19 research outputs found

    Preliminary phantom-based dynamic calibration techniques assessment for microwave colonoscopy systems

    Get PDF
    Early detection and resection of colon polyp is the best way to reduce colorectal cancer (CRC) mortality. The current method for early detection is colonoscopy, which has a limited field of view, and its efficacy is highly dependant on the endoscopist's experience and colon preparation. This work presents a device for combining microwave imaging with optical colonoscopy. The challenges of this new microwave imaging system are presented, such as the unknown distance to the colon mucosa, which leads to undesired scattered fields and, the antenna size limitations. Four dynamic calibration techniques are proposed to remove the effects of the undefined distance from the imaging region to colon mucosa. These calibration methods are based on averaging the colonoscopy trajectory frames and subtracting the calibration set from the current frame. The phantom preliminary results show that these calibration methods completely delete the undesired scatter.A.G. acknowledges the financial support from DIN2019- 010857, M.G., and W.D acknowledge the financial support from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 960251 and from the European Institute of Innovation and Technology (EIT). J.R. acknowledges the financial support from Agencia Estatal Investigacion PID2019-107885GB-C31/AEI/10.13039/.Peer ReviewedPostprint (author's final draft

    Utilizing higher-order basis functions for estimating the shape of metallic and dielectric objects

    Get PDF
    Представљена је квалитативна метода нумеричке електромагнетике за микроталасно формирање слике, која се ослања на решавање инверзног проблема расејања. У уводном делу дат је преглед литературе и укратко су дефинисане предности предложеног алгоритма у односу на већ постојеће методе. Након увода, дефинисани су основни постулати инверзних проблема и упоређени са добро познатом формулацијом директних електромагнетских проблема. Након тога, објашњене су потешкоће које настају при решавању инверзних проблема, односно показано је да су они у општем случају нелинеарни и некоректно постављени. Такође, детаљно је описана техника развоја по мултиполима као фундаментална алатка у аналитичкој електромагнетици, на којој се заснива приказана метода...An electromagnetic qualitative microwave imaging method, which relies on solving an inverse scattering problem, is presented. In the introductory part of this dissertation, the state-of-the-art is briefly summarized. Also, main advantages of the proposed method, compared to other known methods, are outlined. After the introduction, we define the basic idea of an inverse problem, compared to the well-known direct electromagnetic problem formulation. Then, we explain the main difficulties arising during an attempt to solve such an inverse problem, i.e., it is shown that these problems are generally non-linear and ill-posed. Also, the multipole expansion technique, as a fundamental tool in analytical electromagnetics, is described in detail..

    An efficient of overlapping grid method with scattering technique in time domain for numerical modeling

    Get PDF
    An Overlapping Grid Method (OGM) with Biquadratic Spline Interpolation in scattering technique was developed to solve the direct and inverse scattering issues. A two-dimensional (2D) numerical image model was used to analyze the accuracy of the proposed method in a direct scattering process. It was discovered that when the sub-grid, sxΔ increased, the absolute error for the electric field amplitude will also increase. The results also discovered that as the grid size ratio increased, the absolute error of the amplitude ZE will also increase. The findings show that smaller grid spacing and a finer grid size can produce more accurate results. The Overlapping Grid Method (OGM) with Biquadratic Spline Interpolation was expanded by incorporating with Forward-Backward Time Stepping (FBTS) technique to solve inverse scattering issues. Homogenous embedded objects with a square and circular shape are used to validate the efficiency of the proposed method. The findings showed that the proposed numerical method could detect and reconstruct embedded objects in different shapes. The efficiency of the proposed method was examined by Mean Square Error (MSE) and normalizing the functional error. The findings revealed that the MSE of dielectric profiles for the proposed method were lower than the FDTD method in FBTS. The relative permittivity and conductivity profile differed by 27.06% and 20%, respectively. Hence, it was proven that the proposed method successfully solved a known drawback to the FDTD method and produced more accurate and efficient results

    Effects of the Plastic of the Realistic GeePS-L2S-Breast Phantom

    Get PDF
    A breast phantom developed at the Supelec Institute was interrogated to study its suitability for microwave tomography measurements. A microwave measurement system based on 16 monopole antennas and a vector network analyzer was used to study how the S-parameters are influenced by insertion of the phantom. The phantom is a 3D-printed structure consisting of plastic shells that can be filled with tissue mimicking liquids. The phantom was filled with different liquids and tested with the measurement system to determine whether the plastic has any effects on the recovered images or not. Measurements of the phantom when it is filled with the same liquid as the surrounding coupling medium are of particular interest. In this case, the phantom plastic has a substantial effects on the measurements which ultimately detracts from the desired images

    Novel Inverse-Scattering Methods in Banach Spaces

    Get PDF
    The scientific community is presently strongly interested in the research of new microwave imaging methods, in order to develop reliable, safe, portable, and cost-effective tools for the non-invasive/non-destructive diagnostic in many fields (such as medicine, civil and industrial engineering, \u2026). In this framework, microwave imaging techniques addressing the full three-dimensional nature of the inspected bodies are still very challenging, since they need to cope with significant computational complexity. Moreover, non-linearity and ill-posedness issues, which usually affects the related inverse scattering problems, need to be faced, too. Another promising topic is the development of phaseless methods, in which only the amplitude of the electric field is assumed to be measurable. This leads to a significant complexity reduction and lower cost for the experimental apparatuses, but the missing information on the phase of the electric field samples exacerbates the ill-posedness problems. In the present Thesis, a novel inexact-Newton inversion algorithm is proposed, in which the iteratively linearized problems are solved in a regularized sense by using a truncated Landweber or a conjugate gradient method developed in the framework of the l^p Banach spaces. This is an improvement that allows to generalize the classic framework of the l^2 Hilbert spaces in which the inexact-Newton approaches are usually defined. The applicability of the proposed imaging method in both the 3D full-vector and 2D phaseless scenarios at microwave frequencies is assessed in this Thesis, and an extensive validation of the proposed imaging method against both synthetic and experimental data is presented, highlighting the advantages over the inexact-Newton scheme developed in the classic framework of the l^2 Hilbert spaces

    Experimental Evaluation of a Microwave Tomography System for Breast Cancer Detection

    Get PDF
    Microwave tomography is a potential candidate for future breast-cancer screening or diagnosis. Contrary to x-rays, microwaves are non-ionizing and therefore not a health risk by their own. The examination procedure would also be more comfortable for the patient compared to conventional mammography since no compression of the breast is needed.The examination is performed by irradiating the breast with microwaves from multiple directions. The collected data is then processed by an iterative algorithm that reconstructs the permittivity and conductivity distribution in the interrogated region. Ideally, tumors could be identified in these reconstructed images due to their different properties compared to normal tissue.In this thesis, a prototype system for microwave tomographic imaging is experimentally evaluated. The system consists of 16 monopole antennas and utilize a mixture of water and glycerin as coupling liquid. As a tool for the assessment, two phantoms have been studied. One is a simplistic phantom consisting of a cylinder in which smaller cylindrical inclusions can be inserted. The other is a 3D printed structure made to resemble a human breast geometrically. This particular phantom consists of two shells, representing the different tissues of the breast. The system is found to produce well reconstructed images of both the interrogated phantoms. However, the interior geometry of the 3D printed phantom was more challenging.Furthermore, two different reconstruction algorithms are tested. The first is a Gauss-Newton based FEM algorithm and the second is a gradient-descent based FDTD method. Both of the studied algorithms proved to yield good reconstructions

    Design of Miniaturized Antipodal Vivaldi Antennas and a Microwave Head Imaging System for the Detection of Blood Clots in the Brain

    Get PDF
    Traditional brain imaging modalities, for example, MRI, CT scan, X-ray, etc. can provide precise and high-resolution images of the brain for diagnosing lesions, tumors or clots inside the brain. However, these modalities require bulky and expensive test setups accessible only at specialized diagnostic centers, and hence may not be suitable or affordable to many patients. Furthermore, the inherent health risks limit the usability of these modalities for frequent monitoring. Microwave imaging is deemed a promising alternative due to its being cost-effective, portable, non-ionizing, non-intrusive. Therefore, this work aims to design an effective microwave head imaging system for the detection of blood clots inside the brain. Two miniaturized antipodal Vivaldi antenna designs are proposed which can provide wideband operation covering the low microwave frequency range (within 1 - 6 GHz) while having electrically small dimensions, directional radiation pattern with reasonable gain, and without requiring immersion in any matching/ coupling liquid. A head imaging system is presented which utilizes a quarter-head scanning approach, to reconstruct four images of the brain by scanning four quarters of the head, using the designed antipodal wideband Vivaldi antenna. A numerical brain model, with and without the presence of blood clot, is simulated using the proposed head-imaging system. At each quarter, the antenna is placed at nine different positions for scanning. The reflected signal at each position is processed and using confocal microwave imaging technique four images of the brain are reconstructed. A comparison is made among the four images in terms of their intensities, for the detection and approximate location of the blood clot inside the brain. The presence of higher intensity regions in any specific quarter of the head demonstrates the presence of a clot and its location and validates the feasibility of the proposed head imaging system using the low frequency wideband Vivaldi antenna
    corecore