139 research outputs found

    QoE-Driven DASH Video Caching and Adaptation at 5G Mobile Edge

    Get PDF
    In this paper, we present a Mobile Edge Computing (MEC) scheme for enabling network edge-assisted video adaptation based on MPEG-DASH (Dynamic Adaptive Streaming over HTTP). In contrast to the traditional over-the-top (OTT) adaptation performed by DASH clients, the MEC server at the mobile network edge can capture radio access network (RAN) conditions through its intrinsic Radio Network Information Service (RNIS) function, and use the knowledge to provide guidance to clients so that they can perform more intelligent video adaptation. In order to support such MECassisted DASH video adaptation, the MEC server needs to locally cache the most popular content segments at the qualities that can be supported by the current network throughput. Towards this end, we introduce a two-dimensional user Quality-of-Experience (QoE)-driven algorithm for making caching / replacement decisions based on both content context (e.g., segment popularity) and network context (e.g., RAN downlink throughput). We conducted experiments by deploying a prototype MEC server at a real LTE-A based network testbed. The results show that our QoE-driven algorithm is able to achieve significant improvement on user QoE over 2 benchmark scheme

    Evaluation of HTTP/DASH Adaptation Algorithms on Vehicular Networks

    Full text link
    Video streaming currently accounts for the majority of Internet traffic. One factor that enables video streaming is HTTP Adaptive Streaming (HAS), that allows the users to stream video using a bit rate that closely matches the available bandwidth from the server to the client. MPEG Dynamic Adaptive Streaming over HTTP (DASH) is a widely used standard, that allows the clients to select the resolution to download based on their own estimations. The algorithm for determining the next segment in a DASH stream is not partof the standard, but it is an important factor in the resulting playback quality. Nowadays vehicles are increasingly equipped with mobile communication devices, and in-vehicle multimedia entertainment systems. In this paper, we evaluate the performance of various DASH adaptation algorithms over a vehicular network. We present detailed simulation results highlighting the advantages and disadvantages of various adaptation algorithms in delivering video content to vehicular users, and we show how the different adaptation algorithms perform in terms of throughput, playback interruption time, and number of interruptions

    Improving Content Delivery Efficiency through Multi-Layer Mobile Edge Adaptation

    Get PDF
    This paper presents a novel architecture for optimizing the HTTP-based multimedia delivery in multi-user mobile networks. This proposal combines the usual client-driven dynamic adaptation scheme DASH-3GPP with network-assisted adaptation capabilities, in order to maximize the overall Quality of Experience. The foundation of this combined adaptation scheme is based on two state of the art technologies. On one hand, adaptive HTTP streaming with multi-layer encoding allows efficient media delivery and improves the experienced media quality in highly dynamic channels. Additionally, it enables the possibility to implement network-level adaptations for better coping with multi-user scenarios. On the other hand, mobile edge computing facilitates the deployment of mobile services close to the user. This approach brings new possibilities in modern and future mobile networks, such as close to zero delays and awareness of the radio status. The proposal in this paper introduces a novel element, denoted as Mobile Edge-DASH Adaptation Function, which combines all these advantages to support efficient media delivery in mobile multi-user scenarios. Furthermore, we evaluate the performance enhancements of this content- and user context-aware scheme through simulations of a mobile multimedia scenario.European Union H2020 programme: Grant Agreement H2020-ICT-671596. Spanish Ministerio de Economia y Competitividad (MINECO): grant TEC2013-46766-R

    Context-Aware Adaptive Prefetching for DASH Streaming over 5G Networks

    Full text link
    The increasing consumption of video streams and the demand for higher-quality content drive the evolution of telecommunication networks and the development of new network accelerators to boost media delivery while optimizing network usage. Multi-access Edge Computing (MEC) enables the possibility to enforce media delivery by deploying caching instances at the network edge, close to the Radio Access Network (RAN). Thus, the content can be prefetched and served from the MEC host, reducing network traffic and increasing the Quality of Service (QoS) and the Quality of Experience (QoE). This paper proposes a novel mechanism to prefetch Dynamic Adaptive Streaming over HTTP (DASH) streams at the MEC, employing a Machine Learning (ML) classification model to select the media segments to prefetch. The model is trained with media session metrics to improve the forecasts with application layer information. The proposal is tested with Mobile Network Operators (MNOs)' 5G MEC and RAN and compared with other strategies by assessing cache and player's performance metrics

    Quality of experience-centric management of adaptive video streaming services : status and challenges

    Get PDF
    Video streaming applications currently dominate Internet traffic. Particularly, HTTP Adaptive Streaming ( HAS) has emerged as the dominant standard for streaming videos over the best-effort Internet, thanks to its capability of matching the video quality to the available network resources. In HAS, the video client is equipped with a heuristic that dynamically decides the most suitable quality to stream the content, based on information such as the perceived network bandwidth or the video player buffer status. The goal of this heuristic is to optimize the quality as perceived by the user, the so-called Quality of Experience (QoE). Despite the many advantages brought by the adaptive streaming principle, optimizing users' QoE is far from trivial. Current heuristics are still suboptimal when sudden bandwidth drops occur, especially in wireless environments, thus leading to freezes in the video playout, the main factor influencing users' QoE. This issue is aggravated in case of live events, where the player buffer has to be kept as small as possible in order to reduce the playout delay between the user and the live signal. In light of the above, in recent years, several works have been proposed with the aim of extending the classical purely client-based structure of adaptive video streaming, in order to fully optimize users' QoE. In this article, a survey is presented of research works on this topic together with a classification based on where the optimization takes place. This classification goes beyond client-based heuristics to investigate the usage of server-and network-assisted architectures and of new application and transport layer protocols. In addition, we outline the major challenges currently arising in the field of multimedia delivery, which are going to be of extreme relevance in future years

    QoE-Assured 4K HTTP live streaming via transient segment holding at mobile edge

    Get PDF
    HTTP-based live streaming has become increasingly popular in recent years, and more users have started generating 4K live streams from their devices (e.g., mobile phones) through social-media service providers like Facebook or YouTube. If the audience is located far from a live stream source across the global Internet, TCP throughput becomes substantially suboptimal due to slow-start and congestion control mechanisms. This is especially the case when the end-to-end content delivery path involves radio access network (RAN) at the last mile. As a result, the data rate perceived by a mobile receiver may not meet the high requirement of 4K video streams, which causes deteriorated Quality-of-Experience (QoE). In this paper, we propose a scheme named Edge-based Transient Holding of Live sEgment (ETHLE), which addresses the issue above by performing context-aware transient holding of video segments at the mobile edge with virtualized content caching capability. Through holding the minimum number of live video segments at the mobile edge cache in a context-aware manner, the ETHLE scheme is able to achieve seamless 4K live streaming experiences across the global Internet by eliminating buffering and substantially reducing initial startup delay and live stream latency. It has been deployed as a virtual network function at an LTE-A network, and its performance has been evaluated using real live stream sources that are distributed around the world. The significance of this paper is that by leveraging on virtualized caching resources at the mobile edge, we have addressed the conventional transport-layer bottleneck and enabled QoE-assured Internet-wide live streaming to support the emerging live streaming services with high data rate requirements

    Service Migration from Cloud to Multi-tier Fog Nodes for Multimedia Dissemination with QoE Support.

    Get PDF
    A wide range of multimedia services is expected to be offered for mobile users via various wireless access networks. Even the integration of Cloud Computing in such networks does not support an adequate Quality of Experience (QoE) in areas with high demands for multimedia contents. Fog computing has been conceptualized to facilitate the deployment of new services that cloud computing cannot provide, particularly those demanding QoE guarantees. These services are provided using fog nodes located at the network edge, which is capable of virtualizing their functions/applications. Service migration from the cloud to fog nodes can be actuated by request patterns and the timing issues. To the best of our knowledge, existing works on fog computing focus on architecture and fog node deployment issues. In this article, we describe the operational impacts and benefits associated with service migration from the cloud to multi-tier fog computing for video distribution with QoE support. Besides that, we perform the evaluation of such service migration of video services. Finally, we present potential research challenges and trends
    corecore