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Abstract

The scientific community is presently strongly interested in the research of new microwave
Imaging methods, in order to develop reliable, safe, portable, and cost-effective tools for the
non-invasive/non-destructive diagnostic in many fields (such as medicine, civil and
industrial engineering, ...). In this framework, microwave imaging techniques addressing
the full three-dimensional nature of the inspected bodies are still very challenging, since they
need to cope with significant computational complexity. Moreover, non-linearity and ill-
posedness issues, which usually affects the related inverse scattering problems, need to be
faced, too. Another promising topic is the development of phaseless methods, in which only
the amplitude of the electric field is assumed to be measurable. This leads to a significant
complexity reduction and lower cost for the experimental apparatuses, but the missing
information on the phase of the electric field samples exacerbates the ill-posedness problems.
In the present Thesis, a novel inexact-Newton inversion algorithm is proposed, in which the
iteratively linearized problems are solved in a regularized sense by using a truncated
Landweber or a conjugate gradient method developed in the framework of the [P Banach
spaces. This is an improvement that allows to generalize the classic framework of the 12
Hilbert spaces in which the inexact-Newton approaches are usually defined. The
applicability of the proposed imaging method in both the 3D full-vector and 2D phaseless
scenarios at microwave frequencies is assessed in this Thesis, and an extensive validation of
the proposed imaging method against both synthetic and experimental data is presented,
highlighting the advantages over the inexact-Newton scheme developed in the classic

framework of the 12 Hilbert spaces.
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Chapter 1 Introduction

Non-invasive/non-destructive diagnostic systems play a key role in several applicative
fields, such as subsurface prospection and biomedical imaging. In the last three decades, a
particular focus has been dedicated by the scientific community to microwave imaging
techniques [1]-[12]. Such techniques aim at providing information on the internal structure
of the body to be inspected, whose interior is not accessible, by processing a set of
electromagnetic  field samples gathered outside the body by an active
illuminating/measurement apparatus. These systems offer mainly two advantages over its
popular competitors based on harmful x-rays emissions (e.g., computerized tomography)
[13] or expensive magnetic resonance tools: They employ non-ionizing radiations that are
safe for the users (provided that the devices fulfill the proper electromagnetic compatibility
requirements [14]) and can be largely made by using off-the-shelf components commonly
available in consumer electronics to limit the costs. Thanks to these benefits, recently
microwave imaging systems are being considered as powerful tools in different applications,
such as the development of portable biomedical devices for early brain stroke diagnosis
[15]-[17], breast screening [18]-[20], early failure detection in civil buildings [21], [22], and
wood inspection [23].

Many microwave imaging algorithms developed in the past in the scientific literature refer
to two-dimensional (2D) scenarios and, in particular, tomographic configurations [8], [24]-
[28]. This is often due to the high computational resources that are required to work in the
three-dimensional (3D) setting. Some of the first attempts in 3D electromagnetic imaging
can be found in [29]-[31], but only recently, essentially due to the increased computational
power available also in common personal computers, much work has been made in order to
extend existing 2D procedures to inspect 3D targets. The proposed approaches can be mainly
grouped into two categories: the quantitative methods, which aims at retrieving an as much
as possible accurate distribution of the dielectric properties of the object under test, and the
qualitative ones, whose outputs consist in some kind of indicator function about the
estimated internal structure of the target or some other simplified information (such as
position and size of the inclusions). The techniques belonging to the latter class usually

provide a fast response, although the reconstructed information of the object to be inspected
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are limited (e.g., position, shape, ...) [3]. The synthetic focusing techniques have an
important role in the class of qualitative methods. These approaches allow to generate an
image of the reflection properties of the inspected region by a proper processing of the
signals used to illuminate the target and of the corresponding received ones; in particular, by
focusing on one pixel at a time, this processing aims to constructively sum the contributes
arriving from the pixel of interest and to destructively sum the contributes of the remaining
ones. Examples of this kind of approaches applied to the 3D setting can be found in [32] and
[33], where the Delay And Sum (DAS) technique is investigated for the localization of breast
tumors and hemorrhagic brain injuries, respectively. Also in [34], [35] synthetic focusing
techniques are presented for 3D breast cancer detection. Finally, in [36] and [37] artefacts
removal techniques for synthetic focusing are reported again in the context of breast
screening. Another important sub-class of the qualitative methods is made of the holographic
microwave imaging techniques, in which the knowledge on a planar aperture of the electric
field, generated by illuminating the target, is processed through direct and inverse Fourier
transforms in order to get a map of reflectivity of the inspected domain. Applications of this
kind of methods in the 3D setting have been reported in [38], where a reflectometer working
in the millimeter-wave band is presented, and in [39]-[41]. The Linear Sampling Method
(LSM) is another deeply investigated kind of qualitative method. Several versions of the
original LSM exist; however, generally they allow to detect the positions and shapes of
inclusions in a known background medium by evaluating the norm of a complex function
defined for each pixel of the inspected region. Among the various application of the LSM in
the 3D setting [10], the hybridization reported in [42] can be cited, in which the output of
the LSM is processed by the level set method in order to extract the compact support of the
target. Others particular approaches to the 3D qualitative microwave imaging can be found
in [43], where diffraction tomography and Singular Value Decomposition (SVD) in a multi-
frequency setting are evaluated on synthetic data, in [44], where the recovery of sparse
solutions is investigated, in [45], where a forward-propagating waves algorithm based on the
Huygens principle is validated in an Ultra Wide Band (UWB) frequency range on
experimental data, and in [46], where an inverse source-based approach is employed to
detect moving objects in a through-the-wall configuration.

Differently from qualitative methods, quantitative approaches aim at providing an

approximation of the dielectric properties distribution, although they can be significantly

7



more time-consuming especially in 3D scenarios. In this framework, the Distorted Born
Iterative Method (DBIM) [12] has been generalized to the 3D setting in various ways [18],
[20], [47]. Also Newton-type approaches have been adopted for quantitative 3D imaging
[48]-[51]. Moreover, multi-scaling approaches, in which the reconstruction procedure is
iteratively focused in localized areas of the investigated domain, can be of particular interest
and have been reported in [52]-[54], with this last employing a particle swarm stochastic
optimizer. Concerning stochastic methods, an interesting application in the 3D setting is
proposed in [55], in which firstly the LSM is used to detect the supports of the targets, and
then the stochastic algorithm Ant Colony Optimization (ACO) is used to retrieve the related
dielectric properties. Generally, the stochastic methods better cope with the false minima
issue, which usually affects the non-linear inverse electromagnetic scattering problems, with
respect to the deterministic methods [56]. However, they can lead to unfeasible
computational burdens in practice. Others particular approaches to the 3D quantitative
microwave imaging can be found in [57], where a 3D time-domain method based on Born-
type iterations and constrained minimization is described, in [58], in which a differential
imaging algorithm is applied for breast imaging, in [59], where the Bayesian framework is
considered to image 3D aggregates of low-contrast objects, and in [60], where the dual-mesh
scheme, the iterative block solver, and the adjoint Jacobian method have been extended to
3D reconstructions to evaluate their viability for medical imaging. Beyond the numerical
algorithms employed to reconstruct the spatial distribution of dielectric properties, also
particular experimental setups have been investigated in order to enhance the 3D microwave
imaging. For example, in [61], [62] a metallic resonant chamber, in which the target is
enclosed, has been proven to provide some advantages over the more common free-space
configuration.

Most of the microwave imaging algorithms existing in literature (both for 3D and 2D
configurations) assume the availability of full-data measurements, that is both the real and
imaginary parts of the measured electric field phasor are recorded. This requires a quite
complex and expensive experimental apparatus due to the need of a coherent detection,
which involves the need of a reference channel (a vector network analyzer (VNA) can be
used for this purpose). The imaging configuration would be significantly simplified if only
the amplitudes of the measured fields were considered. Such scenario is known as phaseless

microwave imaging. In the past, these kind of approaches were proposed mainly in the
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framework of antennas diagnostic or source reconstruction [63]-[66] and only in a limited
manner for imaging of materials [67]-[69]. More recently the phaseless setting has gained a
higher consideration for the imaging of quite complex targets. For example, two-step
strategies consisting in a phase retrieval step followed by a full-data inverse scattering one
are described in [70], [71], and an improved three-step procedure, in which a further phase
retrieval task on the illuminating electric field is accomplished, is discussed in [72]. A one-
step technique, without a phase retrieval problem to be solved explicitly, is presented in [73].
In [74] an application of the compressive sensing theory is proposed for the imaging of point-
like targets. An iterative multi-scaling algorithm employing a particle swarm stochastic
optimizer is adopted in [75]. In [76] an adapted subspace-based optimization method is
introduced. The contrast source inversion (CSI) and multiplicative regularized CSI methods
are used in [77]. In [78] the distorted Rytov iterative method is modified for the phaseless
setup. An hybrid method known as memetic algorithm is adopted in [79]. In [80] a phase
retrieval step [81] followed by an inexact-Newton inversion scheme is proposed. Finally, the
use of metasurface antennas has been evaluated for phaseless microwave imaging [82], [83],
and the differential evolution stochastic method was considered, too [84].

In any case, i.e.,, for 3D or 2D and full-data or phaseless scenarios, the underlying
electromagnetic inverse scattering problems are usually ill-posed in the Hadamard sense,
since their solutions are not unique and do not depend continuously on the data [85], [86].
Moreover, when the target to be inspected represents a strong inhomogeneity in the
propagation medium, the linearization such as the Born approximation [87] cannot be used,
and the full non-linear problem must be considered. Consequently, it is necessary to develop
strategies able to perform an efficient regularization of the involved non-linear inverse
problems. Although significant advancements have been attained in this field by using both
deterministic and stochastic inversion procedures, as reported in this Introduction, there is
still the need to develop novel approaches able to address the limitations of the existing ones.
In the present Thesis, a non-linear regularizing scheme belonging to the class of
deterministic local quantitative methods is proposed and applied to the 3D full-vector and
2D phaseless scenarios. As most of the previously mentioned microwave imaging
techniques, it is devoted to the near-field inspection of targets in the resonant regime, i.e.,
the objects under test exhibits dimensions that are comparable with the wavelength of the

incident radiation. The involved electromagnetic phenomena are described by means of the
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Electric Field Integral Equations (EFIE) [2], which lead to the non-linear and ill-posed
operator equation to be inverted. The proposed algorithm belongs to the inexact-Newton
class [88]-[90] and is defined in the framework of the [P Banach spaces [91], with p > 1,
differently from conventional quantitative imaging approaches that are usually based on the
minimization of a least square residual (between the actual and predicted data) in the
standard [? Hilbert spaces. In particular, the inner linear problems that are defined in each
Newton iteration are approximately solved by two alternative linear solvers: the truncated
Landweber method [91]-[93] and the conjugate gradient one [94], [95], both developed in
the new Banach framework. The chosen mathematical setting is more general with respect
to the one adopted in classic Newton-type algorithms, and also much more involving, since
the absence of a scalar product when p # 2 denies the possibility to define spectral
decompositions of the linear operators, and so advanced concepts of convex functional
analysis are needed [91], [92]. The gained generality introduces novel and non-standard
minimization strategies potentially able to provide reconstructions endowed with lower
over-smoothing and ringing effects, which often characterize the least square-based
approaches in [2. Moreover, for p values close to one the method promotes sparsity in the
retrieved solution, which is very useful for reconstructing small dielectric objects that may
be more affected by the oversmoothing problems. This method has been initially proposed
with success in [96]-[98] for solving the 2D full-data scalar problem related to tomographic
imaging and it is extended in this Thesis to 3D full-vector and 2D phaseless settings.

The Thesis is organized as follows. In Chapter 2, the electromagnetic mathematical models
for both the 3D full-vector and 2D phaseless scenarios are reported. Chapter 3 describes the
developed inversion algorithms. Extensive validations against both synthetic and
experimental data for the 3D full-vector and 2D phaseless scenarios are reported in Chapter

4 and 5, respectively. Finally, conclusions are drawn in Chapter 6.
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Chapter 2 Electromagnetic Scattering: Mathematical

Formulation

In this Chapter, the equations that fully describe the classical electromagnetic scattering
phenomena in the frequency domain will be derived starting from a limited and quite
common set of hypotheses. Firstly, the 3D full-vector scenario will be developed. Thereafter,

the 2D phaseless setting will be derived as a special case.

2.1  Full-Vector 3D Scenario

Let us consider the imaging setup sketched in Figure 1.

Vobs

Figure 1. Schematic representation of the considered imaging setup.

The unknown target is located in an investigation volume V;,,,, of known geometry and it is
embedded in an unbounded background medium. A time-harmonic source (physically
realized by an antenna) generates a field impinging on the inspected scenario. This source is
electromagnetically decoupled with respect to the target; such hypothesis allows to model

the active source by a current density J,(r), with r position vector, independent from the
11



target dielectric properties. The sinusoidal nature of the involved fields is expressed by a
multiplicative term e/®t, with w angular frequency; however, in order to make the notation
more compact, this term will be omitted in the following. When the source radiates in
presence of no target, the resulting electric field is known as incident electric field E;,,..
Instead, when a target is present in V;,,,, the interaction between the incident field and the
object gives rise to the total electric field E,,;. This is measured in a given observation (or
measurement) domain V,;,, which surrounds the investigation one, by means of a set of
receiving antennas. It is fundamental that the domain V,,;, lies outside V;,,,, entirely in order
to make feasible a non-destructive testing [4]. Let us now make some assumptions on the
propagation mediums constituting the target and the background. Generally, their effects on

the electromagnetic fields are described by the known constitutive relations [99], [100]

Dot = fD(Etot' Htot)

1)
Bior = fB(Etot' Htot)

where D, is the total electric displacement field, H,,, is the total magnetic field, and B,,;
is the total magnetic induction field. Additionally, for conducting media there is the

generalized Ohm law [99]
J = f;(Ecor, Heor) (2)

where ] is the current density. In the present context of interest, the propagation mediums
are assumed to be inhomogeneous, linear, isotropic, temporal dispersive, spatially non-
dispersive, and non-magnetic. Under these hypotheses, the general equations in (1) and (2)
reduce to the following ones [99], [100]

Dot = €(r, w)E;y;
Biot = toHtor (3)

J=o0( w)Esy

where €(r,w) = €'(r,w) — je'' (r, w) is the complex dielectric permittivity, with ¢’ and €"”
real and (opposed) imaginary parts of the dielectric permittivity, respectively, o electric

conductivity, and u, vacuum magnetic permeability. The background media is considered
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non-magnetic and simply characterized by the homogeneous complex dielectric permittivity
€,. Given this introduction, now the mathematical description of the electromagnetic
phenomena of interest can be presented. First of all, when the target is not present in V;;,,,,
namely it is filled with the background medium only, the following inhomogeneous wave
equation is involved [99]

Vi XV X Einc(r) - klgEinc(r) = _jw:uolo(r) (4)

where k, = w./€, U, 1S the background propagation constant. When an object is inserted in
the investigated region, it causes phenomena of reflection, transmission, diffraction, and
absorption, generally grouped under the term scattering phenomenon. The resulting total
electric field E;,;, under the aforementioned electromagnetic decoupling of source and

target, can be written as follows [1], [2]

E¢or (1) = Ejpc (1) + Egeqr (1) (5)

where Eg.,; 1S known as scattering electric field and is an additive contribution due to the
object presence. Let us note that if the scattering component is null, that is the object is not
present, E;,; turns back to be E;,.. Because the target breaks the homogeneity of the
propagation medium, the electric field volumetric equivalency principle [1], [2] is employed
to get an equivalent problem in which an equivalent source radiates in the homogeneous
background medium only and generates the same field scattered by the real target. The
application of this principle starts by noting that the total electric field satisfies the following

inhomogeneous wave equation

vr X Vr X Etot(r) - kz(r)Etot(r) = _jw.uolo (l‘)

kb, ré¢ Vobj (6)

O, reva

where V,,,; is the object’s support. Subtracting (4) from (6), and by using (5), the following

inhomogeneous wave equation is obtained

Vr X Vr X Escat (I‘) - kl%Escat (I‘) = _jw.uoleq (r) (7)

13



Jeq (6) = 2 [k (1) = K TEcoe () @

The quantity J., is the wanted equivalent current density. Let us note that the equivalent
current density’s support coincides with the object’s one (Veq = Vobj), sinceJ, = 0forr ¢

Vobj- Now it is possible to define the following vector potential

Ascac®) = =0 [[[ 120 @9 1)

Veq

9)

1 eJkplr-l

where g, (r,r") = Er=tr—

is the Green function for background [101]. Therefore, the

scattering electric field is given by

J — V[V Ascae ()] (10)

Escat (I‘) = _ijscat(r) -
WHp€p

and substituting (9) in (10) we get

Bscae(®) = oy [[[ Jeq (e r)ar

Veq

. (11)
L [Vr - f f Jeq ()5 (r, ¥)dr”

Veq

By exploiting the integral’s linearity, the scattered electric field can be written as

Bscae ) = joot [[| &1 g’

Veq

(12)
where G,, is the Green dyadic tensor for background [102]

_ _ V.V,
Gy(r,r') = <I + k_l%) gp(r,1’) (13)

and I is the dyadic identity. Moreover, by defining the contrast function

14



c(r) = %f) -1 (14)

the previous scattering equation can be formulated as

Bocae ) = K [[[ G017 - e B2’

Veq

(15)

By noting that the integral in (15) can be equivalently defined on V;,,,, since c(r’) = 0 when

r' & V4, the following system of equations can be outlined

Escat(r) = _kl% fff (Z;b (I‘,I") ' C(I")Etot(l")dl" , TE Vobs
Vinv
(16)
Einc(r) = E¢ (1) + kIZJ jj] (_;'b (r,r") - c(rDE 0 (r)dr’, r € Vi,

Vinv

The former equation in (16) is called data equation, because it involves the scattering data
gathered in V,,,, whereas the second one is known as state equation, since r is restricted to

the internal domain V;,,,.

2.2 Discretization of the 3D Full-Vector Scenario

In order to develop numerical algorithms able to solve forward and inverse electromagnetics
problems, the scattering equations described in the previous Section are discretized by means
of the Method of Moments (MoM) [103], [104]. In this view, a cube-based mesh of V;,,
given by N voxels {Vni’“’}:=1 with centers {r,‘;””}zzl is considered. Each voxel has volume

v and side A. Moreover, M observation points (where the antennas collect the scattered
electric field) belonging to V,,, are selected and identified with {r22>s}¥_,. A schematic

representation of the considered discretized problem is shown in Figure 2.
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Figure 2. Schematic representation of the considered discretized problem.

On the mesh of V;,,, the following pulse basis functions are defined

bn(r) — {1, ”I‘ - rrllnvll < E n= 1' ,N (17)
0, otherwise

Now the quantity cE;, in V;;,,, can be approximated through these basis as

C(r)Etot(r) - Z C(rmv)Etot(rl )bl(r) lnv (18)
=
This means that cE,,; is approximated by a piece-wise constant (PWC) function, where the
constant levels are given by the values that cE,,, assumes in the voxels centers. The

following system is obtained by introducing the approximation (18) in (16)

Egcqe(r) = _kbz jﬂ Gy (r,r")dr’ - C(rl )Etot(rl ): I € Vops

V inv

(19)
Eine(r) = Em<r>+kbz JJ] Goterar (™ e (6™, ¥ € Vi

V inv

Thereafter, by adopting the so-called point-matching (or collocation) approach, the Dirac’s

delta § are considered as testing functions, and the following operators are defined
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T ()(x) = ff O@8(r - rsPdr, m=1,..,M (20)
R3

1O = [[[Ows(lr—rirdr, n=1,...8 1)
R3

The operators (20) perform a sampling of a complex vector field in the measurement points,
whereas the ones in (21) sample in the voxels centers. Now the operators in (20) and (21)

are applied to the 3D full-vector data and state equations obtaining

Egcar (07°) = kzz ﬂf G, (225, v)dr’ - c (/™) Eqor (™)

V inv

(22)

Epne (1) = Etot(rmv)'i'kzz jﬂ Gb(rmv’rr)drl,C(rlinv)Etot(rlinv)

V inv

The Dyadic Green’s function occurs in a singularity when ri™ = r’ [102], [105], [106]. In

order to take care of such singularity, the state equation in (22) is rewritten as
Einc(rrilnv) — 6(rinv)Et0t(rinv)

+kaPV ﬂf Gy (ri, r")dr’ - c(r™)Egor (/™) (23)

V inv

JMo

where ¢ = 1 +=—=¢ and PV is the integral’s principal value. By using the R3 Euclidean

space’s canonical basis, the dyadic Green function (pre-multiplied by k2) can be represented

in matrix form as

[ 0% 0° 0%
2
kb + 532 dxdy 0x0z
0?2 0?2 0?2
G,(r,r') = k2 + — rr
p(r ) dyodx bt dy? dyoz gp(r,1) (24)
62 02 " _2
0z0x 9z0y b 922

17



The matrix is symmetric since the derivatives order can be exchanged. Moreover, the

following quantities are defined [105]

Etot(rObs) mc(rObs)
Em( ) mc( )
tot(FObS) . mc(rom)
Ef; = Eqc =
tot( ) mc( )
Etot(rObS) mc(rom)
-E}ot(rObs)- . lnc(rObs)—
Etot( mv)- [ mc(rlmv)_
Ewt( v) mc( N")
. tot( mv) ¢ mc( mv)
E?(}g - E;;Llc - c=
tot( mv) mc( mv)
E}ot(rlnv) lnc(rlnv)
-Etot( mv)_ i mc( inv |
Glt;xt ngt
XX Xy
GeXt - Ggﬁftx sz;ty
Gis G5y
" Gyyx G
G;)nt ] 3‘10 int G
Gpyx G
[[] oz vy
V]Z.TIV
Ggfgctaxlg =
Il "“"‘*( ) dr’
V]Z.nl?

cat( obs)
cat( obs)
cat( Obs)
Egﬁt =
cat(r()bs)
cat( obs)
cat(rObs)-
C(rinv) CA(rlinv)
( lnv) €= C( mv)
(25)
Gy ez
G5y
G5y
;JnJEy Gli;?;z
byy  Ghyz
;anty GliJr,thz
JJ] ettt ryar
Vlnv
fff x“xﬁ(rObs,r)dr
VlTlU

18



fﬂ x“xﬁ(rm" r')dr’ - fff x“x[”(r””’ r’)dr’_
Glnt Vllnv Vlnv
b xaxﬁ
ffj XaXB( an’ rl)drl fff XaXﬁg( mv’r )dr
Vllnv Vlnv

2

0
xaxB "N o_ ’
Gb (rrr ) - (klz)aaﬁ + axaaXﬁ> gb(r!r)

where &, is the Kronecker delta, a, f € {1,2,3}, and x; = x, x, =y, x5 = z. The scalar
functions E%.(+), E2. . (), EZ,.(+) are the Cartesian components of the vector-valued function

E..:(+), and analogous definitions are used for E;,.(-) and Egqqe (). GE** and Gt are the
external and internal Green matrices for background, respectively, and it is worth noting that

GI™ is symmetric. The integrals in GE** can be approximated by [107]

sin(k,a
fﬂ Gre* #(rgbs,r")dr' = —4ma —k( ab ) _ cos(kya) |G x“ #(rgbs, rf™) (26)
Vlnv b
with
e_jkmel

x“ﬁ’ obs ,inv
(m Iy

) = —m [(kKERZ, — 1 — jkpRin)b4p

(27)

obs

X — inv X obs —x inv
+(3 — kiR, +31kmel)< tm e ) e S
le le

3,3
where a=_|-=v, Ry = 0005 —x/™|, rgbs = [x8Ps  ygbs 29051, and r/™ =

[xi™ yi™  zI"]T. Let us note that a is the radius of a sphere with center in r/™ and

volume v (the voxel’s volume). Concerning G*, when ri™ ¢ V;/™ it is possible to use the
same approximation adopted for GE¥*¢. On the contrary, when ri®™” € V™ the principal value

can be approximated as [107]
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2 )
. — : —jkpa _
PV IU G;axﬁ(l‘yllnv,r')dr' = 3 (1 +jkpa)e™™% +1, «=p (28)
Vinv 0; a + ,B

n

With the previous definitions, the scattering equations in (22) and (23) can be rewritten in

the following compact matrix form

ESG: = ngtdiag3 (C)Eégg
int int g; int (29)
Einc = [I - Gb dlag3 (C)]Etot

where

diag(c) Onxn Onxn
diagz(c) = Oyxy diag(c) Oyxy (30)
Onxn Onxn diag(c)

with diag(c) diagonal matrix having the elements of ¢ as diagonal entries, and 0,y null

matrix of dimension N x N. Since the matrix I — G**diag;(c) is usually well-conditioned
and invertible [1], [2], the two equations can be combined together in order to obtain the

following relationship
ESY, = G§*diags (O[1 — Gi*diags(c)]  EZL = F (o) (31)

which describes the mapping between the contrast function and the scattered electric field in

the measurement points.

2.3 2D Phaseless Scenario

The 3D full-vector setting usually requires a large amount of memory to store the involved
Green matrices, and consequently it leads to a considerable computational burden to execute
the imaging algorithm presented in Chapter 3. Moreover, assuming a cubic investigation
domain, by denoting with N, the number of subdivision in which each Cartesian axis is
partitioned by the cube-based mesh, it results that the number of voxels N grows as N2 and

so the computational requirements increase very rapidly with a finer discretization.
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Therefore, the tomographic hypothesis [1], [2], [27], [28] is often adopted. This consists in
considering the target as infinitely extended along the z-axis and with dielectric properties
varying on the transversal plane only, i.e. e(r) = €(x, y) = e(r;). Consequently, the focus
can be reduced to a target’s cross-section of 1, only, indicated as D,,. This assumption is
valid when the antenna main lobe is narrow in the elevation direction and the wavelength is
sufficiently small with respect to the target’s height. Moreover, a Transverse Magnetic z-
polarized (TMz) incident electric field is adopted, i.e. E;,,.(r) = E;,,.(r;)Z. The described
configuration is sketched in Figure 3, in which D;,,, is the investigation domain and D, is

the observation one (both coplanar to D,,).

E inv

X
Figure 3. Schematic representation of the tomographic setup.

Under these hypotheses, thanks to the symmetry of the configuration, it can be demonstrated
that E;:(r) = E;:(r)Z and Eg.q: (r) = Esqq: (r:)Z. Therefore, the scattering equation in
(15) reduces to

+00

Foeac 02 ==k [[ | | Colrxdz’|- et B i)z 32)

Deq L=

The following equalities hold for the inner integral on z’ [108]
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+ oo + oo

= = V.V = V.V
f Gb(rtJr’)dZ, = (I + ;c.gr> f gb(rt'r,)dzl = <I + ;(‘l%r> GgD(rt' rL{) (33)

— 00 — 00

where

! —] !
GEP (r,x7) = 7 Hg? (1 = /) (34)

is the 2D Green function for background and Héz) is the zero-order and second kind Hankel
function [109]. Then, considering that V.- f(r,)Z = 0, (32) reduces to the following

Lippmann-Schwinger [110] scalar equation

Eypne (1) = —k2 f f C(E) Bror (1G22 vy, )

Degq

(35)

Analogously to the 3D scenario, the equation (35) can be applied on both D, and D;;,,, to

get the data and state equations, respectively, i.e.,

Eooge (ry) = — k2 jj C(E) Eror (1)) G2P (ko )AL, ¥y € Dops
Dinv

(36)
Einc(ry) = Epoe(re) + klz) ff C(rt’)Etot(rt’)GgD (re, r))dr{, r; € Dipy,

Diny

Differently from the full-data situation, here only the incident electric field is assumed to be
known in both its amplitude and phase components, whereas only the amplitude of the
measured total electric field is available [73], [74], [78]. In particular, the data of the
considered phaseless problem is the square modulus of the total electric field. Therefore,

(36) is modified accordingly, obtaining

2

Proe (1) = |—k2 ﬂ C(ED Eror (RG22 (6 v)AE, + Eine ()|, 12 € Dops (37)

inv
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Eone (1) = Evoe () + k2 ff C(E) Brop (E)GEP (50 1) YL, Ty € Diny

Diny

2.4 Discretization of the 2D Phaseless Scenario

Similarly to the 3D full-vector case, the 2D phaseless problem is discretized by means of a

MoM with pulse basis functions and point-matching. A square-based mesh of D;,,,, given by

N pixels {D,ﬂ""}:=1 with centers {rtjl’“’}:=1 is considered. Each pixel has area v = A? (being

A the pixel side). Moreover, M observation points {rt;’rf’s}z_l belonging to D, are selected.

A schematic representation of the considered discretized problem is shown in Figure 4.

y
& Source
rtilnv
X
-
A
r,obs '\\\
Figure 4. Schematic representation of the considered discretized problem.
The pulse basis functions are defined as
L e, <3
bn(rt) =1 t th lo =2 n=1,..,N (38)
0, otherwise

Therefore, the quantity cE;,; in D;;,,, is PWC approximated as
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N

c(re)Eror (1) = Z C(rtinv)Etot(rtinv)bl(rt), It € Diny (39)

=1

In accomplishment to the point-matching approach, the following testing operators are
defined

5 = | O~ rgar, m=1,... (40)
R2

tinv()(r,) = ]g(-)(rt)S(h't —r™|)dr, n=1,..,N @)

The operators in (40), (41) have a meaning equivalent to their 3D counterparts in (20), (21).
Introducing (39) in (36) and applying (40) and (41) to the data and state equations,

respectively, we have

scat(rtm ) = _kbz ff GZD(rtObS rt’)drt’ C(rtinv)Etot(rtinv)

DlTlV
(42)
Elnc(rtn ) = Etot(rtn ")+ kj Z ﬂ G5 (rtm r{)dr; C(rt;'nv)Etot(rtfnv)
Dlan
To get a compact matrix form, the following quantities are defined [1]
Etot(rtgbs) Einc (rt(l)bs) [ scat (rttl)bs)
efor = 3 efnc 3 esear = :
Etot(rtIO\,Ibs) Einc (rtl?/lbs) | scat (rtz/[bs)
. o (43)
Etot(rt;nv) Einc (rt mv) ¢ (rtllnv)
et = P = c= P
Etot(rtzw) Einc (rtN _C(rtxw)
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- ff(; D(I'tobs l‘t')dl't' ff G D(I'tObS l't')drtf
Di'nv Dinv
Hext kb .
ff GZD(I'tObS l‘t’)dr{ ff GZD(I'tObS l'{)dl‘t'
Din” Dmv ]
ff GgD(rtmv I',_f)dl't’ ff GgD(rtmv l',_f)dl‘t'_
Dinv Dmv
Hlnt _kb :
ﬂ. GZD(rt”“’ r/)dr, - ff GZD(rt”“’ r/)dr{
Di”“’ Dmv ]

where HE¥t HIY are the external and internal Green matrices for background in the 2D case,
respectively. HJ* is symmetric in this situation too. The elements in HE¥® are approximated

as follows [111]

3 || e mant = —ig [[ 62 (rgsm)ar =
Dy C; (44)

k ]
Iz 2= Jy Gk @)HS (k152 = 1))

where C/™ is a circular domain with center rt”“’ area v, and a = \/v/m radius, and J; is the
first-order and first kind Bessel function [109]. Concerning the elements of HJ**, when
rt”"’ ¢ D™ equation (44) is used. In the other cases, when the Green function is singular,

the elements are approximated as [111]

—k? jf G2 (kp |re™ —x{|)dr{ = -k} U GZP (kp|re™ —r/|)dr{ =
Dlnv Clnv

| (45)
J 2 .
= —E[T[kbaHl( )(kba)—Zj]

where Hl(z) is the Hankel function of first-order and second kind [109]. Finally, the data and

state equations in (42) are written in compact matrix form as

ect, = Hi*diag(c)elst (46)

scat —
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einc = [1 - Hy"diag(c) ef5;

By combining the previous equations, as in the 3D case, the following relationship between

c to e?¥,, is obtained
este, = Hi**diag(c)[1 - Héntdiag(c)]_lefﬁﬁ = F?"(c) (47)

Because in the phaseless setting only the amplitude of the total external electric field can be

measured, the data vector is defined as follows

P tot(rtfbs)
pisi = 5 = (e + efnc)™ o (eStar + efe (48)
% tot(rtlowbs)

where o is the entry-wise product and ()* denotes the entry-wise complex-conjugate.

Consequently, the relationship between ¢ and péX} is
Pisi = [F?P(0) + efc] o [F2P(0) + efyc] = FZP (o) (49)

It is important to note that the requirements in computational resources grow significantly
slower that the 3D full-vector scenario, since now the number of voxels N grows as N2 for

a square investigation domain.

2.5 Multi-View Arrangement

As it will be further highlighted in Chapter 3, the equations in (31) and (49) are non-linear
and ill-posed with respect to the unknown contrast function. This implies that the inverse
problem of interest suffers of false solutions, namely points in the contrast functions space
that only locally minimize the residual between the measured and predicted data [112]. This
puts a serious threat about the reliability of microwave imaging techniques. However, it has
been found in [112] that the occurrence of this stationary points can be mitigated by keeping
the ratio between the number of independent data and the number of unknowns N as high as
possible. Regrettably, increasing the number of measurement points is not always a viable
option, since the amount of independent collectable data is limited in accordance to the

degrees of freedom theory of the scattered electric fields [113]. A feasible way to overcome
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this issue consists in the adoption of a multi-view setup [114], namely the target is
sequentially illuminated with S sources and the data for each one (or, as technically said, for
each view) are collected. The observation domain may vary for each illumination, i.e., D(Ef,)s
with s = 1,...,S. In this setting, E¢r (s), Einc,s), and Egqqr (5) are the total, incident, and
scattered electric fields for the sth view, respectively. Moreover, the related symbols in (25)

and (43) are modified as follows

o For the 3D full-vector scenario: Ef;r' ™, Eqt®, EZNO) EINEG) et
o For the 2D phaseless scenario: eSrr®), efrt() eoxb(s) pextis) oint(s) yext

with s = 1, ..., S. Consequently, the single-view scattering equations reported in (31), (47),

and (49) are rewritten as

E&E) — Gy’ diagz (0)[1 — GJ*diag; (c)]_lEfzz'(s) = FZ (0 (50)
et = HEX: diag(c)[1 — Hi*diag(c)] " eine™ = 2 (o) (51)
pic” = [F(s) (o) + efrfg'(S)] [ B0 + e | = F2y (© (52)

In order to get two operators able to map the contrast function to the multi-view data for the

3D full-vector and 2D phaseless scenarios, all the views are embedded in the following

vectors
ext,(1) ext,(1) ext,(1) ext,(1)
. Escat . tot . escat ‘ einc
ext _ . aext _ . aext _ . aext _ .
Escat : Ptor = : €scat = : €inc = : (53)
Eext,(S) ext,(S) ext,(S) ext,(S)
scat ptot scat einc

Now the multi-view scattering equations and the related scattering operators are obtained as

follows
_1 .
X Gy diagz (0)[1 - Gmtdlagg(c)] g F5(© X
ES: = = : |=FP 0 (54)
G5 diagz (0)[1 - Gmtdlagg(c)] E;ZE () F (0
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aext
eSCClt

P

p

H

H

ext
tot —

ext
b,(1)

ext
b,(S)

diag(c)[I — H,‘;"tdiag(c)]_le

diag(c)[I — H,‘;"tdiag(c)]_le

int,(1)
inc

int,(S)
inc

[F22(c) + &5t] o [F?P(o) +&5t] =

F&) (©) ~
= : = F?P(c)
Fi5 ()
FIE,L()1) (o) R
= F5P ()

(55)

(56)
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Chapter 3 Inversion Procedure

The imaging problems of interest consist in retrieving the unknown contrast functions
starting from the available field measurements collected in the observation domain. In other
words, (54) and (56) need to be solved with respect to the unknown c. This implies the
solution of an electromagnetic scattering inverse problem [1]-[3], [85], [86]. In both 3D full-
vector and 2D phaseless scenarios, the data equation is a first-kind Fredholm equation, while
the state one is a second-kind Fredholm equation. The last one is well-posed in the Hadamard
sense, whereas the first one turns out to be ill-posed, since in our setting it is usually solvable
but generally its solutions are not unique and do not depend continuously on the data [85],
[86]. These awful properties found explanation in the analysis of the integral equation’s
kernel and in a Riemann lemma application [115]. Moreover, when the first-kind Fredholm
equation of interest is turned in a numerical problem by means of a discretization process, it
usually gives rise to an ill-conditioned problem [116]. Finally, from the structure of (54) and
(56), we see that the relationship between the data and the unknown contrast function is non-
linear. Therefore, in order to solve the involved inverse problem, a proper regularization
approach able to cope with non-linearities is required. In the present Thesis, an inexact-
Newton scheme [88]-[90] performing a regularization in the framework of the [P Banach
spaces [91]-[95] has been developed. It is composed by two nested loops: the outer one
iteratively linearizes the scattering operators in (54) and (56), whereas, in the inner one, the
obtained linear system is solved by a regularizing approach in [P Banach spaces. Figure 5
provides the workflow of the considered inversion algorithm through a block diagram. In
the following Section, a high-level description of the general inexact-Newton scheme is
presented. Thereafter, an intuitive explanation of the [P framework’s benefits is presented
and two inner linear solvers are introduced, namely the truncated Landweber method [91]—
[93] and the conjugate gradient one [94], [95]. Finally, special insights in the computations

of the needed Fréchet derivatives are furnished.

29



Initialize
v

Linearize
scattering equation

v

Solve the linear
equation by means
of a linear solver in

Banach spaces

v

Update current
solution

Y

Check
stopping —
rule

v
End

Figure 5. Block diagram representing the workflow of the proposed inexact-Newton inversion scheme.

3.1 Inexact-Newton
Generally, the equations in (54) and (56) can be written in compact form as
F(c)=d (57)

The unknown ¢ belongs to the linear space ¢, which is the CN space endowed with the norm
of I?. The data d belongs to the linear space D: for the 2D phaseless scenario, D is the RSM
space endowed with the norm of I?, whereas for the 3D full-vector case D is the C3 space
endowed with the same kind of norm. F is a non-linear operator so that F:C — D. The

inexact-Newton algorithm [88], [89] inverts (57) by means of the following iterations

1. Set the initial guess c,. If no a-priori information is available, ¢, = 0 is used.
2. Compute a first-order Taylor expansion of (57) around the current solution c;. The

following linear system is obtained [48]
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where F¢, is the Fréchet derivative (or, more specifically, the Jacobian matrix) of F in c;,
and b; is the residual vector at the ith outer iteration.

3. Find aregularized solution h of (58) by a regularizing linear solver defined in [P Banach
spaces.

4. Update the estimate

Ciy1 = C; +h (59)
2. Terminate when a given stopping rule is satisfied, otherwise repeat from step 2.

As previously mentioned, this algorithm belongs to the class of deterministic local methods,
which can be trapped in local minima corresponding to false solutions of the inverse
scattering problem [112]. To partially mitigate these drawback, beyond the multi-view setup
introduced in Section 2.5, the eventually available a-priori information should be used to

make the starting guess c, as close as possible to the actual solution [20], [112].

3.2 Discussion on the Regularization in Banach Spaces

The classic implementations of the inexact-Newton scheme use inner linear solvers that are
defined in the framework of the 12 Hilbert spaces (the contrast functions space C and the
data one D are both endowed with the 12 norm, and therefore both are Euclidean spaces). In
this setting, the mathematical tools available in this kind of spaces allow a deep
understanding of the regularization and convergence properties of the adopted linear solver
[1], [85], [86], [117]. However, the imaging algorithms based on this framework are often
characterized by problems of over-smoothness and ringing in the retrieved solutions, making
difficult to recognize small dielectric discontinuities [96], [118], [119]. Such drawbacks of
the classic approaches have lead the scientific community to consider new ways. Among
these, one of the most interesting and promising is the generalization of the regularization
framework in the [P Banach spaces, with p > 1 [91]. Their special feature is the new free
parameter p, which characterizes the norm endowing the Banach space (and so its
geometrical properties), and that can be tuned in order to mitigate the over-smoothness and
ringing effects. Both the linear solvers that will be introduced in the following descend from

classic iterative methods developed and studied in Hilbert spaces, and only recently revisited
31



and generalized in Banach spaces. In this framework, the lack of a dot product inducing a
complete space for p # 2 (as consequence of the Jordan-Von Neumann theorem [120])
denies the possibility to define a singular value decomposition of the linear operators, and
so much more involving mathematical tools from complex convex analysis are needed.
However, the key point at the base of the performance of linear solvers in [P resides in the
duality maps [91], [92]. These are nonlinear functions that associate an element of a generic
Banach space B to an element of its dual space B*, namely the space of the continuous linear
functionals F: B = [F, where F is the field on which B is defined [121]. Beyond the tricky
mathematical definition of the duality maps, a useful heuristic explanation of the duality
maps role in the linear solvers presented in Sections 3.3 and 3.4 starts with the following

theorem

Asplund Theorem [91], [92]. Given a generic Banach space B with norm [|-||, its duality

map Jp is the subdifferential of the convex functional %||-||g with r > 1, that is Jz =
1
3 (11113)-

In our problem of interest, the linear system in (58) is solved by finding a regularized solution

that minimizes the following residual functional

1, ., 2
5 [Feh =i (60)

Applying the chain rule for subdifferentiation of composite functions and the Asplund

theorem, it results that
1 ! 2 ! !
o (zIIEh = bi][2) = FEIR(Fh — by) (61)

where Fc’l.H is the adjoint operator of F¢;, and ],?: D — D*, with D* dual space of D, is the

duality map defined as [91], [92]

. |g1|p_lsign(g1)
2@ =llglly ® :

g (62)
lg¢ P~ 'sign(ge)
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where g =[91 * 9c]T € D with G = 3SM in the 3D full-vector scenario and G = SM
in the 2D phaseless one. As it will be seen in the following, the terms that the linear solvers
in Sections 3.3 and 3.4 compute to iteratively update the estimated solution are based on the
quantity at the right member of (61). In particular, we have that F’Z: D* - C*, where C* is
the dual space of C, thus the update step is not executed in the contrast functions space C but
in its dual one. Once the new estimated solution is obtained in C*, the related approximated
element of C is obtained by applying the duality map ]g*: C* - (C*)* = (this last

statement is due to the reflexivity of the considered spaces) defined as [91], [92]

. , |19 sign(f,)
Jg () = [Ifllc-? E (63)
| fw 19~ tsign(fy)
where ¢ = p/(p — 1) is the Holder conjugate of p and f=[f; - fy]¥ € C*. This

highlights that the performed minimization is different from the conventional (i.e.,
Euclidean) one of the residual functional in (60). In fact, the classic Landweber and
conjugate gradient methods iteratively update the estimated solution directly in C. Therefore,
the directions of minimization adopted by the linear solvers in Sections 3.3 and 3.4 are not
the steepest descent ones of the Euclidean geometry, but non-standard ones conceived in the
framework of the convex analysis in Banach spaces. The two frameworks are equal only
when p = 2, namely when the data and unknowns spaces are endowed with the structure of
the 12 Hilbert space; in fact, the duality maps in (62) and (63) reduce to identity ones when
p = 2. Once this distinction has been understood, it is important to highlight how the new
methods can overcome the limitations of the classic ones when 1 < p < 2. To understand
this fact from a heuristic point of view, we can notice that the duality map ]%,’ emphasizes the
smallest components of the residual vector and reduces the largest ones, since |u|P~1 > |u|
for Ju| < 1, and |u|P~ < |u| for |u| > 1, because of 0 < p — 1 < 1. Therefore, the weak
information in the residual vector (usually associated to high frequencies in the Fourier
analysis) have now a stronger role in the reconstruction procedure, allowing for a better
restoration of jump discontinuities. This can be interpreted as a lower filtering effect, and so
a lower regularization, with respect to the Hilbert case. When the duality map ]g* is applied
to the updated estimated solution in C* to get the related approximated solution in C, we see
that it tends to make smaller the weak components of the element gained in C*, since
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lul971 < |u| for |u| < 1, and |u|?7t > |u| for |u| > 1, because of g — 1 > 1. This has the
resulting effect of attenuating the ringing effects on the background and of reducing noise

propagation.

3.3 Truncated Landweber Method in Banach Spaces

The algorithm considered in this Section is an iterative gradient method where the number
of executed iterations plays the role of regularization parameter. In the particular case of the
Hilbert spaces 12, where the singular value decomposition can be defined, the algorithm is
shown to perform a low-pass filtering of the spectral content of F¢, and the cut-off frequency
is a non-decreasing function of the iteration number [1], [85], [86]. This behavior allows to
filter out the high frequency components of F¢, responsible for the ill-conditioning of (58),
given that a proper selection of the iteration number (i.e., the cut-off frequency) is performed.
Recently, the method has been generalized to the [P Banach spaces with p > 1 and, in spite
of the lack of the spectral theory when p + 2 (see Section 3.2), the regularization capabilities
associated to the iteration number can be still proved by arguments related to the continuity
of the duality maps, as theoretically found in [92]. Its capability in mitigating the over-
smoothness and ringing effects that often affect the solutions retrieved in the Hilbert spaces
12 has been shown in the context of 2D full-data microwave imaging in [96] for the first

time. The algorithm is given by the following steps

1. Initializehy, =0 € Candh, = 0 € ¢*.

2. Update the solution in C* by the following iterative rule
hy,, =hy — BFéile?(Fc’ihk - bi) (64)

where S is the relaxation coefficient. In Hilbert space, it can be proven that the relaxation

coefficient must be in the interval (O,2||Fc’i||;2) to guarantee the convergence of the

method. By choosing 8 = ||Féi||;2, namely the value in the middle of the admissible

range, the convergence still holds in a neighbor of p = 2 (this property can be proved by
means of continuity arguments [92]).

3. Get the current approximated solution in C with
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hpy = ]g*(ilkﬂ) (65)

4. Terminate when a given stopping rule is satisfied, otherwise repeat from step 2.

3.4 Conjugate Gradient Method in Banach Spaces

The classic conjugate gradient method is a minimization method based on the Krylov
subspaces [117] that has been found to provide better performance than the steepest descent
algorithm. As for the truncated Landweber method in 2, the classic conjugate gradient can
be shown to have regularizing properties, since it behaves as a spectral filter; however, as
opposed to the Landweber approach, it is a non-linear method because its spectral input-
output relation depends on the data [86]. The conjugate gradient has been generalized to the
setting of the [P Banach spaces (with p > 1) too [94], [95], showing advantages on the
retrieved solutions that are similar to the Landweber ones. Its superior performance with
respect to the classic version of the algorithm has been shown in the context of 2D full-data

microwave imaging in [16] for the first time. The method is composed by the following steps

1. Initialize h, = 0 € ¢, hy = 0 € € and p, = F'¢J3 (b)) € C*.

2. Solve the following single-variable minimization problem
. ! Y CE (R ,\ 2
a = argmin||F¢Jg (hye + api) = byl| (66)

This can be solved by a simple one-dimensional optimizer (e.g., the secant method
[122]).
3. Compute the following displacement in C*

Pr = —F'Z]g(Féihk —b;) + BiPr-1

2
PR (Fehi - b)), (67)
IFE32 (Fehies = b)),

4. Update h with
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by, = hy + P (68)

where a; is obtained by solving (66).

5. Get the new current solution in C by
hy .y, = IS*(ilkﬂ) (69)

6. Terminate when a given stopping rule is satisfied, otherwise repeat from step 2.

3.5 3D Full-Vector Scenario: Frechet Derivative Computation

The proposed non-linear solving scheme requires the determination of the Fréchet
derivative, which reduces to the Jacobian matrix in our discrete setting. First, the Fréchet
derivative for the single-view case is computed by introducing the following first-order

Taylor expansion
Y-ZX)"1 =Y 1 +Y1ZXY 1 + 0(X?) (70)

where X, Y, Z are square matrices (with invertible Y and Y — ZX). Moreover, the following
identity holds

[1 - diags()G{**] ™ = 1+ diags ()[1 - Gi*diags(c)]  Gi (71)

Using (70) and (71), now a Taylor expansion of F3P can be performed in a generic

neighborhood of € as [97]

F3P (€ + dc) = G§*diag;(€ + do)[I — Gi*diag, (€ + dc)]‘lE;';;g =
= G&*diag, (&)[1 — G diag,(€)] B -
+ GEX1 - diag3(E)G§,nt]_1diag3(dc) [1- Gf,ntdiag3((~:)]_1E£,’1‘£

+ O[diags(dc)?EX

The linear term in diags (dc) is of our interest and, because of the state equation in (29), it

can be rewritten as follows
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G5 [1 - diags (6§ diag(d)[1 — Gi*diag, ()] EfL =
(73)

= GZ*[1 - diag;(©G)] diag(E,’éﬁié)dc
where Eiﬁﬁe is the total internal electric field in presence of the dielectric configuration €.

Therefore, the following desired Fréchet derivative is obtained
-1 .. :
30" = GE¥t[1 - diag; (©)GIM]” diag(Efat ) (74)

Finally, the Fréchet derivative for the multi-view case is made by simply stacking the

operator in (74) for each view as follows

1. )
30 , (1) lix(tl) — diag;(©) Gmt] diag (Eg)‘fa (1))
(75)

c (S)

1. -
le;x(g) dlag3(C)Gmt] diag (Eillegé,(s))

About our implementation, Eéﬁiél(s) is efficiently computed by using the BICGSTAB-FFT

method [123], which has an asymptotical computational complexity O(IxzN log N), where

I is the number of iterations in which the solution E%‘Eé(s) is reached. Moreover, the matrix
inversion in (74) is not computed explicitly, since this task has a totally unfeasible

computational workload. On the contrary, the matrix GZ(% = G5’ [I — diags (&)G*] s

considered, which is known as inhomogeneous Green matrix for € and sth view [18]. From

G symmetry and (29), the transpose G;”(’;) = [I- GJ*diags (é)]_le,f‘(g)T results to have

each column corresponding to the total internal electric field that would be generated when

the incident internal electric field is given by the related row of Gf;f‘é) and in presence of €.

Therefore, the rows of G ¢(s) can be efficiently computed by using the BICGSTAB-FFT

method. The computation of ﬁgD can be a serious bottleneck for the imaging technique. In
fact, it needs that the BICGSTAB-FFT method is run 3SM + S times (computations of the

inhomogeneous Green matrices and total internal electric fields for each view) in each outer

iteration, which usually represents a significant workload. However, Eéﬁia(s) and Gﬁ’;) for

s =1,...,5 can be computed in parallel. In our implementation, this has been accomplished
by taking advantage of multi-core architectures and the OpenMP library [124].
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3.6 2D Phaseless Scenario: Fréchet Derivative Computation

First of all, since in the phaseless case the data vector has real components only, it is useful

to perform the following change of variable in order to work with real unknowns too [98]
c=Tx (76)
where

T = [Ilyxn Jjlvxn] x= [ﬁggg (77)

where I,y is the identity matrix of dimensions N X N. In order to get the Fréchet derivative

for the 2D phaseless single-view scattering operator, the starting point is
FF° (X + dx) = [F?2 (X + dx) + e{;{] o [F?? (R + dx) + efoc ] (78)

where X is a generic point of the unknowns space in which the Taylor expansion is
performed. Analogously to the 3D case, the 2D full-data scattering operator admits the

following Taylor expansion

F22(X + dx) = F?2(X) + F22 dx + O|[diag(Tdx)%et (79)
where
F2°' = HY[1 — diag(TR)H[™] " diag(elt )T (80)

where ei’o";i is the total internal electric field in presence of the dielectric configuration

indicated by X. By inserting (79) in (78), the linear terms in dx reduces to
2Re{[F?° (%) + efxf]* o FZ"'dx} (81)
Therefore, the Fréchet derivative of the 2D phaseless single-view scattering operator is
FZ2' = 2Re{diag[F?" (%) + e{Xt]"F2°'} (82)

The Fréchet derivative for the multi-view case is again obtained by stacking the terms

corresponding to each view, i.e.,
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, ) 2D fe ext,(1)] w2p '

o [FRo [2Re {diag [ FE3 (0 + 2| FERy Y]

F22 = : = : (83)
g0 ore ldi 2D re ext,($)] w2p !

P.%(S) e {diag|F(s) X) +e; 1390

mnc X

Although the computational complexity of the 2D case is significantly lower than the 3D
one, the BICGSTAB-FFT method is exploited for the determination of the required

inhomogeneous Green matrices and total internal electric fields in this case, too.

3.7

Frequency Hopping

In case measurements performed at F different working frequencies were available, it is

possible to exploit these information in order to improve the quality of the inversion at

single-frequency thanks to the frequency hopping technique [52], [125]. The following steps

constitute the method (the angular frequencies are supposed to be sorted in ascending order,

|e, (1)1 < (1)2 < e < (UF)

1.

Initialization. Run the inversion algorithm on the data gathered at the lowest working
angular frequency w,. The resulting reconstructed dielectric image is indicated with €. .

Transform this vector in the following starting guess
~ ~ , W1 ~
Cow, = Re(cw1) +J _Im(cwl) (84)
W32

Loop. For w = 2,...F — 1, run the inversion algorithm on the data gathered at the

working angular frequency w,, starting with the initial guess ¢,, . obtaining the

reconstructed dielectric image €, . Transform this solution in the starting guess

Wy

EOrww+1 = Re(éww) +] Im(éww) (85)

Wy 41

Output. Run the inversion algorithm on the data gathered at the highest working angular
frequency wr with the starting guess ¢, . The reconstructed dielectric image is the

final one €.
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Chapter 4 Numerical and Experimental Validation: 3D

Full-VVector Scenario

In this Chapter, the results concerning the 3D full-vector inversion schemes are reported.
Both the truncated Landweber and the conjugate gradient methods have been considered
[118], [119], [126]. In order to evaluate the performance of the algorithms, the following
error metrics are used [118]

€ —cll,

llcll

_ 1 E(robj) - C(robj)
80bj B Nobj Z

C(robj) +1

inv —

(86)

Tobj

1 Z é(rp) — c(rp)

=N, c(r,) + 1

Tp

where ¢ and ¢ are the actual and reconstructed contrast functions, respectively, r,,; are the
centers of the N,,; subdomains occupied by the target, and r, are the centers of the N,

subdomains occupied by the background medium only. In particular, the first metric in (86)
is a normalized mean square error (NMSE) computed on the whole investigation domain,
the second one is a relative mean error on the reconstruction of the target only, and the last
one is a relative mean error on the reconstruction of the background only. In order to evaluate
the performance versus the norm parameter p, this has been varied from 1.1 to 3 with a step
of 0.1 for each test case. Finally, it is useful to define the following metrics for the outer and

inner residuals vectors

~ ~ 2
R L i GO o

B2z,
scat D

53D’ _ e _ E3D (. 2
ril;z:“Fci hy, [Egg‘ét F (Cl)]”D (88)

Bz,
scat D
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4.1 Numerical Validation: Landweber-based Method

Let us start with the description of the illuminating and measurement simulated setup. The
background medium is vacuum, which is characterized by the propagation constant k, =
w+/ o€o. The working frequency is f = 300 MHz. In all cases, S = 6 views are considered.

The corresponding incident electric fields are given by the following unit-amplitude plane

waves

Einc,(s) (l‘) = e_jkow(s).rﬁ(s)
W(s) = sin 9(5) CosS d)(s) X + sin 9(5) sin ¢(s) y + cos 9(5) Z (89)

P(s) = c0s By cos Ps) X + cos Os) sin () § — sin b5 Z

where koW ) is the wave vector, P(y) is the polarization vector, and 8, ¢ ) are the angles

in the spherical coordinate system (as indicated in Figure 1), which has been set as follows

(0,0) s=1

(9(5):4)(5)) = (%, (S - 2) %) s=2,..,5 (90)
(m,0) S=6

For every view, the total electric field is collected in M = 82 measurement points uniformly
distributed on a sphere of radius Ry, , = 24,, with 1, = 1 m free-space wavelength. It is
worth noting that the sampling condition derived from the 3D degrees of freedom theory for
electric fields [114] is not accomplished. The domain Vi, is a cube of side Ly, = 4,.
Figure 6 shows the descripted configuration. The investigation volume has been partitioned
with two different cube-based meshes for the forward and inverse problems, in order to avoid
inverse crimes [85]: a coarse mesh with N = 8000 voxels for the inverse problem and a fine
mesh with Ng,,q = 29791 voxels for the forward one. The simulated electric field
measurements have been numerically computed by using a custom code based on the MoM.
Moreover, these synthetic data have been corrupted with an additive white Gaussian noise
with zero mean and variance corresponding to a signal-to-noise ratio SNR = 25 dB, in order
to simulate real operating conditions. In particular, the standard deviation o, of the additive

noise vector is related to the SNR by the following formula [127]
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Figure 6. Measurement and illumination setup for the numerical validation of the 3D full-vector microwave
imaging procedures.

L]

Finally, the following stopping rules are adopted for the inexact-Newton scheme with
truncated Landweber method

e Outer loop. Maximum number of iterations equals to I = 20 or

18113
T.out <7T——
e, .

scat

with & vector containing the values of the additive noise, and T = 1. This kind of
stopping criterion derives from the Morozov’s generalized discrepancy principle
[85], [89]. The idea at the base of this criterion is to avoid an over-fitting behavior.
In this section, T = 1 is adopted.

e Inner loop. Maximum number of iterations equals to L = 10 or

r.in
i,k <7
rout = “H (93)

l

with 7, € (0,1] [88], [89]. The value 7, = 0.5 is selected.
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4.1.1 Reconstruction capabilities versus the scatterer dimension

Firstly, the reconstruction capabilities of the proposed microwave imaging algorithm have
been evaluated by considering an investigation domain containing a single lossless sphere
with center r, = (0.1,0.1,0.1) 4, and relative dielectric permittivity €, = 2.5. The radius of
the sphere a, has been varied in the range [0.15,0.4]4,. The ground truth for the case a; =

0.22, is shown in Figure 7.

0.5
0.25
(=]
L:S 0 W
Yoo
-0.25
-0.5
-05 =025 0 025 05
x/)\o
(b)

Figure 7. Actual distribution of the relative dielectric permittivity. (a) Three-dimensional view; (b) x — y cut
(z = 0.14;). Single sphere with a; = 0.24,.

Figure 8 shows the behavior of the NMSE for some of the considered values of the cylinder’s

radius.

Cinv

Figure 8. Behavior of e;,,,, versus the norm parameter p and for different values of the radius a; . Single sphere.
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Moreover, the values of the norm parameter p providing the NMSE-optimal reconstructions
(indicated as p,,.), the related mean relative errors, the final numbers of performed outer
iterations i, and the total computational times T are reported in Table 1. The corresponding

data for the Hilbert-space inversion (i.e., with p = 2) are also reported for comparison

purpose.

Table 1. Reconstruction errors, final number of outer iterations ir, and computational times T versus a, in
correspondence of p = p,,. and p = 2 (Hilbert space approach).

[Port [? (Hilbert)

@1 [4o] Popt €obj €p if T [s] ) €obj €p if T [s]®
0.15 1.2 0.36 0.017 1 46 0.47 0.065 1 46
0.2 1.3 0.28 0.042 2 230 0.33 0.11 2 222
0.25 13 0.26 0.063 2 262 0.29 0.13 2 174
0.3 13 0.14 0.11 4 748 0.16 0.21 4 791
0.35 14 0.18 0.14 5 1089 0.15 0.22 4 777
04 1.8 0.16 0.25 6 1534 0.16 0.27 5 1225

) These refer to a PC equipped with a quad-core CPU Intel Core i5-2310 @2.9 GHz and 8 GB of RAM.

As can be seen, in all cases the optimal norm parameters are smaller than 2 (corresponding
to the standard Hilbert-space algorithm), and the errors tend to increase above these values.
As expected, the computational times T grow as a, increases, since the scatterer becomes
stronger. In fact, when the size and/or the dielectric contrast of the target become larger, an
increasing number of Newton iterations are needed, since the inner linearization is locally
less accurate in the first iterations. Moreover, the single outer iteration takes more time, too,
since the BICGSTAB-FFT used to compute the internal electric fields and the
inhomogeneous Green’s functions, as indicated in Section 3.5, requires more iterations to
converge. For completeness, the outer residuals r°** versus the iteration number i, for the
values of a; and p,,,; reported in Table 1, are shown in Figure 9, by which we can appreciate
the different convergence rates for the various simulated spheres. An example of the
reconstructed distributions of the relative dielectric permittivity is shown in Figure 10 for
the case a; = 0.24, with p = p,,, = 1.3. For comparison purposes, Figure 11 reports the
reconstruction obtained on the same data but using the standard regularization scheme in
Hilbert spaces (p = 2). Although the object can be identified in both reconstruction, strong

oversmoothing effects can be noticed when considering [? spaces.
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Figure 9. Behavior of r°“* versus the iteration number for the values of a, and Pope reported in Table 1. Single
sphere.
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Figure 10. Reconstructed distribution of the dielectric permittivity with p = p,,. = 1.3. () Three-dimensional
view; (b) x — y cut (z = 0.14,); (¢) x — z cut (y = 0.14,); (d) y — z cut (x = 0.14,). Single sphere with a; =
0.24,.
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Figure 11. Reconstructed distribution of the dielectric permittivity with p = 2 (Hilbert space approach). (a)
Three-dimensional view; (b) x —y cut (z = 0.14,); (c) x — z cut (y = 0.14,); (d) y — z cut (x = 0.14,).
Single sphere with a; = 0.24,.

4.1.2 Reconstruction capabilities in case of separate scatterers (two spheres)

In this Section, two separate spheres are considered. The first one has center r.; =
(0.15,0.15,0.15) A, relative dielectric permittivity e, ,, and radius a; = 0.24,, whereas the
second one has center r,, = —r.q, relative dielectric permittivity €, , = 2.5, and radius
a, = a,. The relative dielectric permittivity of the first sphere has been varied in the range
[2,6]. The ground truth for €, ; = 4 is shown in Figure 12. The trends of the NMSE versus
the norm parameter p for different values of the simulated relative dielectric permittivity €, ;
are reported in Figure 13. Moreover, the mean relative errors, and the final numbers of

performed outer iterations ir in correspondence of p,,, and p = 2 are reported in Table 2.
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Figure 12. Actual distribution of the relative dielectric permittivity. (a) Three-dimensional view; (b) x — y cut
(z = —0.154); (c) x — z cut (y = 0.154,). Separate spheres with €,.; = 4.
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Figure 13. Behavior of e;,,, versus the norm parameter p and for different values of the relative dielectric
permittivity €, 1. Separate spheres.
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Table 2. Mean relative errors and final number of outer iterations i versus €, , in correspondence of p = pg,,

and p = 2 (Hilbert space approach).

. [Popt I? (Hilbert)
1 Popt  €obj €p if €obj €p if
2 1.2 027 0.043 2 031 013 2
3 12 03 0057 3 036 015 2
4 1.2 031 0077 3 037 020 3
5 1.3 037 017 5 040 028 5
6 13 039 027 8 045 045 9

Again, the more general Banach space approach is able to outperforms the classic Hilbert
space one. However, the reconstruction accuracy gets worse as the dielectric permittivity of
the first sphere increases, because of the lesser reliability of the inner linearization.
Moreover, the outer residuals r°** versus the iteration number i, for the non-Hilbertian cases
reported in Table 2, shown in Figure 14 allow us to better appreciate the slower convergence

as €, increases.
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Figure 14. Behavior of r”“* versus the iteration number for the values of €, ; and p,,, reported in Table 2.
Separate spheres.

Figure 15 shows the reconstructed distribution of the relative dielectric permittivity obtained
with the optimal norm parameter p,,,, = 1.2 for €, ; = 4, whereas the corresponding result
obtained with p = 2 (Hilbert space) is reported in Figure 16. As can be seen, the classic
inexact-Newton shows a severe underestimation in the reconstructed relative dielectric

permittivity distribution, which is significantly mitigated in [Port.
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Figure 15. Reconstructed distribution of the dielectric permittivity with p = p,,; = 1.2. () Three-dimensional
view; (b) x —y cut (z = —0.154,); (¢) x — z cut (y = 0.154,); (d) y — z cut (x = 0.154,). Separate spheres
Wlth ET,l = 4’.

4.1.3 Reconstruction capabilities versus the inner stopping threshold

The dependence of the reconstruction performance on the inner stopping threshold z,, is here
assessed. The value of 7, has been varied in the admissible range (0,1]. The used
investigation domain contains the separate targets introduced in Section 4.1.2 with relative
dielectric permittivity of the first sphere fixed to €, ; = 4. The norm parameter p has been
set equal to p,,; = 1.2. Table 3 reports the obtained values of the reconstruction errors and
the performed outer iterations. We can see that small values of 7, produce higher errors. In

fact, when this threshold is excessively low, a proper early stopping of the inner loop rarely
occurs, resulting in a weak regularization and so in an easier propagation of the noise. For

values in the range [0.5,1] the errors exhibit only small variations, but the number of needed
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outer iterations increases as 7, approaches 1, since a low number of inner iterations causes

a slow update of the estimated contrast function.
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Figure 16. Reconstructed distribution of the dielectric permittivity with p = 2 (Hilbert space approach). (a)
Three-dimensional view; (b) x — y cut (z = —0.154,); (c) x — z cut (y = 0.154,); (d) y — z cut (x = 0.154,).
Separate spheres with €,.; = 4.

Table 3. Reconstruction errors and final number of outer iterations i, versus 7, in correspondence of p =
Pope = 1.2. Separate spheres with €,.; = 4.

Ty  €iny Cobj €p if
0.25 0.60 0.34 0.087 3
05 057 031 0.077 3
0.75 057 032 0078 5
095 058 032 0.078 9
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4.1.4 Reconstruction capabilities with inhomogeneous target and versus the signal-

to-noise ratio

In this Section, the target consists in an inhomogeneous circular cylinder having height h =
0.61,, radius R = 0.24,, and center r, = (0.15,0.15,0)A,. The lowest half of this cylinder

has relative dielectric permittivity €, , = 2, whereas the upper one has €, ,, = 3 (Figure 17).
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Figure 17. Actual distribution of the relative dielectric permittivity. (a) Three-dimensional view; (b) x — z cut
(y = 0.154,). Inhomogeneous cylinder.

Moreover, in order to test the noise rejection capability of the proposed 3D microwave
imaging technique, the SNR has been varied in the range [5,50] dB. The behavior of the

resulting NMSE versus the signal-to-noise ratio, obtained with both p = p,,, and p = 2

(Hilbert-space case), is shown in Figure 18.
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Figure 18. Behavior of e;,, versus the signal-to-noise ratio SNR for p = p,,, and p = 2 (Hilbert space
approach). Inhomogeneous cylinder.
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The inexact-Newton scheme in [Port presents a higher robustness to noise with respect to the
standard Hilbert-space approach, as such behavior is also confirmed by the corresponding

mean relative errors reported in Table 4, in which, although similar e, ; are achieved by the

two methods, there is a significant gap on e,.

Table 4. Mean relative errors and final number of outer iterations i versus SNR in correspondence of p =
Pope and p = 2 (Hilbert space approach).

Po 2 i

SNR [dB] [Popt . l (Hllbert).
Popt  €obj €p lf  €opj €p Ui

5 14 046 025 1 044 046 1

10 14 050 015 1 050 029 1
20 14 027 010 2 026 018 2
30 12 025 0033 3 026 011 3
40 1.3 024 0050 10 0.23 0.093 9
50 1.3 024 0.049 19 0.22 0.087 19

From this table, we can see also the action of the stopping rule in (92); in fact, the ||8]|% term
grows as the SNR decreases, and so the method is stopped earlier. Some examples of the
reconstructed distributions of the relative dielectric permittivity are shown in Figure 19-21
for the values of SNR = 10dB (pop: = 1.4), SNR = 20dB (pop: = 1.4), and SNR =
30 dB (pope = 1.2), respectively. In the same figures, the corresponding reconstructions
obtained in Hilbert space are reported, too. As can be seen, in all cases, the advantages of

using the Banach-space procedure are quite evident.
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Figure 19. Reconstructed distribution of the dielectric permittivity for the signal-to-noise ratio SNR = 10 dB.
(@) Popt = 1.4; (b) p = 2. Inhomogeneous cylinder.
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(b)
Figure 20. Reconstructed distribution of the dielectric permittivity for the signal-to-noise ratio SNR = 20 dB.
(@) popt = 1.4; (b) p = 2. Inhomogeneous cylinder.

3.5
3 0.5

0.25
2.5 L/(o 0 .

w N w

2 -0.25

-0.5
1.5 0.5

0.25

1

y//\0

(b)
Figure 21. Reconstructed distribution of the dielectric permittivity for the signal-to-noise ratio SNR = 30 dB.
(@) Popt = 1.2; (b) p = 2. Inhomogeneous cylinder.

4.1.5 Reconstruction capabilities against target with lossy inclusion

The simulated target is composed by a cube of side L = 0.74,, centered in the origin, and
with a spherical inclusion of radius R = 0.24, and center r, = —(0.1,0.1,0.1)4,. The
relative dielectric permittivity of the cube is €, ; = 1.5, whereas the sphere is characterized
by €,, = 3 —j1.2, that is a non-negligible electric conductivity o, = 0.02 S/m is present.

The related ground truth is shown in Figure 22.
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Figure 22. Actual distribution of the relative dielectric permittivity. Three-dimensional views of (a) real and
(b) imaginary parts; cuts of (c) real and (d) imaginary parts (x = —0.14,). Target with lossy inclusion.

The reconstructed distributions of the real and imaginary parts of the complex dielectric
permittivity obtained for p = p,,, = 1.3 and p = 2 (Hilbert space) are shown in Figure 23
and Figure 24, respectively. As can be seen, the inclusion and the host cube have been
detected and the estimated values of the dielectric properties are fairly good in the result
obtained in the space I13. Instead, the real part of the dielectric permittivity is underestimated

in the Hilbert-space solution.
4.1.6 T-shaped target

Finally, an inhomogeneous T-shaped object is located in a larger investigation domain of

side Ly, = 24, and partitioned into N = 27000 cubic voxels. The target is composed by
two parallelepipeds: the upper one has center r.; = (0,0,0.55)4,, and sides [,,; = A¢, 1y, =

l,1 = 0.34,, whereas the lower one has center r., = (0,0,0), and sides [,., = L, , = 0.34,,
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l,, = 0.84,. The relative dielectric permittivities of the two partsare €, ; = 3 and €,., = 2.
The ground truth is shown in Figure 25. The reconstructed distributions of the relative
dielectric permittivity for the optimal value of the norm parameter p,,, = 1.2 and p = 2
(Hilbert space) are shown in Figure 26 and Figure 27, respectively. The two regions with
different dielectric properties are clearly identified when p = p,,,, = 1.2. On the contrary, a
severe underestimation phenomenon affects the Hilbert space result, in which the
parallelepipeds are barely distinguishable. For completeness, the resulting relative mean

errors are e,,; = 0.28, e, = 0.02 for p,,, = 1.2, and e,,; = 0.36, e, = 0.09 forp = 2.

1.5
{1
0.5
0
0.5 3 15
0.25 o5
< S | = e
T\T 0 2 w T\j W
0.5
-0.25 15 -0.25
-0.5 1 0.5 0
05 025 0 025 05 0.5 -0.25 025 0.5
i, y/,\o
(©) (d)

Figure 23. Reconstructed distribution of the dielectric permittivity with p = p,,, = 1.3. Three-dimensional
views of (a) real and (b) imaginary parts; cuts of (c) real and (d) imaginary parts (x = —0.14,). Target with
lossy inclusion.

55



3 1.5
2.5
1
g =3
0.5
1.5
1 0
(a)
0-5 3 1.5
0.25 25
1
o _
:S O 2 W
0.5
-0.25 1.5
05 1 .
0.5 -0.25 025 0.5 0.5 -0.25 0 025 0.5
(©) (d)

Figure 24. Reconstructed distribution of the dielectric permittivity with p = 2 (Hilbert space approach). Three-
dimensional views of (a) real and (b) imaginary parts; cuts of (c) real and (d) imaginary parts (x = —0.14,).

Target with lossy inclusion.
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Figure 25. Actual distribution of the relative dielectric permittivity. (a) Three-dimensional view; (b) x — z cut
(y = 0). T-shaped target.
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Figure 26. Reconstructed distribution of the dielectric permittivity with p = p,,. = 1.2. (a) Three-dimensional
view; (b) x — z cut (y = 0). T-shaped target.
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Figure 27. Reconstructed distribution of the dielectric permittivity with p = 2 (Hilbert space approach). (a)
Three-dimensional view; (b) x — z cut (y = 0). T-shaped target.

4.2  Numerical Validation: Conjugate Gradient-based Method

In this Section, some preliminary results on synthetic data from the inexact-Newton scheme
based on the conjugate gradient method applied in the 3D full-vector scenario are shown
[126]. The same simulated illumination and measurement setup as reported in Section 4.1 is

adopted here. The following stopping criteria are used

e Outer loop. Maximum number of iterations equals to I = 20 or

e — ot
out = Y1 (94)

Tit1
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with 7; = 0.01 threshold on the relative outer residual variation [96].
e Inner loop. Maximum number of iterations equals to C = 10 or
ri{’fé - Tif71:+1 <

- = T¢
(%)

with T, = 0.05 threshold on the relative inner residual variation [126].
4.2.1 Reconstruction capabilities versus the scatterer dimension

The reconstruction capabilities of the proposed conjugate gradient-based microwave
imaging algorithm are here evaluated considering the investigation domain adopted in
Section 4.1.1. Figure 28 shows the resulting NMSE behaviors versus the norm parameter p

and for several radius of the sphere a, in the range [0.15,0.3]4,.

1 - : : ‘
Nl 320183 ——
te . a;=020%y — » -
095 1, ¥ al = 0257 --x-
| a, =030, —=
0.9 .
0.85 F
-
0.8 L
2 e
® o075 \ 4
u——‘m__-ﬂ’ p
.-
0.7 .
. . l" --__'
065} - B
G e
06 | A ’ g
\‘:‘;';\.‘_ _._/l i
0.55 L By
1.2 1.4 1.6 1.8 2 22 2.4

Figure 28. Behavior of e;,, versus the norm parameter p and for different values of the radius a,. Single
sphere. Conjugate gradient-based method.

Analogously to what we have seen in Section 4.1.1, the conjugate gradient-based inexact-
Newton in Banach spaces is able to outperform the classic version of the algorithm in Hilbert
spaces for values of the norm parameter p in the range (1,2). Figure 29 and Figure 30 report
the reconstructed relative dielectric permittivity distributions obtained from the conjugate
gradient-based method with p = p,,, = 1.3 and p = 2 (Hilbert space), respectively, for the

case a; = 0.24,.
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Figure 29. Reconstructed distribution of the dielectric permittivity with p = p,,, = 1.3. (a) Three-dimensional
view; (b) x — y cut (z = 0.14,); (¢) x — z cut (y = 0.14,); (d) y — z cut (x = 0.14,). Single sphere with a; =
0.244. Conjugate gradient-based method.

The same comments made for the reconstructions returned by the Landweber-based imaging
method hold here similarly. Finally, a comparison about the convergence rates between the
conjugate gradient-based inexact-Newton and the Landweber-based one is here made. In
order to proper compare the two methods, the stopping criteria indicated in (94) and (95) are
adopted also in the Landweber-based approach. For the case a; = 0.31,, Figure 31 reports
the behaviors of the inner and outer residuals metrics as defined in (87) and (88) versus the
iteration number for both the compared methods in correspondence of their NMSE-optimal
norm parameters (p,,; = 1.6 and p,,, = 1.3 for the conjugate gradient-based and
Landweber-based methods, respectively). Moreover, Figure 32 shows the corresponding

trends of the NMSE versus the iteration number.
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Figure 30. Reconstructed distribution of the dielectric permittivity with p = 2 (Hilbert space approach). (a)
Three-dimensional view; (b) x —y cut (z = 0.14,); (c) x — z cut (y = 0.14,); (d) y — z cut (x = 0.14,).
Single sphere with a; = 0.24,. Conjugate gradient-based method.
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Figure 31. Behavior of r°** and rii_ﬁ for the conjugate gradient-based (p,,: = 1.6) and Landweber-based
(Pope = 1.3) methods versus the iteration number. Single sphere with a; = 0.34,.
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Figure 32. Behavior of e;,,, for the conjugate gradient-based (p,,,, = 1.6) and Landweber-based (p,,: = 1.3)

methods versus the iteration number. Single sphere with a; = 0.34,.

It can be seen that the adoption of the conjugate gradient method as inner linear solver for
the inexact-Newton scheme allows a faster convergence in both the inner and outer loops
than the Landweber algorithm. This result is in agreement with the numerical analysis theory
in which the higher convergence rate of the classic conjugate gradient method with respect
to the Landweber one has been proven, and that can be extended to the framework of the
Banach spaces by continuity arguments [94]. On the other hand, in Figure 32 we see that the
Landweber-based approach reaches a lower NMSE in the considered test case. However,

Figure 33 shows that the two reconstructions are essentially equivalent.
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Figure 33. Reconstructed distributions of the dielectric permittivity. (a) Conjugate gradient-based method with
Popt = 1.6; (b) Landweber-based method with p,,,, = 1.3. Single sphere with a; = 0.34,.
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4.2.2 Reconstruction capabilities in case of separate scatterers (sphere and cylinder)

In this Section, the conjugate gradient-based inexact-Newton imaging algorithm is tested
against an investigation domain containing two objects. The first one is a sphere with center
r.; = (0.25,0.25,0)A,, diameter D; = 0.254,, and relative dielectric permittivity €, ;. The
second object is a circular cylinder with center r., = —r. 1, diameter D, = 0.254,, height
H = 0.44,, and relative dielectric permittivity €, , = 2. The relative dielectric permittivity
of the sphere €, ; has been varied in the range [2,5]. The ground truth for €, ; = 3 is shown
in Figure 34.

The behaviors of the NMSE versus the norm parameter p for different values of the

simulated relative dielectric permittivity €, , are reported in Figure 35.
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Figure 34. Actual distribution of the relative dielectric permittivity. (a) Three-dimensional view; (b) x — z cut
(y = —0.254,); (€) ¥ — z cut (x = 0.254,). Sphere and cylinder with €, = 3.
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Figure 35. Behavior of e, versus the norm parameter p and for different values of the relative dielectric
permittivity €, 1. Sphere and cylinder. Conjugate gradient-based method.

Table 5. Mean relative errors and final number of outer iterations i versus e,., in correspondence of p = pop,
and p = 2 (Hilbert space approach). Conjugate gradient-based method.

. [Popt 12 (Hilbert)
1 Popt  €obj €p if €obj €p if
2 1.2 020 0.04 3 035 0.07 3
3 1.2 028 004 3 039 010 2
4 1.3 031 005 3 040 010 2
5 12 031 006 5 042 011 3

Moreover, the mean relative errors and the final numbers of performed outer iterations i in
correspondence of p = p,,, and p = 2 are reported in Table 5.

Similarly to Section 4.1.2, the reconstruction accuracy gets worse as the relative dielectric
permittivity of the sphere increases, because, with strong scatterers, the first-order Taylor
expansion in (58) has a smaller neighborhood of the current estimated solution in which the
linearization is a good approximation of the underlying non-linear function. However, the
Banach-space approach shows to better tackle such situation than the Hilbert-space one.
Figure 36 reports the reconstructed distribution of the relative dielectric permittivity obtained
with p,,,, = 1.2 for the case €, ; = 3, whereas the corresponding result returned with p = 2
(Hilbert space) is reported in Figure 37. Although the scatterers are visible in both
reconstructions, the solution belonging to (ot has a higher fidelity to the actual dielectric

distribution than the one of (2.
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Figure 36. Reconstructed distribution of the dielectric permittivity with p = p,,,; = 1.2. () Three-dimensional
view; (b) x — z cut (y = —0.254,); (c) y — z cut (x = 0.254,). Sphere and cylinder with €, ; = 3. Conjugate
gradient-based method.

4.2.3 Reconstruction capabilities with inhomogeneous target and versus the signal-

to-noise ratio

In this Section, the same target adopted in Section 4.1.4 is used. Moreover, the same variation
of the signal-to-noise ratio is here considered, namely SNR € [5,50] dB. The behavior of
the resulting NMSE versus the signal-to-noise ratio, obtained with both p = p,,; andp = 2
(Hilbert-space case), is shown in Figure 38. We see that the reconstructions obtained in non-
Hilbertian spaces are able to outperform the standard Hilbertian one. Such finding is also
supported by the corresponding mean relative errors reported in Table 6.
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Figure 37. Reconstructed distribution of the dielectric permittivity with p = 2 (Hilbert space approach). (a)
Three-dimensional view; (b) x — z cut (y = —0.254,); (€) y — z cut (x = 0.25A,). Sphere and cylinder with

€1 = 3. Conjugate gradient-based method.
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Figure 38. Behavior of e;,, versus the signal-to-noise ratio SNR for p = p,,, and p = 2 (Hilbert space

approach). Inhomogeneous cylinder. Conjugate gradient-based method.
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Table 6. Mean relative errors and final number of outer iterations i versus SNR in correspondence of p =
Pope and p = 2 (Hilbert space approach). Conjugate gradient-based method.

Po 2 i
SNR [dB] [Popt ' l (H|Ibert)'

Popt €obj €p lf €opj €p I
5 1.1 058 002 1 037 032 3
10 16 041 018 3 042 020 3
20 15 026 013 4 026 0.18 4
30 15 023 008 4 022 014 4
40 1.7 023 009 7 022 013 8
50 18 022 009 6 022 011 6

In Section 4.1.4, we saw that the stopping rule for the outer loop based on the Morozov’s
generalized discrepancy principle caused the method to be stopped earlier as the signal-to-
noise ratio decreased. In the present test case, although the adopted stopping criterion for the
outer loop does not descend from the generalized discrepancy principle, Table 6 shows that
also the action of this stopping rule induces the method to be stopped earlier as the SNR
decreases. Some examples of the reconstructed distributions of the relative dielectric
permittivity are shown in Figure 39-41 for the values of SNR = 10 dB (p,p: = 1.6), SNR =
20 dB (pope = 1.5), and SNR = 30 dB (p,p: = 1.5), respectively. In the same figures, the
corresponding reconstructions obtained in Hilbert space are reported, too. The advantages

of using the Banach-space procedure are quite evident in all the presented cases.
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Figure 39. Reconstructed distribution of the dielectric permittivity for the signal-to-noise ratio SNR = 10 dB.
(@) Popt = 1.6; (b) p = 2. Inhomogeneous cylinder. Conjugate gradient-based method.
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Figure 40. Reconstructed distribution of the dielectric permittivity for the signal-to-noise ratio SNR = 20 dB.
(@) pope = 1.5; (b) p = 2. Inhomogeneous cylinder. Conjugate gradient-based method.
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Figure 41. Reconstructed distribution of the dielectric permittivity for the signal-to-noise ratio SNR = 30 dB.
(@) popt = 1.5; (b) p = 2. Inhomogeneous cylinder. Conjugate gradient-based method.

4.2.4 Reconstruction capabilities versus the inner stopping threshold

The dependence of the reconstruction performance on the inner stopping threshold z is here
assessed. The value of 7. is varied in the range [0.001,0.3]. The adopted investigation
domain contains the inhomogeneous cylinder used in Section 4.2.3. The norm parameter
Dope = 1.4 that is resulted to be optimal for the reference parameters 7, = 0.05 and SNR =
25 dB is here adopted for each tested value of 7. Table 7 reports the obtained values of the
reconstruction errors and the performed outer iterations. We see that small values of 7. cause
an improper stopping of the inner loop, resulting in a weak regularization and so in higher

errors. For tested values higher than the reference 7. = 0.05, the errors exhibit only small
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variations, but the number of needed outer iterations increases as 7. grows, since a low

number of inner iterations causes a slow update of the estimated contrast function.

Table 7. Reconstruction errors and final number of outer iterations i, versus z. in correspondence of p = 1.4.
Conjugate gradient-based method.

Tc €y ©€obj €y I
0.001 120 0.32 0.33 4
0.005 0.67 0.29 0.13 4
001 065 028 012 4
0.05 059 026 0.09 4

01 058 026 009 5
0.15 058 0.26 0.09 5
020 058 0.26 0.09 5
030 059 0.27 0.08 6

4.2.5 T-shaped target

The same inhomogeneous T-shaped target introduced in Section 4.1.6 is considered here.
Figure 42 and Figure 43 show the reconstructed relative dielectric permittivity distributions
returned with p,,, = 1.4 and p = 2 (Hilbert space). Although the image in Figure 42 does
not fully replicate the actual shape of the target, anyway the Banach-space conjugated
gradient approach outperforms the Hilbert-space one again. For completeness, the resulting

relative mean errors are e,,; = 0.28, e, = 0.07 for p,, = 1.4,and e,p; = 0.32, ¢, = 0.12

forp = 2.
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Figure 42. Reconstructed distribution of the dielectric permittivity with p = p,,, = 1.4. (a) Three-dimensional
view; (b) x — z cut (y = 0). T-shaped target. Conjugate gradient-based method.
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Figure 43. Reconstructed distribution of the dielectric permittivity with p = 2 (Hilbert space approach). (a)
Three-dimensional view; (b) x — z cut (y = 0). T-shaped target. Conjugate gradient-based method.

4.3 Experimental Validation: Landweber-based Method

The developed Landweber-based approach has been also validated by considering the
measured dataset provided by the Institut Frésnel [128]. The dataset provides data in the
range 3 — 8 GHz but, in order to work in the resonant regime with respect to the targets
described in the following, f = 3 GHz is selected, which correspond to a free-space
wavelength 4, = 10 cm. The experimental system in which these measurements have been
gathered consists in two moving antennas able to collect multi-view data. The transmitting
antenna moves in S, = 81 locations on a sphere of radius Ry, = 1.796 m and radiates
sequentially with both vertical and horizontal polarizations, whereas the receiving one

moves in M = 27 positions (for each view) on a circumference of radius Ry, = 1.796 m

placed on the x — y plane and records the vertical electric field component only. However,
only a subset of S = 25 evenly spaced vertically polarized sources has been considered here;
this number has been found to be a good compromise between the need of increasing the
available data as much as possible and the reduction of computational requirements. Since
only the vertical component of the measured field is available, the transverse components of
the data vector and of the predicted one have been set equal to zero, in order to exclude their
role from the inversion process. Figure 44 shows the used illumination and measurement
configuration. For deeper technical insights in the experimental apparatus, the reader is
referred to [128].
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Figure 44. Illumination and measurement setup for the experimental validation of the 3D full-vector microwave
imaging procedures. The red arrows symbolize the direction of the transmitting antenna’s main lobe.

The stopping rules presented in the Section 4.1 are here adopted too. However, although the
Morozov’s generalized discrepancy principle prescribes T = 1, here T = 0.75 is used in
order to mitigate the over-regularization that the generalized discrepancy principle often

causes in practice [129]. The following two different targets are considered

1. TwoSpheres. Two spheres with centers r,; = (—2.5,0,0) cm and r., = (2.5,0,0) cm,
radii Ry = R, = 2.5 cm, and relative dielectric permittivities €, ; = €,, = 2.6 (Figure
45). The investigation domain V;,,,, is a cube of side L, = 15 cm, center in the axes
origin, and partitioned in N = 8000 cubic voxels.

2. TwoCubes. Two cubes with centers r.; = (1.25,—1.25,3.75)cm and r., =
(—1.25,1.25,6.25) cm, sides L, = L, = 2.5 cm, and relative dielectric permittivities
€r1 = €2 = 2.35 (Figure 46). The investigation volume V;,, is a cube of side Ly, =

15 cm, centered at (0,0,5) cm, and partitioned in N = 8000 cubic voxels.

The behaviors of the resulting error metrics defined in (86) versus the norm parameter p for
both the TwoSpheres and TwoCubes targets are given in Figure 47. As it already happened
with synthetic data, also here small values of the norm parameter p allow to obtain
significantly better results than the standard Hilbert-space inversion approach. The
distributions of the relative dielectric permittivity reconstructed with the NMSE-optimal
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norm parameter p,,, = 1.2 and p = 2 (Hilbert space case) for both targets visually support

this assertion (Figure 48-51).
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Figure 45. Actual distribution of the relative dielectric permittivity. (a) Three-dimensional view; (b) x — y cut
(z = 0). TwoSpheres target.
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Figure 46. Actual distribution of the relative dielectric permittivity. (a) Three-dimensional view; (b) x — y cut
(z = 0.3754,); () y — z cut (x = —0.1254,). TwoCubes target.
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Figure 48. Reconstructed distribution of the dielectric permittivity with p = p,,; = 1.2. () Three-dimensional
view; (b) x — z cut (y = 0). TwoSpheres target.
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Figure 49. Reconstructed distribution of the dielectric permittivity with p = 2 (Hilbert space approach). (a)
Three-dimensional view; (b) x — z cut (y = 0). TwoSpheres target.

2 0.75
1.25 1.8 0.375 '
- 0.8072 16 2 .
i R
N 11.4 1.4
0.125 |
-0.375 5
'8 22' 075 1.2 '
§%75 o DR -0.75 1

o

00378 -0.375 1 0.75-0.375 0 0.375 0.75
XA, 75 -0.75 i\, XA,
@ (b)
1.25 2
0.875 18
o 1.6
=< 05 o
N [ 1.4
0.125 -
25 1

"20.75-0.375 0 0.375 0.75
y/)\o

(©
Figure 50. Reconstructed distribution of the dielectric permittivity with p = p,,; = 1.2. () Three-dimensional
view; (b) x —y cut (z = 0.3754,); (€) y — z cut (x = —0.1254,). TwoCubes target.
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Figure 51. Reconstructed distribution of the dielectric permittivity with p = 2 (Hilbert space approach). (a)
Three-dimensional view; (b) x — y cut (z = 0.3754,); (€) y — z cut (x = —0.1254,). TwoCubes target.

The standard Hilbert-space inversion method produces smoothed images, where the
separation between the two objects is not clear. On the contrary, the results returned working

in [12 allow to clearly identify the two different objects.

4.4 Experimental Validation: Conjugate Gradient-based Method

In this Section, the inexact-Newton scheme based on the conjugated gradient method is
tested on the same experimental data and setup reported in Section 4.3. Moreover, the
stopping rules described in Section 4.2 are here adopted, too. The resulting trends of the
reconstruction errors versus the norm parameter p for both the TwoSpheres and TwoCubes

targets are given in Figure 52.
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Figure 52. Behavior of e;,, e,p;, and e, versus the norm parameter p. (a) TwoSpheres and (b) TwoCubes
targets. Conjugate gradient-based method.

Also with the conjugate gradient method as inner linear solver, the Hilbert-space solution is
the optimal one in no case; only small values of the norm parameter p result to be the best.
The reconstructed distributions of the relative dielectric permittivity given by p,,, = 1.4
and pp,: = 1.2 for the TwoSpheres and TwoCubes targets, respectively, are shown in Figure
53 and Figure 54. The corresponding images obtained in the Hilbert-space framework are
shown in Figure 55 and Figure 56. The same conclusions made for the Landweber-based

approach hold here for the images returned by the conjugate gradient-based one.
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Figure 53. Reconstructed distribution of the dielectric permittivity with p = p,,. = 1.4. () Three-dimensional
view; (b) x — z cut (y = 0). TwoSpheres target. Conjugate gradient-based method.
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Figure 54. Reconstructed distribution of the dielectric permittivity with p = p,,, = 1.2. (a) Three-dimensional

view; (b) x — y cut (z = 0.3754,); (c) y — z cut (x = —0.1254,). TwoCubes target. Conjugate gradient-based
method.
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Figure 55. Reconstructed distribution of the dielectric permittivity with p = 2 (Hilbert space approach). (a)
Three-dimensional view; (b) x — z cut (y = 0). TwoSpheres target. Conjugate gradient-based method.
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Figure 56. Reconstructed distribution of the dielectric permittivity with p = 2 (Hilbert space approach). (a)
Three-dimensional view; (b) x —y cut (z = 0.3754,); (c) y —z cut (x = —0.1254,). TwoCubes target.

Conjugate gradient-based method.
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Chapter 5 Numerical and Experimental VValidation: 2D

Phaseless Scenario

In this Chapter a numerical and experimental validation of the inexact-Newton scheme with
truncated Landweber method in [P Banach spaces applied to the 2D phaseless setting is
reported. To evaluate the reconstruction performance, the same error metrics defined in (86)

are here adopted, too. Moreover, it is useful to define the following metrics for the residuals

vectors

Ipet — 22 x|

rFl = (96)
" |IBE — [abs@ED2
2
FZ h _ [xext l’;-‘ZD X
riPkL ” px; Mk [ptot 5 ( ‘2)]”2) 97)
' IIﬁ%‘f [abs(@512 ||
o llegs, — (e, o

R A
scat D

where the superscripts PL and FD are referred to the phaseless and full-data inversions,
respectively, and abs(:) is the element-wise absolute value. For both kind of validation, the

following stopping rules are used for the inversion procedure

e Quter loop. Maximum number of iterations equals to I = 100 or

PL
i —Ti+1
TPL S TI (99)

i+1

with 7; = 0.01 threshold on the relative outer residual variation [96].

e Inner loop. Maximum number of iterations equals to L = 10 or

PL PL
rob — !
1
i,k i,k+ <

L= (100)

rl,k+1
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with 7; = 0.01 threshold on the relative inner residual variation [96].

5.1 Numerical Validation with Synthetic Data

The numerical validation has been performed by considering a working frequency f =
300 MHz and assuming a void background. The investigation domain D;,,,, is a square of
side Lp, , = 1.54,, whereas the observation one D, is a circumference with radius R, , =
1.51,. In order to properly sample the square amplitude of the total external electric field,

the following total number of samples is needed [73]

Lp, \1°
SM > ceil (max{(élkoRDobs)z, [Zko (RDobs + %)] }) = 1423 (101)

where ceil(:) indicates a round to the next integer and LDW/\/E is the radius of the circle
that strictly encloses the investigation domain. This requirement can be satisfied by choosing
S = 40 sources uniformly distributed on D,,, and M = 39 measurement points for each
view. In particular, when one of the sources is active, the positions of the remaining inactive
sources are occupied by the probes. The sources are unit-amplitude current lines and the
incident electric field generated by each one is given by

wy N
Einc,(s)(re) = — TOHSZ)(kolrt — Ty )|)2 (102)

T
where 1) = 1.54, [cos (2?” (s — 1)) sin (2?” (s — 1))] with s =1,...,S. Figure 57

shows the adopted configuration for the first view. In order to avoid inverse crimes [85], the
investigation domain has been partitioned with a square-based mesh having N = 1600 sub-
domains for the inverse problem solution, whereas Nf,q = 5329 has been used in the
discretization adopted for computing the simulated measurements. This latter problem is
solved with a numerical implementation of the MoM or, when the investigation domain
contains a single circular cylinder only, by an analytical solver [101]. In order to simulate
real operating conditions, an additive white Gaussian noise with zero mean and variance

corresponding to a signal-to-noise ratio SNR = 25 dB has been used to corrupt the full
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(modulus and phase) synthetic data. In particular, the standard deviation o, of the additive

noise is related to the SNR by [127]

SNR = 1010g10< (103)

l1855¢ 115
25Ma}?

® Probes
® Source

Figure 57. lllumination and measurement setup for the numerical validation of the 2D phaseless microwave
imaging procedure. First view.

5.1.1 Reconstruction capabilities versus the scatterer dimension

Firstly, the reconstruction capabilities of the developed approach have been evaluated by
considering a dielectric circular cylinder with center r, = (0.1,0.1) 4, and relative dielectric
permittivity €, = 2. Its diameter D has been varied in the range [0.2,0.6]4,. Figure 58 shows
the behaviors of the reconstruction errors defined in (86) versus the norm parameter p and
the cylinder’s diameter. The Banach-space approach allows in all cases to obtain
reconstructions characterized by lower errors with respect to the standard Hilbert-space

method (corresponding to p = 2). In particular, the best values of p are in the range [1.2,1.6].
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Figure 58. Behavior of (a) e;,,, (b) e,pj, and (c) e, versus the norm parameter p and for different values of
the diameter D. Single circular cylinder.
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Figure 59. Reconstructed distribution of the dielectric permittivity for the single cylinder. (a) p,p: = 1.4, D =
0.254¢; (b) p = 2, D = 0.251¢; (C) popt = 1.2, D = 0.44,; (d) p = 2, D = 0.41,. The white dashed circles
indicate the actual profiles.

This is also visually supported by the images in Figure 59, which shows the reconstructed
distributions of the relative dielectric permittivity corresponding to D = 0.254, and D =
0.44, for p,,e = 1.4 and p,,. = 1.2, respectively, together with the corresponding Hilbert-
space solutions. The proposed approach is able to properly detect the contour of the cylinder
and its relative dielectric permittivity is averagely well estimated (only few pixels in the
center of the cylinder having D = 0.44, are overestimated). On the other hand, the classic
inexact-Newton suffers of a significant underestimation of the dielectric permittivity, and a
slight ringing effect is visible around the cylinder in the reconstruction for D = 0.254,. To
better see these drawbacks, slices at y = 0.14, of Figure 59(a), Figure 59(b), and the actual
profile are shown in Figure 60; in such figure, (€,), is the reconstructed relative dielectric

permittivity averaged over the cylinder’s profile.
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Figure 60. Slices at y = 0.14,, of Figure 59(a), Figure 59(b), and the actual profile.

5.1.2 Reconstruction capabilities versus the scatterer density

In this Section, the cylinder given in Section 5.1.1 with fixed diameter D = 1,/4 is
considered and its relative dielectric permittivity is varied in the range [2,4] to evaluate the
behavior of the proposed method on this variation. Figure 61 shows the behaviors of the
reconstruction errors versus the norm parameter p and the cylinder’s dielectric permittivity.
The three plots exhibit essentially the same trends, that is the errors reach their minima in
the interval (1,1.5) and then rapidly grow as p increases. It is interesting to compare the
phaseless and full-data performance. In particular, Figure 62 illustrates the best NMSE
values achieved by the phaseless and full-data approaches versus €,. As can be seen,
comparable errors are obtained. Moreover, the estimated relative dielectric permittivity
distributions for €, = 4 with p = p,,,, = 1.2 (phaseless data) and p,,, = 1.3 (full-data) are
shown in Figure 63. For completeness, the result obtained with p = 2 in the phaseless case
is also provided. As expected, the full-data imaging performs better than its phaseless
counterpart, and, with focus on the cases in Figure 63, this last suffers of erroneous
estimation of the dielectric properties. However, cylinder’s boundaries are still clearly

visible for p = p,,,. and phaseless measurements.
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Figure 61. Behavior of (a) ey, (b) e,pj, and (c) e, versus the norm parameter p and for different values of
the relative dielectric permittivity €,.. Single circular cylinder.
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Figure 62. Best e;,,,, versus ¢,. for both phaseless and full-data inversions. Single circular cylinder.
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Figure 63. Reconstructed distribution of the dielectric permittivity for the single cylinder with €, = 4. (a)
Pope = 1.2, phaseless; (b) p = 2, phaseless; (C) pope = 1.3, full-data. The white dashed circles indicate the

actual profiles.
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5.1.3 Reconstruction capabilities versus the signal-to-noise ratio

The noise rejection capability of the developed microwave imaging algorithm is here tested
by varying the intensity of the additive white Gaussian noise whereby the simulated
measurements are corrupted. In particular, the signal-to-noise ratio SNR is varied in the
range [5,25] dB. The considered target is a circular cylinder with center r, = (0.1,0.1)A,,
diameter D = 1, /4, and relative dielectric permittivity €, = 2. Table 8 reports the values of
the error metrics defined in (86) and the final number of outer iterations ir for each of the
simulated SNR in correspondence of p = p,,,;. For comparison, the same data are reported

for the Hilbert-space case too.

Table 8. Reconstruction errors and final number of outer iterations ir versus SNR in correspondence of p =
Pope and p = 2 (Hilbert space approach).

Po 2 i
SNR [dB] [Popt . 1= (Hilbert) .

Popt Ciny €obj €p i €iny €obj €p Ui
5 1.4 0.73 0.26 0.02 2 0.87 0.33 0.05 3
10 1.2 0.60 0.24 0.01 3 0.79 0.36 0.03 2
15 1.4 0.53 0.19 0.02 3 0.73 0.31 0.03 3
20 1.3 0.48 0.17 0.01 3 0.71 0.30 0.03 3
25 14 0.43 0.15 0.01 4 0.65 0.26 0.02 3

We see that a proper selection of the norm parameter allows to obtain better noise rejection
capabilities with respect to the classic inexact-Newton approach. Figure 64 shows a
comparison between the NMSE achieved by the phaseless algorithm and the ones obtained
by inverting full-data synthetic measurements (considering the optimal value of the
parameter p). Moreover, the estimated relative dielectric permittivity distributions for
SNR = 15 dB in the phaseless case with p,,, = 1.4 and p = 2 (Hilbert-space) are plotted
in Figure 65. For comparison purposes, the result obtained with the full-data and p,,, = 1.3
is also shown. As expected, we see from Figure 64 that the full-data approach provides better
NMSE values. However, as can be noticed from Figure 65, in a rather noisy environment
the phaseless technique with p,,,; is able to maintain a reconstruction quality comparable to
the full-data setting, as opposed to the classic Hilbert space-based procedure that presents a
significant underestimation of the dielectric permittivity and several artefacts in the
background. These assertions are also supported by the plots cuts along the line x = 0.14,
shown in Figure 66.
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Figure 64. Best e;,,,, versus SNR for both phaseless and full-data inversions.
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Figure 65. Reconstructed distribution of the dielectric permittivity for SNR = 15dB. (a) pope = 1.4,
phaseless; (b) p = 2, phaseless; (C) pop: = 1.3, full-data. The white dashed circles indicate the actual profiles.
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Figure 66. Slices at x = 0.14, of Figure 65(a)-(c), and the actual profile.

5.1.4 Reconstruction capabilities versus the outer stopping threshold

In this Section, the influence of the outer stopping criteria on the reconstruction performance
is assessed. To this end, the outer stopping threshold on the relative residuals variation t;
has been varied in the range [10~% 1072]. The investigation domain contains the same
cylindrical target used in Section 5.1.3, and SNR = 15 dB. Figure 67 shows the trends of

the resulting optimal NMSE values versus t; for both the phaseless and full-data inversions.
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Figure 67. Behavior of e;,,, versus t; for both the phaseless and full-data inversions.

We can see that small values of t; produce higher errors. Figure 68 and Figure 69 show how

this happens; in particular, the first image reports the behaviors of % and e;,, versus the
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iteration number when 7; = 10~* and Popt = 1.5, whereas the second one concerns 7, =

1072 (this is the reference value adopted in this Chapter) and p,,,; = 1.4.
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Figure 68. Behavior of r"* and e;,, versus the iteration number when 7; = 10™* and Popt = 1.5.
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Figure 69. Behavior of r”* and e;,,,, versus the iteration number when 7, = 1072 and p,,,, = 1.4.

In Figure 68, although the residual decreases in each iteration, the NMSE grows significantly
after the achievement of a minimum. This is a typical property of the iterative methods in
presence of noisy data and it is known as semiconvergence [86]; its degrading effect on the
reconstruction quality is caused by a delayed stopping of the method. In this particular case,
the low threshold 7; causes the improper stopping. On the other hand, in Figure 69 the higher
7; limits the semiconvergence effects, since it causes the outer loop to be stopped before that

the NMSE started to increase significantly. However, as expected, Figure 67 shows that the
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phaseless inversion is more seriously affected by the degrading effect of the

semiconvergence than the full-data one.
5.1.5 Reconstruction capabilities in case of lossy scatterer

The circular cylinder used as target in Section 5.1.3 is endowed here with a non-null electric
conductivity o, which has been varied in the range [10~%,1072] S/m. The resulting NMSE,
relative mean errors and final number of outer iterations i are reported in Table 9 for several
values of o (for the values of the norm parameter providing the minimum NMSE). The same

data are reported for the [2 case too.

Table 9. Reconstruction errors and final number of outer iterations i versus o in correspondence of p = pop,;
and p = 2 (Hilbert space approach).

0 2 (Hi

o [S/m] [Popt . 1* (Hilbert) .
Popt €inv €obj €p L €inv €obj €p i

107* 14 0.44 0.16 0.01 3 0.66 0.27 0.02 3
5-107% 1.4 0.44 0.16 0.01 3 0.66 0.27 0.02 3
1073 1.3 0.44 0.17 0.01 4 0.67 0.27 0.02 3
5-1073 1.3 0.42 0.16 0.01 4 0.70 0.31 0.02 3
1072 1.3 0.41 0.15 0.01 4 0.71 0.35 0.02 3

For 0 = 1072 S/m, the reconstructed distributions of the relative dielectric permittivity’s
real part and of the electric conductivity provided by the phaseless approach in the cases of
P = Popt = 1.3 and p = 2 are shown in Figure 70. Moreover, the results obtained by
considering the full complex data are also provided. We can see that the classic phaseless
approach (i.e., with p = 2) suffers of a significant ringing in the reconstructed electric
conductivity and of an underestimation of the relative dielectric permittivity’s real part. Such
effects are mitigated with p,,, = 1.3. To better compare the quality of the images reported
in Figure 70, cuts along the line x = 0.1, are shown in Figure 71; in such figure, (¢;.), and
(6), are the reconstructed relative dielectric permittivity’s real part and electric conductivity

averaged over the cylinder’s profile, respectively.
5.1.6 Reconstruction capabilities versus the amount of data

The reconstruction performance has been evaluated here against a variable amount of

available data. In particular, the number of views S has been varied in the range [10,40].
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Figure 70. Reconstructed distribution of the dielectric permittivity for o = 1072 S/m. Case p,,, = 1.3,
phaseless: (a) €, (b) 0. Case p = 2, phaseless: (C) €, (d) . Case p,,. = 1.3, full-data: (€) €;, (f) o. The white
dashed circles indicate the actual profiles.

Because of M = S — 1, the number of measurement points varies accordingly. It is important
to note that in some of these cases an under-sampling condition subsists. The adopted target

is the circular cylinder described in Section 5.1.3.
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Table 10 reports the resulted values of the reconstruction errors, the final number of outer

iterations ir, and the total computational times T for each of the simulated S values in

correspondence of p,,, and p = 2 (Hilbert space case).
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Figure 71. Slices at x = 0.14, of Figure 70(a)-(f), and the actual profile. (a) €., (b) o.

Table 10. Reconstruction errors, final number of outer iterations i, and computational times T versus S in
correspondence of p = p,,. and p = 2 (Hilbert space approach).

S

10
20
30
40

Popt
1.3
14
14
14

€iny
0.57
0.46
0.45
0.45

eobj

0.23
0.16
0.15
0.15

lpopt
ep ir  T[s]® €inv
001 4 8 0.81
0.01 4 17 0.67
001 4 42 0.66
001 4 75 0.66

12 (Hilbert)
€obj ep [
035 0.04
0.25 0.03
0.25 0.02
0.27 0.02

) These refer to a PC equipped with a quad-core CPU Intel Core i5-2310 @2.9 GHz and 8 GB of RAM.
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T [S] *)
6
15
33
67

92



As expected, a smaller amount of data lowers the computational times but causes
performance degradation. However, the classic algorithm suffers more the data reduction.
This fact is also confirmed by the reconstructed distributions of the relative dielectric
permittivity shown in Figure 72 corresponding to the case S = 10 with p = p,,,, = 1.3 and

p = 2. For comparison purposes, the full-data inversion result for p,,,, = 1.3 is reported too.
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Figure 72. Reconstructed distribution of the dielectric permittivity for S = 10. (a) pope = 1.3, phaseless; (b)
p = 2, phaseless; (¢) pope = 1.3, full-data. The white dashed circles indicate the actual profiles.

Moreover, cuts at y = 0.14, of the images in Figure 72 are shown in Figure 73. The inexact-
Newton in [2 presents both underestimation and ringing phenomena. Such problems are
reduced considering the [Port setting. Moreover, in this latter case the reconstruction is
similar to the one provided by the full-data approach, although, as expected, the full-data
method is more robust to the decrease in the amount of information, as can be seen in Figure

74.
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Figure 73. Slices at y = 0.14, of Figure 72(a)-(c), and the actual profile.
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Figure 74. Best e;,,, versus S for both phaseless and full-data inversions.

5.1.7 Capability recognition of multiple cylinders

In this Section, the ability of the proposed phaseless approach to reconstruct separate targets

is assessed. In particular, D;,, contains two lossless circular cylinders. The first one has
center (xc,lryc,l) = (0.375,0.375)A,, radius D; = 4,/4, and relative dielectric permittivity
€1 = 3, whereas the second one has center (xc,z,yc,z) = (—0.25,—0.25)A,, diameter D, =
Ao/2, and relative dielectric permittivity €,., = 2. In order to evaluate the performance of

the imaging algorithm in this case, the following error metrics are defined
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where (%,,7.) and D are the estimated center and diameter of the cylinder, respectively,

whereas (x.,y.) and D are the actual ones. Moreover, ¢ and ¢ are defined as

= (&) —1D? —jff;):

(105)
v ' A{0)a
¢ = (<6r>a - 1)2 _](1)_60

with (), and (-), average operator on the recognized and actual cylinder’s domain,
respectively. The centers, diameters, and relative dielectric permittivities of the inspected
cylinders are estimated on the basis of the reconstructed dielectric distribution by an
automatic recognition tool, whose details are given in Appendix A.

The error metrics defined in (104) for the cases p = 1.3, p = 2 in the phaseless approach
and p = 1.5 in the full-data one are shown in Figure 75. As can be seen, the Hilbert-space
framework almost always provides higher errors than its Banach-space counterpart.
Moreover, at least in this test, the phaseless technique is not far in terms of reconstruction
errors from the full-data one. These assertions are also confirmed by the reconstructed
distributions of the relative dielectric permittivity reported in Figure 76 and by the
corresponding cuts along the line x = y shown in Figure 77. Finally, for the reconstructions
obtained in non-Hilbertian spaces shown in Figure 76, the behaviors of the quantities in (96),
(98) versus the iteration number are reported in Figure 78 and the corresponding trends of
the NMSE are shown in Figure 79. We see that both the residuals and the errors are
monotonically decreasing and reach an almost flat slope in few iterations. However, as

expected, the full-data inversion reaches lower final values of residuals and NMSE.
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Figure 75. Behavior of the error metrics {,, {p, and {., for (a) cylinder n.1 and (b) cylinder n. 2.

5.1.8 T-shaped target

The reconstruction capabilities of the developed approach have been evaluated here by
considering a T-shaped target made of two cylinders having rectangular cross-section. The
first one has center r, ; = (0.25,0)1,, width w; = 4,/2, and height h; = A,/4, whereas the
second one has center r., = (—0.125,0)1,, width w, = 4,/4, and height h, = 4,/2. The

behaviors of the NMSE and of the relative mean errors versus p are reported in Figure 80.
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Figure 76. Reconstructed distribution of the dielectric permittivity for the two cylinders case. (a) p = 1.3,
phaseless; (b) p = 2, phaseless; (¢) p = 1.5, full-data. The white dashed lines indicate the actual profiles.

4 ——p— 1.3, PL,
......... p = 1.3, PL, (&),
3.5 ——p=1.5,FD
......... p — l.r), FD, (Er>a
3 |——p =2 PL
--------- p= 2, PL, <(r>a
S 25 Actual
2+ /\
[
1.5+
1 e |
-0.6 -04 -0.2 0
LL’/A()

Figure 77. Slices at x = y of Figure 76(a)-(c), and the actual profile.
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Figure 79. Behavior of e;,,,, versus the iteration number. Two circular cylinders.

As usual, the traces have their minima for values of p largely smaller than 2. The images
related to p,,: = 1.2, p = 2, and for the full-data inversion with p,,. = 1.5 are shown in
Figure 81. The higher performance in [12 with respect to 12 is quite evident, although the
full-data result has a higher fidelity to the shape of the actual target. Finally, for the
reconstructions obtained in non-Hilbertian spaces shown in Figure 81, the behaviors of the
residuals metrics in (96), (98) versus the iteration number are reported in Figure 82, and the
corresponding trends of the NMSE are shown in Figure 83. As it happened in Section 5.1.7,
both the methods monotonically reach a stationary point in few iterations, with the full-data

inversion getting lower final values.
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Figure 81. Reconstructed distribution of the dielectric permittivity for the T-shaped target. (a) pope = 1.2,
phaseless; (b) p = 2, phaseless; (c) p,p: = 1.5, full-data. The white dashed lines indicate the actual profiles.
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5.2 Experimental Validation

The developed inversion procedure has been validated by using experimental data too. In
particular, two different datasets have been used. The first one is made freely available by
the Institut Frésnel [130], [131] and consists of two databases of data. Moreover, a
microwave tomograph has been developed at the University of Applied Sciences and Arts
of Southern Switzerland (SUPSI) in collaboration with the Applied Electromagnetics (AEM)
research unit of the University of Genoa, and the proposed approach is validated on a dataset

from this system, too [132], [133]. Since the incident electric fields in D;,,,, are computed by
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assuming line currents as sources, instead of the more complex real antennas, these sets of

data are calibrated as follows

t(s) _ 2 ext,(s)
pij)ct Y= |V(S)| p(tetg)ct,ﬁ:eas (106)
with
l (s)
Eicrgc,c(s) rnfd
meas (o) V® (107)
(s)
ety ()
where pif{',gfgas contains the square measured amplitude of the total external electric field

for the sth view, E-“”C(s) is the incident electric field given by a line current with equal

inc,

placement of the sth transmitting antenna, Ej,;(s) is the experimentally measured incident

electric field for the sth view, and r,ﬁfg, is the position of the measurement point farthest away
from the sth source.

A void background is adopted by both systems and the same stopping criteria introduced at
the beginning of this Chapter are here applied, too.

5.2.1 Institut Frésnel Dataset: First Experimental Database

The first experimental setup [130] has S = 36 transmitting antenna uniformly distributed on
a circumference of radius Rp, =72 cm. For each view, M =49 probing points are
considered on an arc of circumference with radius R, , = 76 cm and aperture 240°. The
active transmitting antenna is located in the middle of the empty arc of the circumference. A
square investigation domain Dy, of side Ly, = 18 cm and discretized in N = 3969 square

pixels is considered in the inversion procedure. Figure 84 shows the illuminating and
measurement configuration with reference to the first view.

The following two different targets are considered

1. DielTM. One cylinder with center r. = (0,2.7) cm, radius R = 1.5 cm, and relative
dielectric permittivity €, = 3.
2. TwoDielTM. Two cylinders with centers r,; = (—0.3,48)cm and r., =

(—=1.2,—4.3) cm, radii R; = R, = 1.5 cm, and dielectric permittivities €, 1 = €,, = 3.
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Figure 84. Illumination and measurement setup adopted in the first experimental database of the Institut
Frésnel. First view.

The data at the working frequency f = 2 GHz has been used. The reconstruction errors
versus the norm parameter are reported in Figure 85 for both the considered targets. As can
be seen, all the metrics achieve their minima for values of the norm parameter p largely
minor than p = 2 (corresponding to the classic Hilbert-space approach). In Figure 86 and
Figure 87 the reconstructed distributions of the relative dielectric permittivity with p,,, =
1.2 and p =2 for the first and second target are shown. Moreover, the optimal
reconstructions obtained when considering the full complex data are reported, t00 (p,p, =
1.1 for DielTM and p,,; = 1.2 for TwoDielTM). It is clear that the proposed phaseless
approach with p,,, = 1.2 outperforms the classic one in Hilbert space in terms of both
dielectric permittivity and shape retrieval. Moreover, its results are similar to the full-data
ones. Finally, Figure 88 shows the experimental and simulated (with a MoM solver)
amplitude of the scattered electric fields in the measurement points for the target
TwoDielTM. The electric fields corresponding to the optimal reconstructions provided by
the phaseless and full-data inversion procedures are also plotted. As can be seen, there is a

quite good agreement.
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Figure 85. Behavior of e;,,,, e,5;, and e, versus the norm parameter p for the (a) DielTM and (b) TwoDielTM
targets.

5.2.2 Institut Frésnel Dataset: Second Experimental Database

In the second experimental setup [131] the transmitting antennas are uniformly distributed
on a circumference of radius R, = 167 cm. Their number varies with the target type and
so it will be specified at occurrence. For each view, M = 241 probing points are considered
on an arc of circumference with radius R, , = 167 cm and aperture 240°. The transmitting

antenna is located in the middle of the empty 120° arc. A square investigation domain D,

of side Ly, = 18 cm and discretized in N = 3969 square pixels is considered. Figure 89

shows the illuminating and measurement configuration for the first view.
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Figure 86. Reconstructed distribution of the dielectric permittivity for the DielTM target. () pop: = 1.2,
phaseless; (b) p = 2, phaseless; (¢) pop: = 1.1, full-data. The white dashed circles indicate the actual profiles.

The following three different targets are considered

1. FoamDielExtTM. Two cylinders with centers r,; = (0,0) cmand r,, = (—5.55,0) cm,
radii R; = 4 cm and R, = 1.55 cm, dielectric permittivities €,.; = 1.45 and €, , =
3. Working frequency f = 3 GHz and number of views S = 8.

2. FoamDielIntTM. Two cylinders with centers r,; = (0,0) cm and r,, = (—0.5,0) cm,
radii R; = 4 cm and R, = 1.55 cm, dielectric permittivities €,; = 1.45 and €, , = 3.
Working frequency f = 3 GHz and number of views S = 8.

3. FoamTwinDiel TM. Three cylinders with centers r.; = (0,0) cm, r., = (—5.55,0) cm,
and r.3 =(-0.5,0) cm, radii Ry =4cm, and R, =R3=1.55cm, dielectric
permittivities €,; = 1.45 and €,, = €,3 = 3. Working frequency f =2 GHz and

number of views S = 18.
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Figure 87. Reconstructed distribution of the dielectric permittivity for the TwoDielTM target. (a) p,p: = 1.2,
phaseless; (b) p = 2, phaseless; (¢) pop: = 1.2, full-data. The white dashed circles indicate the actual profiles.
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Figure 88. Amplitude of the scattered electric fields in the measurement points given by the experimental data
(“Exp” in legend), the actual dielectric distribution (“Sim” in legend), and the optimal reconstructed ones
obtained by phaseless and full-data inversions (“PL” and “FD” in legend, respectively). TwoDielTM target.
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Figure 89. lllumination and measurement setup adopted in the second experimental database of the Institut
Frésnel. First view.

The NMSE and relative mean errors on the reconstruction results obtained by the developed
procedure are shown in Figure 90 versus the value of the norm parameter p. As it happens
for the first experimental database, the best reconstructions are not achieved with the classic
Hilbert-space approach, but for lower values of p. The images related to the targets
FoamDielExtTM, FoamDielIntTM, and FoamTwinDielTM obtained with p,,, = 1.2,
Dopt = 1.4, and p,,, = 1.1, respectively, are shown in Figure 91-93. For comparison
purpose, the results of the phaseless inexact-Newton in [? and of the optimal full-data
inversions are reported in the same figures. Moreover, the cuts along a line at y = 0 cm are
also shown in Figure 94. The higher performance of the proposed phaseless technique with
respect to the Hilbert one can be appreciated in all the test cases. Moreover, the results are
comparable to the one obtained when considering the full complex data. Finally, the
amplitude of the scattered electric fields in the measurement points for the experimental data,
the actual dielectric distributions, and the optimal reconstructed ones are reported in Figure
95. The electric fields in presence of the actual and reconstructed dielectric distributions are

simulated with a MoM solver. A good agreement is observed in all the reported cases.
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Figure 90. Behavior of e;,,, e,j, and e, versus the norm parameter p for the (a) FoamDielExtTM, (b)

FoamDielIntTM, and (c) FoamTwinDielTM targets.
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Figure 91. Reconstructed distribution of the dielectric permittivity for the FoamDielExtTM target. () p,p: =
1.2, phaseless; (b) p = 2, phaseless; (c) p,p: = 1.3, full-data. The white dashed circles indicate the actual
profiles.

5.2.3 SUPSI Experimental Dataset

The experimental setup [132], [133] consists of S = 8 sources and M = 55 measurement
points for each view. The probes are located on an arc of circumference having radius Ry,
and aperture 270°, and the active transmitting antenna is in the middle of the remaining
sector of 90°. The radius of the circle Rp, , varies with the working frequency as indicated
in Table 11. The investigation domain Dy, is a square of side Lp, = 0.3 m and it is
discretized in N = 3969 square pixels. A schematic representation of the considered

configuration, related to the first view and f = 1 GHz, is reported in Figure 96.

108



3 3

2.5 25
=l

2 ¢ O, 2 ¢
>

1.5 1.5

25

1.5

Figure 92. Reconstructed distribution of the dielectric permittivity for the FoamDielIntTM target. (a) p,p: =
1.4, phaseless; (b) p = 2, phaseless; (c) p,p: = 1.3, full-data. The white dashed circles indicate the actual
profiles.

Table 11. Radius of the observation domain R, , for each working frequency.

f [GHz] Rp,, [m]

1 0.5

2 0.42
3 0.395
4 0.381
5) 0.372

In order to further mitigate the occurrence of false solutions, the available multi-frequency
data are exploited thanks to the frequency hopping approach described in Section 3.7. The
investigation domain contains two slabs of wood. The first one has circular cross-section of
diameter D; = 5cm, relative dielectric permittivity €., = 3.5, and center r,, =
(1.4,—5.5) cm. The second cylinder has rectangular cross-section of width w, = 11.5 cm,
height h, = 7.5 cm, relative dielectric permittivity €, , = 1.8, and center r., = (0.3,8) cm.
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Figure 93. Reconstructed distribution of the dielectric permittivity for the FoamTwinDielTM target. (a) p,p: =
1.1, phaseless; (b) p = 2, phaseless; (c) p,p: = 1.3, full-data. The white dashed circles indicate the actual
profiles.

Moreover, this latter has a central hole of width w; = 5.5 cm and height h; = 3.5 cm.
Figure 97 gives the reconstructed distributions of the relative dielectric permittivity obtained
with p = 1.5 for both phaseless and full-data approaches. Moreover, the cuts along the line
x = 1.4 cm are also presented in Figure 98. As can be seen, the scatterers are reconstructed
by both techniques, and the hole in the rectangular slab is correctly identified. However, in
the full-data case, the dielectric properties of the circular cylinder and the hole in the
rectangular slab are better retrieved. Finally, the behavior of the NMSE in each step of the
frequency-hopping technique for the phaseless and full-data cases, both with p = 1.5, are
shown in Figure 99 and Figure 100, respectively. In these plots we see the benefits of the
frequency-hopping approach; in fact, each set of measurement (one for each working

frequency) contributes to improve the accuracy of the reconstructions.
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Figure 94. Cuts along the line y = 0 cm of (a) Figure 91(a)-(c), (b) Figure 92(a)-(c), (c) Figure 93(a)-(c), and
the actual profiles.
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Figure 97. Reconstructed distribution of the dielectric permittivity for the SUPSI target. (a) p = 1.5, phaseless;
(b) p = 2, phaseless; (c) p = 1.5, full-data. The white dashed lines indicate the actual profiles.
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Figure 98. Slices at x = 1.4 cm of Figure 97(a), Figure 97(c), and the actual profile.
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Figure 99. Behavior of e;,,, in each step of the frequency-hopping phaseless inversion with p = 1.5.
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Figure 100. Behavior of e;,,, in each step of the frequency-hopping full-data inversion with p = 1.5.
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Conclusions

In this Thesis, an approach for solving microwave imaging problems in the 3D full-vector
and 2D phaseless scenarios has been developed. The considered method employs an inexact-
Newton strategy with regularization performed in the framework of the [? Banach spaces,
in contrast to the classic {2 Hilbert spaces. In particular, the Banach-space versions of the
truncated Landweber and conjugate gradient methods have been alternatively adopted as
inner linear solvers in the Newton iterations. The performance of the developed microwave
imaging method in both 3D full-vector and 2D phaseless scenarios has been validated by
several simulations involving both synthetic and experimental data. Analyzing the obtained
results in the 3D full-vector scenario, the Landweber-based inexact-Newton algorithm in
Banach spaces has been able to outperform the Hilbert-based counterpart in all the cases.
Also the preliminary results returned by the conjugate gradient-based method have supported
the choice of working in the more general Banach spaces framework. About the 2D phaseless
scenario, the results obtained with new Landweber-based approach have shown to be not
only superior to the Hilbert-based ones, but also to have quality not so far from the
corresponding full-data inversions. Among the various future research activities that will be
devoted to the advancement in the microwave imaging techniques, a strong effort will be
dedicated in the development of a reliable strategy for the automatic selection of the optimal

norm parameter p.
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Appendix A: Automatic Detection of Circular Cylinders

in Reconstructed Contrast Function

This Appendix describes a simple algorithm able to search for a known number N, of

circular cylinders in a reconstructed contrast function and to estimate their centers and
diameters. Cylinders with void inclusions are allowed. The implementation of the algorithm
described in the following and used in Section 5.1.7 is based on the OpenCV [134] and

Armadillo [135] libraries. The following steps constitute the algorithm

1. Compute the following indicator vector

0, otherwise (108)

f = [ﬁ] fo= {1' d(re,") = 7

N

where d = |¢|/||€]l, and 0 < 7, < 1. The value 7, = 0.25 has been selected.

2. Run the k-means method [136] (function in Armadillo) with k = N,,,; on the clusters of
points in the binary image given by the indicator vector f. The returned centers are
indicated with ¥, k = 1, ..., N¢y.

3. Fork =1,..., Ny, scan the rings of pixels with center ., starting from the closer one
to this point, until a peak of d is detected. The position vectors of these peaks are
indicated with .

4. For k =1,..., Ny, generate a binary mask that identifies the connected region whose
the seed point £, belongs to. This is done by running the Flood Fill algorithm [137]
(function in OpenCV) with the seed point £, and assigning a candidate pixel ¥’ to the

connected region if the following condition is satisfied

d(F) — (1 —1)d(Fsp) < d(Fsp) < dF) + (1 —1)d(Fs ) (109)

The centers of the Ny ; pixels in the binary mask belonging to the kth connected domain
are indicated with the set {ml-,k}liv:'l".

5. For k =1,..., Ny, run the 1-means on the mask of the kth connected region. The
returned refined centers are indicated with £, .
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6. Fork =1,..., Ny, estimate the diameter D, of the kth cylinder as follows

D,=2- ,_r?ax klmi,k - rc,k| (110)
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