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Abstract—This paper deals with 3D quantitative microwave imaging or
microwave tomography (MT), i.e. the reconstruction of inhomogeneous di-
electric objects from measurements of the scattered field for different il-
luminations of those objects with microwaves. In contrast to qualitative
microwave imaging methods, no approximations are made to the scattering
model, thus MT tries to solve the full-vectorial 3D inverse scattering prob-
lem exactly. This is accomplished by casting the inverse problem into an
optimization problem where a permittivity profile is sought that minimizes
a properly chosen cost function, which measures the distance between the
measured data and the simulated scattering from a given permittivity pro-
file. In this work, a regularized Gauss-Newton method is employed to this
end.
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I. INTRODUCTION

THE aim of microwave imaging is the reconstruction of an
object – or, more precisely, some characterizing physical

parameter of an object – from measurements of the scattered
electromagnetic fields that occur when that object is illuminated
by a number of known incident microwaves. Apart from appar-
ent applications in non-destructive testing and geophysical ex-
ploration, microwave imaging is a promising alternative to the
existing imaging methods in the biomedical world. An interest-
ing example is the detection of breast cancer tumors, for which
microwaves are especially suited, because they easily penetrate
the body without the risk that is attached to the ionizing X-rays
that are commonly used for mammography these days.

Microwave imaging methods can be devided in two major
classes. On one hand you have the qualitative reconstruction
methods that provide approximate solutions, but linearized and
therefore easy-to-solve problems, and on the other hand there
is microwave tomography (MT) that attempts to solve the full-
wave 3D inverse scattering problem in an exact manner. Despite
improved image qualities, the latter class is known, however,
for its non-linearity and its members are invariably burdened by
computationally heavy iterative algorithms.

In this work, the 3D inverse scattering problem is solved using
a regularized Gauss-Newton optimization algorithm [1]. Many
efforts have been made to overcome computational burdens,
which results in a robust and effective algorithm for quantita-
tive microwave tomography.

II. THE FORWARD PROBLEM

The label “forward problem” in our field of research refers
to the calculation of the electric field E

scat(r) that is scattered
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from a known complex permittivity distribution ε(r) in an in-
vestigation domain D when a known incident field E

inc(r) im-
pinges on this domain (Figure 1).
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Fig. 1. The 3D scattering configuration.

A convenient way to solve the forward problem is by using
the Volume Integral Equation (VIE) [2]. In this formulation,
the scattered field is the solution to Maxwell’s equations for a
source current density J

scat which is the product of the contrast
in permittivity and the total electric field inside D, i.e.

J
scat(r) = (ε(r) − εb)E(r), (1)

where εb is the permittivity of the background medium. Since
the scattered field E

scat can be expressed in terms of the con-
trast current J

scat through an integral formulation and since the
total field is the sum of the incident and the scattered fields, an
integral equation for the total field can be obtained. Once this
equation is solved, the total field – and consequently the current
J

scat – is known and the scattered field can be calculated.
The VIE is solved numerically using the Method of Moments

(MoM). This means that the electric field inside the domain D
is expanded in basis functions defined on a grid discretization
of D and that a linear system for the expansion coefficients is
obtained after testing the VIE with the same set of basis func-
tions. Because of the large dimensions of this linear system, it is
solved iteratively and an FFT technique [3] is used to speed up
the matrix-vector multiplications that are needed by the iterative
solver. In addition, an extrapolation procedure has been devel-
oped [4] to determine initial guesses that are already close to the
solution vector, as a result of which the number of iterations is
reduced.

III. THE INVERSE PROBLEM

Since the contrast current (1) is the product of the permittivity
and the total field, which in turn depends on the permittivity



through the integral equation, the scattered field is a non-linear
function of the permittivity. As a result, the inverse scattering
problem is solved iteratively. It is formulated as an optimization
problem in which the optimization variables are the values of
ε(r) in the cells of a cubic grid that covers D and in which a
cost function

F (ε) =
[

1 + αFR(ε)
]

‖escat(ε) − e
meas‖2, (2)

is minimized. In (2), the vectors e
scat and e

meas contain the sim-
ulated and measured scattered field data respectively, ε is a vec-
tor containing the optimization variables, α is a positive param-
eter and FR is a smoothing function that penalizes strong local
variations in the permittivity. The presence of the smoothing
function is required to put some constraints on the optimization
process. Indeed, it is known that the inverse scattering problem
is very ill-posed, i.e. large fluctuations on the permittivity pro-
file can correspond to only small deviations on the scattered field
and therefore noise on the data can be amplified to undesired
levels in the reconstructions when no precautions are taken.

The optimization itself is carried out using a descent method
with line search. The (k + 1)-th iterate in the optimization pro-
cess is calculated as

εk+1 = εk + βksk, (3)

where the search direction sk is the solution of the system

(

J
H

k
Jk + λ2
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Σ

)
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(
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e
scat
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]

+ λ2
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∗

k

)

,

(4)
with λ2

k
= α‖escat(ε)−e

meas‖2
k
/(1+α(FR)k) and where the

subscript k indicates quantities evaluated in εk. The matrix J is
the Jacobian matrix containing the first order derivatives of the
simulated scattered field and the vector Ω and the matrix Σ con-
tain first and second order derivatives of the smoothing function,
respectively. It can be shown [1, 5] that with this procedure the
optimization process will end in a (local) minimum of the cost
function.

This basic structure of the algorithm is implemented with
great care for computational efficiency. For instance, the up-
date systems (4) are ill-conditioned and therefore a subspace
preconditioned LSQR algorithm [6] has been implemented to
solve them iteratively in a limited number of iterations. Also,
to have more control over the optimization process, upper and
lower bounds on the real and imaginary parts of the permittivity
can be imposed.

IV. EXAMPLE

As an example, consider the test domain and antennaconfigu-
ration of Figure 2. Three circular antenna-arrays, each with 30
antennas are placed on a cilinder around a test domain D in a
water background. Inside the test domain a simplified leg struc-
ture is placed, consisting of a bone inside a cilinder of muscle
material. The real part of the relative permittivity in the xy-
plane is depicted in Figure 3(a) and the reconstruction with our
microwave imaging algorithm is shown in Figure 3(b).

PSfrag replacements

D

3λb

3λb

3λb

Fig. 2. The investigation domain and the antennaconfiguration for the biomed-
ical example. The arrows indicate possible antenna polarizations. Sizes are
expressed in background wavelengths λb.

(a) (b)

Fig. 3. Biomedical example: real part of the actual (a) and reconstructed (b)
relative permittivity in the xy-plane.

V. CONCLUSIONS

The Gauss-Newton minimization method, combined with a
proper regularization strategy offers an effective means to solve
the inverse scattering problem and thus allows for quantitative
microwave imaging, which is a promising technique in biomed-
ical applications.
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