of new network services providing possible solutions to improve the quality of the Internet-based services. The interest of this research is to find a customizable QoS network solution for the Internet based share trading business by deploying these QoS architectures in order to address the quality issues in the Internet Share Trading Business. The construction of the QoS theoretical framework begins with the identification of the Internet service capabilities required by the Internet share trading business through a case study. The appropriate QoS architectural design is selected through matching the existing QoS architectures with the identified service capabilities. The QoS technological strategies and QoS capabilities are thus derived from the selected QoS architectural design. Additionally, the effectiveness of the proposed QoS architectural design is evaluated against the current implementation by using computer simulation

    DSL-based triple-play services

    Get PDF
    This research examines the triple play service based on the ADSL technology. The voice over IP will be checked and combined with the internet data by two monitoring programs in order to examine the performance that this service offers and then will be compared with the usual method of internet connection.This research examines the triple play service based on the ADSL technology. The voice over IP will be checked and combined with the internet data by two monitoring programs in order to examine the performance that this service offers and then will be compared with the usual method of internet connection.

    End-to-end provisioning in multi-domain/multi-layer networks

    Get PDF
    The last decade has seen many advances in high-speed networking technologies. At the Layer 1 fiber-optic level, dense wavelength division multiplexing (DWDM) has seen fast growth in long-haul backbone/metro sectors. At the Layer 1.5 level, revamped next-generation SONET/SDH (NGS) has gained strong traction in the metro space, as a highly flexible sub-rate\u27 aggregation and grooming solution. Meanwhile, ubiquitous Ethernet (Layer 2) and IP (Layer 3) technologies have also seen the introduction of new quality of service (QoS) paradigms via the differentiated services (Diff-Serv) and integrated services (Intserv) frameworks. In recent years, various control provisioning standards have also been developed to provision these new networks, e.g., via efforts within the IETF, ITU-T, and OIF organizations. As these networks technologies gain traction, there is an increasing need to internetwork multiple domains operating at different technology layers, e.g., IP, Ethernet, SONET, DWDM. However, most existing studies have only looked at single domain networks or multiple domains operating at the same technology layer. As a result, there is now a growing level of interest in developing expanded control solutions for multi-domain/multi-layer networks, i.e., IP-SONET-DWDM. Now given the increase in the number of inter-connected domains, it is difficult for a single entity to maintain complete \u27global\u27 information across all domains. Hence, related solutions must pursue a distributed approach to handling multi-domain/multi-layer problem. Namely, key provisions are needed in the area of inter- domain routing, path computation, and signaling. The work in this thesis addresses these very challenges. Namely, a hierarchical routing framework is first developed to incorporate the multiple link types/granularities encountered in different network domains. Commensurate topology abstraction algorithms and update strategies are then introduced to help condense domain level state and propagate global views. Finally, distributed path computation and signaling setup schemes are developed to leverage the condensed global state information and make intelligent connection routing decisions. The work leverages heavily from graph theory concepts and also addresses the inherent distributed grooming dimension of multi-layer networks. The performance of the proposed framework and algorithms is studied using discrete event simulation techniques. Specifically, a range of multi-domain/multi-layer network topologies are designed and tested. Findings show that the propagation of inter-domain tunneled link state has a huge impact on connection blocking performance, lowering inter-domain connection blocking rates by a notable amount. More importantly, these gains are achieved without any notable increase in inter-domain routing loads. Furthermore, the results also show that topology abstraction is most beneficial at lower network load settings, and when used in conjunction with load-balancing routing.\u2

    Multi-domain crankback operation for IP/MPLS & DWDM networks

    Get PDF
    Network carriers and operators have built and deployed a very wide range of networking technologies to meet their customers needs. These include ultra scalable fibre-optic backbone networks based upon dense wavelength division multiplexing (DWDM) solutions as well as advanced layer 2/3 IP multiprotocol label switching (MPLS) and Ethernet technologies as well. A range of networking control protocols has also been developed to implement service provisioning and management across these networks. As these infrastructures have been deployed, a range of new challenges have started to emerge. In particular, a major issue is that of provisioning connection services between networks running across different domain boundaries, e.g., administrative geographic, commercial, etc. As a result, many carriers are keenly interested in the design of multi-domain provisioning solutions and algorithms. Nevertheless, to date most such efforts have only looked at pre-configured, i.e., static, inter-domain route computation or more complex solutions based upon hierarchical routing. As such there is significant scope in developing more scalable and simplified multi-domain provisioning solutions. Moreover, it is here that crankback signaling offers much promise. Crankback makes use of active messaging techniques to compute routes in an iterative manner and avoid problematic resource-deficient links. However very few multi-domain crankback schemes have been proposed, leaving much room for further investigation. Along these lines, this thesis proposes crankback signaling solution for multi-domain IP/MPLS and DWDM network operation. The scheme uses a joint intra/inter-domain signaling strategy and is fully-compatible with the standardized resource reservation (RSVP-TE) protocol. Furthermore, the proposed solution also implements and advanced next-hop domain selection strategy to drive the overall crankback process. Finally the whole framework assumes realistic settings in which individual domains have full internal visibility via link-state routing protocols, e.g., open shortest path first traffic engineering (OSPF-TE), but limited \u27next-hop\u27 inter-domain visibility, e.g., as provided by inter-area or inter-autonomous system (AS) routing protocols. The performance of the proposed crankback solution is studied using software-based discrete event simulation. First, a range of multi-domain topologies are built and tested. Next, detailed simulation runs are conducted for a range of scenarios. Overall, the findings show that the proposed crankback solution is very competitive with hierarchical routing, in many cases even outperforming full mesh abstraction. Moreover the scheme maintains acceptable signaling overheads (owing to it dual inter/intra domain crankback design) and also outperforms existing multi-domain crankback algorithms.\u2

    Saturation routing for asynchronous transfer mode (ATM) networks

    Get PDF
    The main objective of this thesis is to show that saturation routing, often in the past considered inefficient, can in fact be a viable approach to use in many important applications and services over an Asynchronous Transfer Mode (ATM) network. For other applications and services, a hybrid approach (one that partially uses saturation routing) is presented. First, the minimum effects of saturation routing are demonstrated by showing that the ratio, defined as f, of routing overhead cells over information cells is small even for large networks. Second, modeling and simulation and M/D/l queuing analysis techniques are used to show that the overall effect on performance when using saturation routing is not significant over ATM networks. Then saturation routing ATM implementation is also provided, with important extensions to services such as multicast routing. After an analytical comparison, in terms of routing overhead, is made between Saturation Routing and the currently proposed Private Network-Network Interface (PNNI) procedure for ATM routing made by the ATM forum. This comparison is made for networks of different sizes (343node and 2401 -node networks) and different number of hierarchical levels (3 and 4 levels of hierarchy). The results show that the higher the number of levels of hierarchy and the farthest (in terms of hierarchical levels) the source and the destination nodes are from each other, the more advantageous saturation routing becomes. Finally, a set of measures of performance for use by saturation routing (or any routing algorithm), as metrics for routing path selection, is proposed. Among these measures, an innovative new measure of performance derived for measuring quality of service provided to Constant Bit Rate (CBR) users (e.g., such as voice and video users) called the Burst Voice Arrival Lag (BVAL) is described and derived

    Multi-domain solutions for the deployment of private 5G networks

    Get PDF
    Private 5G networks have become a popular choice of various vertical industries to build dedicated and secure wireless networks in industry environments to deploy their services with enhanced service flexibility and device connectivity to foster industry digitalization. This article proposes multiple multi-domain solutions to deploy private 5G networks for vertical industries across their local premises and interconnecting them with the public networks. Such scenarios open up a new market segment for various stakeholders, and break the current operators' business and service provisioning models. This, in turn, demands new interactions among the different stakeholders across their administrative domains. To this aim, three distinct levels of multi-domain solutions for deploying vertical's 5G private networks are proposed in this work, which can support interactions at different layers among various stakeholders, allowing for distinct levels of service exposure and control. Building on a set of industry verticals (comprising Industry 4.0, Transportation and Energy), different deployment models are analyzed and the proposed multi-domain solutions are applied. These solutions are implemented and validated through two proof-of-concept prototypes integrating a 5G private network platform (5Growth platform) with public ones. These solutions are being implemented in three vertical pilots conducted with real industry verticals. The obtained results demonstrated the feasibility of the proposed multi-domain solutions applied at the three layers of the system enabling various levels of interactions among the different stakeholders. The achieved end-to-end service instantiation time across multiple domains is in the range of minutes, where the delay impact caused by the resultant multi-domain interactions is considerably low. The proposed multi-domain approaches offer generic solutions and standard interfaces to support the different private network deployment models.This work was supported in part by the European Commission (EC) H2020 5GPPP 5Growth Project under Grant 856709, and in part by the H2020 5G European Validation platform for Extensive trials (5G EVE) Project under Grant 815074
    corecore