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Abstract 

 

The scientific community is presently strongly interested in the research of new microwave 

imaging methods, in order to develop reliable, safe, portable, and cost-effective tools for the 

non-invasive/non-destructive diagnostic in many fields (such as medicine, civil and 

industrial engineering, …). In this framework, microwave imaging techniques addressing 

the full three-dimensional nature of the inspected bodies are still very challenging, since they 

need to cope with significant computational complexity. Moreover, non-linearity and ill-

posedness issues, which usually affects the related inverse scattering problems, need to be 

faced, too. Another promising topic is the development of phaseless methods, in which only 

the amplitude of the electric field is assumed to be measurable. This leads to a significant 

complexity reduction and lower cost for the experimental apparatuses, but the missing 

information on the phase of the electric field samples exacerbates the ill-posedness problems. 

In the present Thesis, a novel inexact-Newton inversion algorithm is proposed, in which the 

iteratively linearized problems are solved in a regularized sense by using a truncated 

Landweber or a conjugate gradient method developed in the framework of the 𝑙𝑝 Banach 

spaces. This is an improvement that allows to generalize the classic framework of the 𝑙2 

Hilbert spaces in which the inexact-Newton approaches are usually defined. The 

applicability of the proposed imaging method in both the 3D full-vector and 2D phaseless 

scenarios at microwave frequencies is assessed in this Thesis, and an extensive validation of 

the proposed imaging method against both synthetic and experimental data is presented, 

highlighting the advantages over the inexact-Newton scheme developed in the classic 

framework of the 𝑙2 Hilbert spaces. 
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Chapter 1 Introduction 

 

Non-invasive/non-destructive diagnostic systems play a key role in several applicative 

fields, such as subsurface prospection and biomedical imaging. In the last three decades, a 

particular focus has been dedicated by the scientific community to microwave imaging 

techniques [1]–[12]. Such techniques aim at providing information on the internal structure 

of the body to be inspected, whose interior is not accessible, by processing a set of 

electromagnetic field samples gathered outside the body by an active 

illuminating/measurement apparatus. These systems offer mainly two advantages over its 

popular competitors based on harmful x-rays emissions (e.g., computerized tomography) 

[13] or expensive magnetic resonance tools: They employ non-ionizing radiations that are 

safe for the users (provided that the devices fulfill the proper electromagnetic compatibility 

requirements [14]) and can be largely made by using off-the-shelf components commonly 

available in consumer electronics to limit the costs. Thanks to these benefits, recently 

microwave imaging systems are being considered as powerful tools in different applications, 

such as the development of portable biomedical devices for early brain stroke diagnosis 

[15]–[17], breast screening [18]–[20], early failure detection in civil buildings [21], [22], and 

wood inspection [23].  

Many microwave imaging algorithms developed in the past in the scientific literature refer 

to two-dimensional (2D) scenarios and, in particular, tomographic configurations [8], [24]–

[28]. This is often due to the high computational resources that are required to work in the 

three-dimensional (3D) setting. Some of the first attempts in 3D electromagnetic imaging 

can be found in [29]–[31], but only recently, essentially due to the increased computational 

power available also in common personal computers, much work has been made in order to 

extend existing 2D procedures to inspect 3D targets. The proposed approaches can be mainly 

grouped into two categories: the quantitative methods, which aims at retrieving an as much 

as possible accurate distribution of the dielectric properties of the object under test, and the 

qualitative ones, whose outputs consist in some kind of indicator function about the 

estimated internal structure of the target or some other simplified information (such as 

position and size of the inclusions). The techniques belonging to the latter class usually 

provide a fast response, although the reconstructed information of the object to be inspected 
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are limited (e.g., position, shape, ...) [3]. The synthetic focusing techniques have an 

important role in the class of qualitative methods. These approaches allow to generate an 

image of the reflection properties of the inspected region by a proper processing of the 

signals used to illuminate the target and of the corresponding received ones; in particular, by 

focusing on one pixel at a time, this processing aims to constructively sum the contributes 

arriving from the pixel of interest and to destructively sum the contributes of the remaining 

ones. Examples of this kind of approaches applied to the 3D setting can be found in [32] and 

[33], where the Delay And Sum (DAS) technique is investigated for the localization of breast 

tumors and hemorrhagic brain injuries, respectively. Also in [34], [35] synthetic focusing 

techniques are presented for 3D breast cancer detection. Finally, in [36] and [37] artefacts 

removal techniques for synthetic focusing are reported again in the context of breast 

screening. Another important sub-class of the qualitative methods is made of the holographic 

microwave imaging techniques, in which the knowledge on a planar aperture of the electric 

field, generated by illuminating the target, is processed through direct and inverse Fourier 

transforms in order to get a map of reflectivity of the inspected domain. Applications of this 

kind of methods in the 3D setting have been reported in [38], where a reflectometer working 

in the millimeter-wave band is presented, and in [39]–[41]. The Linear Sampling Method 

(LSM) is another deeply investigated kind of qualitative method. Several versions of the 

original LSM exist; however, generally they allow to detect the positions and shapes of 

inclusions in a known background medium by evaluating the norm of a complex function 

defined for each pixel of the inspected region. Among the various application of the LSM in 

the 3D setting [10], the hybridization reported in [42] can be cited, in which the output of 

the LSM is processed by the level set method in order to extract the compact support of the 

target. Others particular approaches to the 3D qualitative microwave imaging can be found 

in [43], where diffraction tomography and Singular Value Decomposition (SVD) in a multi-

frequency setting are evaluated on synthetic data, in [44], where the recovery of sparse 

solutions is investigated, in [45], where a forward-propagating waves algorithm based on the 

Huygens principle is validated in an Ultra Wide Band (UWB) frequency range on 

experimental data, and in [46], where an inverse source-based approach is employed to 

detect moving objects in a through-the-wall configuration. 

Differently from qualitative methods, quantitative approaches aim at providing an 

approximation of the dielectric properties distribution, although they can be significantly 
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more time-consuming especially in 3D scenarios. In this framework, the Distorted Born 

Iterative Method (DBIM) [12] has been generalized to the 3D setting in various ways [18], 

[20], [47]. Also Newton-type approaches have been adopted for quantitative 3D imaging 

[48]–[51]. Moreover, multi-scaling approaches, in which the reconstruction procedure is 

iteratively focused in localized areas of the investigated domain, can be of particular interest 

and have been reported in [52]–[54], with this last employing a particle swarm stochastic 

optimizer. Concerning stochastic methods, an interesting application in the 3D setting is 

proposed in [55], in which firstly the LSM is used to detect the supports of the targets, and 

then the stochastic algorithm Ant Colony Optimization (ACO) is used to retrieve the related 

dielectric properties. Generally, the stochastic methods better cope with the false minima 

issue, which usually affects the non-linear inverse electromagnetic scattering problems, with 

respect to the deterministic methods [56]. However, they can lead to unfeasible 

computational burdens in practice. Others particular approaches to the 3D quantitative 

microwave imaging can be found in [57], where a 3D time-domain method based on Born-

type iterations and constrained minimization is described, in [58], in which a differential 

imaging algorithm is applied for breast imaging, in [59], where the Bayesian framework is 

considered to image 3D aggregates of low-contrast objects, and in [60], where the dual-mesh 

scheme, the iterative block solver, and the adjoint Jacobian method have been extended to 

3D reconstructions to evaluate their viability for medical imaging. Beyond the numerical 

algorithms employed to reconstruct the spatial distribution of dielectric properties, also 

particular experimental setups have been investigated in order to enhance the 3D microwave 

imaging. For example, in [61], [62] a metallic resonant chamber, in which the target is 

enclosed, has been proven to provide some advantages over the more common free-space 

configuration. 

Most of the microwave imaging algorithms existing in literature (both for 3D and 2D 

configurations) assume the availability of full-data measurements, that is both the real and 

imaginary parts of the measured electric field phasor are recorded. This requires a quite 

complex and expensive experimental apparatus due to the need of a coherent detection, 

which involves the need of a reference channel (a vector network analyzer (VNA) can be 

used for this purpose). The imaging configuration would be significantly simplified if only 

the amplitudes of the measured fields were considered. Such scenario is known as phaseless 

microwave imaging. In the past, these kind of approaches were proposed mainly in the 
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framework of antennas diagnostic or source reconstruction [63]–[66] and only in a limited 

manner for imaging of materials [67]–[69]. More recently the phaseless setting has gained a 

higher consideration for the imaging of quite complex targets. For example, two-step 

strategies consisting in a phase retrieval step followed by a full-data inverse scattering one 

are described in [70], [71], and an improved three-step procedure, in which a further phase 

retrieval task on the illuminating electric field is accomplished, is discussed in [72]. A one-

step technique, without a phase retrieval problem to be solved explicitly, is presented in [73]. 

In [74] an application of the compressive sensing theory is proposed for the imaging of point-

like targets. An iterative multi-scaling algorithm employing a particle swarm stochastic 

optimizer is adopted in [75]. In [76] an adapted subspace-based optimization method is 

introduced. The contrast source inversion (CSI) and multiplicative regularized CSI methods 

are used in [77]. In [78] the distorted Rytov iterative method is modified for the phaseless 

setup. An hybrid method known as memetic algorithm is adopted in [79]. In [80] a phase 

retrieval step [81] followed by an inexact-Newton inversion scheme is proposed. Finally, the 

use of metasurface antennas has been evaluated for phaseless microwave imaging [82], [83], 

and the differential evolution stochastic method was considered, too [84]. 

In any case, i.e., for 3D or 2D and full-data or phaseless scenarios, the underlying 

electromagnetic inverse scattering problems are usually ill-posed in the Hadamard sense, 

since their solutions are not unique and do not depend continuously on the data [85], [86]. 

Moreover, when the target to be inspected represents a strong inhomogeneity in the 

propagation medium, the linearization such as the Born approximation [87] cannot be used, 

and the full non-linear problem must be considered. Consequently, it is necessary to develop 

strategies able to perform an efficient regularization of the involved non-linear inverse 

problems. Although significant advancements have been attained in this field by using both 

deterministic and stochastic inversion procedures, as reported in this Introduction, there is 

still the need to develop novel approaches able to address the limitations of the existing ones. 

In the present Thesis, a non-linear regularizing scheme belonging to the class of 

deterministic local quantitative methods is proposed and applied to the 3D full-vector and 

2D phaseless scenarios. As most of the previously mentioned microwave imaging 

techniques, it is devoted to the near-field inspection of targets in the resonant regime, i.e., 

the objects under test exhibits dimensions that are comparable with the wavelength of the 

incident radiation. The involved electromagnetic phenomena are described by means of the 
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Electric Field Integral Equations (EFIE) [2], which lead to the non-linear and ill-posed 

operator equation to be inverted. The proposed algorithm belongs to the inexact-Newton 

class [88]–[90] and is defined in the framework of the 𝑙𝑝 Banach spaces [91], with 𝑝 > 1, 

differently from conventional quantitative imaging approaches that are usually based on the 

minimization of a least square residual (between the actual and predicted data) in the 

standard 𝑙2 Hilbert spaces. In particular, the inner linear problems that are defined in each 

Newton iteration are approximately solved by two alternative linear solvers: the truncated 

Landweber method [91]–[93] and the conjugate gradient one [94], [95], both developed in 

the new Banach framework. The chosen mathematical setting is more general with respect 

to the one adopted in classic Newton-type algorithms, and also much more involving, since 

the absence of a scalar product when 𝑝 ≠ 2 denies the possibility to define spectral 

decompositions of the linear operators, and so advanced concepts of convex functional 

analysis are needed [91], [92]. The gained generality introduces novel and non-standard 

minimization strategies potentially able to provide reconstructions endowed with lower 

over-smoothing and ringing effects, which often characterize the least square-based 

approaches in 𝑙2. Moreover, for 𝑝 values close to one the method promotes sparsity in the 

retrieved solution, which is very useful for reconstructing small dielectric objects that may 

be more affected by the oversmoothing problems. This method has been initially proposed 

with success in [96]–[98] for solving the 2D full-data scalar problem related to tomographic 

imaging and it is extended in this Thesis to 3D full-vector and 2D phaseless settings.  

The Thesis is organized as follows. In Chapter 2, the electromagnetic mathematical models 

for both the 3D full-vector and 2D phaseless scenarios are reported. Chapter 3 describes the 

developed inversion algorithms. Extensive validations against both synthetic and 

experimental data for the 3D full-vector and 2D phaseless scenarios are reported in Chapter 

4 and 5, respectively. Finally, conclusions are drawn in Chapter 6. 
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Chapter 2 Electromagnetic Scattering: Mathematical 

Formulation 

 

In this Chapter, the equations that fully describe the classical electromagnetic scattering 

phenomena in the frequency domain will be derived starting from a limited and quite 

common set of hypotheses. Firstly, the 3D full-vector scenario will be developed. Thereafter, 

the 2D phaseless setting will be derived as a special case.  

 

2.1 Full-Vector 3D Scenario 

Let us consider the imaging setup sketched in Figure 1. 

 

 

Figure 1. Schematic representation of the considered imaging setup. 

 

The unknown target is located in an investigation volume 𝑉𝑖𝑛𝑣 of known geometry and it is 

embedded in an unbounded background medium. A time-harmonic source (physically 

realized by an antenna) generates a field impinging on the inspected scenario. This source is 

electromagnetically decoupled with respect to the target; such hypothesis allows to model 

the active source by a current density 𝐉𝑜(𝐫), with 𝐫 position vector, independent from the 
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target dielectric properties. The sinusoidal nature of the involved fields is expressed by a 

multiplicative term  𝑗𝜔 , with 𝜔 angular frequency; however, in order to make the notation 

more compact, this term will be omitted in the following. When the source radiates in 

presence of no target, the resulting electric field is known as incident electric field  𝑖𝑛 . 

Instead, when a target is present in 𝑉𝑖𝑛𝑣, the interaction between the incident field and the 

object gives rise to the total electric field   𝑜 . This is measured in a given observation (or 

measurement) domain 𝑉𝑜  , which surrounds the investigation one, by means of a set of 

receiving antennas. It is fundamental that the domain 𝑉𝑜   lies outside 𝑉𝑖𝑛𝑣 entirely in order 

to make feasible a non-destructive testing [4]. Let us now make some assumptions on the 

propagation mediums constituting the target and the background. Generally, their effects on 

the electromagnetic fields are described by the known constitutive relations [99], [100] 

𝐃 𝑜 = 𝐟𝐃(  𝑜 , 𝐇 𝑜 ) 

𝐁 𝑜 = 𝐟𝐁(  𝑜 , 𝐇 𝑜 ) 
(1) 

where 𝐃 𝑜  is the total electric displacement field, 𝐇 𝑜  is the total magnetic field, and 𝐁 𝑜  

is the total magnetic induction field. Additionally, for conducting media there is the 

generalized Ohm law [99] 

𝐉 = 𝐟𝐉(  𝑜 , 𝐇 𝑜 ) (2) 

where 𝐉 is the current density. In the present context of interest, the propagation mediums 

are assumed to be inhomogeneous, linear, isotropic, temporal dispersive, spatially non-

dispersive, and non-magnetic. Under these hypotheses, the general equations in (1) and (2) 

reduce to the following ones [99], [100] 

𝐃 𝑜 = 𝜖(𝐫, 𝜔)  𝑜  

𝐁 𝑜 = 𝜇0𝐇 𝑜  

𝐉 = 𝜎(𝐫,𝜔)  𝑜  

(3) 

where 𝜖(𝐫,𝜔) = 𝜖′(𝐫,𝜔) − 𝑗𝜖′′(𝐫, 𝜔) is the complex dielectric permittivity, with 𝜖′ and 𝜖′′ 

real and (opposed) imaginary parts of the dielectric permittivity, respectively, 𝜎 electric 

conductivity, and 𝜇0 vacuum magnetic permeability. The background media is considered 



13 

 

 

non-magnetic and simply characterized by the homogeneous complex dielectric permittivity 

𝜖 . Given this introduction, now the mathematical description of the electromagnetic 

phenomena of interest can be presented. First of all, when the target is not present in 𝑉𝑖𝑛𝑣, 

namely it is filled with the background medium only, the following inhomogeneous wave 

equation is involved [99] 

∇𝐫 × ∇𝐫 ×  𝑖𝑛 (𝐫) − 𝑘 
2 𝑖𝑛 (𝐫) = −𝑗𝜔𝜇0𝐉𝑜(𝐫) (4) 

where 𝑘 = 𝜔√𝜖 𝜇0 is the background propagation constant. When an object is inserted in 

the investigated region, it causes phenomena of reflection, transmission, diffraction, and 

absorption, generally grouped under the term scattering phenomenon. The resulting total 

electric field   𝑜 , under the aforementioned electromagnetic decoupling of source and 

target, can be written as follows [1], [2] 

  𝑜 (𝐫) =  𝑖𝑛 (𝐫) +    𝑎 (𝐫) (5) 

where    𝑎  is known as scattering electric field and is an additive contribution due to the 

object presence. Let us note that if the scattering component is null, that is the object is not 

present,   𝑜  turns back to be  𝑖𝑛 . Because the target breaks the homogeneity of the 

propagation medium, the electric field volumetric equivalency principle [1], [2] is employed 

to get an equivalent problem in which an equivalent source radiates in the homogeneous 

background medium only and generates the same field scattered by the real target. The 

application of this principle starts by noting that the total electric field satisfies the following 

inhomogeneous wave equation 

∇𝐫 × ∇𝐫 ×   𝑜 (𝐫) − 𝑘2(𝐫)  𝑜 (𝐫) = −𝑗𝜔𝜇0𝐉𝑜(𝐫) 

𝑘(𝐫) = {
𝑘 , 𝐫 ∉ 𝑉𝑜 𝑗

𝜔√𝜇0𝜖(𝐫), 𝐫 ∈ 𝑉𝑜 𝑗
 

(6) 

where 𝑉𝑜 𝑗 is the object’s support. Subtracting (4) from (6), and by using (5), the following 

inhomogeneous wave equation is obtained 

∇𝐫 × ∇𝐫 ×    𝑎 (𝐫) − 𝑘 
2   𝑎 (𝐫) = −𝑗𝜔𝜇0𝐉𝑒𝑞(𝐫) (7) 
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𝐉𝑒𝑞(𝐫) =
𝑗

𝜔𝜇0

[𝑘2(𝐫) − 𝑘 
2]  𝑜 (𝐫) (8) 

The quantity 𝐉𝑒𝑞 is the wanted equivalent current density. Let us note that the equivalent 

current density’s support coincides with the object’s one (𝑉𝑒𝑞 ≡ 𝑉𝑜 𝑗), since 𝐉𝑒𝑞 = 𝟎 for 𝐫 ∉

𝑉𝑜 𝑗. Now it is possible to define the following vector potential 

𝐀  𝑎 (𝐫) = −𝜇0 ∭𝐉𝑒𝑞(𝐫′)𝑔 (𝐫, 𝐫
′)𝑑𝐫′

𝑉𝑒𝑞

 
(9) 

where 𝑔 (𝐫, 𝐫
′) = −

1

4𝜋

𝑒−𝑗𝑘𝑏|𝐫−𝐫′|

|𝐫−𝐫′|
 is the Green function for background [101]. Therefore, the 

scattering electric field is given by 

   𝑎 (𝐫) = −𝑗𝜔𝐀  𝑎 (𝐫) −
𝑗

𝜔𝜇0𝜖 
∇𝐫[∇𝐫 ∙ 𝐀  𝑎 (𝐫)] (10) 

and substituting (9) in (10) we get 

   𝑎 (𝐫) = 𝑗𝜔𝜇0 ∭𝐉𝑒𝑞(𝐫
′)𝑔 (𝐫, 𝐫

′)𝑑𝐫′

𝑉𝑒𝑞

+
𝑗

𝜔𝜖 
∇𝐫 [∇𝐫 ∙ ∭𝐉𝑒𝑞(𝐫

′)𝑔 (𝐫, 𝐫
′)𝑑𝐫′

𝑉𝑒𝑞

] 

(11) 

By exploiting the integral’s linearity, the scattered electric field can be written as 

   𝑎 (𝐫) = 𝑗𝜔𝜇0 ∭𝐆 (𝐫, 𝐫
′) ∙ 𝐉𝑒𝑞(𝐫

′)𝑑𝐫′

𝑉𝑒𝑞

 
(12) 

where 𝐆  is the Green dyadic tensor for background [102] 

𝐆 (𝐫, 𝐫
′) = (�̿� +

∇𝐫∇𝐫

𝑘 
2 )𝑔 (𝐫, 𝐫

′) (13) 

and �̿� is the dyadic identity. Moreover, by defining the contrast function 
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𝑐(𝐫) =
𝜖(𝐫)

𝜖 
− 1 (14) 

the previous scattering equation can be formulated as 

   𝑎 (𝐫) = −𝑘 
2 ∭𝐆 (𝐫, 𝐫

′) ⋅ 𝑐(𝐫′)  𝑜 (𝐫
′)𝑑𝐫′

𝑉𝑒𝑞

 
(15) 

By noting that the integral in (15) can be equivalently defined on 𝑉𝑖𝑛𝑣, since 𝑐(𝐫′) = 0 when 

𝐫′ ∉ 𝑉𝑒𝑞, the following system of equations can be outlined 

   𝑎 (𝐫) = −𝑘 
2 ∭𝐆 (𝐫, 𝐫

′) ⋅ 𝑐(𝐫′)  𝑜 (𝐫
′)𝑑𝐫′

𝑉𝑖𝑛𝑣

,   𝐫 ∈ 𝑉𝑜   

 𝑖𝑛 (𝐫) =   𝑜 (𝐫) + 𝑘 
2 ∭𝐆 (𝐫, 𝐫

′) ⋅ 𝑐(𝐫′)  𝑜 (𝐫
′)𝑑𝐫′

𝑉𝑖𝑛𝑣

,   𝐫 ∈ 𝑉𝑖𝑛𝑣 

(16) 

The former equation in (16) is called data equation, because it involves the scattering data 

gathered in 𝑉𝑜  , whereas the second one is known as state equation, since 𝐫 is restricted to 

the internal domain 𝑉𝑖𝑛𝑣. 

 

2.2 Discretization of the 3D Full-Vector Scenario 

In order to develop numerical algorithms able to solve forward and inverse electromagnetics 

problems, the scattering equations described in the previous Section are discretized by means 

of the Method of Moments (MoM) [103], [104]. In this view, a cube-based mesh of 𝑉𝑖𝑛𝑣 

given by 𝑁 voxels {𝑉𝑛
𝑖𝑛𝑣}

𝑛=1

𝑁
 with centers {𝐫𝑛

𝑖𝑛𝑣}
𝑛=1

𝑁
 is considered. Each voxel has volume 

𝑣 and side Δ. Moreover, 𝑀 observation points (where the antennas collect the scattered 

electric field) belonging to 𝑉𝑜   are selected and identified with {𝐫𝑚
𝑜  }𝑚=1

𝑀 . A schematic 

representation of the considered discretized problem is shown in Figure 2. 
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Figure 2. Schematic representation of the considered discretized problem. 

 

On the mesh of 𝑉𝑖𝑛𝑣 the following pulse basis functions are defined 

 𝑛(𝐫) = {1, ‖𝐫 − 𝐫𝑛
𝑖𝑛𝑣‖

∞
≤

Δ

2
0,  𝑡ℎ  𝑤𝑖𝑠 

   𝑛 = 1,… ,𝑁 (17) 

Now the quantity 𝑐  𝑜  in 𝑉𝑖𝑛𝑣 can be approximated through these basis as 

𝑐(𝐫)  𝑜 (𝐫) ≅ ∑𝑐(𝐫𝑙
𝑖𝑛𝑣)  𝑜 (𝐫𝑙

𝑖𝑛𝑣) 𝑙(𝐫)

𝑁

𝑙=1

,   𝐫 ∈ 𝑉𝑖𝑛𝑣 (18) 

This means that 𝑐  𝑜  is approximated by a piece-wise constant (PWC) function, where the 

constant levels are given by the values that 𝑐  𝑜  assumes in the voxels centers. The 

following system is obtained by introducing the approximation (18) in (16) 

   𝑎 (𝐫) = −𝑘 
2 ∑ ∭𝐆 (𝐫, 𝐫

′)𝑑𝐫′

𝑉𝑙
𝑖𝑛𝑣

⋅ 𝑐(𝐫𝑙
𝑖𝑛𝑣)  𝑜 (𝐫𝑙

𝑖𝑛𝑣)

𝑁

𝑙=1

,   𝐫 ∈ 𝑉𝑜   

 𝑖𝑛 (𝐫) =   𝑜 (𝐫) + 𝑘 
2 ∑ ∭𝐆 (𝐫, 𝐫

′)𝑑𝐫′

𝑉𝑙
𝑖𝑛𝑣

⋅ 𝑐(𝐫𝑙
𝑖𝑛𝑣)  𝑜 (𝐫𝑙

𝑖𝑛𝑣)

𝑁

𝑙=1

,   𝐫 ∈ 𝑉𝑖𝑛𝑣 

(19) 

Thereafter, by adopting the so-called point-matching (or collocation) approach, the Dirac’s 

delta 𝛿 are considered as testing functions, and the following operators are defined 

𝐫𝑚
𝑜   

𝐫𝑛
𝑖𝑛𝑣 

Δ 

𝑆 𝑢 𝑐  
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𝐓𝑚
𝑜  (⋅)(𝐫) = ∭(⋅)(𝐫)𝛿(|𝐫 − 𝐫𝑚

𝑜  |)𝑑𝐫

ℝ3

,   𝑚 = 1,… ,𝑀 (20) 

𝐓𝑛
𝑖𝑛𝑣(⋅)(𝐫) = ∭(⋅)(𝐫)𝛿(|𝐫 − 𝐫𝑛

𝑖𝑛𝑣|)𝑑𝐫

ℝ3

,   𝑛 = 1,… ,𝑁 
(21) 

The operators (20) perform a sampling of a complex vector field in the measurement points, 

whereas the ones in (21) sample in the voxels centers. Now the operators in (20) and (21) 

are applied to the 3D full-vector data and state equations obtaining 

   𝑎 (𝐫𝑚
𝑜  ) = −𝑘 

2 ∑ ∭𝐆 (𝐫𝑚
𝑜  , 𝐫′)𝑑𝐫′

𝑉𝑙
𝑖𝑛𝑣

⋅ 𝑐(𝐫𝑙
𝑖𝑛𝑣)  𝑜 (𝐫𝑙

𝑖𝑛𝑣)

𝑁

𝑙=1

 

 𝑖𝑛 (𝐫𝑛
𝑖𝑛𝑣) =   𝑜 (𝐫𝑛

𝑖𝑛𝑣) + 𝑘 
2 ∑ ∭𝐆 (𝐫𝑛

𝑖𝑛𝑣, 𝐫′)𝑑𝐫′

𝑉𝑙
𝑖𝑛𝑣

⋅ 𝑐(𝐫𝑙
𝑖𝑛𝑣)  𝑜 (𝐫𝑙

𝑖𝑛𝑣)

𝑁

𝑙=1

 

(22) 

The Dyadic Green’s function occurs in a singularity when 𝐫𝑛
𝑖𝑛𝑣 ≡ 𝐫′ [102], [105], [106]. In 

order to take care of such singularity, the state equation in (22) is rewritten as  

 𝑖𝑛 (𝐫𝑛
𝑖𝑛𝑣) = �̂�(𝐫𝑛

𝑖𝑛𝑣)  𝑜 (𝐫𝑛
𝑖𝑛𝑣)

+ 𝑘 
2 ∑𝑃𝑉 ∭𝐆 (𝐫𝑛

𝑖𝑛𝑣, 𝐫′)𝑑𝐫′

𝑉𝑙
𝑖𝑛𝑣

⋅ 𝑐(𝐫𝑙
𝑖𝑛𝑣)  𝑜 (𝐫𝑙

𝑖𝑛𝑣)

𝑁

𝑙=1

 
(23) 

where �̂� = 1 +
𝑗𝜔𝜇0

3
𝑐 and 𝑃𝑉 is the integral’s principal value. By using the ℝ3 Euclidean 

space’s canonical basis, the dyadic Green function (pre-multiplied by 𝑘 
2) can be represented 

in matrix form as 

𝐆 (𝐫, 𝐫
′) =

[
 
 
 
 
 
 𝑘 

2 +
𝜕2

𝜕 2

𝜕2

𝜕 𝜕 

𝜕2

𝜕 𝜕 

𝜕2

𝜕 𝜕 
𝑘 
2 +

𝜕2

𝜕 2

𝜕2

𝜕 𝜕 

𝜕2

𝜕 𝜕 

𝜕2

𝜕 𝜕 
𝑘 
2 +

𝜕2

𝜕 2]
 
 
 
 
 
 

𝑔 (𝐫, 𝐫
′) (24) 
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The matrix is symmetric since the derivatives order can be exchanged. Moreover, the 

following quantities are defined [105] 

  𝑜 
𝑒𝑥 =

[
 
 
 
 
 
 
 
 
 
 
𝐸 𝑜 

𝑥 (𝐫1
𝑜  )

⋮
𝐸 𝑜 

𝑥 (𝐫𝑀
𝑜  )

𝐸 𝑜 
𝑦

(𝐫1
𝑜  )

⋮
𝐸 𝑜 

𝑦
(𝐫𝑀

𝑜  )

𝐸 𝑜 
𝑧 (𝐫1

𝑜  )

⋮
𝐸 𝑜 

𝑧 (𝐫𝑀
𝑜  )]

 
 
 
 
 
 
 
 
 
 

    𝑖𝑛 
𝑒𝑥 =

[
 
 
 
 
 
 
 
 
 
 
𝐸𝑖𝑛 

𝑥 (𝐫1
𝑜  )

⋮
𝐸𝑖𝑛 

𝑥 (𝐫𝑀
𝑜  )

𝐸𝑖𝑛 
𝑦

(𝐫1
𝑜  )

⋮
𝐸𝑖𝑛 

𝑦
(𝐫𝑀

𝑜  )

𝐸𝑖𝑛 
𝑧 (𝐫1

𝑜  )

⋮
𝐸𝑖𝑛 

𝑧 (𝐫𝑀
𝑜  )]

 
 
 
 
 
 
 
 
 
 

      𝑎 
𝑒𝑥 =

[
 
 
 
 
 
 
 
 
 
 
𝐸  𝑎 

𝑥 (𝐫1
𝑜  )

⋮
𝐸  𝑎 

𝑥 (𝐫𝑀
𝑜  )

𝐸  𝑎 
𝑦

(𝐫1
𝑜  )

⋮
𝐸  𝑎 

𝑦
(𝐫𝑀

𝑜  )

𝐸  𝑎 
𝑧 (𝐫1

𝑜  )

⋮
𝐸  𝑎 

𝑧 (𝐫𝑀
𝑜  )]

 
 
 
 
 
 
 
 
 
 

 

  𝑜 
𝑖𝑛 =

[
 
 
 
 
 
 
 
 
 
 
𝐸 𝑜 

𝑥 (𝐫1
𝑖𝑛𝑣)

⋮
𝐸 𝑜 

𝑥 (𝐫𝑁
𝑖𝑛𝑣)

𝐸 𝑜 
𝑦

(𝐫1
𝑖𝑛𝑣)

⋮
𝐸 𝑜 

𝑦
(𝐫𝑁

𝑖𝑛𝑣)

𝐸 𝑜 
𝑧 (𝐫1

𝑖𝑛𝑣)

⋮
𝐸 𝑜 

𝑧 (𝐫𝑁
𝑖𝑛𝑣)]

 
 
 
 
 
 
 
 
 
 

    𝑖𝑛 
𝑖𝑛 =

[
 
 
 
 
 
 
 
 
 
 
𝐸𝑖𝑛 

𝑥 (𝐫1
𝑖𝑛𝑣)

⋮
𝐸𝑖𝑛 

𝑥 (𝐫𝑁
𝑖𝑛𝑣)

𝐸𝑖𝑛 
𝑦

(𝐫1
𝑖𝑛𝑣)

⋮
𝐸𝑖𝑛 

𝑦
(𝐫𝑁

𝑖𝑛𝑣)

𝐸𝑖𝑛 
𝑧 (𝐫1

𝑖𝑛𝑣)

⋮
𝐸𝑖𝑛 

𝑧 (𝐫𝑁
𝑖𝑛𝑣)]

 
 
 
 
 
 
 
 
 
 

   𝐜 = [
𝑐(𝐫1

𝑖𝑛𝑣)

⋮
𝑐(𝐫𝑁

𝑖𝑛𝑣)
]   �̂� = [

�̂�(𝐫1
𝑖𝑛𝑣)

⋮
�̂�(𝐫𝑁

𝑖𝑛𝑣)
] 

𝐆 
𝑒𝑥 = −[

𝐆 ,𝑥𝑥
𝑒𝑥 𝐆 ,𝑥𝑦

𝑒𝑥 𝐆 ,𝑥𝑧
𝑒𝑥 

𝐆 ,𝑦𝑥
𝑒𝑥 𝐆 ,𝑦𝑦

𝑒𝑥 𝐆 ,𝑦𝑧
𝑒𝑥 

𝐆 ,𝑧𝑥
𝑒𝑥 𝐆 ,𝑧𝑦

𝑒𝑥 𝐆 ,𝑧𝑧
𝑒𝑥 

] 

𝐆 
𝑖𝑛 = −

𝑗𝜔𝜇0

3
𝐈 − [

𝐆 ,𝑥𝑥
𝑖𝑛 𝐆 ,𝑥𝑦

𝑖𝑛 𝐆 ,𝑥𝑧
𝑖𝑛 

𝐆 ,𝑦𝑥
𝑖𝑛 𝐆 ,𝑦𝑦

𝑖𝑛 𝐆 ,𝑦𝑧
𝑖𝑛 

𝐆 ,𝑧𝑥
𝑖𝑛 𝐆 ,𝑧𝑦

𝑖𝑛 𝐆 ,𝑧𝑧
𝑖𝑛 

] 

𝐆 ,𝑥𝛼𝑥𝛽

𝑒𝑥 =

[
 
 
 
 
 
 ∭𝐺 

𝑥𝛼𝑥𝛽(𝐫1
𝑜  , 𝐫′)𝑑𝐫′

𝑉1
𝑖𝑛𝑣

⋯ ∭𝐺 

𝑥𝛼𝑥𝛽(𝐫1
𝑜  , 𝐫′)𝑑𝐫′

𝑉𝑁
𝑖𝑛𝑣

⋮ ⋱ ⋮

∭𝐺 

𝑥𝛼𝑥𝛽(𝐫𝑀
𝑜  , 𝐫′)𝑑𝐫′

𝑉1
𝑖𝑛𝑣

⋯ ∭𝐺 

𝑥𝛼𝑥𝛽(𝐫𝑀
𝑜  , 𝐫′)𝑑𝐫′

𝑉𝑁
𝑖𝑛𝑣 ]

 
 
 
 
 
 

 

(25) 
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𝐆 ,𝑥𝛼𝑥𝛽

𝑖𝑛 =

[
 
 
 
 
 
 ∭𝐺 

𝑥𝛼𝑥𝛽(𝐫1
𝑖𝑛𝑣, 𝐫′)𝑑𝐫′

𝑉1
𝑖𝑛𝑣

⋯ ∭𝐺 

𝑥𝛼𝑥𝛽(𝐫1
𝑖𝑛𝑣, 𝐫′)𝑑𝐫′

𝑉𝑁
𝑖𝑛𝑣

⋮ ⋱ ⋮

∭𝐺 

𝑥𝛼𝑥𝛽(𝐫𝑁
𝑖𝑛𝑣, 𝐫′)𝑑𝐫′

𝑉1
𝑖𝑛𝑣

⋯ ∭𝐺 

𝑥𝛼𝑥𝛽(𝐫𝑁
𝑖𝑛𝑣, 𝐫′)𝑑𝐫′

𝑉𝑁
𝑖𝑛𝑣 ]

 
 
 
 
 
 

 

𝐺 

𝑥𝛼𝑥𝛽(𝐫, 𝐫′) = (𝑘 
2𝛿𝛼𝛽 +

𝜕2

𝜕 𝛼𝜕 𝛽
)𝑔 (𝐫, 𝐫

′) 

where 𝛿𝛼𝛽 is the Kronecker delta, 𝛼, 𝛽 ∈ {1,2,3}, and  1 =  ,  2 =  ,  3 =  . The scalar 

functions 𝐸 𝑜 
𝑥 (⋅), 𝐸 𝑜 

𝑦 (⋅), 𝐸 𝑜 
𝑧 (⋅) are the Cartesian components of the vector-valued function 

  𝑜 (⋅), and analogous definitions are used for  𝑖𝑛 (⋅) and    𝑎 (⋅). 𝐆 
𝑒𝑥  and 𝐆 

𝑖𝑛  are the 

external and internal Green matrices for background, respectively, and it is worth noting that 

𝐆 
𝑖𝑛  is symmetric. The integrals in 𝐆 

𝑒𝑥  can be approximated by [107] 

∭𝐺 

𝑥𝛼𝑥𝛽
(𝐫𝑚

𝑜  , 𝐫′)𝑑𝐫′ ≅ −4𝜋𝑎 [
sin(𝑘 𝑎)

𝑘 𝑎
− cos(𝑘 𝑎)]

𝑉𝑙
𝑖𝑛𝑣

𝐺 

𝑥𝛼𝑥𝛽
(𝐫𝑚

𝑜  , 𝐫𝑙
𝑖𝑛𝑣) 

(26) 

with 

𝐺 

𝑥𝛼𝑥𝛽(𝐫𝑚
𝑜  , 𝐫𝑙

𝑖𝑛𝑣) = −
 −𝑗𝑘𝑏𝑅𝑚𝑙

4𝜋𝑘 
2𝑅𝑚𝑙

3 [(𝑘 
2𝑅𝑚𝑙

2 − 1 − 𝑗𝑘 𝑅𝑚𝑙)𝛿𝛼𝛽 

+(3 − 𝑘 
2𝑅𝑚𝑙

2 + 3𝑗𝑘 𝑅𝑚𝑙) (
 𝛼𝑚

𝑜  −  𝛼𝑙
𝑖𝑛𝑣

𝑅𝑚𝑙
)(

 𝛽𝑚
𝑜  −  𝛽𝑙

𝑖𝑛𝑣

𝑅𝑚𝑙
)] 

(27) 

where 𝑎 = √
3

4𝜋
𝑣

3
, 𝑅𝑚𝑙 = |𝐫𝑚

𝑜  − 𝐫𝑙
𝑖𝑛𝑣|, 𝐫𝑚

𝑜  = [ 𝑚
𝑜   𝑚

𝑜   𝑚
𝑜  ]𝑇, and 𝐫𝑙

𝑖𝑛𝑣 =

[ 𝑙
𝑖𝑛𝑣  𝑙

𝑖𝑛𝑣  𝑙
𝑖𝑛𝑣]𝑇. Let us note that 𝑎 is the radius of a sphere with center in 𝐫𝑙

𝑖𝑛𝑣 and 

volume 𝑣 (the voxel’s volume). Concerning 𝐆 
𝑖𝑛 , when 𝐫𝑛

𝑖𝑛𝑣 ∉ 𝑉𝑙
𝑖𝑛𝑣 it is possible to use the 

same approximation adopted for 𝐆 
𝑒𝑥 . On the contrary, when 𝐫𝑛

𝑖𝑛𝑣 ∈ 𝑉𝑙
𝑖𝑛𝑣 the principal value 

can be approximated as [107] 
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𝑃𝑉 ∭𝐺 

𝑥𝛼𝑥𝛽(𝐫𝑛
𝑖𝑛𝑣, 𝐫′)𝑑𝐫′

𝑉𝑛
𝑖𝑛𝑣

≅ {
−

2

3
(1 + 𝑗𝑘 𝑎) 

−𝑗𝑘𝑏𝑎 + 1, 𝛼 = 𝛽

0, 𝛼 ≠ 𝛽
 (28) 

With the previous definitions, the scattering equations in (22) and (23) can be rewritten in 

the following compact matrix form 

   𝑎 
𝑒𝑥 = 𝐆 

𝑒𝑥 diag3(𝐜)  𝑜 
𝑖𝑛  

 𝑖𝑛 
𝑖𝑛 = [𝐈 − 𝐆 

𝑖𝑛 diag3(𝐜)]  𝑜 
𝑖𝑛  

(29) 

where  

diag3(𝐜) = [

diag(𝐜) 𝟎𝑁×𝑁 𝟎𝑁×𝑁

𝟎𝑁×𝑁 diag(𝐜) 𝟎𝑁×𝑁

𝟎𝑁×𝑁 𝟎𝑁×𝑁 diag(𝐜)
] (30) 

with diag(𝐜) diagonal matrix having the elements of 𝐜 as diagonal entries, and 𝟎𝑁×𝑁 null 

matrix of dimension 𝑁 × 𝑁. Since the matrix 𝐈 − 𝐆 
𝑖𝑛 diag3(𝐜) is usually well-conditioned 

and invertible [1], [2], the two equations can be combined together in order to obtain the 

following relationship 

   𝑎 
𝑒𝑥 = 𝐆 

𝑒𝑥 diag3(𝐜)[𝐈 − 𝐆 
𝑖𝑛 diag3(𝐜)]

−1
 𝑖𝑛 
𝑖𝑛 = 𝐅3𝐷(𝐜) (31) 

which describes the mapping between the contrast function and the scattered electric field in 

the measurement points. 

 

2.3 2D Phaseless Scenario 

The 3D full-vector setting usually requires a large amount of memory to store the involved 

Green matrices, and consequently it leads to a considerable computational burden to execute 

the imaging algorithm presented in Chapter 3. Moreover, assuming a cubic investigation 

domain, by denoting with 𝑁𝑥 the number of subdivision in which each Cartesian axis is 

partitioned by the cube-based mesh, it results that the number of voxels 𝑁 grows as 𝑁𝑥
3 and 

so the computational requirements increase very rapidly with a finer discretization. 
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Therefore, the tomographic hypothesis [1], [2], [27], [28] is often adopted. This consists in 

considering the target as infinitely extended along the  -axis and with dielectric properties 

varying on the transversal plane only, i.e. 𝜖(𝐫) = 𝜖( ,  ) = 𝜖(𝐫 ). Consequently, the focus 

can be reduced to a target’s cross-section of 𝑉𝑒𝑞 only, indicated as 𝐷𝑒𝑞. This assumption is 

valid when the antenna main lobe is narrow in the elevation direction and the wavelength is 

sufficiently small with respect to the target’s height. Moreover, a Transverse Magnetic  -

polarized (TMz) incident electric field is adopted, i.e.  𝑖𝑛 (𝐫) = 𝐸𝑖𝑛 (𝐫 )�̂�. The described 

configuration is sketched in Figure 3, in which 𝐷𝑖𝑛𝑣 is the investigation domain and 𝐷𝑜   is 

the observation one (both coplanar to 𝐷𝑒𝑞). 

 

 

Figure 3. Schematic representation of the tomographic setup. 

 

Under these hypotheses, thanks to the symmetry of the configuration, it can be demonstrated 

that   𝑜 (𝐫) = 𝐸 𝑜 (𝐫 )�̂� and    𝑎 (𝐫) = 𝐸  𝑎 (𝐫 )�̂�. Therefore, the scattering equation in 

(15) reduces to 

𝐸  𝑎 (𝐫 )�̂� = −𝑘 
2 ∬[ ∫ 𝐆 (𝐫 , 𝐫

′)𝑑 ′

+∞

−∞

] ⋅ 𝑐(𝐫 
′)𝐸 𝑜 (𝐫 

′)�̂�𝑑𝐫 
′

𝐷𝑒𝑞

 (32) 

The following equalities hold for the inner integral on  ′ [108] 

 

 

 

𝐷𝑖𝑛𝑣

𝐷𝑜  

 𝑖𝑛𝑣

𝑝    𝑠

𝐷𝑒𝑞

✘

✘

✘

✘

✘

✘ ✘ ✘ ✘
✘

✘

✘

✘
✘✘𝑡𝑎 𝑔 𝑡
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∫ 𝐆 (𝐫 , 𝐫
′)𝑑 ′

+∞

−∞

= (�̿� +
∇𝐫∇𝐫

𝑘 
2 ) ∫ 𝑔 (𝐫 , 𝐫

′)𝑑 ′

+∞

−∞

= (�̿� +
∇𝐫∇𝐫

𝑘 
2 )𝐺 

2𝐷(𝐫 , 𝐫 
′) (33) 

where 

𝐺 
2𝐷(𝐫 , 𝐫 

′) =
𝑗

4
𝐻0

(2)(𝑘 |𝐫 − 𝐫 
′|) (34) 

is the 2D Green function for background and 𝐻0
(2)

 is the zero-order and second kind Hankel 

function [109]. Then, considering that ∇𝐫 ⋅ 𝑓(𝐫 )�̂� = 0, (32) reduces to the following 

Lippmann-Schwinger [110] scalar equation 

𝐸  𝑎 (𝐫 ) = −𝑘 
2 ∬𝑐(𝐫 

′)𝐸 𝑜 (𝐫 
′)𝐺 

2𝐷(𝐫 , 𝐫 
′)𝑑𝐫 

′

𝐷𝑒𝑞

 
(35) 

Analogously to the 3D scenario, the equation (35) can be applied on both 𝐷𝑜   and 𝐷𝑖𝑛𝑣 to 

get the data and state equations, respectively, i.e.,  

𝐸  𝑎 (𝐫 ) = −𝑘 
2 ∬𝑐(𝐫 

′)𝐸 𝑜 (𝐫 
′)𝐺 

2𝐷(𝐫 , 𝐫 
′)𝑑𝐫 

′

𝐷𝑖𝑛𝑣

,   𝐫 ∈ 𝐷𝑜   

𝐸𝑖𝑛 (𝐫 ) = 𝐸 𝑜 (𝐫 ) + 𝑘 
2 ∬𝑐(𝐫 

′)𝐸 𝑜 (𝐫 
′)𝐺 

2𝐷(𝐫 , 𝐫 
′)𝑑𝐫 

′

𝐷𝑖𝑛𝑣

,   𝐫 ∈ 𝐷𝑖𝑛𝑣 

(36) 

Differently from the full-data situation, here only the incident electric field is assumed to be 

known in both its amplitude and phase components, whereas only the amplitude of the 

measured total electric field is available [73], [74], [78]. In particular, the data of the 

considered phaseless problem is the square modulus of the total electric field. Therefore, 

(36) is modified accordingly, obtaining 

𝑃 𝑜 (𝐫 ) = |−𝑘 
2 ∬𝑐(𝐫 

′)𝐸 𝑜 (𝐫 
′)𝐺 

2𝐷(𝐫 , 𝐫 
′)𝑑𝐫 

′

𝐷𝑖𝑛𝑣

+ 𝐸𝑖𝑛 (𝐫 )|

2

,   𝐫 ∈ 𝐷𝑜   (37) 
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𝐸𝑖𝑛 (𝐫 ) = 𝐸 𝑜 (𝐫 ) + 𝑘 
2 ∬𝑐(𝐫 

′)𝐸 𝑜 (𝐫 
′)𝐺 

2𝐷(𝐫 , 𝐫 
′)𝑑𝐫 

′

𝐷𝑖𝑛𝑣

,   𝐫 ∈ 𝐷𝑖𝑛𝑣 

 

2.4 Discretization of the 2D Phaseless Scenario 

Similarly to the 3D full-vector case, the 2D phaseless problem is discretized by means of a 

MoM with pulse basis functions and point-matching. A square-based mesh of 𝐷𝑖𝑛𝑣 given by 

𝑁 pixels {𝐷𝑛
𝑖𝑛𝑣}

𝑛=1

𝑁
 with centers {𝐫 𝑛

𝑖𝑛𝑣}
𝑛=1

𝑁
 is considered. Each pixel has area 𝑣 = Δ2 (being 

Δ the pixel side). Moreover, 𝑀 observation points {𝐫 𝑚
𝑜  }

𝑚=1

𝑀
 belonging to 𝐷𝑜   are selected. 

A schematic representation of the considered discretized problem is shown in Figure 4. 

 

 

Figure 4. Schematic representation of the considered discretized problem. 

 

The pulse basis functions are defined as 

 𝑛(𝐫 ) = {1, ‖𝐫 − 𝐫 𝑛
𝑖𝑛𝑣‖

∞
≤

Δ

2
0,  𝑡ℎ  𝑤𝑖𝑠 

   𝑛 = 1, … ,𝑁 (38) 

Therefore, the quantity 𝑐𝐸 𝑜  in 𝐷𝑖𝑛𝑣 is PWC approximated as 

  

  

𝑆 𝑢 𝑐  

𝐫 𝑚
𝑜   

𝐫 𝑛
𝑖𝑛𝑣 

Δ 
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𝑐(𝐫 )𝐸 𝑜 (𝐫 ) ≅ ∑𝑐(𝐫 𝑙
𝑖𝑛𝑣)𝐸 𝑜 (𝐫 𝑙

𝑖𝑛𝑣) 𝑙(𝐫 )

𝑁

𝑙=1

,   𝐫 ∈ 𝐷𝑖𝑛𝑣 (39) 

In accomplishment to the point-matching approach, the following testing operators are 

defined  

𝑡𝑚
𝑜  (⋅)(𝐫 ) = ∬(⋅)(𝐫 )𝛿(|𝐫 − 𝐫 𝑚

𝑜  |)𝑑𝐫

ℝ2

,   𝑚 = 1,… ,𝑀 (40) 

𝑡𝑛
𝑖𝑛𝑣(⋅)(𝐫 ) = ∬(⋅)(𝐫 )𝛿(|𝐫 − 𝐫 𝑛

𝑖𝑛𝑣|)𝑑𝐫

ℝ2

,   𝑛 = 1,… , 𝑁 
(41) 

The operators in (40), (41) have a meaning equivalent to their 3D counterparts in (20), (21). 

Introducing (39) in (36) and applying (40) and (41) to the data and state equations, 

respectively, we have 

𝐸  𝑎 (𝐫 𝑚
𝑜  ) = −𝑘 

2 ∑ ∬𝐺 
2𝐷(𝐫 𝑚

𝑜  , 𝐫 
′)𝑑𝐫 

′

𝐷𝑙
𝑖𝑛𝑣

𝑐(𝐫 𝑙
𝑖𝑛𝑣)𝐸 𝑜 (𝐫 𝑙

𝑖𝑛𝑣)

𝑁

𝑙=1

 

𝐸𝑖𝑛 (𝐫 𝑛
𝑖𝑛𝑣) = 𝐸 𝑜 (𝐫 𝑛

𝑖𝑛𝑣) + 𝑘 
2 ∑ ∬𝐺 

2𝐷(𝐫 𝑛
𝑖𝑛𝑣, 𝐫 

′)𝑑𝐫 
′

𝐷𝑙
𝑖𝑛𝑣

𝑐(𝐫 𝑙
𝑖𝑛𝑣)𝐸 𝑜 (𝐫 𝑙

𝑖𝑛𝑣)

𝑁

𝑙=1

 

(42) 

To get a compact matrix form, the following quantities are defined [1] 

𝐞 𝑜 
𝑒𝑥 = [

𝐸 𝑜 (𝐫 1
𝑜  )

⋮
𝐸 𝑜 (𝐫 𝑀

𝑜  )
]   𝐞𝑖𝑛 

𝑒𝑥 = [

𝐸𝑖𝑛 (𝐫 1
𝑜  )

⋮
𝐸𝑖𝑛 (𝐫 𝑀

𝑜  )
]   𝐞  𝑎 

𝑒𝑥 = [

𝐸  𝑎 (𝐫 1
𝑜  )

⋮
𝐸  𝑎 (𝐫 𝑀

𝑜  )
] 

𝐞 𝑜 
𝑖𝑛 = [

𝐸 𝑜 (𝐫 1
𝑖𝑛𝑣)

⋮
𝐸 𝑜 (𝐫 𝑁

𝑖𝑛𝑣)
]   𝐞𝑖𝑛 

𝑖𝑛 = [

𝐸𝑖𝑛 (𝐫 1
𝑖𝑛𝑣)

⋮
𝐸𝑖𝑛 (𝐫 𝑁

𝑖𝑛𝑣)
]    𝐜 = [

𝑐(𝐫 1
𝑖𝑛𝑣)

⋮
𝑐(𝐫 𝑁

𝑖𝑛𝑣)
] 

(43) 
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𝐇 
𝑒𝑥 = −𝑘 

2

[
 
 
 
 
 
 ∬𝐺 

2𝐷(𝐫 1
𝑜  , 𝐫 

′)𝑑𝐫 
′

𝐷1
𝑖𝑛𝑣

⋯ ∬𝐺 
2𝐷(𝐫 1

𝑜  , 𝐫 
′)𝑑𝐫 

′

𝐷𝑁
𝑖𝑛𝑣

⋮ ⋱ ⋮

∬𝐺 
2𝐷(𝐫 𝑀

𝑜  , 𝐫 
′)𝑑𝐫 

′

𝐷1
𝑖𝑛𝑣

⋯ ∬𝐺 
2𝐷(𝐫 𝑀

𝑜  , 𝐫 
′)𝑑𝐫 

′

𝐷𝑁
𝑖𝑛𝑣 ]

 
 
 
 
 
 

 

𝐇 
𝑖𝑛 = −𝑘 

2

[
 
 
 
 
 
 ∬𝐺 

2𝐷(𝐫 1
𝑖𝑛𝑣, 𝐫 

′)𝑑𝐫 
′

𝐷1
𝑖𝑛𝑣

⋯ ∬𝐺 
2𝐷(𝐫 1

𝑖𝑛𝑣, 𝐫 
′)𝑑𝐫 

′

𝐷𝑁
𝑖𝑛𝑣

⋮ ⋱ ⋮

∬𝐺 
2𝐷(𝐫 𝑁

𝑖𝑛𝑣, 𝐫 
′)𝑑𝐫 

′

𝐷1
𝑖𝑛𝑣

⋯ ∬𝐺 
2𝐷(𝐫 𝑁

𝑖𝑛𝑣, 𝐫 
′)𝑑𝐫 

′

𝐷𝑁
𝑖𝑛𝑣 ]

 
 
 
 
 
 

 

where 𝐇 
𝑒𝑥 , 𝐇 

𝑖𝑛  are the external and internal Green matrices for background in the 2D case, 

respectively. 𝐇 
𝑖𝑛  is symmetric in this situation too. The elements in 𝐇 

𝑒𝑥  are approximated 

as follows [111] 

−𝑘 
2 ∬𝐺 

2𝐷(𝐫 𝑚
𝑜  , 𝐫 

′)𝑑𝐫 
′

𝐷𝑙
𝑖𝑛𝑣

≅ −𝑘 
2 ∬𝐺 

2𝐷(𝐫 𝑚
𝑜  , 𝐫 

′)𝑑𝐫 
′

𝐶𝑙
𝑖𝑛𝑣

=

= −
𝑗𝜋𝑘 𝑎

2
𝐽1(𝑘 𝑎)𝐻0

(2)
(𝑘 |𝐫 𝑀

𝑜  − 𝐫 𝑙
𝑖𝑛𝑣|) 

(44) 

where 𝐶𝑙
𝑖𝑛𝑣 is a circular domain with center 𝐫 𝑙

𝑖𝑛𝑣, area 𝑣, and 𝑎 = √𝑣/𝜋 radius, and 𝐽1 is the 

first-order and first kind Bessel function [109]. Concerning the elements of 𝐇 
𝑖𝑛 , when 

𝐫 𝑛
𝑖𝑛𝑣 ∉ 𝐷𝑙

𝑖𝑛𝑣 equation (44) is used. In the other cases, when the Green function is singular, 

the elements are approximated as [111] 

−𝑘 
2 ∬𝐺 

2𝐷(𝑘 |𝐫 𝑛
𝑖𝑛𝑣 − 𝐫 

′|)𝑑𝐫 
′

𝐷𝑛
𝑖𝑛𝑣

≅ −𝑘 
2 ∬𝐺 

2𝐷(𝑘 |𝐫 𝑛
𝑖𝑛𝑣 − 𝐫 

′|)𝑑𝐫 
′

𝐶𝑛
𝑖𝑛𝑣

=

= −
𝑗

2
[𝜋𝑘 𝑎𝐻1

(2)(𝑘 𝑎) − 2𝑗] 

(45) 

where 𝐻1
(2)

 is the Hankel function of first-order and second kind [109]. Finally, the data and 

state equations in (42) are written in compact matrix form as 

𝐞  𝑎 
𝑒𝑥 = 𝐇 

𝑒𝑥 diag(𝐜)𝐞 𝑜 
𝑖𝑛  (46) 
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𝐞𝑖𝑛 
𝑖𝑛 = [𝐈 − 𝐇 

𝑖𝑛 diag(𝐜)]𝐞 𝑜 
𝑖𝑛  

By combining the previous equations, as in the 3D case, the following relationship between 

𝐜 to 𝐞  𝑎 
𝑒𝑥  is obtained 

𝐞  𝑎 
𝑒𝑥 = 𝐇 

𝑒𝑥 diag(𝐜)[𝐈 − 𝐇 
𝑖𝑛 diag(𝐜)]

−1
𝐞𝑖𝑛 
𝑖𝑛 = 𝐅2𝐷(𝐜) (47) 

Because in the phaseless setting only the amplitude of the total external electric field can be 

measured, the data vector is defined as follows 

𝐩 𝑜 
𝑒𝑥 = [

𝑃 𝑜 (𝐫 1
𝑜  )

⋮
𝑃 𝑜 (𝐫 𝑀

𝑜  )
] = (𝐞  𝑎 

𝑒𝑥 + 𝐞𝑖𝑛 
𝑒𝑥 )∗ ∘ (𝐞  𝑎 

𝑒𝑥 + 𝐞𝑖𝑛 
𝑒𝑥 ) (48) 

where ∘ is the entry-wise product and ()∗ denotes the entry-wise complex-conjugate. 

Consequently, the relationship between 𝐜 and 𝐩 𝑜 
𝑒𝑥  is 

𝐩 𝑜 
𝑒𝑥 = [𝐅2𝐷(𝐜) + 𝐞𝑖𝑛 

𝑒𝑥 ]∗ ∘ [𝐅2𝐷(𝐜) + 𝐞𝑖𝑛 
𝑒𝑥 ] = 𝐅𝑃

2𝐷(𝐜) (49) 

It is important to note that the requirements in computational resources grow significantly 

slower that the 3D full-vector scenario, since now the number of voxels 𝑁 grows as 𝑁𝑥
2 for 

a square investigation domain.  

 

2.5 Multi-View Arrangement 

As it will be further highlighted in Chapter 3, the equations in (31) and (49) are non-linear 

and ill-posed with respect to the unknown contrast function. This implies that the inverse 

problem of interest suffers of false solutions, namely points in the contrast functions space 

that only locally minimize the residual between the measured and predicted data [112]. This 

puts a serious threat about the reliability of microwave imaging techniques. However, it has 

been found in [112] that the occurrence of this stationary points can be mitigated by keeping 

the ratio between the number of independent data and the number of unknowns 𝑁 as high as 

possible. Regrettably, increasing the number of measurement points is not always a viable 

option, since the amount of independent collectable data is limited in accordance to the 

degrees of freedom theory of the scattered electric fields [113]. A feasible way to overcome 
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this issue consists in the adoption of a multi-view setup [114], namely the target is 

sequentially illuminated with 𝑆 sources and the data for each one (or, as technically said, for 

each view) are collected. The observation domain may vary for each illumination, i.e., 𝐷𝑜  
( )

 

with 𝑠 = 1,… , 𝑆. In this setting,   𝑜 ,( ),  𝑖𝑛 ,( ), and    𝑎 ,( ) are the total, incident, and 

scattered electric fields for the 𝑠th view, respectively. Moreover, the related symbols in (25) 

and (43) are modified as follows 

 For the 3D full-vector scenario:   𝑜 
𝑒𝑥 ,( )

,  𝑖𝑛 
𝑒𝑥 ,( )

,    𝑎 
𝑒𝑥 ,( )

,  𝑖𝑛 
𝑖𝑛 ,( )

, 𝐆 ,( )
𝑒𝑥  

 For the 2D phaseless scenario: 𝐞 𝑜 
𝑒𝑥 ,( )

, 𝐞𝑖𝑛 
𝑒𝑥 ,( )

, 𝐞  𝑎 
𝑒𝑥 ,( )

, 𝐩 𝑜 
𝑒𝑥 ,( )

, 𝐞𝑖𝑛 
𝑖𝑛 ,( )

, 𝐇 ,( )
𝑒𝑥  

with 𝑠 = 1,… , 𝑆. Consequently, the single-view scattering equations reported in (31), (47), 

and (49) are rewritten as 

   𝑎 
𝑒𝑥 ,( ) = 𝐆 ,( )

𝑒𝑥 diag3(𝐜)[𝐈 − 𝐆 
𝑖𝑛 diag3(𝐜)]

−1
 𝑖𝑛 
𝑖𝑛 ,( ) = 𝐅( )

3𝐷(𝐜) (50) 

𝐞  𝑎 
𝑒𝑥 ,( ) = 𝐇 ,( )

𝑒𝑥 diag(𝐜)[𝐈 − 𝐇 
𝑖𝑛 diag(𝐜)]

−1
𝐞𝑖𝑛 
𝑖𝑛 ,( ) = 𝐅( )

2𝐷(𝐜) (51) 

𝐩 𝑜 
𝑒𝑥 ,( ) = [𝐅( )

2𝐷(𝐜) + 𝐞𝑖𝑛 
𝑒𝑥 ,( )]

∗

∘ [𝐅( )
2𝐷(𝐜) + 𝐞𝑖𝑛 

𝑒𝑥 ,( )] = 𝐅𝑃,( )
2𝐷 (𝐜) 

(52) 

In order to get two operators able to map the contrast function to the multi-view data for the 

3D full-vector and 2D phaseless scenarios, all the views are embedded in the following 

vectors 

 ̂  𝑎 
𝑒𝑥 = [

   𝑎 
𝑒𝑥 ,(1)

⋮

   𝑎 
𝑒𝑥 ,(𝑆)

]   �̂� 𝑜 
𝑒𝑥 = [

𝐩 𝑜 
𝑒𝑥 ,(1)

⋮

𝐩 𝑜 
𝑒𝑥 ,(𝑆)

]   �̂�  𝑎 
𝑒𝑥 = [

𝐞  𝑎 
𝑒𝑥 ,(1)

⋮

𝐞  𝑎 
𝑒𝑥 ,(𝑆)

]   �̂�𝑖𝑛 
𝑒𝑥 = [

𝐞𝑖𝑛 
𝑒𝑥 ,(1)

⋮

𝐞𝑖𝑛 
𝑒𝑥 ,(𝑆)

] (53) 

Now the multi-view scattering equations and the related scattering operators are obtained as 

follows 

 ̂  𝑎 
𝑒𝑥 = [

𝐆 ,(1)
𝑒𝑥 diag3(𝐜)[𝐈 − 𝐆 

𝑖𝑛 diag3(𝐜)]
−1

 𝑖𝑛 
𝑖𝑛 ,(1)

⋮

𝐆 ,(𝑆)
𝑒𝑥 diag3(𝐜)[𝐈 − 𝐆 

𝑖𝑛 diag3(𝐜)]
−1

 𝑖𝑛 
𝑖𝑛 ,(𝑆)

] = [

𝐅(1)
3𝐷(𝐜)

⋮
𝐅(𝑆)
3𝐷(𝐜)

] = �̂�3𝐷(𝐜) (54) 
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�̂�  𝑎 
𝑒𝑥 = [

𝐇 ,(1)
𝑒𝑥 diag(𝐜)[𝐈 − 𝐇 

𝑖𝑛 diag(𝐜)]
−1

𝐞𝑖𝑛 
𝑖𝑛 ,(1)

⋮

𝐇 ,(𝑆)
𝑒𝑥 diag(𝐜)[𝐈 − 𝐇 

𝑖𝑛 diag(𝐜)]
−1

𝐞𝑖𝑛 
𝑖𝑛 ,(𝑆)

] = [

𝐅(1)
2𝐷(𝐜)

⋮
𝐅(𝑆)
2𝐷(𝐜)

] = �̂�2𝐷(𝐜) (55) 

�̂� 𝑜 
𝑒𝑥 = [�̂�2𝐷(𝐜) + �̂�𝑖𝑛 

𝑒𝑥 ]
∗
∘ [�̂�2𝐷(𝐜) + �̂�𝑖𝑛 

𝑒𝑥 ] = [

𝐅𝑃,(1)
2𝐷 (𝐜)

⋮
𝐅𝑃,(𝑆)
2𝐷 (𝐜)

] = �̂�𝑃
2𝐷(𝐜) 

(56) 
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Chapter 3 Inversion Procedure 

 

The imaging problems of interest consist in retrieving the unknown contrast functions 

starting from the available field measurements collected in the observation domain. In other 

words, (54) and (56) need to be solved with respect to the unknown 𝐜. This implies the 

solution of an electromagnetic scattering inverse problem [1]–[3], [85], [86]. In both 3D full-

vector and 2D phaseless scenarios, the data equation is a first-kind Fredholm equation, while 

the state one is a second-kind Fredholm equation. The last one is well-posed in the Hadamard 

sense, whereas the first one turns out to be ill-posed, since in our setting it is usually solvable 

but generally its solutions are not unique and do not depend continuously on the data [85], 

[86]. These awful properties found explanation in the analysis of the integral equation’s 

kernel and in a Riemann lemma application [115]. Moreover, when the first-kind Fredholm 

equation of interest is turned in a numerical problem by means of a discretization process, it 

usually gives rise to an ill-conditioned problem [116]. Finally, from the structure of (54) and 

(56), we see that the relationship between the data and the unknown contrast function is non-

linear. Therefore, in order to solve the involved inverse problem, a proper regularization 

approach able to cope with non-linearities is required. In the present Thesis, an inexact-

Newton scheme [88]–[90] performing a regularization in the framework of the 𝑙𝑝 Banach 

spaces [91]–[95] has been developed. It is composed by two nested loops: the outer one 

iteratively linearizes the scattering operators in (54) and (56), whereas, in the inner one, the 

obtained linear system is solved by a regularizing approach in 𝑙𝑝 Banach spaces. Figure 5 

provides the workflow of the considered inversion algorithm through a block diagram. In 

the following Section, a high-level description of the general inexact-Newton scheme is 

presented. Thereafter, an intuitive explanation of the 𝑙𝑝 framework’s benefits is presented 

and two inner linear solvers are introduced, namely the truncated Landweber method [91]–

[93] and the conjugate gradient one [94], [95]. Finally, special insights in the computations 

of the needed Fréchet derivatives are furnished.  
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Figure 5. Block diagram representing the workflow of the proposed inexact-Newton inversion scheme. 

 

3.1 Inexact-Newton 

Generally, the equations in (54) and (56) can be written in compact form as 

𝐅(𝐜) = 𝐝 (57) 

The unknown 𝐜 belongs to the linear space 𝒞, which is the ℂ𝑁 space endowed with the norm 

of 𝑙𝑝. The data 𝐝 belongs to the linear space 𝒟: for the 2D phaseless scenario, 𝒟 is the ℝ𝑆𝑀 

space endowed with the norm of 𝑙𝑝, whereas for the 3D full-vector case 𝒟 is the ℂ3𝑆𝑀 space 

endowed with the same kind of norm. 𝐅 is a non-linear operator so that 𝐅: 𝒞 → 𝒟. The 

inexact-Newton algorithm [88], [89] inverts (57) by means of the following iterations 

1. Set the initial guess 𝐜0. If no a-priori information is available, 𝐜0 = 𝟎 is used. 

2. Compute a first-order Taylor expansion of (57) around the current solution 𝐜𝑖. The 

following linear system is obtained [48] 

𝐅𝐜𝑖
′ 𝐡 = 𝐝 − 𝐅(𝐜𝑖) = 𝐛𝑖 (58) 

Initialize

Linearize 
scattering equation

Solve the linear 
equation by means 
of a linear solver in 

Banach spaces

Update current 
solution

Check 
stopping 

rule

End
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where 𝐅𝐜𝑖
′  is the Fréchet derivative (or, more specifically, the Jacobian matrix) of 𝐅 in 𝐜𝑖, 

and 𝐛𝑖 is the residual vector at the 𝑖th outer iteration. 

3. Find a regularized solution 𝐡 of (58) by a regularizing linear solver defined in 𝑙𝑝 Banach 

spaces. 

4. Update the estimate 

𝐜𝑖+1 = 𝐜𝑖 + 𝐡 (59) 

2. Terminate when a given stopping rule is satisfied, otherwise repeat from step 2. 

As previously mentioned, this algorithm belongs to the class of deterministic local methods, 

which can be trapped in local minima corresponding to false solutions of the inverse 

scattering problem [112]. To partially mitigate these drawback, beyond the multi-view setup 

introduced in Section 2.5, the eventually available a-priori information should be used to 

make the starting guess 𝐜0 as close as possible to the actual solution [20], [112].  

 

3.2 Discussion on the Regularization in Banach Spaces 

The classic implementations of the inexact-Newton scheme use inner linear solvers that are 

defined in the framework of the 𝑙2 Hilbert spaces (the contrast functions space 𝒞 and the 

data one 𝒟 are both endowed with the 𝑙2 norm, and therefore both are Euclidean spaces). In 

this setting, the mathematical tools available in this kind of spaces allow a deep 

understanding of the regularization and convergence properties of the adopted linear solver 

[1], [85], [86], [117]. However, the imaging algorithms based on this framework are often 

characterized by problems of over-smoothness and ringing in the retrieved solutions, making 

difficult to recognize small dielectric discontinuities [96], [118], [119]. Such drawbacks of 

the classic approaches have lead the scientific community to consider new ways. Among 

these, one of the most interesting and promising is the generalization of the regularization 

framework in the 𝑙𝑝 Banach spaces, with 𝑝 > 1 [91]. Their special feature is the new free 

parameter 𝑝, which characterizes the norm endowing the Banach space (and so its 

geometrical properties), and that can be tuned in order to mitigate the over-smoothness and 

ringing effects. Both the linear solvers that will be introduced in the following descend from 

classic iterative methods developed and studied in Hilbert spaces, and only recently revisited 
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and generalized in Banach spaces. In this framework, the lack of a dot product inducing a 

complete space for 𝑝 ≠ 2 (as consequence of the Jordan-Von Neumann theorem [120]) 

denies the possibility to define a singular value decomposition of the linear operators, and 

so much more involving mathematical tools from complex convex analysis are needed. 

However, the key point at the base of the performance of linear solvers in 𝑙𝑝 resides in the 

duality maps [91], [92]. These are nonlinear functions that associate an element of a generic 

Banach space ℬ to an element of its dual space ℬ∗, namely the space of the continuous linear 

functionals 𝐹:ℬ → 𝔽, where 𝔽 is the field on which ℬ is defined [121]. Beyond the tricky 

mathematical definition of the duality maps, a useful heuristic explanation of the duality 

maps role in the linear solvers presented in Sections 3.3 and 3.4 starts with the following 

theorem 

Asplund Theorem [91], [92]. Given a generic Banach space ℬ with norm ‖⋅‖ℬ, its duality 

map 𝐽𝐵 is the subdifferential of the convex functional 
1

𝑟
‖⋅‖ℬ

𝑟  with  > 1, that is 𝐽ℬ =

𝜕 (
1

𝑟
‖⋅‖ℬ

𝑟 ). 

In our problem of interest, the linear system in (58) is solved by finding a regularized solution 

that minimizes the following residual functional 

1

2
‖𝐅𝐜𝑖

′ 𝐡 − 𝐛𝑖‖𝒟

2
 (60) 

Applying the chain rule for subdifferentiation of composite functions and the Asplund 

theorem, it results that  

𝜕 (
1

2
‖𝐅𝐜𝑖

′ 𝐡 − 𝐛𝑖‖𝒟

2
) = 𝐅′

𝐜𝑖
𝐻
𝐉𝑝
𝒟(𝐅𝐜𝑖

′ 𝐡 − 𝐛𝑖) (61) 

where 𝐅𝐜𝑖
′ 𝐻

 is the adjoint operator of 𝐅𝐜𝑖
′ , and 𝐉𝑝

𝒟: 𝒟 → 𝒟∗, with 𝒟∗ dual space of 𝒟, is the 

duality map defined as [91], [92] 

𝐉𝑝
𝒟(𝐠) = ‖𝐠‖𝒟

2−𝑝 [
|𝑔1|

𝑝−1sign(𝑔1)
⋮

|𝑔𝐺|
𝑝−1sign(𝑔𝐺)

] (62) 
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where 𝐠 = [𝑔1 ⋯ 𝑔𝐺]𝑇 ∈ 𝒟 with 𝐺 = 3𝑆𝑀 in the 3D full-vector scenario and 𝐺 = 𝑆𝑀 

in the 2D phaseless one. As it will be seen in the following, the terms that the linear solvers 

in Sections 3.3 and 3.4 compute to iteratively update the estimated solution are based on the 

quantity at the right member of (61). In particular, we have that 𝐅′
𝐜𝑖
𝐻
: 𝒟∗ → 𝒞∗, where 𝒞∗ is 

the dual space of 𝒞, thus the update step is not executed in the contrast functions space 𝒞 but 

in its dual one. Once the new estimated solution is obtained in 𝒞∗, the related approximated 

element of 𝒞 is obtained by applying the duality map 𝐉𝑞
𝒞∗
: 𝒞∗ → (𝒞∗)∗ ≡ 𝒞 (this last 

statement is due to the reflexivity of the considered spaces) defined as [91], [92] 

𝐉𝑞
𝒞∗
(𝐟) = ‖𝐟‖𝒞∗

2−𝑞 [
|𝑓1|

𝑞−1sign(𝑓1)
⋮

|𝑓𝑁|
𝑞−1sign(𝑓𝑁)

] (63) 

where 𝑞 = 𝑝/(𝑝 − 1) is the Hölder conjugate of 𝑝 and 𝐟 = [𝑓1 ⋯ 𝑓𝑁]
𝑇 ∈ 𝒞∗. This 

highlights that the performed minimization is different from the conventional (i.e., 

Euclidean) one of the residual functional in (60). In fact, the classic Landweber and 

conjugate gradient methods iteratively update the estimated solution directly in 𝒞. Therefore, 

the directions of minimization adopted by the linear solvers in Sections 3.3 and 3.4 are not 

the steepest descent ones of the Euclidean geometry, but non-standard ones conceived in the 

framework of the convex analysis in Banach spaces. The two frameworks are equal only 

when 𝑝 = 2, namely when the data and unknowns spaces are endowed with the structure of 

the 𝑙2 Hilbert space; in fact, the duality maps in (62) and (63) reduce to identity ones when 

𝑝 = 2. Once this distinction has been understood, it is important to highlight how the new 

methods can overcome the limitations of the classic ones when 1 < 𝑝 < 2. To understand 

this fact from a heuristic point of view, we can notice that the duality map 𝐉𝑝
𝒟 emphasizes the 

smallest components of the residual vector and reduces the largest ones, since |𝑢|𝑝−1 > |𝑢| 

for |𝑢| < 1, and |𝑢|𝑝−1 < |𝑢| for |𝑢| > 1, because of 0 < 𝑝 − 1 < 1. Therefore, the weak 

information in the residual vector (usually associated to high frequencies in the Fourier 

analysis) have now a stronger role in the reconstruction procedure, allowing for a better 

restoration of jump discontinuities. This can be interpreted as a lower filtering effect, and so 

a lower regularization, with respect to the Hilbert case. When the duality map 𝐉𝑞
𝒞∗

 is applied 

to the updated estimated solution in 𝒞∗ to get the related approximated solution in 𝒞, we see 

that it tends to make smaller the weak components of the element gained in 𝒞∗, since 
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|𝑢|𝑞−1 < |𝑢| for |𝑢| < 1, and |𝑢|𝑞−1 > |𝑢| for |𝑢| > 1, because of 𝑞 − 1 > 1. This has the 

resulting effect of attenuating the ringing effects on the background and of reducing noise 

propagation.  

 

3.3 Truncated Landweber Method in Banach Spaces 

The algorithm considered in this Section is an iterative gradient method where the number 

of executed iterations plays the role of regularization parameter. In the particular case of the 

Hilbert spaces 𝑙2, where the singular value decomposition can be defined, the algorithm is 

shown to perform a low-pass filtering of the spectral content of 𝐅𝐜𝑖
′  and the cut-off frequency 

is a non-decreasing function of the iteration number [1], [85], [86]. This behavior allows to 

filter out the high frequency components of 𝐅𝐜𝑖
′  responsible for the ill-conditioning of (58), 

given that a proper selection of the iteration number (i.e., the cut-off frequency) is performed. 

Recently, the method has been generalized to the 𝑙𝑝 Banach spaces with 𝑝 > 1 and, in spite 

of the lack of the spectral theory when 𝑝 ≠ 2 (see Section 3.2), the regularization capabilities 

associated to the iteration number can be still proved by arguments related to the continuity 

of the duality maps, as theoretically found in [92]. Its capability in mitigating the over-

smoothness and ringing effects that often affect the solutions retrieved in the Hilbert spaces 

𝑙2 has been shown in the context of 2D full-data microwave imaging in [96] for the first 

time. The algorithm is given by the following steps 

1. Initialize 𝐡0 = 𝟎 ∈ 𝒞 and �̂�0 = 𝟎 ∈ 𝒞∗. 

2. Update the solution in 𝒞∗ by the following iterative rule 

�̂�𝑘+1 = �̂�𝑘 − 𝛽𝐅𝐜𝑖
′ 𝐻

𝐉𝑝
𝒟(𝐅𝐜𝑖

′ 𝐡𝑘 − 𝐛𝑖) (64) 

where 𝛽 is the relaxation coefficient. In Hilbert space, it can be proven that the relaxation 

coefficient must be in the interval (0,2‖𝐅𝐜𝑖
′ ‖

2

−2
) to guarantee the convergence of the 

method. By choosing 𝛽 = ‖𝐅𝐜𝑖
′ ‖

2

−2
, namely the value in the middle of the admissible 

range, the convergence still holds in a neighbor of 𝑝 = 2 (this property can be proved by 

means of continuity arguments [92]). 

3. Get the current approximated solution in 𝒞 with 
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𝐡𝑘+1 = 𝐉𝑞
𝒞∗
(�̂�𝑘+1) (65) 

4. Terminate when a given stopping rule is satisfied, otherwise repeat from step 2. 

 

3.4 Conjugate Gradient Method in Banach Spaces 

The classic conjugate gradient method is a minimization method based on the Krylov 

subspaces [117] that has been found to provide better performance than the steepest descent 

algorithm. As for the truncated Landweber method in 𝑙2, the classic conjugate gradient can 

be shown to have regularizing properties, since it behaves as a spectral filter; however, as 

opposed to the Landweber approach, it is a non-linear method because its spectral input-

output relation depends on the data [86]. The conjugate gradient has been generalized to the 

setting of the 𝑙𝑝 Banach spaces (with 𝑝 > 1) too [94], [95], showing advantages on the 

retrieved solutions that are similar to the Landweber ones. Its superior performance with 

respect to the classic version of the algorithm has been shown in the context of 2D full-data 

microwave imaging in [16] for the first time. The method is composed by the following steps 

1. Initialize 𝐡0 = 𝟎 ∈ 𝒞, �̂�0 = 𝟎 ∈ 𝒞∗ and 𝐩0 = 𝐅′
𝐜𝑖
𝐻
𝐉𝑝
𝒟(𝐛𝑖) ∈ 𝒞∗. 

2. Solve the following single-variable minimization problem 

𝛼𝑘 = argmin
𝛼>0

‖𝐅𝐜𝑖
′ 𝐉𝑞

𝒞∗
(�̂�𝑘 + 𝛼�̂�𝑘) − 𝐛𝑖‖𝑝

2
 (66) 

This can be solved by a simple one-dimensional optimizer (e.g., the secant method 

[122]). 

3. Compute the following displacement in 𝒞∗ 

�̂�𝑘 = −𝐅′
𝐜𝑖
𝐻
𝐉𝑝
𝒟(𝐅𝐜𝑖

′ 𝐡𝑘 − 𝐛𝑖) + 𝛽𝑘�̂�𝑘−1 

𝛽𝑘 =
‖𝐅′

𝐜𝑖
𝐻
𝐉𝑝
𝒟(𝐅𝐜𝑖

′ 𝐡𝑘 − 𝐛𝑖)‖2

2

‖𝐅′
𝐜𝑖
𝐻𝐉𝑝

𝒟(𝐅𝐜𝑖
′ 𝐡𝑘−1 − 𝐛𝑖)‖2

2 
(67) 

4. Update �̂� with 
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�̂�𝑘+1 = �̂�𝑘 + 𝛼𝑘�̂�𝑘 (68) 

where 𝛼𝑘 is obtained by solving (66). 

5. Get the new current solution in 𝒞 by 

𝐡𝑘+1 = 𝐉𝑞
𝒞∗
(�̂�𝑘+1) (69) 

6. Terminate when a given stopping rule is satisfied, otherwise repeat from step 2. 

 

3.5 3D Full-Vector Scenario: Fréchet Derivative Computation 

The proposed non-linear solving scheme requires the determination of the Fréchet 

derivative, which reduces to the Jacobian matrix in our discrete setting. First, the Fréchet 

derivative for the single-view case is computed by introducing the following first-order 

Taylor expansion 

(𝐘 − 𝐙𝐗)−1 = 𝐘−1 + 𝐘−1𝐙𝐗𝐘−1 + 𝑂(𝐗2) (70) 

where 𝐗, 𝐘, 𝐙 are square matrices (with invertible 𝐘 and 𝐘 − 𝐙𝐗). Moreover, the following 

identity holds 

[𝐈 − diag3(𝐜)𝐆 
𝑖𝑛 ]

−1
= 𝐈 + diag3(𝐜)[𝐈 − 𝐆 

𝑖𝑛 diag3(𝐜)]
−1

𝐆 
𝑖𝑛  (71) 

Using (70) and (71), now a Taylor expansion of 𝐅3𝐷 can be performed in a generic 

neighborhood of �̃� as [97] 

𝐅3𝐷(�̃� + 𝑑𝐜) = 𝐆 
𝑒𝑥 diag3(�̃� + 𝑑𝐜)[𝐈 − 𝐆 

𝑖𝑛 diag3(�̃� + 𝑑𝐜)]
−1

 𝑖𝑛 
𝑖𝑛 =

= 𝐆 
𝑒𝑥 diag3(�̃�)[𝐈 − 𝐆 

𝑖𝑛 diag3(�̃�)]
−1

 𝑖𝑛 
𝑖𝑛 

+ 𝐆 
𝑒𝑥 [𝐈 − diag3(�̃�)𝐆 

𝑖𝑛 ]
−1

diag3(𝑑𝐜)[𝐈 − 𝐆 
𝑖𝑛 diag3(�̃�)]

−1
 𝑖𝑛 
𝑖𝑛 

+ 𝑂[diag3(𝑑𝐜)
2 𝑖𝑛 

𝑖𝑛 ] 

(72) 

The linear term in diag3(𝑑𝐜) is of our interest and, because of the state equation in (29), it 

can be rewritten as follows 
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𝐆 
𝑒𝑥 [𝐈 − diag3(�̃�)𝐆 

𝑖𝑛 ]
−1

diag3(𝑑𝐜)[𝐈 − 𝐆 
𝑖𝑛 diag3(�̃�)]

−1
 𝑖𝑛 
𝑖𝑛 =

= 𝐆 
𝑒𝑥 [𝐈 − diag3(�̃�)𝐆 

𝑖𝑛 ]
−1

diag(  𝑜 
𝑖𝑛 

�̃�
)𝑑𝐜 

(73) 

where   𝑜 
𝑖𝑛 

�̃�
 is the total internal electric field in presence of the dielectric configuration �̃�. 

Therefore, the following desired Fréchet derivative is obtained 

𝐅�̃�
3𝐷′

= 𝐆 
𝑒𝑥 [𝐈 − diag3(�̃�)𝐆 

𝑖𝑛 ]
−1

diag(  𝑜 
𝑖𝑛 

�̃�
) (74) 

Finally, the Fréchet derivative for the multi-view case is made by simply stacking the 

operator in (74) for each view as follows 

�̂��̃�
3𝐷′

= [

𝐅�̃�,(1)
3𝐷 ′

⋮

𝐅�̃�,(𝑆)
3𝐷 ′

] = [

𝐆 ,(1)
𝑒𝑥 [𝐈 − diag3(�̃�)𝐆 

𝑖𝑛 ]
−1

diag (  𝑜 
𝑖𝑛 

�̃�,(1)
)

⋮

𝐆 ,(𝑆)
𝑒𝑥 [𝐈 − diag3(�̃�)𝐆 

𝑖𝑛 ]
−1

diag (  𝑜 
𝑖𝑛 

�̃�,(𝑆)
)

] (75) 

About our implementation,   𝑜 
𝑖𝑛 

�̃�,( )
 is efficiently computed by using the BiCGSTAB-FFT 

method [123], which has an asymptotical computational complexity 𝑂(𝐼𝐸𝑁 log𝑁), where 

𝐼𝐸 is the number of iterations in which the solution   𝑜 
𝑖𝑛 

�̃�,( )
 is reached. Moreover, the matrix 

inversion in (74) is not computed explicitly, since this task has a totally unfeasible 

computational workload. On the contrary, the matrix 𝐆�̃�,( )
𝑖𝑛ℎ = 𝐆 ,( )

𝑒𝑥 [𝐈 − diag3(�̃�)𝐆 
𝑖𝑛 ]

−1
 is 

considered, which is known as inhomogeneous Green matrix for �̃� and 𝑠th view [18]. From 

𝐆 
𝑖𝑛  symmetry and (29), the transpose 𝐆�̃�,( )

𝑖𝑛ℎ 𝑇
= [𝐈 − 𝐆 

𝑖𝑛 diag3(�̃�)]
−1

𝐆 ,( )
𝑒𝑥 𝑇

 results to have 

each column corresponding to the total internal electric field that would be generated when 

the incident internal electric field is given by the related row of 𝐆 ,( )
𝑒𝑥  and in presence of �̃�. 

Therefore, the rows of 𝐆�̃�,( )
𝑖𝑛ℎ  can be efficiently computed by using the BiCGSTAB-FFT 

method. The computation of �̂��̃�
3𝐷′

 can be a serious bottleneck for the imaging technique. In 

fact, it needs that the BiCGSTAB-FFT method is run 3𝑆𝑀 + 𝑆 times (computations of the 

inhomogeneous Green matrices and total internal electric fields for each view) in each outer 

iteration, which usually represents a significant workload. However,   𝑜 
𝑖𝑛 

�̃�,( )
 and 𝐆�̃�,( )

𝑖𝑛ℎ  for 

𝑠 = 1,… , 𝑆 can be computed in parallel. In our implementation, this has been accomplished 

by taking advantage of multi-core architectures and the OpenMP library [124]. 
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3.6 2D Phaseless Scenario: Fréchet Derivative Computation 

First of all, since in the phaseless case the data vector has real components only, it is useful 

to perform the following change of variable in order to work with real unknowns too [98] 

𝐜 = 𝐓𝐱 (76) 

where  

𝐓 = [𝐈𝑁×𝑁 𝑗𝐈𝑁×𝑁]   𝐱 = [
Re(𝐜)

Im(𝐜)
] (77) 

where 𝐈𝑁×𝑁 is the identity matrix of dimensions 𝑁 × 𝑁. In order to get the Fréchet derivative 

for the 2D phaseless single-view scattering operator, the starting point is 

𝐅𝑃
2𝐷(�̃� + 𝑑𝐱) = [𝐅2𝐷(�̃� + 𝑑𝐱) + 𝐞𝑖𝑛 

𝑒𝑥 ] ∘ [𝐅2𝐷(�̃� + 𝑑𝐱) + 𝐞𝑖𝑛 
𝑒𝑥 ]∗ (78) 

where �̃� is a generic point of the unknowns space in which the Taylor expansion is 

performed. Analogously to the 3D case, the 2D full-data scattering operator admits the 

following Taylor expansion 

𝐅2𝐷(�̃� + 𝑑𝐱) = 𝐅2𝐷(�̃�) + 𝐅�̃�
2𝐷′

𝑑𝐱 + 𝑂[diag(𝐓𝑑𝐱)2𝐞𝑖𝑛 
𝑖𝑛 ] (79) 

where  

𝐅�̃�
2𝐷′

= 𝐇 
𝑒𝑥 [𝐈 − diag(𝐓�̃�)𝐇 

𝑖𝑛 ]
−1

diag(𝐞 𝑜 
𝑖𝑛 

�̃�
)𝐓 (80) 

where 𝐞 𝑜 
𝑖𝑛 

�̃�
 is the total internal electric field in presence of the dielectric configuration 

indicated by �̃�. By inserting (79) in (78), the linear terms in 𝑑𝐱 reduces to 

2Re{[𝐅2𝐷(�̃�) + 𝐞𝑖𝑛 
𝑒𝑥 ]∗ ∘ 𝐅�̃�

2𝐷′
𝑑𝐱} (81) 

Therefore, the Fréchet derivative of the 2D phaseless single-view scattering operator is  

𝐅𝑃,�̃�
2𝐷′

= 2Re{diag[𝐅2𝐷(�̃�) + 𝐞𝑖𝑛 
𝑒𝑥 ]∗𝐅�̃�

2𝐷′
} (82) 

The Fréchet derivative for the multi-view case is again obtained by stacking the terms 

corresponding to each view, i.e.,  
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�̂�𝑃,�̃�
2𝐷′

= [

𝐅𝑃,�̃�,(1)
2𝐷 ′

⋮

𝐅𝑃,�̃�,(𝑆)
2𝐷 ′

] =

[
 
 
 2Re {diag[𝐅(1)

2𝐷(�̃�) + 𝐞𝑖𝑛 
𝑒𝑥 ,(1)]

∗

𝐅�̃�,(1)
2𝐷 ′

}

⋮

2Re {diag[𝐅(𝑆)
2𝐷(�̃�) + 𝐞𝑖𝑛 

𝑒𝑥 ,(𝑆)]
∗

𝐅�̃�,(𝑆)
2𝐷 ′

}]
 
 
 

 (83) 

Although the computational complexity of the 2D case is significantly lower than the 3D 

one, the BiCGSTAB-FFT method is exploited for the determination of the required 

inhomogeneous Green matrices and total internal electric fields in this case, too.  

 

3.7 Frequency Hopping 

In case measurements performed at 𝐹 different working frequencies were available, it is 

possible to exploit these information in order to improve the quality of the inversion at 

single-frequency thanks to the frequency hopping technique [52], [125]. The following steps 

constitute the method (the angular frequencies are supposed to be sorted in ascending order, 

i.e., 𝜔1 < 𝜔2 < ⋯ < 𝜔𝐹) 

1. Initialization. Run the inversion algorithm on the data gathered at the lowest working 

angular frequency 𝜔1. The resulting reconstructed dielectric image is indicated with �̃�𝜔1
. 

Transform this vector in the following starting guess 

�̃�0,𝜔2
= Re(�̃�𝜔1

) + 𝑗
𝜔1

𝜔2
Im(�̃�𝜔1

) (84) 

2. Loop. For 𝑤 = 2,…𝐹 − 1, run the inversion algorithm on the data gathered at the 

working angular frequency 𝜔𝑤 starting with the initial guess �̃�0,𝜔𝑤
, obtaining the 

reconstructed dielectric image �̃�𝜔𝑤
. Transform this solution in the starting guess  

�̃�0,𝜔𝑤+1
= Re(�̃�𝜔𝑤

) + 𝑗
𝜔𝑤

𝜔𝑤+1
Im(�̃�𝜔𝑤

) (85) 

3. Output. Run the inversion algorithm on the data gathered at the highest working angular 

frequency 𝜔𝐹 with the starting guess �̃�0,𝜔𝐹
. The reconstructed dielectric image is the 

final one �̃�. 
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Chapter 4 Numerical and Experimental Validation: 3D 

Full-Vector Scenario 

 

In this Chapter, the results concerning the 3D full-vector inversion schemes are reported. 

Both the truncated Landweber and the conjugate gradient methods have been considered 

[118], [119], [126]. In order to evaluate the performance of the algorithms, the following 

error metrics are used [118] 

 𝑖𝑛𝑣 =
‖�̃� − 𝐜‖2

‖𝐜‖2
 

 𝑜 𝑗 =
1

𝑁𝑜 𝑗
∑|

�̃�(𝐫𝑜 𝑗) − 𝑐(𝐫𝑜 𝑗)

𝑐(𝐫𝑜 𝑗) + 1
|

𝐫𝑜𝑏𝑗

 

  =
1

𝑁 
∑|

�̃�(𝐫 ) − 𝑐(𝐫 )

𝑐(𝐫 ) + 1
|

𝐫𝑏

 

(86) 

where 𝑐 and �̃� are the actual and reconstructed contrast functions, respectively, 𝐫𝑜 𝑗 are the 

centers of the 𝑁𝑜 𝑗 subdomains occupied by the target, and 𝐫  are the centers of the 𝑁  

subdomains occupied by the background medium only. In particular, the first metric in (86) 

is a normalized mean square error (NMSE) computed on the whole investigation domain, 

the second one is a relative mean error on the reconstruction of the target only, and the last 

one is a relative mean error on the reconstruction of the background only. In order to evaluate 

the performance versus the norm parameter 𝑝, this has been varied from 1.1 to 3 with a step 

of 0.1 for each test case. Finally, it is useful to define the following metrics for the outer and 

inner residuals vectors 

 𝑖
𝑜𝑢 =

‖ ̂  𝑎 
𝑒𝑥 − �̂�3𝐷(𝐜𝑖)‖𝒟

2

‖ ̂  𝑎 
𝑒𝑥 ‖

𝒟

2  (87) 

 𝑖,𝑘
𝑖𝑛 =

‖�̂�𝐜𝑖
3𝐷′

𝐡𝑘 − [ ̂  𝑎 
𝑒𝑥 − �̂�3𝐷(𝐜𝑖)]‖𝒟

2

‖ ̂  𝑎 
𝑒𝑥 ‖

𝒟

2  (88) 
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4.1 Numerical Validation: Landweber-based Method 

Let us start with the description of the illuminating and measurement simulated setup. The 

background medium is vacuum, which is characterized by the propagation constant 𝑘0 =

𝜔√𝜇0𝜖0. The working frequency is 𝑓 = 300 MHz. In all cases, 𝑆 = 6 views are considered. 

The corresponding incident electric fields are given by the following unit-amplitude plane 

waves 

 𝑖𝑛 ,( )(𝐫) =  −𝑗𝑘0�̂�(𝑠)⋅𝐫�̂�( ) 

�̂�( ) = sin  ( ) cos ( ) �̂� + sin  ( ) sin  ( ) �̂� + cos  ( ) �̂� 

�̂�( ) = cos  ( ) cos ( ) �̂� + cos  ( ) sin ( ) �̂� − sin  ( ) �̂� 

(89) 

where 𝑘0�̂�( ) is the wave vector, �̂�( ) is the polarization vector, and  ( ),  ( ) are the angles 

in the spherical coordinate system (as indicated in Figure 1), which has been set as follows 

( ( ),  ( )) = {

(0,0)            𝑠 = 1

(
𝜋

2
, (𝑠 − 2)

𝜋

2
)    𝑠 = 2,… ,5

(𝜋, 0)           𝑠 = 6

 (90) 

For every view, the total electric field is collected in 𝑀 = 82 measurement points uniformly 

distributed on a sphere of radius 𝑅𝑉𝑜𝑏𝑠
= 2𝜆0, with 𝜆0 = 1 m free-space wavelength. It is 

worth noting that the sampling condition derived from the 3D degrees of freedom theory for 

electric fields [114] is not accomplished. The domain 𝑉𝑖𝑛𝑣 is a cube of side 𝐿𝑉𝑖𝑛𝑣
= 𝜆0. 

Figure 6 shows the descripted configuration. The investigation volume has been partitioned 

with two different cube-based meshes for the forward and inverse problems, in order to avoid 

inverse crimes [85]: a coarse mesh with 𝑁 = 8000 voxels for the inverse problem and a fine 

mesh with 𝑁𝑓𝑤𝑑 = 29791 voxels for the forward one. The simulated electric field 

measurements have been numerically computed by using a custom code based on the MoM. 

Moreover, these synthetic data have been corrupted with an additive white Gaussian noise 

with zero mean and variance corresponding to a signal-to-noise ratio 𝑆𝑁𝑅 = 25 dB, in order 

to simulate real operating conditions. In particular, the standard deviation 𝜎𝜂 of the additive 

noise vector is related to the 𝑆𝑁𝑅 by the following formula [127] 
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𝑆𝑁𝑅 = 10 log10 (
‖ ̂ 𝑜 

𝑒𝑥 ‖
2

2

2 ⋅ 3𝑆𝑀𝜎𝜂
2
) (91) 

 

 

Figure 6. Measurement and illumination setup for the numerical validation of the 3D full-vector microwave 

imaging procedures. 

 

Finally, the following stopping rules are adopted for the inexact-Newton scheme with 

truncated Landweber method 

 Outer loop. Maximum number of iterations equals to 𝐼 = 20 or  

 𝑖
𝑜𝑢 ≤ 𝜏

‖𝛅‖𝒟
2

‖ ̂  𝑎 
𝑒𝑥 ‖

𝒟

2  
(92) 

with 𝛅 vector containing the values of the additive noise, and 𝜏 ≥ 1. This kind of 

stopping criterion derives from the Morozov’s generalized discrepancy principle 

[85], [89]. The idea at the base of this criterion is to avoid an over-fitting behavior. 

In this section, 𝜏 = 1 is adopted. 

 Inner loop. Maximum number of iterations equals to 𝐿 = 10 or 

 𝑖,𝑘
𝑖𝑛

 𝑖
𝑜𝑢 ≤ 𝜏𝜇 (93) 

with 𝜏𝜇 ∈ (0,1] [88], [89]. The value 𝜏𝜇 = 0.5 is selected. 
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4.1.1 Reconstruction capabilities versus the scatterer dimension 

Firstly, the reconstruction capabilities of the proposed microwave imaging algorithm have 

been evaluated by considering an investigation domain containing a single lossless sphere 

with center 𝐫 = (0.1,0.1,0.1)𝜆0 and relative dielectric permittivity 𝜖𝑟 = 2.5. The radius of 

the sphere 𝑎1 has been varied in the range [0.15,0.4]𝜆0. The ground truth for the case 𝑎1 =

0.2𝜆0 is shown in Figure 7. 

 

  

 (a) (b) 

Figure 7. Actual distribution of the relative dielectric permittivity. (a) Three-dimensional view; (b)  −   cut 

( = 0.1𝜆0). Single sphere with 𝑎1 = 0.2𝜆0. 

 

Figure 8 shows the behavior of the NMSE for some of the considered values of the cylinder’s 

radius. 

 

 

Figure 8. Behavior of  𝑖𝑛𝑣 versus the norm parameter 𝑝 and for different values of the radius 𝑎1. Single sphere. 
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Moreover, the values of the norm parameter 𝑝 providing the NMSE-optimal reconstructions 

(indicated as 𝑝𝑜𝑝 ), the related mean relative errors, the final numbers of performed outer 

iterations 𝑖𝑓, and the total computational times 𝑇 are reported in Table 1. The corresponding 

data for the Hilbert-space inversion (i.e., with 𝑝 = 2) are also reported for comparison 

purpose. 

 

Table 1. Reconstruction errors, final number of outer iterations 𝑖𝑓, and computational times 𝑇 versus 𝑎1 in 

correspondence of 𝑝 = 𝑝𝑜𝑝  and 𝑝 = 2 (Hilbert space approach). 

𝒂𝟏 [𝝀𝟎] 
𝒍𝒑𝒐𝒑𝒕 𝒍𝟐 (Hilbert) 

𝑝𝑜𝑝   𝑜 𝑗    𝑖𝑓 𝑇 [s] (*)  𝑜 𝑗    𝑖𝑓 𝑇 [s] (*) 

0.15 1.2 0.36 0.017 1 46 0.47 0.065 1 46 

0.2 1.3 0.28 0.042 2 230 0.33 0.11 2 222 

0.25 1.3 0.26 0.063 2 262 0.29 0.13 2 174 

0.3 1.3 0.14 0.11 4 748 0.16 0.21 4 791 

0.35 1.4 0.18 0.14 5 1089 0.15 0.22 4 777 

0.4 1.8 0.16 0.25 6 1534 0.16 0.27 5 1225 
(*) These refer to a PC equipped with a quad-core CPU Intel Core i5-2310 @2.9 GHz and 8 GB of RAM. 

 

As can be seen, in all cases the optimal norm parameters are smaller than 2 (corresponding 

to the standard Hilbert-space algorithm), and the errors tend to increase above these values. 

As expected, the computational times 𝑇 grow as 𝑎1 increases, since the scatterer becomes 

stronger. In fact, when the size and/or the dielectric contrast of the target become larger, an 

increasing number of Newton iterations are needed, since the inner linearization is locally 

less accurate in the first iterations. Moreover, the single outer iteration takes more time, too, 

since the BiCGSTAB-FFT used to compute the internal electric fields and the 

inhomogeneous Green’s functions, as indicated in Section 3.5, requires more iterations to 

converge. For completeness, the outer residuals  𝑖
𝑜𝑢  versus the iteration number 𝑖, for the 

values of 𝑎1 and 𝑝𝑜𝑝  reported in Table 1, are shown in Figure 9, by which we can appreciate 

the different convergence rates for the various simulated spheres. An example of the 

reconstructed distributions of the relative dielectric permittivity is shown in Figure 10 for 

the case 𝑎1 = 0.2𝜆0 with 𝑝 = 𝑝𝑜𝑝 = 1.3. For comparison purposes, Figure 11 reports the 

reconstruction obtained on the same data but using the standard regularization scheme in 

Hilbert spaces (𝑝 = 2). Although the object can be identified in both reconstruction, strong 

oversmoothing effects can be noticed when considering 𝑙2 spaces. 
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Figure 9. Behavior of  𝑖
𝑜𝑢  versus the iteration number for the values of 𝑎1 and 𝑝𝑜𝑝  reported in Table 1. Single 

sphere. 

 

  

 (a) (b) 

  

 (c) (d) 

Figure 10. Reconstructed distribution of the dielectric permittivity with 𝑝 = 𝑝𝑜𝑝 = 1.3. (a) Three-dimensional 

view; (b)  −   cut ( = 0.1𝜆0); (c)  −   cut ( = 0.1𝜆0); (d)  −   cut ( = 0.1𝜆0). Single sphere with 𝑎1 =

0.2𝜆0. 
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 (a) (b) 

  

 (c) (d) 

Figure 11. Reconstructed distribution of the dielectric permittivity with 𝑝 = 2 (Hilbert space approach). (a) 

Three-dimensional view; (b)  −   cut ( = 0.1𝜆0); (c)  −   cut ( = 0.1𝜆0); (d)  −   cut ( = 0.1𝜆0). 

Single sphere with 𝑎1 = 0.2𝜆0. 

 

4.1.2 Reconstruction capabilities in case of separate scatterers (two spheres) 

In this Section, two separate spheres are considered. The first one has center 𝐫 ,1 =

(0.15,0.15,0.15)𝜆0, relative dielectric permittivity 𝜖𝑟,1, and radius 𝑎1 = 0.2𝜆0, whereas the 

second one has center 𝐫 ,2 = −𝐫 ,1, relative dielectric permittivity 𝜖𝑟,2 = 2.5, and radius 

𝑎2 = 𝑎1. The relative dielectric permittivity of the first sphere has been varied in the range 

[2,6]. The ground truth for 𝜖𝑟,1 = 4 is shown in Figure 12. The trends of the NMSE versus 

the norm parameter 𝑝 for different values of the simulated relative dielectric permittivity 𝜖𝑟,1 

are reported in Figure 13. Moreover, the mean relative errors, and the final numbers of 

performed outer iterations 𝑖𝑓 in correspondence of 𝑝𝑜𝑝  and 𝑝 = 2 are reported in Table 2. 
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 (a) (b) 

 

 (c) 

Figure 12. Actual distribution of the relative dielectric permittivity. (a) Three-dimensional view; (b)  −   cut 

( = −0.15𝜆0); (c)  −   cut ( = 0.15𝜆0). Separate spheres with 𝜖𝑟,1 = 4. 

 

 

Figure 13. Behavior of  𝑖𝑛𝑣 versus the norm parameter 𝑝 and for different values of the relative dielectric 

permittivity 𝜖𝑟,1. Separate spheres. 
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Table 2. Mean relative errors and final number of outer iterations 𝑖𝑓 versus 𝜖𝑟,1 in correspondence of 𝑝 = 𝑝𝑜𝑝  

and 𝑝 = 2 (Hilbert space approach). 

𝝐𝒓,𝟏 
𝒍𝒑𝒐𝒑𝒕 𝒍𝟐 (Hilbert) 

𝑝𝑜𝑝   𝑜 𝑗    𝑖𝑓  𝑜 𝑗    𝑖𝑓 

2 1.2 0.27 0.043 2 0.31 0.13 2 

3 1.2 0.3 0.057 3 0.36 0.15 2 

4 1.2 0.31 0.077 3 0.37 0.20 3 

5 1.3 0.37 0.17 5 0.40 0.28 5 

6 1.3 0.39 0.27 8 0.45 0.45 9 

 

Again, the more general Banach space approach is able to outperforms the classic Hilbert 

space one. However, the reconstruction accuracy gets worse as the dielectric permittivity of 

the first sphere increases, because of the lesser reliability of the inner linearization. 

Moreover, the outer residuals  𝑖
𝑜𝑢  versus the iteration number 𝑖, for the non-Hilbertian cases 

reported in Table 2, shown in Figure 14 allow us to better appreciate the slower convergence 

as 𝜖𝑟,1 increases.  

 

 

Figure 14. Behavior of  𝑖
𝑜𝑢  versus the iteration number for the values of 𝜖𝑟,1 and 𝑝𝑜𝑝  reported in Table 2. 

Separate spheres. 

 

Figure 15 shows the reconstructed distribution of the relative dielectric permittivity obtained 

with the optimal norm parameter 𝑝𝑜𝑝 = 1.2 for 𝜖𝑟,1 = 4, whereas the corresponding result 

obtained with 𝑝 = 2 (Hilbert space) is reported in Figure 16. As can be seen, the classic 

inexact-Newton shows a severe underestimation in the reconstructed relative dielectric 

permittivity distribution, which is significantly mitigated in 𝑙𝑝𝑜𝑝𝑡. 
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 (a) (b) 

  

 (c) (d) 

Figure 15. Reconstructed distribution of the dielectric permittivity with 𝑝 = 𝑝𝑜𝑝 = 1.2. (a) Three-dimensional 

view; (b)  −   cut ( = −0.15𝜆0); (c)  −   cut ( = 0.15𝜆0); (d)  −   cut ( = 0.15𝜆0). Separate spheres 

with 𝜖𝑟,1 = 4. 

 

4.1.3 Reconstruction capabilities versus the inner stopping threshold 

The dependence of the reconstruction performance on the inner stopping threshold 𝜏𝜇 is here 

assessed. The value of 𝜏𝜇 has been varied in the admissible range (0,1]. The used 

investigation domain contains the separate targets introduced in Section 4.1.2 with relative 

dielectric permittivity of the first sphere fixed to 𝜖𝑟,1 = 4. The norm parameter 𝑝 has been 

set equal to 𝑝𝑜𝑝 = 1.2. Table 3 reports the obtained values of the reconstruction errors and 

the performed outer iterations. We can see that small values of 𝜏𝜇 produce higher errors. In 

fact, when this threshold is excessively low, a proper early stopping of the inner loop rarely 

occurs, resulting in a weak regularization and so in an easier propagation of the noise. For 

values in the range [0.5,1] the errors exhibit only small variations, but the number of needed 
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outer iterations increases as 𝜏𝜇 approaches 1, since a low number of inner iterations causes 

a slow update of the estimated contrast function. 

 

  

 (a) (b) 

  

 (c) (d) 

Figure 16. Reconstructed distribution of the dielectric permittivity with 𝑝 = 2 (Hilbert space approach). (a) 

Three-dimensional view; (b)  −   cut ( = −0.15𝜆0); (c)  −   cut ( = 0.15𝜆0); (d)  −   cut ( = 0.15𝜆0). 

Separate spheres with 𝜖𝑟,1 = 4. 

 

Table 3. Reconstruction errors and final number of outer iterations 𝑖𝑓 versus 𝜏𝜇 in correspondence of 𝑝 =

𝑝𝑜𝑝 = 1.2. Separate spheres with 𝜖𝑟,1 = 4. 

𝝉𝝁 𝒆𝒊𝒏𝒗 𝒆𝒐𝒃𝒋 𝒆𝒃 𝒊𝒇 

0.25 0.60 0.34 0.087 3 

0.5 0.57 0.31 0.077 3 

0.75 0.57 0.32 0.078 5 

0.95 0.58 0.32 0.078 9 
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4.1.4 Reconstruction capabilities with inhomogeneous target and versus the signal-

to-noise ratio 

In this Section, the target consists in an inhomogeneous circular cylinder having height ℎ =

0.6𝜆0, radius 𝑅 = 0.2𝜆0, and center 𝐫 = (0.15,0.15,0)𝜆0. The lowest half of this cylinder 

has relative dielectric permittivity 𝜖𝑟,𝑙 = 2, whereas the upper one has 𝜖𝑟,𝑢 = 3 (Figure 17).  

 

  

 (a) (b) 

Figure 17. Actual distribution of the relative dielectric permittivity. (a) Three-dimensional view; (b)  −   cut 

( = 0.15𝜆0). Inhomogeneous cylinder. 

 

Moreover, in order to test the noise rejection capability of the proposed 3D microwave 

imaging technique, the 𝑆𝑁𝑅 has been varied in the range [5,50] dB. The behavior of the 

resulting NMSE versus the signal-to-noise ratio, obtained with both 𝑝 = 𝑝𝑜𝑝  and 𝑝 = 2 

(Hilbert-space case), is shown in Figure 18.  

 

Figure 18. Behavior of  𝑖𝑛𝑣 versus the signal-to-noise ratio 𝑆𝑁𝑅 for 𝑝 = 𝑝𝑜𝑝  and 𝑝 = 2 (Hilbert space 

approach). Inhomogeneous cylinder. 
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The inexact-Newton scheme in 𝑙𝑝𝑜𝑝𝑡 presents a higher robustness to noise with respect to the 

standard Hilbert-space approach, as such behavior is also confirmed by the corresponding 

mean relative errors reported in Table 4, in which, although similar  𝑜 𝑗 are achieved by the 

two methods, there is a significant gap on   .  

 

Table 4. Mean relative errors and final number of outer iterations 𝑖𝑓 versus 𝑆𝑁𝑅 in correspondence of 𝑝 =

𝑝𝑜𝑝  and 𝑝 = 2 (Hilbert space approach). 

𝑺𝑵𝑹 [𝐝𝐁] 
𝒍𝒑𝒐𝒑𝒕 𝒍𝟐 (Hilbert) 

𝑝𝑜𝑝   𝑜 𝑗    𝑖𝑓  𝑜 𝑗    𝑖𝑓 

5 1.4 0.46 0.25 1 0.44 0.46 1 

10 1.4 0.50 0.15 1 0.50 0.29 1 

20 1.4 0.27 0.10 2 0.26 0.18 2 

30 1.2 0.25 0.033 3 0.26 0.11 3 

40 1.3 0.24 0.050 10 0.23 0.093 9 

50 1.3 0.24 0.049 19 0.22 0.087 19 

 

From this table, we can see also the action of the stopping rule in (92); in fact, the ‖𝛅‖𝒟
2  term 

grows as the 𝑆𝑁𝑅 decreases, and so the method is stopped earlier. Some examples of the 

reconstructed distributions of the relative dielectric permittivity are shown in Figure 19-21 

for the values of 𝑆𝑁𝑅 = 10 dB (𝑝𝑜𝑝 = 1.4), 𝑆𝑁𝑅 = 20 dB (𝑝𝑜𝑝 = 1.4), and 𝑆𝑁𝑅 =

30 dB (𝑝𝑜𝑝 = 1.2), respectively. In the same figures, the corresponding reconstructions 

obtained in Hilbert space are reported, too. As can be seen, in all cases, the advantages of 

using the Banach-space procedure are quite evident. 

 

  

 (a) (b) 

Figure 19. Reconstructed distribution of the dielectric permittivity for the signal-to-noise ratio 𝑆𝑁𝑅 = 10 dB. 

(a) 𝑝𝑜𝑝 = 1.4; (b) 𝑝 = 2. Inhomogeneous cylinder. 
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 (a) (b) 

Figure 20. Reconstructed distribution of the dielectric permittivity for the signal-to-noise ratio 𝑆𝑁𝑅 = 20 dB. 

(a) 𝑝𝑜𝑝 = 1.4; (b) 𝑝 = 2. Inhomogeneous cylinder. 

 

  

 (a) (b) 

Figure 21. Reconstructed distribution of the dielectric permittivity for the signal-to-noise ratio 𝑆𝑁𝑅 = 30 dB. 

(a) 𝑝𝑜𝑝 = 1.2; (b) 𝑝 = 2. Inhomogeneous cylinder. 

 

4.1.5 Reconstruction capabilities against target with lossy inclusion 

The simulated target is composed by a cube of side 𝐿 = 0.7𝜆0, centered in the origin, and 

with a spherical inclusion of radius 𝑅 = 0.2𝜆0 and center 𝐫 = −(0.1,0.1,0.1)𝜆0. The 

relative dielectric permittivity of the cube is 𝜖𝑟,1 = 1.5, whereas the sphere is characterized 

by 𝜖𝑟,2 = 3 − 𝑗1.2, that is a non-negligible electric conductivity 𝜎2 = 0.02 S/m is present. 

The related ground truth is shown in Figure 22.  
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 (a) (b) 

  

 (c) (d) 

Figure 22. Actual distribution of the relative dielectric permittivity. Three-dimensional views of (a) real and 

(b) imaginary parts; cuts of (c) real and (d) imaginary parts ( = −0.1𝜆0). Target with lossy inclusion. 

 

The reconstructed distributions of the real and imaginary parts of the complex dielectric 

permittivity obtained for 𝑝 = 𝑝𝑜𝑝 = 1.3 and 𝑝 = 2 (Hilbert space) are shown in Figure 23 

and Figure 24, respectively. As can be seen, the inclusion and the host cube have been 

detected and the estimated values of the dielectric properties are fairly good in the result 

obtained in the space 𝑙1.3. Instead, the real part of the dielectric permittivity is underestimated 

in the Hilbert-space solution. 

4.1.6 T-shaped target 

Finally, an inhomogeneous T-shaped object is located in a larger investigation domain of 

side 𝐿𝑉𝑖𝑛𝑣
= 2𝜆0 and partitioned into 𝑁 = 27000 cubic voxels. The target is composed by 

two parallelepipeds: the upper one has center 𝐫 ,1 = (0,0,0.55)𝜆0, and sides 𝑙𝑥,1 = 𝜆0, 𝑙𝑦,1 =

𝑙𝑧,1 = 0.3𝜆0, whereas the lower one has center 𝐫 ,2 = (0,0,0), and sides 𝑙𝑥,2 = 𝑙𝑦,2 = 0.3𝜆0, 
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𝑙𝑧,2 = 0.8𝜆0. The relative dielectric permittivities of the two parts are 𝜖𝑟,1 = 3 and 𝜖𝑟,2 = 2. 

The ground truth is shown in Figure 25. The reconstructed distributions of the relative 

dielectric permittivity for the optimal value of the norm parameter 𝑝𝑜𝑝 = 1.2 and 𝑝 = 2 

(Hilbert space) are shown in Figure 26 and Figure 27, respectively. The two regions with 

different dielectric properties are clearly identified when 𝑝 = 𝑝𝑜𝑝 = 1.2. On the contrary, a 

severe underestimation phenomenon affects the Hilbert space result, in which the 

parallelepipeds are barely distinguishable. For completeness, the resulting relative mean 

errors are  𝑜 𝑗 = 0.28,   = 0.02 for 𝑝𝑜𝑝 = 1.2, and  𝑜 𝑗 = 0.36,   = 0.09 for 𝑝 = 2. 

 

  

 (a) (b) 

  

 (c) (d) 

Figure 23. Reconstructed distribution of the dielectric permittivity with 𝑝 = 𝑝𝑜𝑝 = 1.3. Three-dimensional 

views of (a) real and (b) imaginary parts; cuts of (c) real and (d) imaginary parts ( = −0.1𝜆0). Target with 

lossy inclusion. 
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 (a) (b) 

  

 (c) (d) 

Figure 24. Reconstructed distribution of the dielectric permittivity with 𝑝 = 2 (Hilbert space approach). Three-

dimensional views of (a) real and (b) imaginary parts; cuts of (c) real and (d) imaginary parts ( = −0.1𝜆0). 

Target with lossy inclusion. 

 

  

 (a) (b) 

Figure 25. Actual distribution of the relative dielectric permittivity. (a) Three-dimensional view; (b)  −   cut 

( = 0). T-shaped target. 
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 (a) (b) 

Figure 26. Reconstructed distribution of the dielectric permittivity with 𝑝 = 𝑝𝑜𝑝 = 1.2. (a) Three-dimensional 

view; (b)  −   cut ( = 0). T-shaped target. 

 

  

 (a) (b) 

Figure 27. Reconstructed distribution of the dielectric permittivity with 𝑝 = 2 (Hilbert space approach). (a) 

Three-dimensional view; (b)  −   cut ( = 0). T-shaped target. 

 

4.2  Numerical Validation: Conjugate Gradient-based Method 

In this Section, some preliminary results on synthetic data from the inexact-Newton scheme 

based on the conjugate gradient method applied in the 3D full-vector scenario are shown 

[126]. The same simulated illumination and measurement setup as reported in Section 4.1 is 

adopted here. The following stopping criteria are used 

 Outer loop. Maximum number of iterations equals to 𝐼 = 20 or  

 𝑖
𝑜𝑢 −  𝑖+1

𝑜𝑢 

 𝑖+1
𝑜𝑢 ≤ 𝜏𝐼 (94) 
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with 𝜏𝐼 = 0.01 threshold on the relative outer residual variation [96]. 

 Inner loop. Maximum number of iterations equals to 𝐶 = 10 or 

 𝑖,𝑘
𝑖𝑛 −  𝑖,𝑘+1

𝑖𝑛

 𝑖,𝑘+1
𝑖𝑛

≤ 𝜏𝐶 
(95) 

with 𝜏𝐶 = 0.05 threshold on the relative inner residual variation [126]. 

4.2.1 Reconstruction capabilities versus the scatterer dimension 

The reconstruction capabilities of the proposed conjugate gradient-based microwave 

imaging algorithm are here evaluated considering the investigation domain adopted in 

Section 4.1.1. Figure 28 shows the resulting NMSE behaviors versus the norm parameter 𝑝 

and for several radius of the sphere 𝑎1 in the range [0.15,0.3]𝜆0.  

 

 

Figure 28. Behavior of  𝑖𝑛𝑣 versus the norm parameter 𝑝 and for different values of the radius 𝑎1. Single 

sphere. Conjugate gradient-based method. 

 

Analogously to what we have seen in Section 4.1.1, the conjugate gradient-based inexact-

Newton in Banach spaces is able to outperform the classic version of the algorithm in Hilbert 

spaces for values of the norm parameter 𝑝 in the range (1,2). Figure 29 and Figure 30 report 

the reconstructed relative dielectric permittivity distributions obtained from the conjugate 

gradient-based method with 𝑝 = 𝑝𝑜𝑝 = 1.3 and 𝑝 = 2 (Hilbert space), respectively, for the 

case 𝑎1 = 0.2𝜆0. 



59 

 

 

     

 (a) (b) 

      

 (c) (d) 

Figure 29. Reconstructed distribution of the dielectric permittivity with 𝑝 = 𝑝𝑜𝑝 = 1.3. (a) Three-dimensional 

view; (b)  −   cut ( = 0.1𝜆0); (c)  −   cut ( = 0.1𝜆0); (d)  −   cut ( = 0.1𝜆0). Single sphere with 𝑎1 =

0.2𝜆0. Conjugate gradient-based method. 

 

The same comments made for the reconstructions returned by the Landweber-based imaging 

method hold here similarly. Finally, a comparison about the convergence rates between the 

conjugate gradient-based inexact-Newton and the Landweber-based one is here made. In 

order to proper compare the two methods, the stopping criteria indicated in (94) and (95) are 

adopted also in the Landweber-based approach. For the case 𝑎1 = 0.3𝜆0, Figure 31 reports 

the behaviors of the inner and outer residuals metrics as defined in (87) and (88) versus the 

iteration number for both the compared methods in correspondence of their NMSE-optimal 

norm parameters (𝑝𝑜𝑝 = 1.6 and 𝑝𝑜𝑝 = 1.3 for the conjugate gradient-based and 

Landweber-based methods, respectively). Moreover, Figure 32 shows the corresponding 

trends of the NMSE versus the iteration number. 

𝜖 r
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 (a) (b) 

      

 (c) (d) 

Figure 30. Reconstructed distribution of the dielectric permittivity with 𝑝 = 2 (Hilbert space approach). (a) 

Three-dimensional view; (b)  −   cut ( = 0.1𝜆0); (c)  −   cut ( = 0.1𝜆0); (d)  −   cut ( = 0.1𝜆0). 

Single sphere with 𝑎1 = 0.2𝜆0. Conjugate gradient-based method. 

 

 

Figure 31. Behavior of  𝑖
𝑜𝑢  and  𝑖,𝑘

𝑖𝑛 for the conjugate gradient-based (𝑝𝑜𝑝 = 1.6) and Landweber-based 

(𝑝𝑜𝑝 = 1.3) methods versus the iteration number. Single sphere with 𝑎1 = 0.3𝜆0. 
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Figure 32. Behavior of  𝑖𝑛𝑣 for the conjugate gradient-based (𝑝𝑜𝑝 = 1.6) and Landweber-based (𝑝𝑜𝑝 = 1.3) 

methods versus the iteration number. Single sphere with 𝑎1 = 0.3𝜆0. 

 

It can be seen that the adoption of the conjugate gradient method as inner linear solver for 

the inexact-Newton scheme allows a faster convergence in both the inner and outer loops 

than the Landweber algorithm. This result is in agreement with the numerical analysis theory 

in which the higher convergence rate of the classic conjugate gradient method with respect 

to the Landweber one has been proven, and that can be extended to the framework of the 

Banach spaces by continuity arguments [94]. On the other hand, in Figure 32 we see that the 

Landweber-based approach reaches a lower NMSE in the considered test case. However, 

Figure 33 shows that the two reconstructions are essentially equivalent. 

 

     

 (a) (b)  

Figure 33. Reconstructed distributions of the dielectric permittivity. (a) Conjugate gradient-based method with 

𝑝𝑜𝑝 = 1.6; (b) Landweber-based method with 𝑝𝑜𝑝 = 1.3. Single sphere with 𝑎1 = 0.3𝜆0. 
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4.2.2 Reconstruction capabilities in case of separate scatterers (sphere and cylinder) 

In this Section, the conjugate gradient-based inexact-Newton imaging algorithm is tested 

against an investigation domain containing two objects. The first one is a sphere with center 

𝐫 ,1 = (0.25,0.25,0)𝜆0, diameter 𝐷1 = 0.25𝜆0, and relative dielectric permittivity 𝜖𝑟,1. The 

second object is a circular cylinder with center 𝐫 ,2 = −𝐫 ,1, diameter 𝐷2 = 0.25𝜆0, height 

𝐻 = 0.4𝜆0, and relative dielectric permittivity 𝜖𝑟,2 = 2. The relative dielectric permittivity 

of the sphere 𝜖𝑟,1 has been varied in the range [2,5]. The ground truth for 𝜖𝑟,1 = 3 is shown 

in Figure 34.  

The behaviors of the NMSE versus the norm parameter 𝑝 for different values of the 

simulated relative dielectric permittivity 𝜖𝑟,1 are reported in Figure 35. 

 

     

 (a) (b)  

 

 (c)  

Figure 34. Actual distribution of the relative dielectric permittivity. (a) Three-dimensional view; (b)  −   cut 

( = −0.25𝜆0); (c)  −   cut ( = 0.25𝜆0). Sphere and cylinder with 𝜖𝑟,1 = 3. 

 

 

𝜖 r
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Figure 35. Behavior of  𝑖𝑛𝑣 versus the norm parameter 𝑝 and for different values of the relative dielectric 

permittivity 𝜖𝑟,1. Sphere and cylinder. Conjugate gradient-based method. 

 

Table 5. Mean relative errors and final number of outer iterations 𝑖𝑓 versus 𝜖𝑟,1 in correspondence of 𝑝 = 𝑝𝑜𝑝  

and 𝑝 = 2 (Hilbert space approach). Conjugate gradient-based method. 

𝝐𝒓,𝟏 
𝒍𝒑𝒐𝒑𝒕 𝒍𝟐 (Hilbert) 

𝑝𝑜𝑝   𝑜 𝑗    𝑖𝑓  𝑜 𝑗    𝑖𝑓 

2 1.2 0.20 0.04 3 0.35 0.07 3 

3 1.2 0.28 0.04 3 0.39 0.10 2 

4 1.3 0.31 0.05 3 0.40 0.10 2 

5 1.2 0.31 0.06 5 0.42 0.11 3 

 

Moreover, the mean relative errors and the final numbers of performed outer iterations 𝑖𝑓 in 

correspondence of 𝑝 = 𝑝𝑜𝑝  and 𝑝 = 2 are reported in Table 5.  

Similarly to Section 4.1.2, the reconstruction accuracy gets worse as the relative dielectric 

permittivity of the sphere increases, because, with strong scatterers, the first-order Taylor 

expansion in (58) has a smaller neighborhood of the current estimated solution in which the 

linearization is a good approximation of the underlying non-linear function. However, the 

Banach-space approach shows to better tackle such situation than the Hilbert-space one. 

Figure 36 reports the reconstructed distribution of the relative dielectric permittivity obtained 

with 𝑝𝑜𝑝 = 1.2 for the case 𝜖𝑟,1 = 3, whereas the corresponding result returned with 𝑝 = 2 

(Hilbert space) is reported in Figure 37. Although the scatterers are visible in both 

reconstructions, the solution belonging to 𝑙𝑝𝑜𝑝𝑡 has a higher fidelity to the actual dielectric 

distribution than the one of 𝑙2. 
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 (a)  (b)  

 

 (c)  

Figure 36. Reconstructed distribution of the dielectric permittivity with 𝑝 = 𝑝𝑜𝑝 = 1.2. (a) Three-dimensional 

view; (b)  −   cut ( = −0.25𝜆0); (c)  −   cut ( = 0.25𝜆0). Sphere and cylinder with 𝜖𝑟,1 = 3. Conjugate 

gradient-based method. 

 

4.2.3 Reconstruction capabilities with inhomogeneous target and versus the signal-

to-noise ratio 

In this Section, the same target adopted in Section 4.1.4 is used. Moreover, the same variation 

of the signal-to-noise ratio is here considered, namely 𝑆𝑁𝑅 ∈ [5,50] dB. The behavior of 

the resulting NMSE versus the signal-to-noise ratio, obtained with both 𝑝 = 𝑝𝑜𝑝  and 𝑝 = 2 

(Hilbert-space case), is shown in Figure 38. We see that the reconstructions obtained in non-

Hilbertian spaces are able to outperform the standard Hilbertian one. Such finding is also 

supported by the corresponding mean relative errors reported in Table 6.  
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 (a) (b)  

 

 (c)  

Figure 37. Reconstructed distribution of the dielectric permittivity with 𝑝 = 2 (Hilbert space approach). (a) 

Three-dimensional view; (b)  −   cut ( = −0.25𝜆0); (c)  −   cut ( = 0.25𝜆0). Sphere and cylinder with 

𝜖𝑟,1 = 3. Conjugate gradient-based method. 

 

 

Figure 38. Behavior of  𝑖𝑛𝑣 versus the signal-to-noise ratio 𝑆𝑁𝑅 for 𝑝 = 𝑝𝑜𝑝  and 𝑝 = 2 (Hilbert space 

approach). Inhomogeneous cylinder. Conjugate gradient-based method. 
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Table 6. Mean relative errors and final number of outer iterations 𝑖𝑓 versus 𝑆𝑁𝑅 in correspondence of 𝑝 =

𝑝𝑜𝑝  and 𝑝 = 2 (Hilbert space approach). Conjugate gradient-based method. 

𝑺𝑵𝑹 [𝐝𝐁] 
𝒍𝒑𝒐𝒑𝒕 𝒍𝟐 (Hilbert) 

𝑝𝑜𝑝   𝑜 𝑗    𝑖𝑓  𝑜 𝑗    𝑖𝑓 

5 1.1 0.58 0.02 1 0.37 0.32 3 

10 1.6 0.41 0.18 3 0.42 0.20 3 

20 1.5 0.26 0.13 4 0.26 0.18 4 

30 1.5 0.23 0.08 4 0.22 0.14 4 

40 1.7 0.23 0.09 7 0.22 0.13 8 

50 1.8 0.22 0.09 6 0.22 0.11 6 

 

In Section 4.1.4, we saw that the stopping rule for the outer loop based on the Morozov’s 

generalized discrepancy principle caused the method to be stopped earlier as the signal-to-

noise ratio decreased. In the present test case, although the adopted stopping criterion for the 

outer loop does not descend from the generalized discrepancy principle, Table 6 shows that 

also the action of this stopping rule induces the method to be stopped earlier as the 𝑆𝑁𝑅 

decreases. Some examples of the reconstructed distributions of the relative dielectric 

permittivity are shown in Figure 39-41 for the values of 𝑆𝑁𝑅 = 10 dB (𝑝𝑜𝑝 = 1.6), 𝑆𝑁𝑅 =

20 dB (𝑝𝑜𝑝 = 1.5), and 𝑆𝑁𝑅 = 30 dB (𝑝𝑜𝑝 = 1.5), respectively. In the same figures, the 

corresponding reconstructions obtained in Hilbert space are reported, too. The advantages 

of using the Banach-space procedure are quite evident in all the presented cases. 

 

         

 (a) (b) 

Figure 39. Reconstructed distribution of the dielectric permittivity for the signal-to-noise ratio 𝑆𝑁𝑅 = 10 dB. 

(a) 𝑝𝑜𝑝 = 1.6; (b) 𝑝 = 2. Inhomogeneous cylinder. Conjugate gradient-based method.  

 

𝜖 r
 

𝜖 r
 



67 

 

 

         

 (a) (b) 

Figure 40. Reconstructed distribution of the dielectric permittivity for the signal-to-noise ratio 𝑆𝑁𝑅 = 20 dB. 

(a) 𝑝𝑜𝑝 = 1.5; (b) 𝑝 = 2. Inhomogeneous cylinder. Conjugate gradient-based method. 

 

         

 (a) (b) 

Figure 41. Reconstructed distribution of the dielectric permittivity for the signal-to-noise ratio 𝑆𝑁𝑅 = 30 dB. 

(a) 𝑝𝑜𝑝 = 1.5; (b) 𝑝 = 2. Inhomogeneous cylinder. Conjugate gradient-based method. 

 

4.2.4 Reconstruction capabilities versus the inner stopping threshold 

The dependence of the reconstruction performance on the inner stopping threshold 𝜏𝐶 is here 

assessed. The value of 𝜏𝐶 is varied in the range [0.001,0.3]. The adopted investigation 

domain contains the inhomogeneous cylinder used in Section 4.2.3. The norm parameter 

𝑝𝑜𝑝 = 1.4 that is resulted to be optimal for the reference parameters 𝜏𝐶 = 0.05 and 𝑆𝑁𝑅 =

25 dB is here adopted for each tested value of 𝜏𝐶. Table 7 reports the obtained values of the 

reconstruction errors and the performed outer iterations. We see that small values of 𝜏𝐶 cause 

an improper stopping of the inner loop, resulting in a weak regularization and so in higher 

errors. For tested values higher than the reference 𝜏𝐶 = 0.05, the errors exhibit only small 
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variations, but the number of needed outer iterations increases as 𝜏𝐶 grows, since a low 

number of inner iterations causes a slow update of the estimated contrast function. 

 

Table 7. Reconstruction errors and final number of outer iterations 𝑖𝑓 versus 𝜏𝐶  in correspondence of 𝑝 = 1.4. 

Conjugate gradient-based method. 

𝝉𝑪 𝒆𝒊𝒏𝒗 𝒆𝒐𝒃𝒋 𝒆𝒃 𝒊𝒇 

0.001 1.20 0.32 0.33 4 

0.005 0.67 0.29 0.13 4 

0.01 0.65 0.28 0.12 4 

0.05 0.59 0.26 0.09 4 

0.1 0.58 0.26 0.09 5 

0.15 0.58 0.26 0.09 5 

0.20 0.58 0.26 0.09 5 

0.30 0.59 0.27 0.08 6 

 

4.2.5 T-shaped target 

The same inhomogeneous T-shaped target introduced in Section 4.1.6 is considered here. 

Figure 42 and Figure 43 show the reconstructed relative dielectric permittivity distributions 

returned with 𝑝𝑜𝑝 = 1.4 and 𝑝 = 2 (Hilbert space). Although the image in Figure 42 does 

not fully replicate the actual shape of the target, anyway the Banach-space conjugated 

gradient approach outperforms the Hilbert-space one again. For completeness, the resulting 

relative mean errors are  𝑜 𝑗 = 0.28,   = 0.07 for 𝑝𝑜𝑝 = 1.4, and  𝑜 𝑗 = 0.32,   = 0.12 

for 𝑝 = 2. 

 

     

 (a) (b)  

Figure 42. Reconstructed distribution of the dielectric permittivity with 𝑝 = 𝑝𝑜𝑝 = 1.4. (a) Three-dimensional 

view; (b)  −   cut ( = 0). T-shaped target. Conjugate gradient-based method. 
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 (a) (b)  

Figure 43. Reconstructed distribution of the dielectric permittivity with 𝑝 = 2 (Hilbert space approach). (a) 

Three-dimensional view; (b)  −   cut ( = 0). T-shaped target. Conjugate gradient-based method. 

 

4.3 Experimental Validation: Landweber-based Method 

The developed Landweber-based approach has been also validated by considering the 

measured dataset provided by the Institut Frésnel [128]. The dataset provides data in the 

range 3 − 8 GHz but, in order to work in the resonant regime with respect to the targets 

described in the following, 𝑓 = 3 GHz is selected, which correspond to a free-space 

wavelength 𝜆0 = 10 cm. The experimental system in which these measurements have been 

gathered consists in two moving antennas able to collect multi-view data. The transmitting 

antenna moves in 𝑆 𝑜 = 81 locations on a sphere of radius 𝑅𝑉𝑆
= 1.796 m and radiates 

sequentially with both vertical and horizontal polarizations, whereas the receiving one 

moves in 𝑀 = 27 positions (for each view) on a circumference of radius 𝑅𝑉𝑜𝑏𝑠
= 1.796 m 

placed on the  −   plane and records the vertical electric field component only. However, 

only a subset of 𝑆 = 25 evenly spaced vertically polarized sources has been considered here; 

this number has been found to be a good compromise between the need of increasing the 

available data as much as possible and the reduction of computational requirements. Since 

only the vertical component of the measured field is available, the transverse components of 

the data vector and of the predicted one have been set equal to zero, in order to exclude their 

role from the inversion process. Figure 44 shows the used illumination and measurement 

configuration. For deeper technical insights in the experimental apparatus, the reader is 

referred to [128]. 
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Figure 44. Illumination and measurement setup for the experimental validation of the 3D full-vector microwave 

imaging procedures. The red arrows symbolize the direction of the transmitting antenna’s main lobe. 

 

The stopping rules presented in the Section 4.1 are here adopted too. However, although the 

Morozov’s generalized discrepancy principle prescribes 𝜏 ≥ 1, here 𝜏 = 0.75 is used in 

order to mitigate the over-regularization that the generalized discrepancy principle often 

causes in practice [129]. The following two different targets are considered 

1. TwoSpheres. Two spheres with centers 𝐫 ,1 = (−2.5,0,0) cm and 𝐫 ,2 = (2.5,0,0) cm, 

radii 𝑅1 = 𝑅2 = 2.5 cm, and relative dielectric permittivities 𝜖𝑟,1 = 𝜖𝑟,2 = 2.6 (Figure 

45). The investigation domain 𝑉𝑖𝑛𝑣 is a cube of side 𝐿𝑉𝑖𝑛𝑣
= 15 cm, center in the axes 

origin, and partitioned in 𝑁 = 8000 cubic voxels. 

2. TwoCubes. Two cubes with centers 𝐫 ,1 = (1.25,−1.25,3.75) cm and 𝐫 ,2 =

(−1.25,1.25,6.25) cm, sides 𝐿1 = 𝐿2 = 2.5 cm, and relative dielectric permittivities 

𝜖𝑟,1 = 𝜖𝑟,2 = 2.35 (Figure 46). The investigation volume 𝑉𝑖𝑛𝑣 is a cube of side 𝐿𝑉𝑖𝑛𝑣
=

15 cm, centered at (0,0,5) cm, and partitioned in 𝑁 = 8000 cubic voxels. 

The behaviors of the resulting error metrics defined in (86) versus the norm parameter 𝑝 for 

both the TwoSpheres and TwoCubes targets are given in Figure 47. As it already happened 

with synthetic data, also here small values of the norm parameter 𝑝 allow to obtain 

significantly better results than the standard Hilbert-space inversion approach. The 

distributions of the relative dielectric permittivity reconstructed with the NMSE-optimal 
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norm parameter 𝑝𝑜𝑝 = 1.2 and 𝑝 = 2 (Hilbert space case) for both targets visually support 

this assertion (Figure 48-51). 

 

  

 (a) (b) 

Figure 45. Actual distribution of the relative dielectric permittivity. (a) Three-dimensional view; (b)  −   cut 

( = 0). TwoSpheres target. 

 

  

 (a) (b) 

 

 (c) 

Figure 46. Actual distribution of the relative dielectric permittivity. (a) Three-dimensional view; (b)  −   cut 

( = 0.375𝜆0); (c)  −   cut ( = −0.125𝜆0). TwoCubes target. 
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 (a) 

 

 (b) 

Figure 47. Behavior of  𝑖𝑛𝑣,  𝑜 𝑗, and    versus the norm parameter 𝑝. (a) TwoSpheres and (b) TwoCubes 

targets. 

 

  

 (a) (b) 

Figure 48. Reconstructed distribution of the dielectric permittivity with 𝑝 = 𝑝𝑜𝑝 = 1.2. (a) Three-dimensional 

view; (b)  −   cut ( = 0). TwoSpheres target. 
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 (a) (b) 

Figure 49. Reconstructed distribution of the dielectric permittivity with 𝑝 = 2 (Hilbert space approach). (a) 

Three-dimensional view; (b)  −   cut ( = 0). TwoSpheres target. 

 

  

 (a) (b) 

 

 (c) 

Figure 50. Reconstructed distribution of the dielectric permittivity with 𝑝 = 𝑝𝑜𝑝 = 1.2. (a) Three-dimensional 

view; (b)  −   cut ( = 0.375𝜆0); (c)  −   cut ( = −0.125𝜆0). TwoCubes target. 
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 (a) (b) 

 

 (c) 

Figure 51. Reconstructed distribution of the dielectric permittivity with 𝑝 = 2 (Hilbert space approach). (a) 

Three-dimensional view; (b)  −   cut ( = 0.375𝜆0); (c)  −   cut ( = −0.125𝜆0). TwoCubes target. 

 

The standard Hilbert-space inversion method produces smoothed images, where the 

separation between the two objects is not clear. On the contrary, the results returned working 

in 𝑙1.2 allow to clearly identify the two different objects. 

 

4.4 Experimental Validation: Conjugate Gradient-based Method 

In this Section, the inexact-Newton scheme based on the conjugated gradient method is 

tested on the same experimental data and setup reported in Section 4.3. Moreover, the 

stopping rules described in Section 4.2 are here adopted, too. The resulting trends of the 

reconstruction errors versus the norm parameter 𝑝 for both the TwoSpheres and TwoCubes 

targets are given in Figure 52.  
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 (a) 

 

 (b) 

Figure 52. Behavior of  𝑖𝑛𝑣,  𝑜 𝑗, and    versus the norm parameter 𝑝. (a) TwoSpheres and (b) TwoCubes 

targets. Conjugate gradient-based method. 

 

Also with the conjugate gradient method as inner linear solver, the Hilbert-space solution is 

the optimal one in no case; only small values of the norm parameter 𝑝 result to be the best. 

The reconstructed distributions of the relative dielectric permittivity given by 𝑝𝑜𝑝 = 1.4 

and 𝑝𝑜𝑝 = 1.2 for the TwoSpheres and TwoCubes targets, respectively, are shown in Figure 

53 and Figure 54. The corresponding images obtained in the Hilbert-space framework are 

shown in Figure 55 and Figure 56. The same conclusions made for the Landweber-based 

approach hold here for the images returned by the conjugate gradient-based one. 
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 (a) (b) 

Figure 53. Reconstructed distribution of the dielectric permittivity with 𝑝 = 𝑝𝑜𝑝 = 1.4. (a) Three-dimensional 

view; (b)  −   cut ( = 0). TwoSpheres target. Conjugate gradient-based method. 

 

     

 (a)  (b)  

 

  (c)  

Figure 54. Reconstructed distribution of the dielectric permittivity with 𝑝 = 𝑝𝑜𝑝 = 1.2. (a) Three-dimensional 

view; (b)  −   cut ( = 0.375𝜆0); (c)  −   cut ( = −0.125𝜆0). TwoCubes target. Conjugate gradient-based 

method. 
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 (a) (b) 

Figure 55. Reconstructed distribution of the dielectric permittivity with 𝑝 = 2 (Hilbert space approach). (a) 

Three-dimensional view; (b)  −   cut ( = 0). TwoSpheres target. Conjugate gradient-based method. 

 

     

 (a)  (b) 

 

 (c) 

Figure 56. Reconstructed distribution of the dielectric permittivity with 𝑝 = 2 (Hilbert space approach). (a) 

Three-dimensional view; (b)  −   cut ( = 0.375𝜆0); (c)  −   cut ( = −0.125𝜆0). TwoCubes target. 

Conjugate gradient-based method. 
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Chapter 5 Numerical and Experimental Validation: 2D 

Phaseless Scenario 

 

In this Chapter a numerical and experimental validation of the inexact-Newton scheme with 

truncated Landweber method in 𝑙𝑝 Banach spaces applied to the 2D phaseless setting is 

reported. To evaluate the reconstruction performance, the same error metrics defined in (86) 

are here adopted, too. Moreover, it is useful to define the following metrics for the residuals 

vectors 

 𝑖
𝑃𝐿 =

‖�̂� 𝑜 
𝑒𝑥 − �̂�𝑃

2𝐷(𝐱𝑖)‖𝒟

2

‖�̂� 𝑜 
𝑒𝑥 − [abs(�̂�𝑖𝑛 

𝑒𝑥 )]2‖
𝒟

2  (96) 

 𝑖,𝑘
𝑃𝐿 =

‖�̂�𝑃,𝐱𝑖
2𝐷 ′

𝐡𝑘 − [�̂� 𝑜 
𝑒𝑥 − �̂�𝑃

2𝐷(𝐱𝑖)]‖𝒟

2

‖�̂� 𝑜 
𝑒𝑥 − [abs(�̂�𝑖𝑛 

𝑒𝑥 )]2‖
𝒟

2  (97) 

 𝑖
𝐹𝐷 =

‖�̂�  𝑎 
𝑒𝑥 − �̂�2𝐷(𝐜𝑖)‖𝒟

2

‖�̂�  𝑎 
𝑒𝑥 ‖𝒟

2  (98) 

where the superscripts 𝑃𝐿 and 𝐹𝐷 are referred to the phaseless and full-data inversions, 

respectively, and abs(⋅) is the element-wise absolute value. For both kind of validation, the 

following stopping rules are used for the inversion procedure 

 Outer loop. Maximum number of iterations equals to 𝐼 = 100 or  

 𝑖
𝑃𝐿 −  𝑖+1

𝑃𝐿

 𝑖+1
𝑃𝐿 ≤ 𝜏𝐼 (99) 

with 𝜏𝐼 = 0.01 threshold on the relative outer residual variation [96]. 

 Inner loop. Maximum number of iterations equals to 𝐿 = 10 or 

 𝑖,𝑘
𝑃𝐿 −  𝑖,𝑘+1

𝑃𝐿

 𝑖,𝑘+1
𝑃𝐿 ≤ 𝜏𝐿 

(100) 
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with 𝜏𝐿 = 0.01 threshold on the relative inner residual variation [96]. 

 

5.1 Numerical Validation with Synthetic Data 

The numerical validation has been performed by considering a working frequency 𝑓 =

300 MHz and assuming a void background. The investigation domain 𝐷𝑖𝑛𝑣 is a square of 

side 𝐿𝐷𝑖𝑛𝑣
= 1.5𝜆0, whereas the observation one 𝐷𝑜   is a circumference with radius 𝑅𝐷𝑜𝑏𝑠

=

1.5𝜆0. In order to properly sample the square amplitude of the total external electric field, 

the following total number of samples is needed [73] 

𝑆𝑀 ≥ ceil (max {(4𝑘0𝑅𝐷𝑜𝑏𝑠
)
2
, [2𝑘0 (𝑅𝐷𝑜𝑏𝑠

+
𝐿𝐷𝑖𝑛𝑣

√2
)]

2

}) = 1423 (101) 

where ceil(⋅) indicates a round to the next integer and 𝐿𝐷𝑖𝑛𝑣
/√2 is the radius of the circle 

that strictly encloses the investigation domain. This requirement can be satisfied by choosing 

𝑆 = 40 sources uniformly distributed on 𝐷𝑜   and 𝑀 = 39 measurement points for each 

view. In particular, when one of the sources is active, the positions of the remaining inactive 

sources are occupied by the probes. The sources are unit-amplitude current lines and the 

incident electric field generated by each one is given by 

 𝑖𝑛 ,( )(𝐫 ) = −
𝜔𝜇0

4
𝐻0

(2)(𝑘0|𝐫 − 𝐫 ,( )|)�̂� (102) 

where 𝐫 ,( ) = 1.5𝜆0 [cos (
2𝜋

𝑆
(𝑠 − 1)) sin (

2𝜋

𝑆
(𝑠 − 1))]

𝑇

 with 𝑠 = 1,… , 𝑆. Figure 57 

shows the adopted configuration for the first view. In order to avoid inverse crimes [85], the 

investigation domain has been partitioned with a square-based mesh having 𝑁 = 1600 sub-

domains for the inverse problem solution, whereas 𝑁𝑓𝑤𝑑 = 5329 has been used in the 

discretization adopted for computing the simulated measurements. This latter problem is 

solved with a numerical implementation of the MoM or, when the investigation domain 

contains a single circular cylinder only, by an analytical solver [101]. In order to simulate 

real operating conditions, an additive white Gaussian noise with zero mean and variance 

corresponding to a signal-to-noise ratio 𝑆𝑁𝑅 = 25 dB has been used to corrupt the full 
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(modulus and phase) synthetic data. In particular, the standard deviation 𝜎𝜂 of the additive 

noise is related to the 𝑆𝑁𝑅 by [127] 

𝑆𝑁𝑅 = 10 log10 (
‖�̂� 𝑜 

𝑒𝑥 ‖2
2

2𝑆𝑀𝜎𝜂
2
) (103) 

 

 

Figure 57. Illumination and measurement setup for the numerical validation of the 2D phaseless microwave 

imaging procedure. First view. 

 

5.1.1 Reconstruction capabilities versus the scatterer dimension 

Firstly, the reconstruction capabilities of the developed approach have been evaluated by 

considering a dielectric circular cylinder with center 𝐫 = (0.1,0.1)𝜆0 and relative dielectric 

permittivity 𝜖𝑟 = 2. Its diameter 𝐷 has been varied in the range [0.2,0.6]𝜆0. Figure 58 shows 

the behaviors of the reconstruction errors defined in (86) versus the norm parameter 𝑝 and 

the cylinder’s diameter. The Banach-space approach allows in all cases to obtain 

reconstructions characterized by lower errors with respect to the standard Hilbert-space 

method (corresponding to 𝑝 = 2). In particular, the best values of 𝑝 are in the range [1.2,1.6].  
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 (a) 

 

 (b) 

 

 (c) 

Figure 58. Behavior of (a)  𝑖𝑛𝑣, (b)  𝑜 𝑗, and (c)    versus the norm parameter 𝑝 and for different values of 

the diameter 𝐷. Single circular cylinder. 
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 (a) (b) 

           

 (c) (d) 

Figure 59. Reconstructed distribution of the dielectric permittivity for the single cylinder. (a) 𝑝𝑜𝑝 = 1.4, 𝐷 =

0.25𝜆0; (b) 𝑝 = 2, 𝐷 = 0.25𝜆0; (c) 𝑝𝑜𝑝 = 1.2, 𝐷 = 0.4𝜆0; (d) 𝑝 = 2, 𝐷 = 0.4𝜆0. The white dashed circles 

indicate the actual profiles. 

 

This is also visually supported by the images in Figure 59, which shows the reconstructed 

distributions of the relative dielectric permittivity corresponding to 𝐷 = 0.25𝜆0 and 𝐷 =

0.4𝜆0 for 𝑝𝑜𝑝 = 1.4 and 𝑝𝑜𝑝 = 1.2, respectively, together with the corresponding Hilbert-

space solutions. The proposed approach is able to properly detect the contour of the cylinder 

and its relative dielectric permittivity is averagely well estimated (only few pixels in the 

center of the cylinder having 𝐷 = 0.4𝜆0 are overestimated). On the other hand, the classic 

inexact-Newton suffers of a significant underestimation of the dielectric permittivity, and a 

slight ringing effect is visible around the cylinder in the reconstruction for 𝐷 = 0.25𝜆0. To 

better see these drawbacks, slices at  = 0.1𝜆0 of Figure 59(a), Figure 59(b), and the actual 

profile are shown in Figure 60; in such figure, 〈𝜖�̃�〉𝑎 is the reconstructed relative dielectric 

permittivity averaged over the cylinder’s profile. 
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Figure 60. Slices at  = 0.1𝜆0 of Figure 59(a), Figure 59(b), and the actual profile.  

 

5.1.2 Reconstruction capabilities versus the scatterer density 

In this Section, the cylinder given in Section 5.1.1 with fixed diameter 𝐷 = 𝜆0/4 is 

considered and its relative dielectric permittivity is varied in the range [2,4] to evaluate the 

behavior of the proposed method on this variation. Figure 61 shows the behaviors of the 

reconstruction errors versus the norm parameter 𝑝 and the cylinder’s dielectric permittivity. 

The three plots exhibit essentially the same trends, that is the errors reach their minima in 

the interval (1,1.5) and then rapidly grow as 𝑝 increases. It is interesting to compare the 

phaseless and full-data performance. In particular, Figure 62 illustrates the best NMSE 

values achieved by the phaseless and full-data approaches versus 𝜖𝑟. As can be seen, 

comparable errors are obtained. Moreover, the estimated relative dielectric permittivity 

distributions for 𝜖𝑟 = 4 with 𝑝 = 𝑝𝑜𝑝 = 1.2 (phaseless data) and 𝑝𝑜𝑝 = 1.3 (full-data) are 

shown in Figure 63. For completeness, the result obtained with 𝑝 = 2 in the phaseless case 

is also provided. As expected, the full-data imaging performs better than its phaseless 

counterpart, and, with focus on the cases in Figure 63, this last suffers of erroneous 

estimation of the dielectric properties. However, cylinder’s boundaries are still clearly 

visible for 𝑝 = 𝑝𝑜𝑝  and phaseless measurements.  
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 (a) 

 

 (b) 

 

 (c) 

Figure 61. Behavior of (a)  𝑖𝑛𝑣, (b)  𝑜 𝑗, and (c)    versus the norm parameter 𝑝 and for different values of 

the relative dielectric permittivity 𝜖𝑟. Single circular cylinder. 
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Figure 62. Best  𝑖𝑛𝑣 versus 𝜖𝑟 for both phaseless and full-data inversions. Single circular cylinder. 

 

           

 (a)  (b) 

 

 (c) 

Figure 63. Reconstructed distribution of the dielectric permittivity for the single cylinder with 𝜖𝑟 = 4. (a) 

𝑝𝑜𝑝 = 1.2, phaseless; (b) 𝑝 = 2, phaseless; (c) 𝑝𝑜𝑝 = 1.3, full-data. The white dashed circles indicate the 

actual profiles. 
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5.1.3 Reconstruction capabilities versus the signal-to-noise ratio 

The noise rejection capability of the developed microwave imaging algorithm is here tested 

by varying the intensity of the additive white Gaussian noise whereby the simulated 

measurements are corrupted. In particular, the signal-to-noise ratio 𝑆𝑁𝑅 is varied in the 

range [5,25] dB. The considered target is a circular cylinder with center 𝐫 = (0.1,0.1)𝜆0, 

diameter 𝐷 = 𝜆0/4, and relative dielectric permittivity 𝜖𝑟 = 2. Table 8 reports the values of 

the error metrics defined in (86) and the final number of outer iterations 𝑖𝑓 for each of the 

simulated 𝑆𝑁𝑅 in correspondence of 𝑝 = 𝑝𝑜𝑝 . For comparison, the same data are reported 

for the Hilbert-space case too. 

 

Table 8. Reconstruction errors and final number of outer iterations 𝑖𝑓 versus 𝑆𝑁𝑅 in correspondence of 𝑝 =

𝑝𝑜𝑝  and 𝑝 = 2 (Hilbert space approach). 

𝑺𝑵𝑹 [𝐝𝐁] 
𝒍𝒑𝒐𝒑𝒕 𝒍𝟐 (Hilbert) 

𝑝𝑜𝑝   𝑖𝑛𝑣  𝑜 𝑗    𝑖𝑓  𝑖𝑛𝑣  𝑜 𝑗    𝑖𝑓 

5 1.4 0.73 0.26 0.02 2 0.87 0.33 0.05 3 

10 1.2 0.60 0.24 0.01 3 0.79 0.36 0.03 2 

15 1.4 0.53 0.19 0.02 3 0.73 0.31 0.03 3 

20 1.3 0.48 0.17 0.01 3 0.71 0.30 0.03 3 

25 1.4 0.43 0.15 0.01 4 0.65 0.26 0.02 3 

 

We see that a proper selection of the norm parameter allows to obtain better noise rejection 

capabilities with respect to the classic inexact-Newton approach. Figure 64 shows a 

comparison between the NMSE achieved by the phaseless algorithm and the ones obtained 

by inverting full-data synthetic measurements (considering the optimal value of the 

parameter 𝑝). Moreover, the estimated relative dielectric permittivity distributions for 

𝑆𝑁𝑅 = 15 dB in the phaseless case with 𝑝𝑜𝑝 = 1.4 and 𝑝 = 2 (Hilbert-space) are plotted 

in Figure 65. For comparison purposes, the result obtained with the full-data and 𝑝𝑜𝑝 = 1.3 

is also shown. As expected, we see from Figure 64 that the full-data approach provides better 

NMSE values. However, as can be noticed from Figure 65, in a rather noisy environment 

the phaseless technique with 𝑝𝑜𝑝  is able to maintain a reconstruction quality comparable to 

the full-data setting, as opposed to the classic Hilbert space-based procedure that presents a 

significant underestimation of the dielectric permittivity and several artefacts in the 

background. These assertions are also supported by the plots cuts along the line  = 0.1𝜆0 

shown in Figure 66. 
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Figure 64. Best  𝑖𝑛𝑣 versus 𝑆𝑁𝑅 for both phaseless and full-data inversions. 

 

           

 (a) (b) 

 

 (c) 

Figure 65. Reconstructed distribution of the dielectric permittivity for 𝑆𝑁𝑅 = 15 dB. (a) 𝑝𝑜𝑝 = 1.4, 

phaseless; (b) 𝑝 = 2, phaseless; (c) 𝑝𝑜𝑝 = 1.3, full-data. The white dashed circles indicate the actual profiles. 
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Figure 66. Slices at  = 0.1𝜆0 of Figure 65(a)-(c), and the actual profile. 

 

5.1.4 Reconstruction capabilities versus the outer stopping threshold 

In this Section, the influence of the outer stopping criteria on the reconstruction performance 

is assessed. To this end, the outer stopping threshold on the relative residuals variation 𝜏𝐼 

has been varied in the range [10−4, 10−2]. The investigation domain contains the same 

cylindrical target used in Section 5.1.3, and 𝑆𝑁𝑅 = 15 dB. Figure 67 shows the trends of 

the resulting optimal NMSE values versus 𝜏𝐼 for both the phaseless and full-data inversions.  

 

 

Figure 67. Behavior of  𝑖𝑛𝑣 versus 𝜏𝐼 for both the phaseless and full-data inversions. 

 

We can see that small values of 𝜏𝐼 produce higher errors. Figure 68 and Figure 69 show how 

this happens; in particular, the first image reports the behaviors of  𝑖
𝑃𝐿 and  𝑖𝑛𝑣 versus the 
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iteration number when 𝜏𝐼 = 10−4 and 𝑝𝑜𝑝 = 1.5, whereas the second one concerns 𝜏𝐼 =

10−2 (this is the reference value adopted in this Chapter) and 𝑝𝑜𝑝 = 1.4. 

 

 

Figure 68. Behavior of  𝑖
𝑃𝐿 and  𝑖𝑛𝑣 versus the iteration number when 𝜏𝐼 = 10−4 and 𝑝𝑜𝑝 = 1.5. 

 

 

Figure 69. Behavior of  𝑖
𝑃𝐿 and  𝑖𝑛𝑣 versus the iteration number when 𝜏𝐼 = 10−2 and 𝑝𝑜𝑝 = 1.4. 

 

In Figure 68, although the residual decreases in each iteration, the NMSE grows significantly 

after the achievement of a minimum. This is a typical property of the iterative methods in 

presence of noisy data and it is known as semiconvergence [86]; its degrading effect on the 

reconstruction quality is caused by a delayed stopping of the method. In this particular case, 

the low threshold 𝜏𝐼 causes the improper stopping. On the other hand, in Figure 69 the higher 

𝜏𝐼 limits the semiconvergence effects, since it causes the outer loop to be stopped before that 

the NMSE started to increase significantly. However, as expected, Figure 67 shows that the 
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phaseless inversion is more seriously affected by the degrading effect of the 

semiconvergence than the full-data one. 

5.1.5 Reconstruction capabilities in case of lossy scatterer 

The circular cylinder used as target in Section 5.1.3 is endowed here with a non-null electric 

conductivity 𝜎, which has been varied in the range [10−4, 10−2] S/m. The resulting NMSE, 

relative mean errors and final number of outer iterations 𝑖𝑓 are reported in Table 9 for several 

values of 𝜎 (for the values of the norm parameter providing the minimum NMSE). The same 

data are reported for the 𝑙2 case too. 

 

Table 9. Reconstruction errors and final number of outer iterations 𝑖𝑓 versus 𝜎 in correspondence of 𝑝 = 𝑝𝑜𝑝  

and 𝑝 = 2 (Hilbert space approach). 

𝝈 [𝐒/𝐦] 
𝒍𝒑𝒐𝒑𝒕 𝒍𝟐 (Hilbert) 

𝑝𝑜𝑝   𝑖𝑛𝑣  𝑜 𝑗    𝑖𝑓  𝑖𝑛𝑣  𝑜 𝑗    𝑖𝑓 

10−4 1.4 0.44 0.16 0.01 3 0.66 0.27 0.02 3 

5 ⋅ 10−4 1.4 0.44 0.16 0.01 3 0.66 0.27 0.02 3 

10−3 1.3 0.44 0.17 0.01 4 0.67 0.27 0.02 3 

5 ⋅ 10−3 1.3 0.42 0.16 0.01 4 0.70 0.31 0.02 3 

10−2 1.3 0.41 0.15 0.01 4 0.71 0.35 0.02 3 

 

For 𝜎 = 10−2 S/m, the reconstructed distributions of the relative dielectric permittivity’s 

real part and of the electric conductivity provided by the phaseless approach in the cases of 

𝑝 = 𝑝𝑜𝑝 = 1.3 and 𝑝 = 2 are shown in Figure 70. Moreover, the results obtained by 

considering the full complex data are also provided. We can see that the classic phaseless 

approach (i.e., with 𝑝 = 2) suffers of a significant ringing in the reconstructed electric 

conductivity and of an underestimation of the relative dielectric permittivity’s real part. Such 

effects are mitigated with 𝑝𝑜𝑝 = 1.3. To better compare the quality of the images reported 

in Figure 70, cuts along the line  = 0.1𝜆0 are shown in Figure 71; in such figure, 〈𝜖�̃�
′ 〉𝑎 and 

〈�̃�〉𝑎 are the reconstructed relative dielectric permittivity’s real part and electric conductivity 

averaged over the cylinder’s profile, respectively. 

5.1.6 Reconstruction capabilities versus the amount of data 

The reconstruction performance has been evaluated here against a variable amount of 

available data. In particular, the number of views 𝑆 has been varied in the range [10,40].  
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 (a) (b) 

           

 (c) (d) 

           

 (e) (f) 

Figure 70. Reconstructed distribution of the dielectric permittivity for 𝜎 = 10−2 S/m. Case 𝑝𝑜𝑝 = 1.3, 

phaseless: (a) 𝜖𝑟
′ , (b) 𝜎. Case 𝑝 = 2, phaseless: (c) 𝜖𝑟

′ , (d) 𝜎. Case 𝑝𝑜𝑝 = 1.3, full-data: (e) 𝜖𝑟
′ , (f) 𝜎. The white 

dashed circles indicate the actual profiles. 

 

Because of 𝑀 = 𝑆 − 1, the number of measurement points varies accordingly. It is important 

to note that in some of these cases an under-sampling condition subsists. The adopted target 

is the circular cylinder described in Section 5.1.3.  

𝜖 r
′  𝜎
 

𝜖 r
′  𝜎
 

𝜖 r
′  𝜎
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Table 10 reports the resulted values of the reconstruction errors, the final number of outer 

iterations 𝑖𝑓, and the total computational times 𝑇 for each of the simulated 𝑆 values in 

correspondence of 𝑝𝑜𝑝  and 𝑝 = 2 (Hilbert space case). 

 

 

 (a) 

 

 (b) 

Figure 71. Slices at  = 0.1𝜆0 of Figure 70(a)-(f), and the actual profile. (a)  𝜖𝑟
′ , (b) 𝜎. 

 

Table 10. Reconstruction errors, final number of outer iterations 𝑖𝑓, and computational times 𝑇 versus 𝑆 in 

correspondence of 𝑝 = 𝑝𝑜𝑝  and 𝑝 = 2 (Hilbert space approach). 

𝑺 
𝒍𝒑𝒐𝒑𝒕 𝒍𝟐 (Hilbert) 

𝑝𝑜𝑝   𝑖𝑛𝑣  𝑜 𝑗    𝑖𝑓 𝑇 [s] (*)  𝑖𝑛𝑣  𝑜 𝑗    𝑖𝑓 𝑇 [s] (*) 

10 1.3 0.57 0.23 0.01 4 8 0.81 0.35 0.04 3 6 

20 1.4 0.46 0.16 0.01 4 17 0.67 0.25 0.03 3 15 

30 1.4 0.45 0.15 0.01 4 42 0.66 0.25 0.02 3 33 

40 1.4 0.45 0.15 0.01 4 75 0.66 0.27 0.02 3 67 
(*) These refer to a PC equipped with a quad-core CPU Intel Core i5-2310 @2.9 GHz and 8 GB of RAM. 
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As expected, a smaller amount of data lowers the computational times but causes 

performance degradation. However, the classic algorithm suffers more the data reduction. 

This fact is also confirmed by the reconstructed distributions of the relative dielectric 

permittivity shown in Figure 72 corresponding to the case 𝑆 = 10 with 𝑝 = 𝑝𝑜𝑝 = 1.3 and 

𝑝 = 2. For comparison purposes, the full-data inversion result for 𝑝𝑜𝑝 = 1.3 is reported too.  

 

           

 (a) (b) 

 

 (c) 

Figure 72. Reconstructed distribution of the dielectric permittivity for 𝑆 = 10. (a) 𝑝𝑜𝑝 = 1.3, phaseless; (b) 

𝑝 = 2, phaseless; (c) 𝑝𝑜𝑝 = 1.3, full-data. The white dashed circles indicate the actual profiles. 

 

Moreover, cuts at  = 0.1𝜆0 of the images in Figure 72 are shown in Figure 73. The inexact-

Newton in 𝑙2 presents both underestimation and ringing phenomena. Such problems are 

reduced considering the 𝑙𝑝𝑜𝑝𝑡 setting. Moreover, in this latter case the reconstruction is 

similar to the one provided by the full-data approach, although, as expected, the full-data 

method is more robust to the decrease in the amount of information, as can be seen in Figure 

74. 
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Figure 73. Slices at  = 0.1𝜆0 of Figure 72(a)-(c), and the actual profile. 

 

 

Figure 74. Best  𝑖𝑛𝑣 versus 𝑆 for both phaseless and full-data inversions. 

 

5.1.7 Capability recognition of multiple cylinders 

In this Section, the ability of the proposed phaseless approach to reconstruct separate targets 

is assessed. In particular, 𝐷𝑖𝑛𝑣 contains two lossless circular cylinders. The first one has 

center (  ,1,   ,1) = (0.375,0.375)𝜆0, radius 𝐷1 = 𝜆0/4, and relative dielectric permittivity 

𝜖𝑟,1 = 3, whereas the second one has center (  ,2,   ,2) = (−0.25,−0.25)𝜆0, diameter 𝐷2 =

𝜆0/2, and relative dielectric permittivity 𝜖𝑟,2 = 2. In order to evaluate the performance of 

the imaging algorithm in this case, the following error metrics are defined 
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(104) 

where ( ̃ ,  ̃ ) and �̃� are the estimated center and diameter of the cylinder, respectively, 

whereas (  ,   ) and 𝐷 are the actual ones. Moreover, �̃̌� and �̌� are defined as 

�̃̌� = |(〈𝜖�̃�
′ 〉𝑟 − 1)2 − 𝑗

〈�̃�〉𝑟
𝜔𝜖0
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�̌� = |(〈𝜖𝑟
′ 〉𝑎 − 1)2 − 𝑗

〈𝜎〉𝑎
𝜔𝜖0

| 

(105) 

with 〈⋅〉𝑟 and 〈⋅〉𝑎 average operator on the recognized and actual cylinder’s domain, 

respectively. The centers, diameters, and relative dielectric permittivities of the inspected 

cylinders are estimated on the basis of the reconstructed dielectric distribution by an 

automatic recognition tool, whose details are given in Appendix A.  

The error metrics defined in (104) for the cases 𝑝 = 1.3, 𝑝 = 2 in the phaseless approach 

and 𝑝 = 1.5 in the full-data one are shown in Figure 75. As can be seen, the Hilbert-space 

framework almost always provides higher errors than its Banach-space counterpart. 

Moreover, at least in this test, the phaseless technique is not far in terms of reconstruction 

errors from the full-data one. These assertions are also confirmed by the reconstructed 

distributions of the relative dielectric permittivity reported in Figure 76 and by the 

corresponding cuts along the line  =   shown in Figure 77. Finally, for the reconstructions 

obtained in non-Hilbertian spaces shown in Figure 76, the behaviors of the quantities in (96), 

(98) versus the iteration number are reported in Figure 78 and the corresponding trends of 

the NMSE are shown in Figure 79. We see that both the residuals and the errors are 

monotonically decreasing and reach an almost flat slope in few iterations. However, as 

expected, the full-data inversion reaches lower final values of residuals and NMSE.  
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 (a) 

 

 (b) 

Figure 75. Behavior of the error metrics 𝜁𝑜, 𝜁𝐷, and 𝜁𝜖𝜎  for (a) cylinder n.1 and (b) cylinder n. 2. 

 

5.1.8 T-shaped target 

The reconstruction capabilities of the developed approach have been evaluated here by 

considering a T-shaped target made of two cylinders having rectangular cross-section. The 

first one has center 𝐫 ,1 = (0.25,0)𝜆0, width 𝑤1 = 𝜆0/2, and height ℎ1 = 𝜆0/4, whereas the 

second one has center 𝐫 ,2 = (−0.125,0)𝜆0, width 𝑤2 = 𝜆0/4, and height ℎ2 = 𝜆0/2. The 

behaviors of the NMSE and of the relative mean errors versus 𝑝 are reported in Figure 80.  
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 (a) (b) 

 

 (c) 

Figure 76. Reconstructed distribution of the dielectric permittivity for the two cylinders case. (a) 𝑝 = 1.3, 

phaseless; (b) 𝑝 = 2, phaseless; (c) 𝑝 = 1.5, full-data. The white dashed lines indicate the actual profiles. 

 

 

Figure 77. Slices at  =   of Figure 76(a)-(c), and the actual profile. 
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Figure 78. Behavior of  𝑖
𝑃𝐿 and  𝑖

𝐹𝐷  versus the iteration number. Two circular cylinders. 

 

 

Figure 79. Behavior of  𝑖𝑛𝑣 versus the iteration number. Two circular cylinders. 

 

As usual, the traces have their minima for values of 𝑝 largely smaller than 2. The images 

related to 𝑝𝑜𝑝 = 1.2, 𝑝 = 2, and for the full-data inversion with 𝑝𝑜𝑝 = 1.5 are shown in 

Figure 81. The higher performance in 𝑙1.2 with respect to 𝑙2 is quite evident, although the 

full-data result has a higher fidelity to the shape of the actual target. Finally, for the 

reconstructions obtained in non-Hilbertian spaces shown in Figure 81, the behaviors of the 

residuals metrics in (96), (98) versus the iteration number are reported in Figure 82, and the 

corresponding trends of the NMSE are shown in Figure 83. As it happened in Section 5.1.7, 

both the methods monotonically reach a stationary point in few iterations, with the full-data 

inversion getting lower final values. 
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Figure 80. Behavior of  𝑖𝑛𝑣,  𝑜 𝑗, and    versus the norm parameter 𝑝. T-shaped target. 

 

           

 (a) (b) 

 

 (c) 

Figure 81. Reconstructed distribution of the dielectric permittivity for the T-shaped target. (a) 𝑝𝑜𝑝 = 1.2, 

phaseless; (b) 𝑝 = 2, phaseless; (c) 𝑝𝑜𝑝 = 1.5, full-data. The white dashed lines indicate the actual profiles. 
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Figure 82. Behavior of  𝑖
𝑃𝐿 and  𝑖

𝐹𝐷  versus the iteration number. T-shaped target. 

 

 

Figure 83. Behavior of  𝑖𝑛𝑣 versus the iteration number. T-shaped target. 

 

5.2 Experimental Validation 

The developed inversion procedure has been validated by using experimental data too. In 

particular, two different datasets have been used. The first one is made freely available by 

the Institut Frésnel [130], [131] and consists of two databases of data. Moreover, a 

microwave tomograph has been developed at the University of Applied Sciences and Arts 

of Southern Switzerland (SUPSI) in collaboration with the Applied Electromagnetics (AEM) 

research unit of the University of Genoa, and the proposed approach is validated on a dataset 

from this system, too [132], [133]. Since the incident electric fields in 𝐷𝑖𝑛𝑣 are computed by 
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assuming line currents as sources, instead of the more complex real antennas, these sets of 

data are calibrated as follows 

𝐩 𝑜 
𝑒𝑥 ,( ) = |𝛾( )|

2
𝐩 𝑜 ,𝑚𝑒𝑎 
𝑒𝑥 ,( )

 (106) 

with  

𝐸𝑖𝑛 ,( )
 𝑎𝑙 (𝐫𝑚𝑑

( ))

𝐸𝑖𝑛 ,( )
𝑚𝑒𝑎 (𝐫𝑚𝑑

( ))
= 𝛾( ) (107) 

where 𝐩 𝑜 ,𝑚𝑒𝑎 
𝑒𝑥 ,( )

 contains the square measured amplitude of the total external electric field 

for the 𝑠th view, 𝐸𝑖𝑛 ,( )
 𝑎𝑙  is the incident electric field given by a line current with equal 

placement of the 𝑠th transmitting antenna, 𝐸𝑖𝑛 ,( )
𝑚𝑒𝑎  is the experimentally measured incident 

electric field for the 𝑠th view, and 𝐫𝑚𝑑
( )

 is the position of the measurement point farthest away 

from the 𝑠th source. 

A void background is adopted by both systems and the same stopping criteria introduced at 

the beginning of this Chapter are here applied, too.  

5.2.1 Institut Frésnel Dataset: First Experimental Database 

The first experimental setup [130] has 𝑆 = 36 transmitting antenna uniformly distributed on 

a circumference of radius 𝑅𝐷𝑆
= 72 cm. For each view, 𝑀 = 49 probing points are 

considered on an arc of circumference with radius 𝑅𝐷𝑜𝑏𝑠
= 76 cm and aperture 240°. The 

active transmitting antenna is located in the middle of the empty arc of the circumference. A 

square investigation domain 𝐷𝑖𝑛𝑣 of side 𝐿𝐷𝑖𝑛𝑣
= 18 cm and discretized in 𝑁 = 3969 square 

pixels is considered in the inversion procedure. Figure 84 shows the illuminating and 

measurement configuration with reference to the first view. 

The following two different targets are considered  

1. DielTM. One cylinder with center 𝐫 = (0,2.7) cm, radius 𝑅 = 1.5 cm, and relative 

dielectric permittivity 𝜖𝑟 = 3.  

2. TwoDielTM. Two cylinders with centers 𝐫 ,1 = (−0.3,4.8) cm and 𝐫 ,2 =

(−1.2,−4.3) cm, radii 𝑅1 = 𝑅2 = 1.5 cm, and dielectric permittivities 𝜖𝑟,1 = 𝜖𝑟,2 = 3.  
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Figure 84. Illumination and measurement setup adopted in the first experimental database of the Institut 

Frésnel. First view. 

 

The data at the working frequency 𝑓 = 2 GHz has been used. The reconstruction errors 

versus the norm parameter are reported in Figure 85 for both the considered targets. As can 

be seen, all the metrics achieve their minima for values of the norm parameter 𝑝 largely 

minor than 𝑝 = 2 (corresponding to the classic Hilbert-space approach). In Figure 86 and 

Figure 87 the reconstructed distributions of the relative dielectric permittivity with 𝑝𝑜𝑝 =

1.2 and 𝑝 = 2 for the first and second target are shown. Moreover, the optimal 

reconstructions obtained when considering the full complex data are reported, too (𝑝𝑜𝑝 =

1.1 for DielTM and 𝑝𝑜𝑝 = 1.2 for TwoDielTM). It is clear that the proposed phaseless 

approach with 𝑝𝑜𝑝 = 1.2 outperforms the classic one in Hilbert space in terms of both 

dielectric permittivity and shape retrieval. Moreover, its results are similar to the full-data 

ones. Finally, Figure 88 shows the experimental and simulated (with a MoM solver) 

amplitude of the scattered electric fields in the measurement points for the target 

TwoDielTM. The electric fields corresponding to the optimal reconstructions provided by 

the phaseless and full-data inversion procedures are also plotted. As can be seen, there is a 

quite good agreement. 
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 (a) 

 

 (b) 

Figure 85. Behavior of  𝑖𝑛𝑣,  𝑜 𝑗, and    versus the norm parameter 𝑝 for the (a) DielTM and (b) TwoDielTM 

targets. 

 

5.2.2 Institut Frésnel Dataset: Second Experimental Database 

In the second experimental setup [131] the transmitting antennas are uniformly distributed 

on a circumference of radius 𝑅𝐷𝑆
= 167 cm. Their number varies with the target type and 

so it will be specified at occurrence. For each view, 𝑀 = 241 probing points are considered 

on an arc of circumference with radius 𝑅𝐷𝑜𝑏𝑠
= 167 cm and aperture 240°. The transmitting 

antenna is located in the middle of the empty 120° arc. A square investigation domain 𝐷𝑖𝑛𝑣 

of side 𝐿𝐷𝑖𝑛𝑣
= 18 cm and discretized in 𝑁 = 3969 square pixels is considered. Figure 89 

shows the illuminating and measurement configuration for the first view. 
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 (a) (b) 

 

 (c) 

Figure 86. Reconstructed distribution of the dielectric permittivity for the DielTM target. (a) 𝑝𝑜𝑝 = 1.2, 

phaseless; (b) 𝑝 = 2, phaseless; (c) 𝑝𝑜𝑝 = 1.1, full-data. The white dashed circles indicate the actual profiles. 

 

The following three different targets are considered 

1. FoamDielExtTM. Two cylinders with centers 𝐫 ,1 = (0,0) cm and 𝐫 ,2 = (−5.55,0) cm, 

radii 𝑅1 = 4 cm and 𝑅2 = 1.55 cm, dielectric permittivities 𝜖𝑟,1 = 1.45 and 𝜖𝑟,2 = 

3. Working frequency 𝑓 = 3 GHz and number of views 𝑆 = 8. 

2. FoamDielIntTM. Two cylinders with centers 𝐫 ,1 = (0,0) cm and 𝐫 ,2 = (−0.5,0) cm, 

radii 𝑅1 = 4 cm and 𝑅2 = 1.55 cm, dielectric permittivities 𝜖𝑟,1 = 1.45 and 𝜖𝑟,2 = 3. 

Working frequency 𝑓 = 3 GHz and number of views 𝑆 = 8. 

3. FoamTwinDielTM. Three cylinders with centers 𝐫 ,1 = (0,0) cm, 𝐫 ,2 = (−5.55,0) cm, 

and 𝐫 ,3 = (−0.5,0) cm, radii 𝑅1 = 4 cm, and 𝑅2 = 𝑅3 = 1.55 cm, dielectric 

permittivities 𝜖𝑟,1 = 1.45 and 𝜖𝑟,2 = 𝜖𝑟,3 = 3. Working frequency 𝑓 = 2 GHz and 

number of views 𝑆 = 18. 
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 (a) (b) 

 

 (c) 

Figure 87. Reconstructed distribution of the dielectric permittivity for the TwoDielTM target. (a) 𝑝𝑜𝑝 = 1.2, 

phaseless; (b) 𝑝 = 2, phaseless; (c) 𝑝𝑜𝑝 = 1.2, full-data. The white dashed circles indicate the actual profiles. 

 

 

Figure 88. Amplitude of the scattered electric fields in the measurement points given by the experimental data 

(“Exp” in legend), the actual dielectric distribution (“Sim” in legend), and the optimal reconstructed ones 

obtained by phaseless and full-data inversions (“PL” and “FD” in legend, respectively). TwoDielTM target. 
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Figure 89. Illumination and measurement setup adopted in the second experimental database of the Institut 

Frésnel. First view. 

 

The NMSE and relative mean errors on the reconstruction results obtained by the developed 

procedure are shown in Figure 90 versus the value of the norm parameter 𝑝. As it happens 

for the first experimental database, the best reconstructions are not achieved with the classic 

Hilbert-space approach, but for lower values of 𝑝. The images related to the targets 

FoamDielExtTM, FoamDielIntTM, and FoamTwinDielTM obtained with 𝑝𝑜𝑝 = 1.2, 

𝑝𝑜𝑝 = 1.4, and 𝑝𝑜𝑝 = 1.1, respectively, are shown in Figure 91-93. For comparison 

purpose, the results of the phaseless inexact-Newton in 𝑙2 and of the optimal full-data 

inversions are reported in the same figures. Moreover, the cuts along a line at  = 0 cm are 

also shown in Figure 94. The higher performance of the proposed phaseless technique with 

respect to the Hilbert one can be appreciated in all the test cases. Moreover, the results are 

comparable to the one obtained when considering the full complex data. Finally, the 

amplitude of the scattered electric fields in the measurement points for the experimental data, 

the actual dielectric distributions, and the optimal reconstructed ones are reported in Figure 

95. The electric fields in presence of the actual and reconstructed dielectric distributions are 

simulated with a MoM solver. A good agreement is observed in all the reported cases. 
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(a) 

 

(b) 

 

(c) 

Figure 90. Behavior of  𝑖𝑛𝑣,  𝑜 𝑗, and    versus the norm parameter 𝑝 for the (a) FoamDielExtTM, (b) 

FoamDielIntTM, and (c) FoamTwinDielTM targets. 
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 (a) (b) 

 

 (c) 

Figure 91. Reconstructed distribution of the dielectric permittivity for the FoamDielExtTM target. (a) 𝑝𝑜𝑝 =

1.2, phaseless; (b) 𝑝 = 2, phaseless; (c) 𝑝𝑜𝑝 = 1.3, full-data. The white dashed circles indicate the actual 

profiles. 

 

5.2.3 SUPSI Experimental Dataset 

The experimental setup [132], [133] consists of 𝑆 = 8 sources and 𝑀 = 55 measurement 

points for each view. The probes are located on an arc of circumference having radius 𝑅𝐷𝑜𝑏𝑠
 

and aperture 270°, and the active transmitting antenna is in the middle of the remaining 

sector of 90°. The radius of the circle 𝑅𝐷𝑜𝑏𝑠
 varies with the working frequency as indicated 

in Table 11. The investigation domain 𝐷𝑖𝑛𝑣 is a square of side 𝐿𝐷𝑖𝑛𝑣
= 0.3 m and it is 

discretized in 𝑁 = 3969 square pixels. A schematic representation of the considered 

configuration, related to the first view and 𝑓 = 1 GHz, is reported in Figure 96. 
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 (a) (b) 

 

 (c) 

Figure 92. Reconstructed distribution of the dielectric permittivity for the FoamDielIntTM target. (a) 𝑝𝑜𝑝 =

1.4, phaseless; (b) 𝑝 = 2, phaseless; (c) 𝑝𝑜𝑝 = 1.3, full-data. The white dashed circles indicate the actual 

profiles. 

 

Table 11. Radius of the observation domain 𝑅𝐷𝑜𝑏𝑠
 for each working frequency. 

𝒇 [𝐆𝐇𝐳] 𝑹𝑫𝒐𝒃𝒔
 [𝐦] 

1 0.5 

2 0.42 

3 0.395 

4 0.381 

5 0.372 

 

In order to further mitigate the occurrence of false solutions, the available multi-frequency 

data are exploited thanks to the frequency hopping approach described in Section 3.7. The 

investigation domain contains two slabs of wood. The first one has circular cross-section of 

diameter 𝐷1 = 5 cm, relative dielectric permittivity 𝜖𝑟,1 = 3.5, and center 𝐫 ,1 =

(1.4, −5.5) cm. The second cylinder has rectangular cross-section of width 𝑤2 = 11.5 cm, 

height ℎ2 = 7.5 cm, relative dielectric permittivity 𝜖𝑟,2 = 1.8, and center 𝐫 ,2 = (0.3,8) cm.  
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 (a) (b) 

 

 (c) 

Figure 93. Reconstructed distribution of the dielectric permittivity for the FoamTwinDielTM target. (a) 𝑝𝑜𝑝 =

1.1, phaseless; (b) 𝑝 = 2, phaseless; (c) 𝑝𝑜𝑝 = 1.3, full-data. The white dashed circles indicate the actual 

profiles. 

 

Moreover, this latter has a central hole of width 𝑤3 = 5.5 cm and height ℎ3 = 3.5 cm. 

Figure 97 gives the reconstructed distributions of the relative dielectric permittivity obtained 

with 𝑝 = 1.5 for both phaseless and full-data approaches. Moreover, the cuts along the line 

 = 1.4 cm are also presented in Figure 98. As can be seen, the scatterers are reconstructed 

by both techniques, and the hole in the rectangular slab is correctly identified. However, in 

the full-data case, the dielectric properties of the circular cylinder and the hole in the 

rectangular slab are better retrieved. Finally, the behavior of the NMSE in each step of the 

frequency-hopping technique for the phaseless and full-data cases, both with 𝑝 = 1.5, are 

shown in Figure 99 and Figure 100, respectively. In these plots we see the benefits of the 

frequency-hopping approach; in fact, each set of measurement (one for each working 

frequency) contributes to improve the accuracy of the reconstructions.  
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 (a) 

 

 (b) 

 

 (c) 

Figure 94. Cuts along the line  = 0 cm of (a) Figure 91(a)-(c), (b) Figure 92(a)-(c), (c) Figure 93(a)-(c), and 

the actual profiles. 
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 (a) 

 

 (b) 

 

 (c) 

Figure 95. Amplitude of the scattered electric fields in the measurement points given by the experimental data 

(“Exp” in legend), the actual dielectric distributions (“Sim” in legend), and the optimal reconstructed ones 

obtained by the phaseless and full-data inversion techniques (“PL” and “FD” in legend, respectively). (a) 

FoamDielExtTM, (b) FoamDielIntTM, (c) FoamTwinDielTM. 
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Figure 96. Illumination and measurement setup adopted in the SUPSI experimental dataset. First view and 

𝑓 = 1 GHz. 

 

           

 (a) (b) 

 

(c) 

Figure 97. Reconstructed distribution of the dielectric permittivity for the SUPSI target. (a) 𝑝 = 1.5, phaseless; 

(b) 𝑝 = 2, phaseless; (c) 𝑝 = 1.5, full-data. The white dashed lines indicate the actual profiles. 
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Figure 98. Slices at  = 1.4 cm of Figure 97(a), Figure 97(c), and the actual profile. 

 

 

Figure 99. Behavior of  𝑖𝑛𝑣 in each step of the frequency-hopping phaseless inversion with 𝑝 = 1.5.  

 

 

Figure 100. Behavior of  𝑖𝑛𝑣 in each step of the frequency-hopping full-data inversion with 𝑝 = 1.5. 
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Conclusions 

 

In this Thesis, an approach for solving microwave imaging problems in the 3D full-vector 

and 2D phaseless scenarios has been developed. The considered method employs an inexact-

Newton strategy with regularization performed in the framework of the 𝑙𝑝 Banach spaces, 

in contrast to the classic 𝑙2 Hilbert spaces. In particular, the Banach-space versions of the 

truncated Landweber and conjugate gradient methods have been alternatively adopted as 

inner linear solvers in the Newton iterations. The performance of the developed microwave 

imaging method in both 3D full-vector and 2D phaseless scenarios has been validated by 

several simulations involving both synthetic and experimental data. Analyzing the obtained 

results in the 3D full-vector scenario, the Landweber-based inexact-Newton algorithm in 

Banach spaces has been able to outperform the Hilbert-based counterpart in all the cases. 

Also the preliminary results returned by the conjugate gradient-based method have supported 

the choice of working in the more general Banach spaces framework. About the 2D phaseless 

scenario, the results obtained with new Landweber-based approach have shown to be not 

only superior to the Hilbert-based ones, but also to have quality not so far from the 

corresponding full-data inversions. Among the various future research activities that will be 

devoted to the advancement in the microwave imaging techniques, a strong effort will be 

dedicated in the development of a reliable strategy for the automatic selection of the optimal 

norm parameter 𝑝. 
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Appendix A: Automatic Detection of Circular Cylinders 

in Reconstructed Contrast Function 

This Appendix describes a simple algorithm able to search for a known number 𝑁 𝑦𝑙 of 

circular cylinders in a reconstructed contrast function and to estimate their centers and 

diameters. Cylinders with void inclusions are allowed. The implementation of the algorithm 

described in the following and used in Section 5.1.7 is based on the OpenCV [134] and 

Armadillo [135] libraries. The following steps constitute the algorithm 

1. Compute the following indicator vector 

𝐟 = [
𝑓1
⋮
𝑓𝑁

]   𝑓𝑛 = {
1, �̃�(𝐫 𝑛

𝑖𝑛𝑣) ≥ 𝜏 
0,  𝑡ℎ  𝑤𝑖𝑠 

 (108) 

where �̃� = |�̃�|/‖�̃�‖∞, and 0 < 𝜏 < 1. The value 𝜏 = 0.25 has been selected.  

2. Run the 𝑘-means method [136] (function in Armadillo) with 𝑘 = 𝑁 𝑦𝑙 on the clusters of 

points in the binary image given by the indicator vector 𝐟. The returned centers are 

indicated with �̃� ,𝑘, 𝑘 = 1,… ,𝑁 𝑦𝑙. 

3. For 𝑘 = 1, … , 𝑁 𝑦𝑙, scan the rings of pixels with center �̃� ,𝑘, starting from the closer one 

to this point, until a peak of �̃� is detected. The position vectors of these peaks are 

indicated with �̃� ,𝑘.  

4. For 𝑘 = 1, … , 𝑁 𝑦𝑙, generate a binary mask that identifies the connected region whose 

the seed point �̃� ,𝑘 belongs to. This is done by running the Flood Fill algorithm [137] 

(function in OpenCV) with the seed point �̃� ,𝑘 and assigning a candidate pixel �̃�′ to the 

connected region if the following condition is satisfied 

�̃�(�̃�′) − (1 − 𝜏 )�̃�(�̃� ,𝑘) ≤ �̃�(�̃� ,𝑘) ≤ �̃�(�̃�′) + (1 − 𝜏 )�̃�(�̃� ,𝑘) (109) 

The centers of the 𝑁1,𝑘 pixels in the binary mask belonging to the 𝑘th connected domain 

are indicated with the set {𝐦𝑖,𝑘}𝑖=1

𝑁1,𝑘
. 

5. For 𝑘 = 1, … , 𝑁 𝑦𝑙, run the 1-means on the mask of the 𝑘th connected region. The 

returned refined centers are indicated with �̂̃� ,𝑘. 
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6. For 𝑘 = 1, … , 𝑁 𝑦𝑙, estimate the diameter �̃�𝑘 of the 𝑘th cylinder as follows 

�̃�𝑘 = 2 ⋅ max
𝑖=1,…,𝑁1,𝑘

|𝐦𝑖,𝑘 − �̂̃� ,𝑘| (110) 
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