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ABSTRACT

SATURATION ROUTING FOR ASYNCHRONOUS TRANSFER MODE (ATM)
NETWORKS

by
José Luis Uclés

The main objective of this thesis is to show that saturation routing, often in the past

considered inefficient, can in fact be a viable approach to use in many important

applications and services over an Asynchronous Transfer Mode (ATM) network. For

other applications and services, a hybrid approach (one that partially uses saturation

routing) is presented. First, the minimum effects of saturation routing are demonstrated

by showing that the ratio, defined as f, of routing overhead cells over information cells is

small even for large networks. Second, modeling and simulation and M/D/1 queuing

analysis techniques are used to show that the overall effect on performance when using

saturation routing is not significant over ATM networks. Then saturation routing ATM

implementation is also provided, with important extensions to services such as multicast

routing.

After an analytical comparison, in terms of routing overhead, is made between

Saturation Routing and the currently proposed Private Network-Network Interface

(PNNI) procedure for ATM routing made by the ATM forum. This comparison is made

for networks of different sizes (343-node and 2401-node networks) and different number

of hierarchical levels (3 and 4 levels of hierarchy). The results show that the higher the

number of levels of hierarchy and the farthest (in terms of hierarchical levels) the source

and the destination nodes are from each other, the more advantageous saturation routing

becomes. Finally, a set of measures of performance for use by saturation routing (or any



routing algorithm), as metrics for routing path selection, is proposed. Among these

measures, an innovative new measure of performance derived for measuring quality of

service provided to Constant Bit Rate (CBR) users (e.g., such as voice and video users)

called the Burst Voice Arrival Lag (BVAL) is described and derived.
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CHAPTER 1

INTRODUCTION

Saturation Routing has always been discounted in the past as a highly inefficient routing

mechanism for a packet type of network. However, in this thesis, it will be shown that

although the overhead may be higher than other typical routing algorithms, the amount of

overhead spent is offset by the savings produced when obtaining a more efficient path.

That is, the path efficiencies gained in terms of throughput and delay will surpass the

expense associated with the saturation routing process. This is especially true in

networks, such as the Asynchronous Transfer Mode (ATM), which exhibit a low ratio of

the routing effort over the amount of information exchanged. Then following illustrates

research done in the literature that substantiates the use and advantages of using

Saturation Routing.

Routing efficiency - For example, the Private Network-Network Interface

Specification, Version 1.0 [1] indicates the following:

"ATM is a connection oriented network technology. This means
connections will be maintained for a long period of time. Inefficient
routing will affect connections for as long as they remain open. It is
critical that paths are selected carefully".

It is clear that the intent of the specification is to highlight the importance of

selecting the best path in a network such as ATM — i.e., a network on which connections

will stay open for a long time (presumably with a substantial amount of information

being exchanged). One of the main advantages of the Saturation Routing algorithm is

that it will attempt every path in the network. As a result, the path selection can optimize
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network resources at a maximum level. In fact, Saturation Routing can also be adapted to

provide multipath benefits that have been reported in the literature [6].

Routing Accuracy - The same PNNI specification specifies the use of a flooding

mechanism to advertise the link information that is necessary to maintain the link state

routing tables required to perform their routing calculations. They use a saturation

routing scheme to exchange their most important pieces of information (i.e., the routing

information that allows routing to occur).

Routing Simplicity — The PNNI specification provides the argument that a

hierarchy needs to be created because maintaining information for every physical link

and for every node in the network would create enormous overhead in larger networks.

Saturation routing does not maintain that information at every node, simplifying in this

way its implementation complexity. In [12], it has been forecasted that future routing

protocols may result to "old" switching techniques, such as saturation routing, where

transmission efficiency is traded for simplicity

Routing Overhead — The PNNI type of algorithms requires the advertisement of

external addresses (which can be in the thousands), which create substantial overhead in

these networks. By its design, Saturation Routing can eliminate the need for these

advertisements. Only each node needs to know the external addresses that it can reach.

The rest of the nodes will know about it, when they desire to open connections to those

external addresses. It is also claimed in [5] that PNNI does not reduce information to

aggregate information to accomplish scalability and efficiency in large ATM networks.

Routing Consistency — The PNNI specification indicates that routing loops occur

when either switches implement different routing protocols or there is inconsistency in
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routing databases among the switches (typically due to changes in topology that have not

been fully propagated). By its nature, Saturation Routing is a loop-free algorithm.

Routing Protocol Combination — The PNNI specification allows for the use of

multiple routing protocols. A hybrid approach is recommended in this thesis for those

networks that have already implemented the PNNI routing algorithm. Indications of how

to use routing information to conduct other type of services (such as broadcast) have been

reported in the literature [8].

Routing Protocol Efficiency for Added Services — the literature already describes

how flooding based algorithms can enhance services such as Multicast [21] — this is

proposed in this thesis as well. It has been reported that multicasting has emerged as one

of the most focused areas in networking [2]. Even combinations of multicast with

Quality of Service (QOS) support have been provided in the literature [2]. Anycasting

services (a feature described in Internet Protocol Version 6 (Ipv6)) and reported in the

literature [18 and 23] can also be provided by Saturation Routing.

To support the claim of the benefits of the use of Saturation Routing, this thesis

has been organized as follows. The rest of Section 1 is an introduction section that

includes an overview of the ATM operation, overview of routing protocols, overview of

PNNI (the recommended routing algorithm for current ATM networks), and an overview

of Modeling and Simulation techniques used in ATM networks. Section 2 includes the

following: description of the Saturation Routing Algorithm in an ATM environment, an

analysis of the overhead incurred by the Saturation Routing, a comparison of overhead

with the existing PNNI approach, and a proposed alternative hybrid routing approach.
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Section 3 describes the measures of performance recommended for use by the algorithm.

Among those, the Burst Voice Arrival Lag (BVAL) is introduced and recommended.

Section 4 describes potential implementations of Saturation Routing for multicast

services. Section 5 provides conclusions and recommendations for follow-on research.

Sections 2 through 4 contain the original contributions of this dissertation.

1.1 ATM Operation

This section provides a description of Asynchronous Transfer Mode (ATM) technology

and systems. ATM systems are based on ITU-T Recommendations and ATM Forum

Standards. These standards apply to a layered reference model. ATM is an integrating

telecommunications concept that enables all types of information from voice to data to

video to be transported by common transmission and switching facilities. ATM networks

use fixed size packets (called cells) to transfer information, regardless of the type of

information. The constant size of the cells enables use of fast packet switching

technologies. Standards for ATM were developed based on the availability of highly

reliable and high bandwidth transmission facilities (such as fiber, cable, SONET). The

following subsections describe the reference model and layered structure of ATM

protocols. In addition, it identifies some of the principle defining standards. It also

provides a description of ATM networks.
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1.1.1 Reference Model

The ATM reference model protocol architecture is illustrated in Figure 1. The model is

divided into several planes and layers.

Control plane

The control plane performs the call/connection control functions usually referred to as

signaling. These functions include call set up, call supervision, and call release. The

signaling protocols are included as higher layers in the reference model of Figure 1.1.

All the layers below support signaling. Figure 1.2 shows the control plane layers in an

ATM network. Note that in Figure 1.2 higher layers denotes those layers above the

signaling layer.

Figure 1.1 ATM Protocol Reference Model
Source: ITU-T Recommendation 1.321, B-ISDN Protocol Reference Model and Its Applications, 1991.
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ATM Base Network

Figure 1.2 Control Plane and User Plane

User plane

The user plane provides the transfer of information via virtual connections set up by the

control plane. The user connection uses only the physical layer and ATM layer within

the network. The adaptation layer appears only in the ATM end systems. ATM end

systems may be user terminals, or may be interfaces (gateways) to other types of

networks, such as LANs or PBXs. Figure 1.2 shows the user plane layers in an ATM

network.

Management plane

The management handles operation and maintenance (OAM) information flows, and

provides coordination between and among all the planes.
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1.1.2 Layered Structure

The ATM protocol layers are loosely coordinated with the OSI layered structure. The

physical layer is layer 1. Layer 2 is generally considered to consist of the ATM layer and

the ATM Adaptation layer. Within the network, layer 3 exists only in the control plane.

In end systems, layer 3 exists in both the control and user planes. Refer to Figure 1.2.

ATM cell

In order to properly describe the functions of the various protocol layers, it is necessary to

describe the ATM cell, which is shown if Figure 1.3. The cell consists of 5 header bytes

and 48 data bytes.

Figure 1.3 ATM Cell
Source: The ATM Forum Technical Committee, ATM User-Network Interface (UNI) Specification, Version
3.1, 1995.

At the UNI, the first 4 bits comprise the generic flow control (GFC) field. Within

the network there is no GFC field and these 4 bits are used to extend the virtual path

indicator (VPI) field. Together the VPI/VCI fields identify the virtual path and virtual

channel for a given connection. All cells transferred over that connection contain the

same VPI/VCI field contents. The 3-bit payload type (PT) field classifies the contents of

the data field as user data, or for other purposes such as management or maintenance.

The cell loss priority (CLP) bit indicates whether or not a cell may be discarded when the
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network is congested. The 1-byte header error control (HEC) field performs error control

on the header. It can correct single bit errors, or detect single and multiple errors (but not

both). There is no error control provided for the user data. The defining standard is ITU-

T Recommendation 1.211.

Layer 3 

There are several principle standards, which define the protocols and signal formats for

ATM signaling. ITU-T Recommendation Q.2931 defines user to network (UNI)

signaling between the user and the network. UNI signaling is non-symmetric since user

signaling functions are different than network signaling functions. ATM Forum's

af-pnni-0055.000 (PNNI) standard defines protocols to extend the signaling functions across

the network from the access switch to the egress switch. PNNI signaling is symmetric,

since both sides of the interface are network nodes, and in fact, PNNI signaling is very

similar to the network side of UNI signaling.

ATM Adaptation Layer (AAL)

The AAL supports the transfer of signaling messages in the control plane, and user

information in the user plane. Since an ATM cell can carry only 48 bytes of user data, a

protocol is needed to adapt the protocol data unit (PDU) from the source of the data to the

ATM cell. This is the function of the ATM adaptation layer. The AAL consists of two

sublayers known as the common part (CP) and the service specific convergence sublayer

(SSCS). The CP is further divided into the common part convergence sublayer (CPCS)

and the segmentation and reassembly (SAR) sublayer. The CPCS functions include the

delineation and transparency of user information, and CPCS PDU error detection. The

SAR sublayer handles the segmentation of user information (PDUs) into fixed size
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segments for insertion into cells, and the reassembly of cell payloads into CPCS PDUs.

The SSCS provides the service specific functions of the particular AAL, and may be null.

Several types of AAL protocols are required to handle the different types of user services,

whether they are constant bit rate, or variable bit rate. These are described below.

AAL 1 

AAL 1 supports constant bit rate (CBR) service such as voice or video circuit emulation

where a timing relationship is required between source and sink. It provides a 47-byte

payload, with a 1-byte payload header to support timing and sequence integrity.

Adaptive clock recovery methods are not subject to standardization, since vendors may

use different methods without causing incompatibility. The defining standard is ANSI

T1.630.

AAL 2 

AAL 2 is not clearly defined.

AAL 3/4 

AAL 3/4 supports variable bit rate (VBR) services. It supports both assured and non-

assured operations. For non-assured operations, the SSCS may be null. An error discard

option allows corrupted PDUs to be delivered to the user. The protocol accepts variable

length PDUs up to 65,535 bytes, and segments them into cells. Each cell carries a 44-

byte payload, plus a 2-byte header and a 2-byte trailer. The payload header and trailer

provide protection against misordering of cells, and a 10-bit cyclic redundancy check

(CRC) for cell error detection. AAL 3/4 also provides an optional multiplexing of

multiple connections. The defining standard is ANSI T1.629. For assured operations a
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SSCS (not included in ANSI T1.629) is required to provide retransmission of erroneous

cells.

AAL 5 

AAL 5 supports variable bit rate (VBR) services. It supports both assured and non-

assured operations. For non-assured operations, the SSCS may be null. An error discard

option allows corrupted PDUs to be delivered to the user. The protocol accepts variable

length PDUs up to 65,535 bytes, and segments them into cells. No error protection is

provided in the cell payload, and each cell carries a 48-byte data payload. A 32-bit CRC

is provided in the CPCS PDU for error detection. The defining standard is ITU-T

Recommendation 1.363. For assured operations a SSCS (not included in ITU-T

Recommendation 1.363) is required to provide retransmission of erroneous CPCS PDUs.

Signaling AAL (SAAL)

The SAAL conveys signaling information across the UNI and the PNNI. The SSCS is

divided into the service specific coordination function (SSCF) and the service specific

connection-oriented protocol (SSCOP). The SSCF maps the services of SSCOP to the

layer 3 entity. SSCOP provides assured service for the signaling PDUs. SSCOP uses the

services of the CP protocol, which in this case is AAL 5. The defining standards are

ITU-T Recommendation Q. 2130 for SSCF and ITU-T recommendation Q.2110 for

SSCOP.

ATM layer

The ATM layer provides connection-oriented sequence preserving service to the layers

above by assigned virtual connection identifiers to each link of a connection when

required, and releasing them when no longer needed. Signaling and user information is
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carried on separate ATM layer virtual connections. The ATM layer provides its users

several types of communications services, such as unidirectional point-to-multipoint

communications, and bi-directional asymmetrical point-to-point communications. The

ATM layer supports the control, user, and management planes. The defining standard is

ATM Forum's af-uni-0010.002, Section 3, except that the approved standard ANSI

T1.627 replaces the referenced letter ballot, Ti LB310.

An important function of the ATM layer is Traffic and Congestion Control. The

following can cause congestion at the ATM layer: (1) ineffective call admission control,

(2) unpredictable fluctuation of traffic flows, and (3) fault conditions within the network.

Traffic at the UNI must conform to a traffic contract, which consists of a Connection

Traffic Descriptor and a QoS class for each direction of an ATM layer connection. Cells

that are non-compliant with the traffic contract may have their CLP bit set to lower

priority, and may be subsequently discarded by the network. The defining standard is

ITU-T Recommendation 1.371 as modified by af-uni-0010.002.

Physical layer

The physical layer provides transmission services to the ATM layer. The physical layer

consists of two sublayers, the transmission convergence (TC) sublayer, and the physical

media dependent (PMD) sublayer. The TC sublayer performs all functions necessary to

transform a flow of cells from the ATM layer to a flow of bits that can be transmitted and

received over a physical medium. If the physical medium is synchronous, idle cells may

be inserted. Common functions of the TC sublayer include header error checking, cell

rate decoupling, and cell delineation. The defining standard is ITU-T Recommendation

1.432. The PMD sublayer includes only physical media dependent functions, including
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line coding, bit timing, and bit transmission and reception over the physical medium.

Many phasic layer standards have been developed to accommodate different bit rates and

physical media. Table 1.1 summarizes some of the physical layer standards.

1.1.3 Network Structure

The relationship between the ATM UNI, PNNI, and private and public networks is

illustrated in Figure 1.4. The ATM UNI serves as the interface between user terminals

and an ATM network, and between ATM networks and the gateway to non-ATM

networks, i.e., LANs, IP routers, or PBXs. Also, since a private network switch is

viewed as a terminal by a public network, the ATM UNI also serves as the interface

between private networks and public networks. PNNI serves not only as the interface

between switches within a private network, but also between switches of different private

networks.
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Table 1.1 Physical Layer Standards Specified by the ATM Forum

Bit Rate Media Standard/Specification

STS-12c 622.08 Mbps Optical TC&PMD:af-phy-0046.000

STS-3c 155.52 Mbps Optical TC&PMD:af-uni-0010.002

UTP-5 TC: af-uni-0010.002
PMD:af-phy-0015.000
TC: af-uni-0010.0002
PMD: af-phy-0047.000

UPT-3

STP TC: af-uni-0010.002
PMD: af-phy-0015.000
TC: ANSI TI..646
PMD: af-phy-0062.000
TC&PMD:af-uni-0010.002

MMP

Fiber

Channel

155.52 Mbps Optical

STP TC&PMD: af-uni-0010.002

FDDI 100 Mbps Optical TC&PMD: af-uni-0010.002

STS-1 51.84 Mbps UTP-3 TC&PMD: af-uni-0018.000

DS3 44.736 Mbps Coax TC&PMD: af-phy-0054.000

25.6 25.6 Mbps UTP/STP TC&PMD: af-phy-0040.000

E-1 2.048 Mpbs TP/Coax TC&PMD: af-phy-0064.000

DS-1 1.544 Mbps TP TC&PMD: af-phy-0016.000
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1.2 Routing Techniques

The main goal of routing is to provide a path - an efficient one is desirable -between a

source and an intended destination (or set of destinations, in the case of a multicast

routing attempt). There is a variety of routing attributes and/or features of a vast number

of routing algorithms described in the literature. A list attempting to describe most of

those attributes is included below. This is followed by a description of some of the better

known routing algorithms that are in use out there either in the telephone networks or

commercial packet networks for wired infrastructure (such as the routing protocols in the

Internet). It is not the intent of this section to provide an exhaustive list of all types of
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routing protocols, but provide the highlights of the ones that are most relevant to the

discussion in here.

1.2.1 Routing Attributes

The following provides a list of attributes/factors/issues that are typically used when

describing different routing protocols:

Adaptability

It is desirable for routing algorithms to adapt to new conditions in the network. If a

particular path does not exist because of failures in the network or link saturation, then it

is desirable that the routing algorithm provides an alternative to it. From this perspective,

routing algorithms can be classified as:

• Static - they never change their routing decisions (i.e., a simple table provides

information as to where the routing effort should be directed to),

• Quasi-Static - they only change their routing decisions based on hard failures,

either a node or a link failure, but not in the presence of saturation of a link,

• Dynamic (they attempt to optimize their routing based on the resources available

in the links.

Stability 

For the static routing algorithms, stability is not an issue (i.e., they are stable by design).

However, for the non-static routing algorithms, stability is a desirable feature. Stability is

a measure as to how the network approaches saturation. As the load increases in the

network and approaches the maximum theoretical value, the routing algorithm should

allow for the network to provide service to a . constant number of users without
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degradation, while using all of the network resources. Among the notorious examples of

routing that have not shown stability is the original ARPANET routing approach. In this

approach, as the network started reaching capacity, the routing engine started switching

from the most-congested routes to the least-congested routes. However, the least-

congested routes became the most-congested routes, after an update was received (i.e.,

the network resources are not used uniformly. This effect, combined with a high

frequency of routing updates, created a phenomenon called route flapping (also called a

fire-hose effect). Routes were recalculated frequently and the effect on the network was

such that half of the network was highly utilized while the other half was not. The

amount of capacity used to keep up with routing updates left the network with no more

capacity for transporting more packets.

Network overhead 

The amount of network overhead, as described in the previous attribute, also becomes an

important factor of routing algorithms. Obviously, it is desirable that the overhead

required for maintaining a routing protocol is minimum, or at least not significant.

However, there is a tradeoff that this thesis will attempt to capture, in general the less

overhead a routing protocol requires, the less efficient it becomes. In a less-strict

definition, the amount of overhead generated by a protocol is measured by the amount of

capacity taken by the messages used by the protocol to exchange routing information.

However, in a more strict definition, overhead of a given routing algorithm could also

add the amount of extra information sent on a network beyond those required by the most

optimum route. A typical example of that is the use of Protocol Independent Multicast —

Dense Mode (PIM-DM). In this routing algorithm, the information to maintain the
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routing multicast distribution trees is minimized. However, to reach that point, the

protocol dictates that all of the information sent to a multicast destination gets flooded out

all valid interfaces. This obviously creates a significant amount of packet duplication that

should be counted as overhead for a given routing algorithm.

Efficiency 

It refers to the amount of network resources utilized to satisfy the requirement of

transporting information from source to destination. The most common way of

measuring efficiency of a routing protocol is based on the shortest path algorithm.

Assuming that one is interested in selecting the minimum-hop route, the most efficient

routing algorithm is the one that uses the shortest path between source and destination (on

which each link hop has a cost of one). Efficiency can also become more complicated,

and one may be interested on minimizing delay between source and destination. Then,

the measurement is dependent not only in the number of links associated with the path,

but the capacity available on those links to satisfy the demand and the processing power

of the nodes associated between the source and the destination.

Memory/processing power

It refers to the amount of memory and processing power consumed by the nodes

executing the routing. Memory became an issue in the commercial Internet, prior to

address aggregation. That is because the amount of memory required by routers to route

to each single destination in the Internet started growing. Updates to the routing

techniques that allow address aggregation, which is used in storage of routing tables,

provided the necessary relief in Internet type of networks. Similarly, the amount of
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processing power needed to determine routes (to include execution of the routing

algorithm) can also become an important issue.

Complexity/ease of implementation 

Complexity and ease of implementation become an important factor in comparing routing

algorithms. In general, the simpler the algorithm is, the more appealing is usage because

of its impact on other measures such as: processing power, network overhead. That is

because, typically, simpler algorithms require less processing power, less memory, and

less network overhead.

Robustness 

This attribute is related to the adaptability factor. A robust routing algorithm will find a

path, assuming one exists, regardless of how severed a network becomes. For example,

the saturation routing algorithm is well known for its robustness property — that is if there

is an existent path, it will find it.

Consistency 

A consistent routing algorithm is the one that provides a consistent path between source

and destination (that is it will not create routing loops because of routing database

inconsistencies).

Optimality

Optimality refers to how optimum the path is selected between source and destination.

Saturation routing could become an optimum routing algorithm.

Routing Decision Place

This refers to the location of updates for routing occurs. There are two different types of

updating routing tables. These are Centralized, Distributed, and Source. In the
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centralized case, all of the routing updates are done in one central location and then they

are either distributed or accessed by each individual node, as they require the routing

information. Whereas in the distributed case, all of the routing updates are triggered by a

change in any of the nodes' view of the network. The changes of view by a node, causes

routing updates to be performed based on updates received by the other nodes. One of

the concerns with distributed routing is the lack of consistency. As updates occur

through the network, they could take a finite amount of time to propagate through the

network and create routing loops (e.g., the counting to infinity problem referred to in the

RIP protocol is a classical example of this problem). In the case of having the decision

place done at the source node, the source defines the path to be taken between itself and

the intended destination.

Type of routing effort 

Under this category, routing efforts have been divided into the following: (1) Routing for

a Circuit, (2) Routing for a Virtual Circuit, and (3) Routing for Datagrams. In the two

first cases, the routing effort is to establish either a circuit or a virtual circuit.

Presumably, the circuit is first routed using the routing protocol. Resources are checked

to ensure that the circuit or virtual circuit can be supported. After the circuit is setup an

exchange of data occurs between source and destination (and possibly vice-versa), using

the circuit established (and therefore not requiring any routing efforts). Whereas, in the

Routing for Datagrams case, data to be exchanged between source and destination is

broken up into smaller packets (called Datagrams) and are routed individually. In this

case, the path between source and destination does not remain constant during the

exchange. As a result, each individual datagram requires a routing effort
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Source route specifications 

In order to avoid routing loops, some routing protocols either dictate or allowed the

source node to specify the complete path to be taken by the packets between source and

destination. In some cases, the specification may be strict, that is the routing path

selected by the source must be followed and has been fully defined (i.e., includes all

nodes involved in the routing). In other cases, the specification may be loose (i.e., not all

of the nodes involved in the routing are included). An example of this type of routing is

the one described in the Private Network to Node Interface (PNNI) for ATM networks.

In this case, the source will include as much detail as the source is aware of. The

intermediate points between not well defined routes will be defined by those intermediate

points that have the full routing knowledge.

1.2.2 Routing Protocols for Telephone Networks

Most of the protocols defined for telephone networks are to select a circuit between

source and destination. This circuit (virtual or real) is to be maintained for the whole

duration of the conversation between the source and destination. The objective of the

routing protocol becomes to select a trunk group to establish communications between

the source and destination switches. Most of the telephone networks at their highest level

of hierarchy are of the fully connected type (i.e., each switch has a connection with every

other switch at that level in the hierarchy). As a result, the first option for most of these

routing protocols is to take the direct route (i.e., the trunk group that connects directly the

source and destination switches), if it exists and it is available. If that direct route

becomes totally congested (i.e., there is no more trunks available for a connection), then

that is the time at which a routing decision will have to be made. A description of the
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Dynamic Alternate Routing (DAR) algorithm used in the British Telecom public

switched Network is included below. Other algorithms such as the Dynamic

NonHierarchical Routing (DNHR) used in the US are also classic examples of the routing

algorithms used in telephone networks.

DAR algorithm 

The DAR algorithm will take the direct path when trunks are available in that link. Let's

assume that the 2 nodes labeled as S and D in the Figure 1.5 are to be connected. The

most direct path will be selected assuming that is available. Otherwise, a previously

selected node (which will be different for each source-destination pair and may change as

a function of time) 0 1 (called tandem node) will be used to make the connection a 2-hop

connection. If the number of trunks available in any of the links associated with the

alternate path (i.e., S-0 1 and 0 1 -D links) is less than a configurable parameter called

trunk-reservation, the call will be blocked and the identification of the tandem node will

be changed (possibly in a random fashion). Note how flow and congestion control (i.e.,

the decision of blocking or not blocking a call) becomes intimately related with the

routing scheme.

DAR can be extended to multihomed networks on which there are two levels of

hierarchy — one is the access network and the other one is the backbone (or also called

core) network. In this case, the core is fully connected while the access network has 2

connections to the core (i.e., the primary and the secondary connection) to what is known

as connections to parent nodes. In this case, DAR could be modified to always attempt

direct connections between the primary parent of the source switch with either the

primary or secondary parent of the destination. Or alternatively, between the secondary
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parent of the source with either the primary or secondary parent of the destination. In this

case, there will be four direct alternatives, prior to invoking the use of the alternate

nondirect path by DAR.

Figure 1.5 DAR Algorithm Illustration
Source: Martha E. Steenstrup, ed., Routing in Communications Networks, Englewood
Cliffs, NJ: Prentice Hall, 1995.

1.2.3 Routing Protocols for Packet Switched Networks

A large variety of routing protocols are in use in today's networks. The explosion in the

Internet has fueled a lot of research associated with the development of packet switched

routing algorithms. Packet switching networks can use either Datagram technology or

virtual circuit technology. Currently, the Internet uses a Datagram approach for routing

between source and destination (i.e., routing decisions are done independently as each
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packet arrives at each node). The Internet Protocol (IP) allows for source routing (in a

strict or loose sense), but this option is almost never invoked, if at all. On contrast to IP,

native ATM uses virtual circuit technology. A review of 3 different routing algorithms

will be presented. The Routing Information Protocol (RIP) (this is of the Distance Vector

family of routing protocols), the Open Shortest Path First (OSPF) networks (this is of the

Link State family of routing protocols). The Private Network to Node Interface (PNNI)

for ATM networks (also of the Link State family of routing protocols) will be discussed

in the next subsection. This variety of routing protocols will show the different types of

routing available for packet networks. Because of its importance to the topic, emphasis

will be placed on the description of the PNNI routing algorithm.

Routing Information Protocol (RIP)

RIP is a protocol that was extensively used in the Internet for routing within a Routing

domain (i.e., a set of routers that fall under the same network administrator or owner). It

consists of a set of routers updating their view of the network (expressed in terms of

reachable nodes and the distance required to reach those nodes) based on their local

knowledge. In general the RIP routing algorithm could work with an arbitrary cost

associated with each link (and that is how is being described in here). However, when

used in the Internet that cost is just the number of links.

In essence, each router calculates the distance that it perceives between itself and

all of its neighbor routers. This calculation is made and exchanged with all of the

neighbors. As the neighbors receive this information, they update "their view" of the

network and propagate that back to their neighbors. Because with the information

received (assuming that all of the neighbors' information has been received), they now
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can not only reach their neighbors, but they can also reach their neighbors' neighbors.

This algorithm is recursively repeated by every router in the network, until there is no

more updates to be transmitted. Once steady state is reached, routers will refresh

information after a refresh period has expired, or if a router's view of the network

changes (i.e., if a link or a node fails). It has been shown that the synchronized and the

distributed version of the algorithm (whose implementation is often referred to as either

the Ford-Fulkerson or the Bellman-Ford algorithm) will converge to the correct path

selection. This convergence is in a finite amount of time, assuming proper network

behavior (e.g., routers will never stop recomputing paths or receiving updates from its

neighbors).

Several issues have been identified and documented throughout the literature with

respect to distance vectors. The counting to infinity is a well-documented problem. This

is equally true with the proposed solutions such as: the split-horizon and the split-horizon

with poisoned reverse.

Open Shortest Path First (OSPF)

The Open Shortest Path First (OSPF) protocol is a protocol of the Link State family.

This type of protocol has practically replaced the use of RIP in the Internet. Both of these

protocols are executed only within an Autonomous System (AS). The basis for the Link

State routing protocols is a database stored and calculated by all routers in the area. This

database is a map as to how this router perceives every router in the area is connected and

the cost associated with its connection. Every router's database is then exchanged with

every other router in the area by a reliable flooding mechanism. Similarly to RIP, routers

will update their database based on information received by other router's database.
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Eventually, OSPF will converge and steady state can be achieved. Similarly to RIP,

information is refreshed in a refresh interval or whenever a change occurs.

It is believed that link state protocols are more efficient, reliable, and contain

desirable features (e.g., freedom of loops). Hence, its increase in popularity. ATM has

recommended the use of PNNI as its routing algorithm. This routing algorithm is also of

the link state vector family. A discussion of this algorithm in detail is included in the

next section.

1.3 Current Approach for ATM Routing - PNNI

PNNI Routing is based on the link state routing technique, and supports hierarchical

routing to achieve scalability. Nodes are organized into peer groups and hierarchical

logical nodes to minimize topological information needed by each node. Peer groups are

a collection of logical nodes and are established administratively. Reliable flooding is

used for advertising reachability. A topology database is established at each node, which

provides all information needed to compute a route from a given node to any address

reachable in or through that routing domain. PNNI interoperates with external routing

domains, and supports QoS-sensitive path selection (to some extent, efficient QoS-

sensitive path selection is still a research issue).

The description in Section 1.3.1 is intended to summarize the workings of PNNI

routing. Section 1.3.2 provides more detail, but for a comprehensive view refer to the

ATM forum PNNI Specification. Section 1.3.3 provides a description of PNNI routing
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packet formats, which are needed to perform analytical calculations of routing overhead,

later in Section 2.3.

1.3.1 PNNI Routing Overview

Building the topology database

A physical link is identified by two sets of parameters, one for each direction. Each set

consists of the transmitting port ID and the node ID. Physical nodes are lowest level

logical nodes. Logical nodes are administratively grouped into peer groups. Neighboring

(logical) nodes exchange peer group IDs in Hello packets. If their peer group IDs is the

same, they belong to the same peer group. Otherwise they belong to different peer

groups, and are border nodes.

A node's local state information is determined by the Hello packets, which

provide the status of the link to each neighbor. Information is exchanged on a well-

known VCC, the PNNI Routing Control Channel (RCC). Hello packets are sent

periodically, and provide the AESA, port ID, node ID, and peer group ID. During link

initialization, adjacent nodes within the same peer group synchronize their databases.

PTSEs contain topology state parameters and link state parameters. Database

synchronization results in the two nodes having identical topology databases. The Hello

protocol runs as long as the link is operational, and can therefore act as a link failure

detector.

A node's state information is bundled into PTSEs. After database

synchronization, PTSEs are reliably flooded throughout the peer group. A node's

topology database consists of the collection of all PTSEs received. The topology

database provides all the information needed to compute a route to any reachable address
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in or through that routing domain. PTSEs are reissued periodically and on an event

driven basis. All peer group members maintain an identical topology database.

The nodes of a peer group elect a peer group leader (PGL) in accordance with a

leadership protocol. The PGL of the higher level peer group aggregates and distributes

information about the child peer group, and floods that information into its own peer

group. The functions of the higher level PGL are implemented in the PGL at the lowest

level.

The PNNI routing hierarchy is completely described by focusing on the recursive

nature of peer groups. The highest level peer group differs only in that it does not need a

peer group leader. Logical links between logical nodes in higher level peer groups are

usually VPCs.

Path selection during call establishment

Since ATM is a connection-oriented technology, a path selected by PNNI for

establishment of a virtual connection will remain in use for as long as that connection

remains open. Thus it is critical that PNNI selects paths carefully.

The user specifies QoS and bandwidth parameters that the ATM network must

guarantee for that call. PNNI call establishment consists of two parts: 1) selection of a

path that appears capable of supporting the QoS and bandwidth requested, and 2) set up

of the connection state at each point along the path. The processing of the call at each

point along the path confirms that the resources requested are in fact available. If they

are not, crankback occurs which causes a new path to be computed, if possible. The final

outcome of path selection is either a path that satisfies the request, or refusal of the call.
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The routing technique chosen for PNNI path selection is source routing. The

source selects the path to the destination based on information available at the node from

the topology database. Source routing implies that only the source node is involved in

the actual path selection. Therefore, PNNI does not specify any single algorithm for path

selection.

Generic connection admission control

Connection Admission Control (CAC) is the process of determining whether or not a

node has the resources available to accept the call described in a newly received

connection request. It was decided that since only the specific node was involved in this

decision, it was necessary to standardize a CAC algorithm. However, a generic CAC was

needed as a surrogate for the actual CAC, to in effect predict the outcome of the actual

CAC algorithm. The advertised set of topology state parameters must carry information

that a generic CAC can use to make this prediction. The actual CAC calculation is

performed when the resources are actually being committed to the call.

1.3.2 Detailed Description of PNNI Routing

In PNNI networks, nodes are grouped hierarchically in order to reduce the information

required for maintenance by every node in the network. The function of PNNI routing is

to build the distributed databases required by PNNI signaling for it to do source routing.

Specifically, PNNI signaling uses route calculations derived from the reachability,

connectivity, and resource information dynamically maintained by PNNI routing. The

sequence of events performed by PNNI routing at initialization is as follows:
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• Node configuration.

• Link initialization.

• Topology database synchronization.

• Reliable flooding of PTSEs throughout the peer group.

• Election of peer group leaders.

• Flooding of PTSEs is an ongoing activity to maintain up-to-date technology

databases (not part of initialization).

Node configuration 

Nodes are configured by assigning a node ID, a port ID for each transmitting port, and a

peer group ID, so that each node will know what peer group it is a member of. The PNNI

hierarchy begins at the lowest level where lowest level nodes are organized into peer

groups. A peer group (PG) is a collection of logical nodes, each of them exchanging

information with other members of the group, so that all peer group members have the

same view of the group. A logical node at the lowest hierarchical level is a lowest level

node, i.e. a switch with a unique node ID.

Link initialization 

Logical nodes are connected by logical links. At the lowest level, a logical link is either a

physical link or a VPC between two lowest level nodes. Each node determines its local

state information, which includes the identity and peer group of the nodes of immediate

neighbors, and the status of its links to the neighbors. Link initialization begins with an

exchange of information via a well known VCC used a PNNI Routing Control Channel

(RCC). Hello packets are sent periodically by each node on the link to exchange ATM

End System Address (AESA), peer group ID, node ID, and the port ID for the link. Thus,
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link initialization begins when the link becomes operational, and establishes whether the

nodes on the two ends of the link belong to the same peer group, or belong to different

peer groups. In the presence of certain errors or failures, peer groups can partition,

leading to the formation of multiple peer groups with the same peer group ID. Links

within a peer group are "horizontal links", whereas links that connect two peer groups are

"outside links".

Topology database synchronization 

When neighboring nodes conclude that they are in the same peer group, they proceed to

synchronize their topology databases. Each node generates a PNNI Topology State

Element (PTSE) that describes its own identity and capabilities, information used to elect

a peer group leader (PGL), as well as information used in establishing the PNNI

hierarchy. The neighboring nodes first exchange PTSE header information. When a

node receives PTSE header information that advertises a more recent PTSE version than

the one it has, or a PTSE that it does not have, it requests the PTSE and updates its

database when it subsequently receives the PTSE. Database synchronization results in

link pairs having identical topological databases. When a newly initialized node connects

to a peer group, the ensuing database synchronization reduces to a one way topology

database transfer.

Reliable flooding of PTSEs throughout the peer group 

Reliable flooding of PTSEs throughout a peer group ensures that each node in a peer

group maintains an identical topology database. This is the advertising method in PNNI.

PTSEs are encapsulated within PNNI topology state packets (PTSPs) for transmission.

When a PTSP is received its component PTSEs are examined. Each PTSE is
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acknowledged by encapsulating information from its header within an Acknowledgment

Packet, which is sent to the sending neighbor. If the PTSE is new or of more recent

origin than the receiving node's current copy, it is installed in the topology database and

flooded to all its neighbors except the neighbor that originated the PTSE. A PTSE is

periodically retransmitted until acknowledged. Only the node that originated a particular

PTSE can reoriginate that PTSE. PTSEs contained in a topology database are subject to

aging and are removed after a predefined duration unless they are refreshed by new

incoming PTSEs. PTSEs are reissued both periodically and on an event driven basis.

Election of peer group leaders 

Each peer group elects a peer group leader (PGL). The criterion for election is a node's

"leadership priority". The node with the highest leadership priority becomes PGL. The

election process is a continuously running protocol. When a node with a higher

leadership priority becomes active in a peer group, the election process transfers

leadership to that node. When a PGL is removed from the peer group, the election

process transfers leadership to the node with the next highest leadership priority. The

PGL has no particular function in the internal operation of the peer group. Its function is

to represent the peer group to the hierarchically next higher peer group. This function is

to aggregate and distribute information for maintaining the PNNI hierarchy.

Peer groups at levels higher in the hierarchy

A higher level peer group (an abstraction) has essentially the same properties as the

lowest level peer groups. The peer group members (logical group nodes) of the next

higher peer group each represent a peer group at the lowest level. The functions of the

logical group node (LGN) of the higher level peer group and the PGL of its child peer
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group are closely related. The functions of a LGN include aggregating and summarizing

information about its child peer group, and flooding that information into its own peer

group (the higher level peer group). A LGN also passes information received from its

peer group to the PGL of its child peer group for flooding.

A three-level hierarchical network is illustrated in Figure 1.6. The physical

network contains 22 nodes. This is configured into 7 lowest level peer groups, which are

labeled as follows: A.1, A.2, A.3, B.1, B.2, B.3, and C. There are 2 second-level peer

groups labeled A and B. The highest level peer group has peer group members

representing second-level peer groups, A and B, and a lowest level peer group, C. The

highest level peer group differs from all other peer groups in that it is not represented by

a LGN in a higher peer group. Note that each peer group has a designated (elected) PGL.

The functions that define the PGL of peer group A are located in node A.2, which is in

turn implemented on the switching system contained in the lowest level node A.2.2.

The notation used here to label nodes and peer groups is representative of the

address structure (node Ids and peer group Ids) actually used. An LGN is identified by a

node ID. This by default contains the peer group ID of the peer group the node is

representing. For example, LGN B.3 contains the peer group ID of peer group B.3,

which it is representing. A higher level (or ancestor) peer group has a shorter address

than its child peer groups. It is meaningless to directly compare addresses for peer

groups where neither is an ancestor of the other. In Figure 1.6, for example, lowest level

peer group C has the same level address as second level peer group B. Neither is an

ancestor of the other. Similarly, node C.1 and node B.3.3 are both lowest level nodes.
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Figure 1.6 A Sample Hierarchical Network
Source: The ATM Forum Technical Committee, Private Network-Network Interface
Specification Version 1.0 (PNNI 1.0), March 1996.

PNNI path selection 

As stated above, PNNI uses source routing for all connection setup requests. The user

issues a connection request, which includes source/destination addresses and

QoS/bandwidth requirements. Since PNNI allows multi-level hierarchical routing, the

originating switch selects a path to the destination based on the detail of the hierarchy

known to it from its topology database. The selected path, encoded as a Designated

Transit List (DTL), is explicitly included in the connection request. Such a path is not a

fully detailed source route outside the peer group of the originator. Instead, those

portions of the path are abstracted as a sequence of LGNs to be transited. The connection

request is routed in accordance with the source route, using the VPI=0 signaling channel.
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When the connection request arrives at the entry switch of a peer group, that switch is

responsible for selecting a lowest level source route across the peer group to reach the

"next hop" destination specified by the higher level path.

The implication of source routing, on which only the source node is involved in

selecting the path, is that it is not necessary for all nodes to use the same path selection

algorithm. Accordingly, PNNI does not specify a path selection algorithm. Each

implementation is free to use whatever path selection algorithm it feels is appropriate.

The path selection algorithm presented in Appendix H of the ATM Forum PNNI

Specification is considered acceptable.

Generic Connection Admission Control (GCAC)

During the connection setup, each switch along the selected path performs Connection

Admission Control (CAC) to ensure that the connection can be supported without

jeopardizing QoS guarantees to the existing connections. Since this determination

involves only the particular node, PNNI does not specify a single CAC. A generic CAC

predicts the outcome of the actual CAC. The actual CAC is used at the time that

resources are committed to a connection. Each node along the path makes a

determination on available resources using the GCAC. A GCAC determines if a node is

likely to have sufficient resources to support the call. If sufficient resources are available,

the connection request is forwarded to next hop, otherwise the connection request is

cranked back till a node is reached that can calculate a new forward route toward the

destination.

When a node accepts a connection, its ability to accept a new connection may

change. If the change is significant, it will trigger new PTSE instances describing this
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node's updated resource capability. Determination of a "significant" change is defined

by system configuration parameters. Since PNNI does not specify any single required

CAC algorithm for determination of sufficient resources for a node to support a

connection, another node could use a different CAC algorithm.

1.3.3 PNNI Routing Packet Formats

PNNI routing packet formats have been designed to provide flexible and expandable

encoding to accommodate future versions of PNNI. The format relies on nested type-

length-value (TLV) information groups. All type and length fields are each two octets

long, in all information groups. All information groups are padded to a multiple of 4

octets, if necessary.

PNNI routing packets types 

There are 5 packet types used for PNNI routing, as shown in Table 1.2. Each packet type

begins with a common PNNI packet header 8 octets in length. PNNI packets are made

up of headers and information groups (IGs). Some IGs may have child IGs. Information

groups that may be included in PNNI routing packets are shown in Table 1.3.
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Table 1.2 PNNI Routing Packets
PACKET
TYPE

PACKET NAME FUNCTION

1 Hello Link initialization & maintenance
2 PTSP Flood PTSEs to peer group
3 PTSE

Acknowledgment
Acknowledgment for reliable flooding

4 Database Summary Exchange	 PTSE	 headers	 (database
synchronization)

5 PTSE Request Request new or updated PTSEs
Source: The ATM Forum Technical Committee, Private Network-Network Interface Specification Version
1.0 (PNNI 1.0), March 1996.

Table 1.3 Information Groups
TYPE PACKET NAME MAY CONTAIN IGS

Hello Aggregation token
Nodal hierarchy list
Uplink information attribute
LGN horizontal link extension
Outgoing resource availability
System capabilities
Optional GCAC parameters

2 PTSP PTSE
Nodal state parameters
Nodal information group
Outgoing resource availability
Incoming resource availability
Next higher level binding
Optional GCAC parameters
Internal reachable ATM addresses
Exterior reachable ATM addresses
Horizontal links
Uplinks
Transit network ID
System capabilities

3 PTSE Ack Nodal PTSE Ack
System capabilities

4 DB Summary Nodal PTSE summaries
System capabilities

5 PTSE Request Requested PTSE header
System capabilities

Source: The ATM Forum Technical Committee, Private Network-Network Interface Specification Version
1.0 (PNNI 1.0), March 1996.



37

Hello packet

Hello packets are exchanged between neighboring nodes using RCCs.

Hello packets are transmitted by each node over:

• all physical links to immediate neighbor nodes,

• all virtual path connections for which this node is an endpoint, and

• all SVCCs, established for the purpose of exchanging PNNI routing information,

for which this node is an endpoint.

Hello packets include the originator's AESA, Node ID, Peer Group ID, and Port

ID, and after receiving information from the neighboring node, also includes the remote

node ID and remote port ID. It also includes the frequency at which Hello packets are

sent. The basic Hello packet is 100 octets long (including PNNI header).

Hello packets sent over outside links include, in addition to the basic Hello

packet, the following IGs: Aggregation Token, Nodal Hierarchy List, and Uplink

Information Attribute. The Aggregation Token adds 8 octets. The Nodal Hierarchy List

adds 12 octets, plus 56 octets for each hierarchical level beginning with the parent level

and proceeding until the highest level has been listed. The Uplink Information Attribute

adds 8 octets, plus all outgoing Resource Availability Information Groups (32 octets plus

an optional 12 octets), plus any additional optional IGs needed to describe the reverse

direction of the uplink.

The aggregation token serves, along with the remote node ID, to identify uplinks,

which are to be aggregated at the next level of the hierarchy. Hello packets sent over

LGNs as part of the LGN Horizontal Link Hello Protocol include the LGN Horizontal
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Link Extension IG. This group adds 8 octets, plus 12 octets for each LGN horizontal

link.

The network capacity needed to support the Hello protocol is a function of the

number of physical and LGNs, the average number of links at a node, the average

number of levels of hierarchy for all nodes (including LGNs), and the frequency of

transmitting Hellos. The length of the Hello packet depends on the type of link it is to be

sent over.

PNNI Topology State Packet (PTSP)

PTSPs are used to distribute (by flooding) information throughout a peer group. They are

also used to send PNNI topology information to a neighboring in response to a PTSE

Request packet. The PTSP contains one or more PTSEs, all from a single originator.

The PTSP header is 44 octets long, which includes the PNNI header, originating node ID,

and originating node's peer group ID.

PNNI Topology State Element (PTSE)

PTSEs are the units of information for flooding and re-transmission. The collection of

PTSEs constitutes a node's topology database. Each PTSE includes the PTSE header,

whose length is 20 octets. The PTSE header indicates which "top level" information

groups may appear in the PTSE.

PNNI flooding

PTSEs are encapsulated within a PTSP and flooded to all neighboring nodes within the

peer group. When a PTSP is received, its component elements are examined. If a PTSE

is new, or more recent than the node's current copy, it is installed in topology database,

and flooded to all other neighboring peers. The fact that the PTSEs were sent to these
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neighboring peers is remembered, and they will be retransmitted until acknowledged.

Each PTSE is acknowledged by sending a PTSE Acknowledgment packet back to the

neighboring peer.

PTSE acknowledgment packet

The PTSE acknowledgment packet is used to acknowledge receipt of PTSEs from a

neighboring node. The packet consists of the 8-octet PNNI header, and for each set of

PTSE acknowledgment about one node, a 28-octet IG. The last field of this IG gives the

AckCount, which is the number of acknowledgment for this node. For each

acknowledgment (one for each count in AckCount), a 12-octet data structure is included.

The packet length is 8 + (28 + 12 air n, where ai is the AckCount of the ith set of PTSE

acknowledgment included, and n is the number of sets.

Database summary packet

Database Summary packets are used during the initial database exchange process

between two neighboring peers. The database exchange process involves a sequence of

Database Summary packets, which contain the PTSE header information of all PTSEs in

a node's topology database. Database Summary packets also contain a sequence number

and flags used to negotiate the master/slave relationship necessary to ensure proper

functioning of the lock-step protocol. A node sends a Database Summary packet, and the

other side responds with its own Database Summary packet, implicitly acknowledging

the received packet. At most one outstanding Database summary packet between the two

neighboring peers is allowed at any one time. The Database Summary packet consists of

a 16-octet header (which includes the PNNI header), and a 44-octet IG for each set of

PTSEs in the topology database. In addition, for each PTSE summary, there is a 16-octet
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data structure. The packet length is 16 + (44 + 16 ai)*n where ai is the number of PTSE

summaries in the ith set of PTSEs included in the packet, and n is the number of sets.

PTSE request packet

PTSE request packets are used during database synchronization. When a received

Database Summary packet contains a PTSE header that either has not been seen before,

or is a more recent version of a PTSE currently in the node's topology database, such

PTSEs are requested from the neighboring peer. PTSE Request packets consist of an 8-

octet PNNI header, a 28-octet IG for each set of PTSEs requested, and a 4-octet data

structure for each PTSE in a set of PTSEs. The packet length is 8 + (28 + 4 ai)*n, where

ai is the number of PTSEs requested for the ith set of PTSEs, and n is the number of sets

requested. When a PTSE Request packet is received, the requested PTSEs are bundled

into a PTSP for transmission to the neighboring peer.

1.4 Modeling Approach for ATM Networks

The task of obtaining sufficiently accurate analytical approximations that predict network

performance has proven to be a very difficult one. This is because of the new

sophisticated control mechanisms (in terms of flow and congestion control) and dynamic

routing algorithms used by the technology used in the new communication networks. Up

to now, the two typical solutions provided are the following:

• an analytical closed form solution (i.e., a solution that relies in a series of

assumptions and approximations to make the problem tractable), and

• a modeling and simulation solution (i.e., a solution that basically mimics the

environment and traffic conditions under which the network is operating).
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However, it should be noted that these solutions are not totally independent.

Usually, the analytical closed form solution relies heavily in the modeling and simulation

solution to justify that the assumptions and simplifications in the analytical solution are

valid. Also, the modeling and simulation solution will usually use a closed form solution

to verify: (1) the correct implementation of the model, and (2) that all of the most

relevant features of the system (i.e., the ones that affect performance the most) have been

properly captured by the model.

The tradeoffs encountered when dealing with these two solutions are simple to

state. The former one, the analytical closed form solution, although attractive because of

its closed form, usually exhibits an accuracy problem. The analyst using this type of

solution is forced to make an extensive set of assumptions to keep the problem within the

"tractable" domain. This makes use of the analytical model, for the purpose of analysis

of network performance, very impractical. The latter one, the modeling and simulation

solution, although attractive because of its accuracy, usually encounters two types of

problems: (1) difficulty of validating the model, (2) excessive simulation running, (i.e.,

execution) time. Interestingly enough, in most cases the more detailed the model is (i.e.,

the model that has more features implemented at a high level of fidelity), the easier is to

validate the model (it can be validated at the algorithm level). However, usually the more

detailed the model implementation is, the longer the simulation execution time becomes.

For the analysis of new technologies, the simulation running time problem is

bound to at least stay the same. This is because, although machine speed is dramatically

improving, so are the traffic loads carried by the systems that need to be analyzed.

Among those systems, one can find the Asynchronous Transfer Model (ATM), the Wide
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Area Network standard of the Broadband Integrated Services Digital Network, which is

supposed to handle billions of information cells. The amount of cells handled make the

use of a detailed model almost prohibitive. However, there are no known good analytical

models for ATM networks.

1.4.1 High Resolution ATM Model

The high resolution ATM model was built using the "modeling along physical lines"

approach. Software was written in separate modules that represented the different

entities which needed to be modeled to represent behavior of the ATM switches, the links

interconnecting them, and the user (also called subscriber) itself. For a detailed

description about ATM refer to [15]. As a result of using this approach, the simulation

contains the following models:

• Physical Layer Model (representing links and virtual path service handling)

• ATM Switch Model consisting of:

- ATM Adaptation Layer Model (representing the layer in charge of

assembly/reassembly of data to be delivered to the user network interface)

- ATM Layer Model (representing the Virtual Path Switching Processor and the

Virtual Channel Switching Processor with their corresponding queues). In

addition, a network layer using a saturation routing algorithm was

implemented here.

• User Network Interface Model (representing negotiation and data exchange for

virtual circuit setup as well as information flow from the user to the network and

vice-versa). Flow and congestion control techniques were implemented here.



43

• Subscriber Model (representing generation of variable bit rate, available bit rate,

and constant bit rate demands. The rules for priority bit tagging were

implemented here.

Emphasis on the model was placed on simulating the delays that a transportation

of cells will experience in a given network environment. Therefore, when a cell arrives

to an ATM switch, it then experiences queue and processing delays at the virtual path and

the virtual channel processors. Cells may also wait at the virtual path transmitter queues

before they are serviced. The main objective of the simulation was to capture the

inherent extra delays found in an ATM network when traffic loads increase in a very

similar way as that expected from a real system implementation. Because of its nature,

this ATM model (high and low) is considered appropriate to examine flow control and

policing procedures for ATM networks. Also, as it is shown in the result section, the

measure used to compare results between two models is cell delay. A table that

summarizes delays encountered by cells when transported by an ATM network is

included below (Refer to Table 1.4). This table includes areas of delays and whether

there were any significant differences in model implementations between the high and

low resolution ATM models.

As shown in the table below, the low resolution ATM model differs the most

from the high resolution ATM model at the lower layer levels. That is justified by the

fact that most of the CPU time used by the simulation for a typical information exchange

will happen at these levels because they occur at each ATM switch rather than only at

source and destination switches. As a result, the benefits in the terms of gaining

simulation speed can be substantial when using the low resolution ATM model.
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Table 1.4 Summary of Differences between Low and High Resolution Models

DELAYS MODELS
INVOLVED

DIFFERENCES

Transaction or call setup All Minor
Packetizing/Depacketizi
ng

Subscriber
Model

None

ATM Adaptation Layer CS 	 and 	 SAR
Layer 	 at 	 the
source 	 and
destination
switches

None

Virtual Path and Virtual
Channel Switching
queuing and processing

ATM Layer at all
switches

Different

Virtual Path transmitter
queue/transmission/
propagation/HEC
verification

Physical Layer at
all
interconnections

Different

1.4.2 Low Resolution ATM Model

The user can invoke the use of a low resolution ATM model to obtain better runtime

performance when using the ATM simulation. The simulation of the ATM network,

when using the option of the low resolution model, first uses both the high resolution and

low resolution ATM models. The ATM simulation is able to switch from the high

resolution to the low resolution ATM model automatically based on accuracy

comparisons.

The description of the ATM low resolution model has been split into three

different areas. The first describes the route selection between source and destination

subscribers. The objective is to ensure, as much as possible, that the ATM low resolution

model selects routes that are comparable to those selected by the ATM high resolution

model. Otherwise, it would be overly optimistic to expect that both models provide

similar results. The second area deals with the transport of information (i.e., voice, data,

and multimedia between subscribers). The ATM low resolution model implementation
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attempts to provide results that are a function of traffic loads. The third area provides a

detailed implementation description of the Low Resolution ATM model.

Virtual circuit setup procedure

The route selection process (arbitrarily set to saturation routing), in the ATM low

resolution model, is identical to that found in the high resolution model. It was designed

as such to guarantee that all information collected and stored when using the high

resolution model is also collected and stored when using the low resolution model. The

only modification encountered will be that the simulated delays encountered for the

waiting time due to processing and queuing experienced at the virtual path and virtual

channel switching processors will be changed to a fixed average processing plus queuing

delay when the low resolution model is operating. This will allow for the simulation,

when operating in the low resolution mode, to more accurately predict delays

encountered by routing messages when selecting a route between source and destination

subscribers.

This delay is necessary because ATM information cells (i.e., cells used to

transport end-to-end user information) will not be simulated as sent throughout the

network (i.e., delays at the nodes will be determined by different means). It is important

to mention that this mode of operation (assuming constant average delays) will

temporarily persist even when the mode of operation has been switched to the high level

resolution model. Without it, a high to low resolution switch in the simulation would

signify that ATM cells would find empty queues at the proceeding nodes making the

simulated system more efficient than the real system would perform. However, it is
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anticipated that once the ATM low resolution model has been invoked there will be no

need to switch back to the high resolution ATM model.

The statistics collected during the high resolution mode of operation to be used in

supporting low resolution operation is the mean of the average cell delays.

Data transport

The high resolution ATM model will save the path selected by the flood process (i.e.,

nodes and links involved in the setup procedure). The ATM low resolution model will

access this information, every time a cell is generated at a source subscriber/host. When

a cell is generated, a process will inform the queues of each link and node processors

(i.e., virtual path switch and virtual channel switch processors) that a cell has a

requirement for their services. In return, the link and node processors will provide

information regarding their current loading status. An example is included below to

further clarify the mode of operation of the ATM low resolution model.

For example, let's say that a virtual circuit has been established between two

subscribers (from node 1 to node 4). The path selected (shown in Figure 1.7) traverses

node 1,2,3, and 4. Out of the previous nodes, node 2 is an intermediate/relay node of the

preestablished virtual path 1-2-3 (i.e., labeled virtual path 11). In the high resolution

model, cells generated for this virtual circuit will go through the following delays:

• Virtual channel and virtual path switching processors of node 1 (processing plus

queuing delays)

• Transmission plus queuing delay for link 5 in the virtual path 11 domain

• Virtual path switching processor of node 2

• Transmission plus queuing delay for link 3 in the virtual path 11 domain
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• Virtual channel and virtual path switching processors of node 3 (processing plus

queuing delays)

Figure 1.7 Virtual Path Example

• Transmission plus queuing delay for link 10 in the virtual path 3 domain

• Virtual channel and virtual path switching processors of node 4.

As it can be seen, the delays are split into two categories: (1) deterministic (which

are processing delays) and (2) statistical (which are queuing delays) and depend on the

state of the queues. The queuing delays are correlated to the state of the queue at the time

that the cell demanding service arrives. For example, if the queue is empty, the queuing

delay will be zero. Accordingly, if the queue contains cells that cumulatively required

five milliseconds of processing, the arriving cell will experience that delay. The delays

encountered at each node will be a function of time. For example, let's assume that for a

particular ATM cell, the following delays (as described in Table 1.5) were experienced at

each of the nodes of the previous example. The state of the queues as a function of time

is described in the following graphs (Figures 1.8, 1.9, and 1.10).
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In the ATM high resolution model, at time equal to zero, (relative time), the cell

arrives at node 1 encountering a delay of 100 microseconds (Refer to Figure 1.8). The

cell will not experience any delay at node 2 because it does not require a new virtual

channel assignment. The cell arrives at node 3 at a time equal to 190 microseconds

(Refer to Figure 1.9). At that queue, the cell will experience a delay equal to 50

microseconds before it is processed. Finally, the cell arrives at node 4 at a time equal to

305 microseconds (Refer to Figure 1.10). At that node, it encounters a delay equal to 90

microseconds.

The implementation and description of the low resolution ATM model is simple

and is described below. The low resolution model assumes that the load applied in each

of the nodes by a single cell will happen simultaneously rather than throughout simulated

time for that particular cell, as explained in the example. For instance, the delays

experienced by the cell at different nodes will be recorded at relative time equal to zero

(i.e., at the time that the cell is generated by the subscriber). As a result, the delays

recorded by the low resolution ATM model will be as described in Table 1.6.



Table 1.5 Delays Experienced by an ATM Cell

Node
Number

Queuing Delay at the Virtual
Channel	 Switching	 Processor
(Microseconds)
time

at a	 specific

1 100
2 No delay
3 50
4 90
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Figure 1.8 Queueing Delay of Node 1

Figure 1.9 Queueing Delay of Node 3



Figure 1.10 Queueing Delay of Node 4

Table 1.6 Delays Simulated in the Low Resolution Model
Node Queuing Delay at the Virtual
Number Channel Switching Processor

(Microseconds) at a specific
time

1 100
2 No delay
3 150
4 25

As one can see, individual cell delays can vary by substantial amounts. However,

if one is interested in average cell delays, the low resolution model is believed to track

the high resolution model within acceptable limits for analyzing most flow control and

policing procedures.

The most significant advantage of the low resolution model is that it does not

change significantly the process of selecting a route between source and destination. The

model also shows a similar kind of sensitivity to traffic load as the high resolution model

does. The only difference lies into the fact that loads applied to each of the nodes are

shifted in time. Assuming that there is insignificant correlation among the traffic being

generated, the low resolution model provides insightful results. Even in the extreme case,
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that there is heavy correlation of traffic generation patterns (which is not common for

most cases because of the vast number of cells generated during a session on which a

virtual circuit has been established), the low resolution model will still provide

meaningful results.

Unfortunately, none of this can be formally or mathematically proven. It is

believed that the time resolution needed to model ATM environments with subscribers

creating demands that require a tremendous amount of cells transported, can be slightly

distorted and compacted without significant differences in results. In order to prove this

point via simulation techniques, the ATM simulation has the capability to simultaneously

run the same traffic through both the low and high resolution ATM models and compare

results. Prior to switching from the high resolution mode to the low resolution mode, the

simulation will compare both the actual results obtained using the high resolution model

and the predicted results using the low resolution model. If the difference is significant

(significant is a term that will be defined by the analyst), the simulation will not change

modes. If the difference is not significant, the change will be done automatically. This

will provide confidence to the analyst that the use of a low resolution model is justified

based on the scenario conditions and desired accuracy rather than assumptions made by

modelers.

Detailed implementation of the low resolution ATM model

Whenever a cell is generated, at a user access point, delays will be estimated for each

node and each link that constitutes the selected path of virtual circuit. These calculated

delays would be a function of the cells present at that node/link when the current cell was

generated. To know which cells are present at each node/link at any time, a list is kept
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and updated as necessary, containing the most recent cells generated for virtual circuits

traversing a node/link. The newly generated cell will become an entry on that node's list

which will, in turn, affect the delays associated with cells that are generated in the "near"

future and have the same node on its selected path. The time window (impact window)

that defines "near" future or "recent" levels of activity is a function of the load being

processed by a node. The more traffic a node is handling the larger an impact window a

cell transmission will create. This will help preserve the fact that highly congested nodes

will experience exponentially increasing delays. The total cell delay time, for simulation

purposes, will be a cumulative function of the estimated delays associated with each of

the nodes/links of the selected path. The cell will be scheduled for delivery at that

cumulative delay. The only exception to that is that a cell will never be delivered prior to

one of its predecessors generated at the same circuit. There will be a safeguard check

that guarantees that cells will be delivered in order.

To summarize, every time a cell is generated an entry will be entered in a list

associated with nodes and links belonging to the selected path of the virtual circuit. The

delay impact on all of the nodes and links will be immediate rather than stretched through

the delivery time span. The impact window of this cell will be determined by the delay

calculated at each node. By adding each of the delays encountered at each link and the

node of the path, a total delay will be calculated for the cell. Because the average delay

will not be affected by interchanging cell delay times for cells belonging to the same

virtual channel, the low resolution ATM model will simply force cells to be delivered in

order.
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1.4.3 Results

A ten-node network was used to compare results when using the Low and the High

resolution ATM models. The first table (Refer to Table 1.7) shows the results obtained

with the high resolution model (including ATM cell average delay and Estimated CPU

time as a function of the traffic level applied to the simulation). The second table (Refer

to Table 1.8) shows the results obtained with the Low Resolution ATM model (including

the % Accuracy and Estimated CPU time).

Table 1.7 Results Obtained with the High Resolution ATM Model

Relative Traffic Level Average Delay (Milliseconds) Est. CPU time (minutes)

15 5.33 100
17 5.49 113
19 5.60 120
21 5.57 135
23 5.76 148
25 6.39 160
27 6.5 170
29 7.4 181

Table 1.8 Results Obtained with the Low Resolution ATM Model

Average Est.	 CPU %

5.55 20 3.79
5.71 21 3.77
5.73 23 2.39
5.92 24 5.98
6.15 25 6.31
6.13 27 4.26
7.22 29 10.01
7.42 31 0.19



CHAPTER 2

SATURATION ROUTING FOR ATM

This chapter will show that the virtual path selection by a saturation (flooding) technique

is a viable adaptive routing solution for substantial data exchanges in an ATM network.

Adaptive routing algorithms are the leading techniques used today in Packet Data

Networks. Typically, current measurements are used to derive non-congested new routes

for future traffic. However, often, current measurements are not reliable enough in

deriving effective routing decisions for an ATM network. In fact, it has been reported

that in ATM networks current traffic measures could have little correlation to traffic

patterns even in the near future [22]. This is because of the highly dynamic nature of not

only the traffic but also of the underlying architecture of the network itself. This is even

more extreme in military or mobile applications in which the topology of the network

changes frequently. In [9], it has been suggested that the only solution for topologies

with a high rate of change is flooding. Furthermore, it has been suggested that the trends

indicate that the cost of the control of the network, of which routing is a prominent

component, has been increasing more rapidly than any other [4]. As a result, increased

emphasis should be placed on simple routing techniques for ATM networks.

For a successful implementation of adaptive routing techniques, it is critical that

the rate of change in routing demands is smaller than the reaction time of the routing

algorithm, the latter always being larger than the time window between measurements.

Saturation routing offers a host of well-known advantages, which include accuracy and

simplicity. Also, a potential benefit of this type of routing scheme, not exploited as of

54
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now, is its potential for multicast routing. Despite the potential of saturation routing, it

has been discounted in the past, because of its perceived large overhead. Here, the

amount and effect of the saturation overhead is analyzed, in the transport of substantial

data exchanges (e.g., video, multimedia, teleconferencing, etc.); and, in fact, found to be

small in amount and insignificant in effect, over a large range of network parameters. In

[12], it has been forecasted that future routing protocols may result to "old" switching

techniques, such as saturation routing, where transmission efficiency is traded for

simplicity. In this paper, it is demonstrated that for a large number of anticipated ATM

services for normal data exchanges, the transmission efficiency when using saturation

routing is not degraded significantly; and therefore, the tradeoff should be made.

2.1 Description of the Saturation Routing Algorithm

The proposed saturation algorithm, which is illustrated by using a small network shown

in Figure 2.1, operates as follows. When a request for a virtual path setup is initiated at

the source [Node S] for a given destination [Node D], Node S sends a routing cell (i.e., a

cell that contains information about the circuit setup) along its associated links (i.e., those

that are connecting Node S with Nodes Al and A2) [shown as step 1]. Nodes Al and A2

receive this request and because they are not the intended destination, they forward the

routing cell in all of their outgoing links (i.e., all of the links except the one on which the

routing cell was received) [shown as step 2].
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Figure 2.1 Saturation Routing Algorithm Illustration

As a result, Node A2 sends the routing cell to Node Al, while Node Al sends the

routing cell to Node A2 (note that two routing cells for the same path setup attempt is

traversing the same link (i.e., link Al-A2), but in opposite direction). Therefore, Node

Al receives a second routing cell for the same attempt (these are the one from Node S

and the one from Node A2). Node Al discards this second cell because it checks its

memory and finds a record of a "recent" request for the same attempt has already been

processed. At the same time, Node A3 receives requests from both Node A2 and Node

Al. Node A3 accepts only the first arriving cell and forwards it to Node D. Node D

accepts the earliest routing request it receives (which represents the best route by

construction), and sends a cell back to the source following the path selected. This

provides the successful new virtual path setup at the source. It should be noted, that a

routing cell for the same setup request can not traverse any link more than two times

(once in each direction). Therefore, the total number of routing cells generated is upper
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bounded (refer to inequality 2-1). This important property of the saturation routing

algorithm will be used later on in the analysis.

Where:

R is the total number of routing cells generated for a single routing effort

L im is the total number of links in the network

2.2 Analysis of Routing Overhead Incurred by Saturation

To show that the impact of using a saturation technique to establish the route for a virtual

path setup is small, it firstly requires to show that the added overhead due to routing is

small compared with the amount of information exchanged in the virtual path. As it will

be shown later, the impact of using a saturation routing algorithm depends on the

saturation routing factor f (defined as the ratio of Routing cells generated due to a data

exchange over Information cells generated for that data exchange, f —

R 
) . The proof

will be based on an upper bound value for the saturation routing factor, f.

2.2.1 Assumptions

To carry out the analysis, the following assumptions will be made:

• each source in the network is equally likely to generate traffic — a typical

assumption made in this type of analysis,
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• the amount of overhead needed to convey routing information can fit in one single

ATM payload (i.e., 48 Octets) cell — which is elaborated further in the ATM Cell

Design Subsection,

• the transmission exchange is at least modest or not small in size by ATM service

standards, about 1 million cells, which is approximately 1 minute of exchange at 8

Mbps or more — which is elaborated further in the User Exchanges for which

Saturation Routing should be invoked Subsection, and

• a typical large ATM network ranges from about 100 to 1000 nodes — Typical Size

of Networks Before Using Hierarchies Subsection

2.2.2 ATM Cell Design

For the saturation routing scheme to work there are several requirements:

• each ATM switch can identify each individual virtual circuit channel setup,

• each ATM can identify the virtual path over which a routing request arrived, and

• each routing cell is labeled accordingly.

The first requirement can be accomplished by using 4 octets (1 for the Virtual

Path Identifier (VPI) in the User Network Interface (UNI), 2 for the Virtual Channel

Identifier in the UNI, and 1 for a sequence number to differentiate between subsequent

requests using the same VPI-VCI combination). The second requirement can be met by

including the VPI used in the Network to Network Interface (i.e., 1.5 octets). The third

requirement can be met by using the Common Part Indicator of a Type 5 service provided
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by ATM (Type 5 requires 8 bytes of overhead). In addition, 20 bytes are needed to

specify the ATM End Destination Address. The total routing cell length required is 33.5

octets, leaving enough space (i.e., 14.5 octets) to attempt to perform optimization in the

routing selection. Refer to Figure 2.2.

ATM HEADER TYPE-5 UNIQUE RQST VPI USED ATM Destination UNUSED
(5 OCTETS) OVERHEAD IDENTIFIER (1.5 OCTETS) Address (20 bytes) (14.5 OCTETS)

8 OCTETS 4 OCTETS

Figure 2.2 ATM Routing Cell Layout

2.2.3 User Exchanges Applicable to Saturation Routing

The user exchanges for which Saturation Routing should be invoked are those which are

substantial in size, about 1 million cells, which is approximately 1 minute of exchange at

8 Mbps or more. Reference [11] suggests that there are several types of traffic that meet

this requirement (i.e., all services listed below but two). As it can be seen (refer to the

Table 2.1 and Figure 2.3 shown below), there are several applications that can benefit

from this routing algorithm without being adversely affected from a performance

perspective. This is because of their expected transmission exchanges surpasses the

calculated value of 1 million ATM cells. The table indicates services (e.g., High

Definition TV, High Quality TV, Medical, etc.) which are expected to exchange

significant amounts of data. The Figure 2.3 shown below indicates an independent

estimation of transmission requirements for high bandwidth services. Also, in here is

shown that the High Speed Data and High Quality Video services are anticipated to

surpass the 1 million cells (i.e., those services that fall in the right of boundary line 1). In

addition, a boundary line 2 is shown with a less restrictive condition of a needed
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exchange of only one hundred thousand cells. This lesser requirement can be used to

determine the services for which the routing algorithm will have negligible impact.

However, it used as its basis typical ATM networks, rather than worst case 1000-node

networks (used to determine Boundary Line 1 - Worst Case Analysis).

Table 2.1 Bandwidth Range for Different Services

Algorithm for the ATM B-ISDN," Proceedings, 17th Conference on Local Computer Networks, September
1992

2.2.4 Typical size of Networks Before Using Hierarchies

Most routing protocols need scaling if the network becomes too large. Therefore, a 1000-

node ATM network is considered by most references as a large network. The PNNI

Standards addresses this problem by introducing levels of hierarchy. A similar approach

will be proposed in the Saturation Routing if required to run in a larger network. For

example, Reference [10] recommends that for the Open Shortest Path First protocol

(OSPF, a routing protocol used in the Internet), 200 routers (the equivalent of nodes)

should be the maximum number in an OSPF Area (the equivalent of a network).
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figure 2.3 Data Kate and Duration of Potential Broadband ISDN Services

2.2.5 Theoretical Analysis of Overhead

To carry out the overhead analysis, routing overhead will be considered as though it only

affected the selected path rather than the entire network. In other words, the approach

here is to trade the average routing cell load over all network links in space at one

instance of time with the average routing cell load over one link in space over a long

period of time. A more elaborated discussion of this follows below.

The objective is to prove the following: the average fractional increase in cell

arrival rate of the number of cells generated, because of saturation routing, is not greater

than f (defined as the saturation routing factor). By examining the load of a particular

link as a function of time, one can observe the load due to the transmission of routing

cells (see the rectangles in Figure 2.4). Some of those routing cells are for what is

defined as successful routing efforts (labeled as S) and some are for what is defined as

unsuccessful routing efforts (labeled as U). After each successful routing effort, as it may

be expected, user load follows.



62

Figure 2.4 Link Load Due to Information and Routing Cells as a Function of Time

The effect of the saturation routing load in a particular link depends on whether

the routing is successful or not. Whereby, a link that only transmits routing cells for

successful routing efforts will be impacted the least (as the amount of information carried

increases) and a link that only transmits routing cells for unsuccessful routing efforts will

be impacted the most (as the amount of information carried is zero). For the moment

let's make the assumption, that all routing efforts are successful (that indeed there is an

acceptable route for every routing request); that is for each routing effort, there is a path

that will carry user load. Now, let's assume that there are a large number of successful

routing requests, M, made over a long period of time. One can proceed to calculate the

average load effect as follows. Add the load of all routing cells generated by the M

routing efforts for all links in the entire network (defined as LTOT ), and divide that

number by the user load generated in all links because of the M routing requests. The

latter is equal to M times the average number of cells generated by data exchanges,

defined as I , times the average number of hops, defined as g . This ratio over long

times is a good estimate of the value of the saturation routing factor, f (previously defined

as the ratio of R cells over I cells).
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The inequality of the expression (2-2) is as a result of maximizing the numerator

and minimizing the denominator. The maximum numerator is as a result of the fact that

the maximum number of routing cells generated by a routing effort is equal to twice the

number of links ( LTOT) (Refer to inequality (2-1)). Since only significant data exchange

requirements will invoke the use of saturation routing, then it follows that f is less than or

equal to the ratio of a single routing effort over which only the minimum required of

information cells and the maximum number of routing cells are exchanged.

Let's examine this ratio for a single routing effort. Because the least number of

links that data traverses when there is a successful routing effort is equal to one, then the

total number of traffic cells generated in a network for a successful routing request is at

least the number of cells generated by the user. It follows that f, previously defined as

the ratio of routing cells generated by a single routing effort over the number of

information cells generated by the user, is greater than the average factor by which the

link is affected by the presence of the routing effort.

The above expression (2-3) is an average impact tor all of the links, it all of the

routing efforts are successful. However, some links will be affected more than others.

Fortunately, E[f] will be greater for those links that are utilized the least (that is over

those links which do not have any successful routing efforts), and E[f] will be lesser for
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those links that have the most number of successful routing efforts. Therefore, the use of

fmax is justified since for the group of links of interest (those with the greatest load),

f will be characterized by values less than fmax (i.e., this is a worst case assumption).

The other assumption to be relaxed is the fact that not all routing efforts will be

successful (i.e., a path from source to destination is not possible). This is most likely to

happen when the network conditions are near the saturation point. The effect of routing

cells on almost saturated links can be controlled by not allowing routing cells to traverse

a link, if the link conditions are near saturation, by implementing a method such as

described in [10].

Basically, the entire loading produced by a routing effort will be assigned to each

of the links of the path selected. Note that there are 9 routing cells generated in the

example discussed (as shown by the left portion of Figure 2.5). Two cells are generated

at step 1, five cells are generated at step 2, and two cells are generated at step 3. It will

assumed that all 9 cells are assigned to each of the links of the path selected (as shown by

the right portion of Figure 2.5). This is done to make the analysis tractable. The

objective is to demonstrate, in this analysis, that even with this worst condition

assumption (i.e., each of the generated routing cells for this routing effort traverse the

selected path), the effect of saturation routing cells is small. The only portion to be

justified is that some of the links that are affected by the routing effort (e.g., the link

between node Al and node A3, etc.) are assumed unaffected. Here in this analysis, it is

assumed a uniform network with respect to links, sources, and destinations (Refer to

Assumption 1). Therefore, if there is no preference of one link over any other, then this
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assignment of load is averaged out as routing decisions are made over those unaffected

links (e.g., the link between node Al and node A3).

Figure 2.5 Actual Versus Analyzed Routing Effort Loading

By recalling inequality (2-1) (i.e., the number of routing cells generated by a

routing effort is at most twice the number of links in the network), the task of calculating

the number of routing cells for a virtual circuit setup thus can be converted to the task of

computing (or bounding) the number of links in an ATM network. The latter is, in

general, a daunting task; however, a reliable estimate will be computed in the subsection

below for non-pathological networks (i.e., Number of Links Versus Path Size

Subsection).

2.2.6 Number of Links Versus Path Size

The number of links in a given network is topology dependent. However, in general, the

more typical large packet data networks employ a relatively small average number of

links per node, L, when compared to the number of nodes, N, in the network. For

example, the network with the largest number of links is a fully connected network (i.e.,

one that has N-1 links per each node, where N is the number of nodes) with N x (N-1) / 2

links. Whereas, a star-network will only have (N-1) links. Absolute and relative
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connectivity will be defined as parameters, CA and CR . They, respectively, describe the

average number of links, which characterize a particular network in the absolute sense

(i.e., the total number of links, Lior ) and in the relative sense (i.e., the ratio of L707 to N,

providing an average number of links per node, L). However, the more typical large

packet data networks show a relatively small average number of links per node, L, when

compared to N. As a reference, a table that indicates the total number of links in a

network, for different network sizes and topologies is included in Table 2.2.

The number of links in the network needs to be estimated. In previous usage in

the literature, the average path length, :S , in a general network was estimated as

approximately equal to or smaller than Log2 N. This is as reported in [12] and

documented for the Internet Network in 1991 [19], in which a mean Autonomous System

distance of 5 is reported, the equivalent of the shortest path, for an Internet with 59

Autonomous Systems, the equivalent of nodes.
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Table 2.2 Connectivity, Relative and Absolute, as a Function of Network Topology

2.2.7 Estimates of Overhead Factor Using Simulation

To determine a general relationship between average path length, number of links, and

number of nodes is a difficult task because it is strongly topology dependent, and thus

analytically challenging. So, here, simulation experimentation was employed to generate

random generic network topologies. This is to derive a functional relation numerically

over the parameter ranges of interest. A simulation program, the Random Topology Link

(RTL) simulation, built for this objective, was used to generate random topologies with a

given number of nodes, N, and a given number of Links, L, per node. These results,

essentially, represent a statistical type estimation of the relationship of average path

length as a function of N and L. Ten thousand runs of the simulation program were

carried out for each selection of N and L. The RTL yielded the results shown in Figure

2.6.
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Figure 2.6 Average Shortest Path as a Function of Number of Links Per Node and
Network Size

The way that the random topologies were generated is by assigning a number of

links, L, from the first node No to a given set of nodes N1 through NI, . After these

assignments were made, each node was assigned its corresponding number of links.

These links either connected to already existing nodes at the same level (e.g., N 1 to N2 ) or

connected to a newly generated node NL +1 . This was repeated until the specified number

of nodes and links was generated. In addition, a special experiment was conducted for

the 1000-node network. The simulation was modified to provide statistically varied

topologies, in an attempt to remove the artificial assumption that each node has a fixed

number of links. The number of links was assigned from a uniform random distribution
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with a lower bound equal to L-2 and an upper bound equal to L+2. Results are shown in

Figure 2.7.

Figure 2.7 Average Shortest Path For a 1000 Node Network Having Nodes with an
Average Number of Links — L

2.2.8 Impact of Routing Overhead in an M/D/1 Queue Model

Under some to be determined constraints, the aim is to prove that the added load caused

by the saturation algorithm does not significantly degrade the performance of the

network. To calculate the performance degradation, the cell information arrival process

will be modeled as an independent one with an exponential distribution. The use of this

assumption can be justified by the Kleinrock Independence Approximation [14]. To

include routing cells in the analysis, the following modeling assumption will be made: the

routing cell arrival process is statistically independent of the information cell arrival
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process. Although routing cells and information cells are mutually exclusive for a single

data exchange, this assumption can be made because cells for all data exchanges are

being considered.

Therefore, the total cell arrival process is also an exponential one with a rate equal

to the sum of the rate of the information cell process, X, cells per second, and the rate of

the routing cell process, (fλ). Following an M/D/1 queuing analysis [20 and 3], one can

conclude that the average waiting time with saturation routing, E (t), and without

saturation routing, Ens(t), is, respectively:

where:

,u 	 is the average service rate

are the utilization factors with and without saturation, respectively

Comparing the average waiting times with and without saturation routing, then

one can conclude that the routing cell impact is minimal as long as E, (t) Ens (t), which

reduces to:

The first relation, shown in expression (2-5a), requires that some bandwidth has to

be reserved for the transmission of routing cells in addition to the bandwidth for data
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transmission. The next relation, shown in expression (2-5b), requires that the number of

routing cells traversing a link have to be significantly smaller than the number of

information cells. This is the most restrictive requirement for utilization values less than

0.9. And, the last relation, shown in expression (2-5c), requires in physical terms that the

amount of bandwidth consumed by the routing overhead (i.e., equal to (λx 0/11, ) has to be

significantly less than the unallocated bandwidth (i.e., (II — A) /p. ). This is the most

restrictive requirement for utilization values greater than 0.9.

To interpret this result numerically, let's include the requirements on f assuming

some utilization factor values (i.e., p= ) (refer to Table 2.3). Even at utilization levels

as high as 0.9, which is a relatively high utilization for a statistical multiplexer such as an

ATM switch, the impact of the saturation algorithm is negligible, as long as f is at most

0.011. Let's recall, that in the example estimates of f, for the worst case network, it was

found to be equal to 0.01. This shows that saturation routing is an effective algorithm for

substantial data exchanges over an ATM network.

Table 2.3 Requirement 3(c) for f, Where << is Approximated to Mean Smaller by at
Leasr a Factor of 10

However, if higher utilization rates are desired, the saturation routing cells start

having a greater impact on the expected delay because of the exponential behavior of the
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model at utilization rates close to 1. Furthermore, if one could increase the bandwidth, or

virtually allocate part of the bandwidth to routing (as it is done in out-of-band signaling

techniques), then the impact is minimum. If one increases the bandwidth by the same

factor f (defined as the ratio of saturation routing cells to information cells), one can

determine that performance can be enhanced by a factor equal to the inverse of f plus 1.

where E sb(t) is the average waiting time with saturation routing and bandwidth

increase

Simplifying,

from which follows

for low values of f , as calculated before (i.e., 0.01), then the bandwidth increased

required will be only 1% and the overall effect will be a reduction of 1% of the expected

time delay.
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2.3 Comparison of Routing Overhead

To compare routing overhead between PNNI and Saturation Routing, a Symmetrical

Hexagonal Hierarchical Network (SHHN) will be defined as a sample network. This

network has the property that each level looks like the basic level. By using the SHHN,

one can proceed to calculate the overhead in a PNNI network as a function of the number

of nodes and/or levels. In addition, the benefit obtained by selecting paths with

Saturation Routing over the conventional PNNI routing will be calculated.

Basic properties of the SHHN 

There are 7 physical level peer groups. Each peer group has 7 nodes, with the center

node as a Peer Group Leader (PGL). The PGL has a horizontal link to each of the other 6

nodes. Each of the 6 nodes has 3 horizontal links. Three of these 6 nodes have outside

links to adjacent peer groups. The exception is the center peer group, where the 6 nodes

each have 1 outside link. The Basic Laydown is depicted in Figure 2.8 (just one level of

hierarchy). The next level of hierarchy is depicted in Figure 2.9 (2 levels of hierarchy),

the next level of hierarchy is shown in Figure 2.10 (3 levels of hierarchy), and the fourth

level of the hierarchy is depicted in Figure 2.11. (i.e., 4 levels of Hierarchy).

One level up

There is one higher level peer group that looks exactly like each of the lowest level peer

groups. It has 7 Logical Group Nodes (LGN), each representing a lowest level peer

group. Refer to Figure 2.9.

Two levels up 

Similar to the one level up, the two levels up consist of a peer group that is identical to

the peer groups of level 2.
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Figure 2.8 SHHN at the Basic Hierarchical Level (i.e., 1 Level of Hierarchy)

Assumptions

1)Network is in steady state, i.e., all topology databases are synchronized.

2) Virtual Path Channels (VPC) have already been established between PGLs of adjacent

peer groups.

3) Nodes are static, i.e., there is no reason for a node to change a Private Network-Node

Interface (PNNI) Topology State Element (PTSE) it has originated.

4) There are no errors on the links.

The basic overhead associated with the routing protocol is PTSE (embedded in

PTSPs), PTSE acks, and Hello PNNI Packets. In general, PTSE flow from one node to

the other one, whereas PTSE acks flow on the opposite direction. The effects of PTSE

acks will be ignored and PTSE flow in one direction will be assumed. A calculation of

the overhead associated with PNNI Hello Packets and PTSPs is included below.



Figure 2.9 SHHN with 2 Levels of Hierarchy
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Figure 2.10 SHHN with 3 Levels of Hierarchy
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Figure 2.11 SHHN with 4 Levels of Hierarchy

PNNI hello packet overhead

The length of PNNI Hello Packets is as follows:

Hello _ Length = Hello _ Hdr + Aggregation _ Token _ Ig +

Nodal _ Hierarchy _ List _ Ig + UpLinklg +	 (2-9)

LGN _ Horizontal _ Link _ Extension _ Ig

Where Hello_Hdr= 100 bytes, Aggregation_Token_Ig= 8 bytes,

Nodal_Hierarchy_List=12+56*L, where L is the number of Hierarchical Levels above

the LGN

UpLinkgIg=8+44*C, where C is the number of service categories (assumed to be 4)



77

LGN_Horizontal_Link_Extension_Ig =8+12H, where H is the number of Horizontal

links between LGNs.

The worst case is the links that are across a Peer Group Boundary, they will see the

following Hello Overhead (Refer to Table 2.4)

Table 2.4 Overhead due to Hello Packets (in Bytes)
HELLO OVERHEAD

Hierarchy Level 1 528
Hierarchy  Level 2 120
Hierarchy Level 3 120
Hierarchy Level 4 120

TOTAL 888

PTSP overhead

Under these assumptions, there are only two reasons to send a PNNI Topology State

Packet (PTSP):

1) re-origination of a new instance of a self-originated PTSE (the default value is 30

minutes),

2) flooding of a received non-self-originated PTSE.

Within a refresh interval 

Part 1) All nodes send self-originated PTSEs on each attached physical link. Thus all

nodes in a peer group have identical topological databases. At the lowest hierarchical

level, one would expect 7 PTSEs (one for the PGL and six for its LGN Peers).

Part 2) Each PGL, representing an LGN in the next higher level peer group, originates a

PTSE containing summarized topology information, and floods it to its (LGN) peers.

This takes place on VPCs via border nodes. In this way each LGN receives information

about child peer groups.



78

Part 3) Each LGN distributes the summarized topology information it receives via

flooding from other LGNs to its child peer group. In this way, each lowest level node

gets a view of the higher levels into which it is being aggregated.

Counting PTSPs on a link

Note: Each PTSE will be assumed to be sent in a separate PTSP. Ordinarily with user

traffic present, PTSEs may be queued for later delivery. This assumption is made

because other traffic assumptions would be needed to estimate queuing, and because

bundling of PTSEs is not standardized.

The general formula for PTSP length is:

Since only one PTSE in a PTSP is being considered, this formula becomes:

where 44 bytes is the PTSP hdr and 20 bytes is the PTSE_hdr.

The total payload in PTSEs is calculated as follows:

where:

Nodal State_Parameter=(16+44C)*f(P), where C is the number of Service Categories

and f(P) is the number of nodal state parameters. That is f(P)=0 for lowest level and 6 for

higher levels for this network.

Nodal_IG= 48+D, where D=84 if there is a higher level of hierarchy, otherwise is 0

IRA=((16+2*44C)+A*(Number_of Prefixes))*Number_of IRAs_Igs
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ERA=((23+2*44C+N)+B*(Number_of Prefixes))*Number_of ERAs_Igs

H_Links=(40+44C)*(#_of Horizontal Links)

Up_Links_IG=(72+44C+8+44C)*(#_of Up Links)

Assuming the following values,

C=4, A=B=20 (worst case), Number of Prefixes=4 (for both ERAs and IRAs), and

Number_of IRA_Igs and Number_of ERA_Igs=4, #_of Horizontal_Links=6 for PGL

and 3 for the Border Nodes, #_of Up_Links=0 for PGL and approaches an average of 1

(included induced uplinks) for Border Nodes.

Table 2.5 describes the total overhead due to PTSPs at the different hierarchical levels.

Table 2.5 Overhead due to PTSP Generated at All Levels (in Bytes)
First-level Mid-Level Last Level

border node PGL node border node PGL node border node PGL node

PTSP Header 44 44 44 44 44 44
PTSE Header 20 20 20 20 20 20
Nodal-State Parameter 0 0 1152 1152 1152 1152
Nodal-lG 132 132 132 132 0 0
IRA- G 1792 1792 1792 1792 1792 1792
ERA-IG 1900 1900 1900 1900 1900 1900
HOR. LINKS IG 648 1296 648 1296 648 1296
UP. LINKS IG 1656 0 1656 0 1656 0

TOTAL 6192 5184 7344 6336 7212 6204

Assuming that each link will receive the PTSPs from each node at the hierarchy

(i.e., 7 nodes at hierarchy level 1, 7 nodes at hierarchy level 2, and so forth). The total

number of bytes generated by this network because of PTSPs is 192,612 bytes per refresh

period.

As a result, the load applied to the links for this sample case is shown in Table

2.6. In this illustration, over 10,000 bps are used to maintain the routing tables. This is

in the absence of any significant change in resources. This 10,000 bps consumed in one

direction in each link allow for approximately 25 routing requests (using Saturation
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Routing) per second in the entire network. This is just to maintain an equivalent level of

overhead between PNNI and Saturation Routing. The next subsection will quantify the

benefits of using saturation routing.

Table 2.6 Overhead in PNNI Routing for the SHHN

PTSP OverHead HELLO Overhead TOTAL
Overhead Per Period 192612.00 888.00
Period 1800.00 15.00
Bytes Per Second 856.05 473.60 1329.65
Bits Per Second 10637.23

Differences in paths selected between PNNI and saturation 

Paths were calculated using both routing techniques (i.e., the PNNI and Saturation

Routing) for the SHHN. These paths were calculated between every possible source-

destination pair in the network. The results for the two-level up hierarchy network and

the three level up hierarchy network are presented below.

The difference in path distance between the Saturation Routing and PNNI for the

3 levels of hierarchy network is included in Table 2.7. The difference is shown as a

function of the lowest common level between source and destination. As expected, there

is no difference between PNNI and Saturation routing whenever the source and

destination belong in the same Peer Group. As the common hierarchical level increases,

the distance between Saturation and PNNI also increases. This is also expected because

PNNI information of the network becomes less as the intended destination is further

removed. The overall improvement is higher than 8%.
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Table 2.7 Average Distance Difference between Saturation and PNNI for the 3-Level
Hierarchy as a Function of Source and Destination Locations

CASES %-IMPROVEMENT
SAME-LEVEL-3 8.57%
SAME-LEVEL-2 3.56%

SAME-HIERARCHICAL-LEVEL 0.00%
ALL 8.31%

In addition, the average difference provided by PNNI and Saturation Routing for

the 3-Level Hierarchy as a function of the Path Distance (as measured by the shortest

path) is provided. As shown by Figure 2.12, the Saturation Routing algorithm provides

the most difference when the nodes are at medium distances. That is the same distance

that shows the highest number of paths. Also, Saturation Routing provides in the average

paths that are 1.14 links shorter than PNNI.

3-LEVEL HIERARCHY
Average Difference (in links) between PNNI and Saturation Routing and Number of Paths as a

function of Distance

Figure 2.12 Average Difference (in links) between PNNI and Saturation Routing and
Number of Paths as a function of Distance for the 3-Level Hierarchy
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The difference in path distance between the Saturation Routing and PNNI for the

4 levels of hierarchy network is included in Table 2.8. The difference is shown as a

function of the lowest common level between source and destination. As expected, there

is no difference between PNNI and Saturation routing whenever the source and

destination belong in the same Peer Group. As the common hierarchical level increases,

the distance between Saturation and PNNI also increases. This is also expected because

PNNI information of the network becomes less as the intended destination is further

removed. The overall improvement is higher than 8%.

Table 2.8 Average Distance Difference between Saturation and PNNI for the 4-Level
Hierarchy as a Function of Source and Destination Locations

CASES %-IMPROVEMENT
SAME-LEVEL-4 18.67%
SAME-LEVEL-3 9.60%
SAME-LEVEL-2 3.58%

SAME HIERARCHICAL LEVEL 0.00%
TOTAL 8.74%

In addition, the average difference provided by PNNI and Saturation Routing for

the 4-Level Hierarchy as a function of the Path Distance (as measured by the shortest

path) is provided. As shown in Figure 2.13, the Saturation Routing algorithm provides

the most difference when the nodes are at medium distances. That is the same distance

that shows the highest number of paths. Also, Saturation Routing provides in the average

paths that are 6.4 links shorter than PNNI.
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Figure 2.13 Average Difference (in links) between PNNI and Saturation Routing and
Number of Paths as a function of Distance for the 4-Level Hierarchy

The level of improvement experienced increases with the number of hierarchical

levels. The advantages of using Saturation Routing can be quantified using the SHHN.

In the 3-level hierarchy, an average of 1.14-link shorter paths was shown. If one were to

allocate a total sum of 155 Mbps (assuming the link connections are 0C-3s) distributed

over all of the links in the 3-level hierarchical network for Saturation Routing, this will

become a more efficient network. In addition, Saturation Routing was demonstrated to

be 8% more efficient in path selection. Again, using as an example a typical OC-3

connection, this will allow an allocation of over 7 Mbps for Saturation Routing

(approximately 5% of the total maximum link capacity) and still make the overall

network more efficient.
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In the case of the 4-Level Hierarchical Network, similar conclusions can be

drawn. In this network, an average of 6.4-link shorter paths was shown. This will allow

an allocation of over 900 Mbps in the entire network for Saturation Routing. The extra

capacity is needed for the increased number of links and nodes. The efficiency shown is

higher than the 3-level hierarchical network, but it is still around 8%. Similar to the 3-

level hierarchical network, this will allow an allocation of over 7 Mbps for Saturation

Routing (approximately 5% of the total OC-3 Connection) and still make the overall

network more efficient.

2.4 Hybrid Routing Approach

Now that the advantages gained by using the Saturation Routing Algorithm have been

illustrated using the SHHN, the concept of a Hybrid Routing Approach will be

introduced. This approach combines the benefits of both PNNI and Saturation Routing.

The concept consists of a 3-way alternative for each routing effort:

• For small exchanges, the PNNI normal routing effort will be executed.

• For medium exchanges, a hierarchical Saturation Routing effort will be executed.

• For large exchanges, a full Saturation Routing effort will be executed.

The first and last type of routing effort has been described before. A description

of the second type of routing effort follows next. The saturation routing process will take

place at each level of the hierarchy. In the first level of the hierarchy, all of the nodes

will become aware of the routing effort. In the second level of the hierarchy, only the

nodes that are Peer Group Leaders (PGLs) will receive information of the routing effort.

As the common level between source and destination is efficiently found through the
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saturation routing process, the common (for source and destination) lowest level PGL

will direct the saturation routing to take effect at those levels only and inhibit the

saturation routing to propagate any further from those levels.

The advantages of this proposed approach are the following:

• This hybrid routing approach can be combined with the existing PNNI routing

infrastructure.

• If the exchange is small in nature, the setup of the path will not incur any extra

overhead.

• If the exchange is large, the potential for substantial path efficiency warrants the

expense of searching for the most optimum path. That is routing overhead is

spent so that resource savings can be capitalized by using the most efficient paths.

• If the exchange is medium, one is willing to incur the deficiency of PNNI,

improved by the fact that one will be attempting every path known by the source

PNNI node. That is the extra expense of executing Saturation Routing is minimal

as well as the potential for savings.

Boundary Lines 1 and 2 of Figure 2.3 can be used as delineators for small,

medium, and large user exchanges.



CHAPTER 3

MEASURES OF PERFORMANCE USED BY THE SATURATION ROUTING
ALGORITHM PATH DECISION MECHANISM

The Measures of Performance that being proposed for use in the Saturation Routing

Algorithm decision mechanism are the ones, for the most part, used and defined in the

User to Network Interface specification. They are defined below for completeness:

• Peak Cell Rate (PCR) — This is the maximum number of cells that will be allowed

to be transmitted over a unit of time. The saturation routing will check the overall

sum of PCR that a link has committed to — the higher the value relative to the

maximum capacity of the link, the less desirable the link becomes.

• Cell Delay Variation Tolerance (CDVT) — the amount of clumping that can be

tolerated for PCR. The saturation routing will also check this value. The higher

the value CDVT has, the less desirable the link becomes.

• Sustainable Cell Rate (SCR) — a rate that represents the average number of cells

exchanged in a session. The saturation routing will also check this value. The

higher the value CDVT has, the less desirable the link becomes.

• Maximum Burst Size (MBS) — The number of cells on a virtual circuit that can

burst at the PCR.

• Minimum Cell Rate (MCR) — the minimum rate at which a host using the

available bit rate service category will always be able to transmit data.

86
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In addition, other Quality of Service (QOS) parameters will be taken in the setup

message:

• Cell Loss Ratio (CLR): ratio of lost cells versus attempted cells.

• Cell Transfer Delay (CTD): measure of time required to deliver the cells

• Cell Delay Variation (CDV): measure of how latency varies between the arrival

of one cell to another.

Besides the traditional measures of performance, a new measure of performance

is recommended for the implementation of the Saturation Routing Algorithm. This is

described below.

3.1 Burst Voice Arrival Lag as a Measure of Performance

This section shows that the Burst Voice Arrival Lag (BVAL) can be used as a measure of

performance to select or distinguish the level of service provided by systems that delivers

voice packets over ATM networks. This measure of performance can be applied for any

system that sends voice packets (or cells) and also can be used by a routing algorithm,

such saturation routing, to select paths between source and destination. The typical

measure of performance used to distinguish the areas for which voice performance is still

considered acceptable is packet (or cell) loss ratio. The acceptable range, in terms of

packet loss, for a given system depends on the packet length and the voice encoding

scheme used in the system. In such systems, the packet losses for this threshold are

assumed to occur randomly and evenly distributed. In other words, the errors do not

show burstiness. However, it is known that the perceptual quality of burst packet errors

is much worse than that of an equal number of packet losses distributed randomly across
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the packet stream. To take into account the effects of unevenly distributed errors that

may occur, the ITU has imposed some other requirements at the Physical Layer in terms

of Degraded Minutes, Severely Errored Seconds, and Errored Seconds. This is an

attempt to measure long term average losses as well as to capture bursty errors and

completely error free seconds.

In a packet network it is difficult to characterize the performance of the system for

voice transport. Packet error rates (or cell error rates) can be measured; but typically the

errors have been found not to occur randomly. In fact, when congestion occurs in a

network, packets conveying voice information may either be lost, or arrive too late, in

bursts. Therefore, there is a need to have a Measure of Performance that takes into

account not only of the packet error rate, but that also provides for the burstiness, or lack

of, in the system. It will be shown in this paper that the Burst Voice Arrival Lag (BVAL)

not only measures the packet error rate, but it also penalizes the packet errors when their

nature is bursty.

3.1.1 Description of a Packet Arrival Process In a Packetized Voice System

In a packetized voice system, typically there is a delay variation requirement that

originates from the continuous stream of data that this type of application generates. The

application at the destination end implements a receiver buffer that has as a purpose to

"dejitter" or smooth out the delay variation presented by the network, such that a constant

stream with a fixed constant delay is presented to the destination application. For

example these playback buffers are used in RTP, a protocol that is used for real-time

applications over IP [17]. The size of the buffer at the receiver depends on the maximum
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tolerable delay for the given application (approximately 500 milliseconds for round trip

voice delay, or a 250-millisecond one-way voice delay, [13]). The "dejitter" buffer is

used to store the voice information as it arrives and then it is played back to the

destination application at a constant delay. If packets arrive too late (i.e., with a delay

greater than the maximum tolerable delay), then they are discarded without being played

back.

3.1.2 Burst Voice Arrival Lag (BVAL) Description

In this section, the BVAL Measure of Performance will be defined. After that, the BVAL

value for a system with random packet losses (defined as System A) will be calculated.

That is followed with a calculation of BVAL for a system that shows burst packet losses

with a fixed size N (defined as System B). It will then be demonstrated that the BVAL is

higher for System B than it is for System A, although they have the same packet error

rate.

BVAL for a system with random packet losses 

It will be shown that for a system with a given packet generation rate and random packet

losses, BVAL is a measure that depends on the packet loss rate, which is the current

measure of performance used to evaluate the systems that carry voice over packet

networks. The process will be illustrated by showing packet Arrival at a destination

(refer to Figure 3.1). The upper portion of Figure 3.1 represents the transmitter

generating packets at a given rate (depicted here by the generation period, defined as r).

The lower portion of Figure 3.1 represents data being played back to the destination with

a fixed delay of the maximum tolerable delay. Note that 2 cells (the ones generated at 2r
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and 5r) are not played back. They could have been lost in the network or delayed by a

value greater than the maximum tolerable delay (and therefore discarded by the

application at the destination). The lifetime of the packet, L, measures the time from

which the last packet to be played back started playing back. This is in essence, the

amount of time that the play back queue has starved (i.e., it has no data to play back) plus

the playback time of a voice packet. In a perfect system, the L will increase from zero (at

the time a packet arrives) to the maximum value r (when the next packet starts playing

back). In the Figure 3. 1. illustration, the L reaches the value 2r in two occasions because

two nonconsecutive packets were lost. In these examples, the L had a value of 0 when the

last packet started playing back (e.g., at time equal to r and at time equal to 4r). L

increases its value from zero to 2r, time at which the next cell started playing back (i.e.,

cells that started playing back at time equal to 3r and 6r). Had the packets been lost

consecutively (in a burst of 2-packet errors), L would have increased from zero to its

maximum value 3r.

Figure 3.1 BVAL as a Function of Time for a System with Random Packet Losses
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The following definitions apply in this calculation, referred to in Figure 3.1.

r - the source packet generation period, a constant for the system under analysis.

p - the probability of delivering a packet correctly from source to destination within the
maximum tolerable delay time. For system A, it is assumed that the probability of
delivering each packet is independent of whether the previous packet was delivered or
not.

L - lifetime of playback buffer starvation plus cell playback time — a random variable that
represents the time elapsed since the last packet finished playing back.

BVAL — Represents the area under the curve of L normalized with respect to the number
of voice samples played back.

Figure 3.2 depicts the expected difference between BVAL for a system with

random losses versus BVAL for a system with burst packet losses. In this figure, the

solid line depicts the L for a bursty environment, whereas the bolded dotted line depicts

the equivalent L on which the same number of packets are lost nonconsecutively. For

example, the packets that were supposed to play back at times r, 2r, and 3r did not arrive

or arrived late to be played back. This is a burst of 3 packets. If one compares the area

under the curve for these 3 consecutively lost (or late arrival) packets versus 3 packets

that are lost or arrived late nonconsecutively, one can determine that the difference in

area is proportional to (N-1) 2 , where N is defined as the burst size. The areas labeled A l

and B1 are equal to the areas labeled A- 1 and B- 1 , this leaves areas labeled 1, 2, 3, and 4

as the difference between the two arrival schemes in the case of 3 packets. As a result, in

the first example in this figure, the difference in area is proportional to 4r 2 . In the second

example, packets at time 5r and 6r did not arrive or arrived late. The difference in area,

in this case, is proportional to r2 because the burst size is equal to 2. Because BVAL is a

normalized (not an absolute) value of the area, it will be determined that the difference in

BVAL between the 2 systems is proportional to (N-1).



Figure 3.2 Difference in BVAL as a Function of Time for a System with Burst Packet
Losses and a System with Random Packet Losses

A geometrical representation of BVAL is the area under the curve divided by the

total number of packets played back in the calculation, V. Refer to equations 3-1 and 3-

Here V represents the number of voice packets received and played back for the

measuring period. BVAL represents the sum of the areas of the triangle pieces divided

by the number of voice packets, V, received. By taking the limit to infinity, assuming

that the limit to infinity exists; which it does as long as p > 0. The probability, p, greater

than zero, guarantees that at least one packet will be successfully received. This results

in equation (3-2). It is also seen that to obtain the BVAL value, one must find the

expected values of the packet life squared. The probability of successfully transmitting a
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message can be represented as a Bernoulli trial process, whereby the probability of

successfully delivering a packet is independent of previous outcomes (i.e., whether

previous packets were successfully delivered or not). By using the Bernoulli trial

process, one can readily find the expected value of the life of the report squared (See

equation 3-3).

Thus, for a System A, the BVAL is a performance parameter that depends on the

following: (1) the probability of successfully delivering a packet within the maximum

tolerable delay (i.e., p), and (2) the source packet generation period (i.e., r). This

derivation of BVAL is similar to the derivation of the Average Information Staleness

(AIS). The AIS measure of performance was introduced in [16].

BVAL for a System with Bursty Packet Losses 

In a System B (one that exhibits packet losses in bursts of size equal to N), when one is

observing the packet arrival process there are two possible events. The first event that

can be observed is that a good packet arrives. This event occurs with a probability of

a. The second event that can observed is that a block of packet errors of size N arrives.

This event occurs with a probability of 3. The relationship of the defined packet

completion rate, p, defined in the System A with respect to a and 13, will be

calculated. This relationship is shown in equations 3-4, 3-5, 3-6, 3-7, and 3-8.
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Since,

One finds that,

Again by using a Bernoulli trial process to find the BVAL of this system, one

finds that the probability of a successful packet arrival, or the evidence of a burst of

packet errors of size N (by not observing their arrival), is independent of the previous

event (i.e., whether a packet arrived or a burst of packet errors was observed). To solve

the BVAL for system B, the E[L^2] needs to be calculated. Refer to equation 3-10.

Now, one needs to determine if the BVAL of System B (defined in equation 3-11)

is greater than the BVAL of System A (defined in equation 3-5). Let's write the

difference, D, as:
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It is clear that D is greater than zero for N>1 and p<1. In addition, note that the

difference on BVAL is proportional to N-1 (the burst packet size minus one) and

inversely proportional to the packet completion rate minus one. This relationship

provides the desired features. In practice the magnitude of the increase of BVAL in

System B over that in System A is important; this defines the utility of BVAL as an

easily discernible figure of merit. Refer to equation 3-14 for that magnitude of relative

increase.

Refer to Figure 3.3 for a graph that depicts the relative % increase in BVAL as a

function of the burst size, N, and the Packet Completion rate, p. As it can be seen in

Figure 3.3, the larger the N (i.e., the burst size) the greater the BVAL becomes (which is

a desired property in this measure of performance). As a result of this derivation, one

knows that BVAL is greater for a burst cell error rate environment with a fixed size equal

to N (as long as N is greater than 1) than for a random cell error rate environment.
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Figure 3.3 Relative % Increase in BVAL as a Function of Burst Size (N) and Packet
Completion Rate (p)

The vocoder operates in speech intervals in the range of 16 to 32 milliseconds

[15]. These are generally optimized for high coding efficiency (i.e., they are just slightly

below the threshold of speech interval above which perceptual click noise appears [24]).

A conservative estimate is that the perception threshold is 48 milliseconds, then that is

equivalent at 64 kbps (using PCM) to 8 contiguous ATM cells or a smaller number of

larger voice IP packets. In other words, a burst packet loss of 8 such cells will be clearly

perceptible as a speech disruption. In schemes that use compression (e.g., ADPCM) even

smaller burst sizes may be perceptible. Figure 3.4 enlarges the region of smaller values

of N in expressing BVAL. Note that the % relative increase even for a 99% Packet

Completion Rate and small burst sizes the relative % increase in BVAL is several full

percentage points in value and thus clearly measurable.
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Figure 3.4 Relative % Increase in BVAL as a Function of Burst Size (N) and Packet
Completion Rate (p)

Now, there is a need to generalize the results for a burst error rate environment on

which the burst size is not necessarily fixed with a size N, but it varies. To prove this

aspect, a System B that exhibits packet burst errors of different sizes will be assumed.

The observed space will be partitioned in a series of periods {A1, A2, A3,  AM}. Each

period will contain packet errors due to a given size burst and separated by one successful

packet arrival. Each period will exhibit a different packet completion rate; however, the

long term average packet completion rate is still p.



One can state the following:
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And because,

Since,



CHAPTER 4

ADVANTAGES OF USING SATURATION ROUTING

4.1 Multicast Routing with Saturation

In addition to its flexibility and ease of implementation, Saturation Routing can also have

other advantages over conventional routing schemes. That is assuming that the overhead

of saturation routing can be made insignificant, as it has been shown. Among those, one

can mention multicast routing. Currently, there is two proposed approaches for providing

the support needed. However, these approaches do not possess all of the needed

characteristics to effectively support a truly dynamic multicast group. A brief description

of the two approaches is included below:

• The Virtual Circuit Mesh Approach— that is each source interested in sending

messages to the multicast group establishes a unidirectional point to multipoint

VC with the members of the multicast group, or

• The Multicast Server Approach — each source establishes a VC with a common

node (called multicast server). The multicast server in turn establishes a point to

multipoint unidirectional VC with each intended destination.

There are issues with both approaches. Among those, one can find:(1) scalability

issues, and (2) long settling time (i.e., the time needed by the network to adapt to a new

member joining the group) Regardless of the approach selected, there is a need for ATM

switches to establish effectively and rapidly point to multipoint unidirectional VCs. In

addition, it is desirable for a routing algorithm to support both bidirectional point to

multipoint VCs as well as to be able to support a feature on which a node other than the
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source can add more destinations to the group. The description of the integration of

Saturation Routing with multicast will be constrained to the functionality needed for

unidirectional point to multipoint services, and not to the more generic bidirectional point

to multipoint service.

The general principle behind a Multicast Service is understood to be the

transmission of data to be delivered to a group of users. This group of users is dynamic,

meaning individual users will subscribe or retire from the multicast service at will. In

addition, a user does not need to be a member of a particular multicast group in order to

send traffic to that multicast group.

The Internet Engineering Task Force (IETF) has been considered to be in the

forefront of research with wide area multicasting. Internet researchers have been using

the experimental MBONE network to test some of these multicast routing protocols.

Distance Vector Multicast Routing Protocol (DVMRP) has been the routing used in the

MBONE to multicast to Internet users the (IETF) conferences.

With respect to ATM, the Request for Comment (RFC) 2022 — "Support for

Multicast over UNI 3.0/3.1 based ATM" — describes proposed approaches to solve the

problem of multicasting in ATM. These approaches are based upon the fact that the

ATM User-Network Interface Specification Version 3.1 provides multicast support.

However, this support has the following limitations: (1) Only point to multipoint ,

unidirectional VCs can be established, and (2) only the source node may add or remove

members of the multicast group.

Two alternatives will be provided to implement the Unidirectional Point to

Multipoint Service. The first approach applies to the more generic problem on which
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multicast members are throughout the network and the network topology is not

completely known. This approach is described as follows.

First, the source node issues a saturation routing request message to the multicast

group identifier. Second, all active members of the multicast group respond to the

request issued by the source node. As each multicast destination is received, they start

the process of selecting a path back to the source. This path selection informs the

intermediate nodes that they are providing the requested multicast service. In addition, as

opposed to the unicast routing case, the destination(s) continue the search for more

destinations through its outgoing links. As a result this marked path (constituted by the

intermediate nodes involved in the path selection and also called the multicast backbone)

can also be utilized by the forthcoming path requests from the other nodes. This is

because, once the multicast backbone exists, the nodes do not require to find a path to the

source any longer (i.e., a path between the intended destination node and the multicast

backbone is sufficient to satisfy the request). Furthermore, as more users join the

multicast group and their paths are setup, the multicast backbone grows in size. New

members can join by just extending the existing multicast backbone.

A less generic approach can also be used if one knows the topology of the

network and the clustering characteristics of members who wish to subscribe to the

multicast group. In this case, rather than issuing a general saturation routing request, the

source node now issues a request to at least one member of each of the identified clusters

— (this member is designated as cluster server — this can be the Peer Group Leader on a

PNNI network). The cluster head members are responsible to establish their point to

multipoint connections to the rest of the members of the cluster (these members are
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designated cluster clients). As a result, a hierarchical backbone (in which the first level

of the backbone is between the source and the cluster servers and the second level of the

backbone is established between the cluster servers and their clients) has been provided.

4.2 Load Balancing Advantages

An inherent property of using Saturation Routing is the capability of introducing the

concept of Load Balancing. That is the desire, in some instances of splitting the

requirements of supporting a service across several links (paths) in the network. In some

cases, specially found when a request for substantial resources is made, there is no single

path that can satisfy the user exchange requirements fully. However, when using more

than one path, the total contribution of several individual paths may be able to satisfy the

user exchange requirement. It is believed that because Saturation Routing attempts every

path in the network, this type of routing algorithm is substantially more suitable to

support bifurcation of paths. In essence, every path in the network can be attempted in

order to setup the network. As a result, the Saturation Routing algorithm can be modified

(with the insertion of a special flag in the routing request) to allows switches to support

path bifurcation.

Another important added benefit of Saturation Routing is the concept of cranking

back. In PNNI implementations, the source loosely specifies the main path (or node

contributors) that will become part of the selected path. Intermediate nodes flesh out the

details that are unknown to the source. If for some reason, the loosely selected path can

not satisfy user exchange requirements. The path will be crankbacked to intermediate

specified points to attempt a route, different than that specified by PNNI. Saturation

Routing, because of its feature of trying every possible path, does not require the explicit
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crankback capability. It is inherent in the protocol itself. As a result, Saturation Routing

can be used effectively to implicitly implement the crankback capability, without the

routing overhead penalty associated with it.



CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

An efficient method for implementing Saturation Routing has been shown. First, a

mathematical queueing model (i.e., the M/D/1 queue model) was used to demonstrate

that the impact of using Saturation Routing could be made negligible. For practical

networks, it was determined that the impact of Saturation Routing was heavily dependent

on the number of links that the network contained. In addition, a typical PNNI routing

overhead was calculated for various Symmetrical Hexagonal Hierarchical Network

(SHHN) in a stable condition (i.e., with no significant changes). This calculation was

accomplished using different number of hierarchical levels and number of nodes. The

level of overhead found on these networks will allow one to calculate a number of

routing requests using Saturation Routing that will produce an equivalent amount of

overhead.

Then, the cost and savings produced by using Saturation Routing was determined.

It was shown that by using some of the efficiencies gained by Saturation Routing, one

could in essence allow that amount of overhead to execute Saturation Routing. With the

savings obtained when selecting shorter paths through Saturation Routing, one could

afford bandwidth in the order of around 7 Mbps (assuming 155 Mbps links) for carrying

the routing overhead information. Finally, a new measure of performance was

introduced. This could be used in the future for ATM voice networks, because it is able

to discriminate and penalize a system that produces burst cell errors against a system that

produces the same cell error rate, yet random cell errors. The measure of performance is

suitable for tracking the performance of either voice or video type of transmissions.
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Other advantages of using Saturation Routing were also outlined. The main conclusion is

that Saturation Routing can be made to be an efficient Routing Algorithm. This is

especially true, as the user exchange requirements grow in size.

Recommendations for further research are as follows:

• Full implementation of Saturation Routing with coexistence with the current

recommended PNNI approach.

• Use of graph theory to further develop relationships between network size and the

number of links.

• Further exploration of Saturation Routing in the multicast and anycast areas.

• Further elaborate the role of the Burst Voice Arrival Lag (BVAL) as a measure of

performance.
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