446 research outputs found

    On the existence and uniqueness of the eigenvalue decomposition of a parahermitian matrix

    Get PDF
    This paper addresses the extension of the factorisation of a Hermitian matrix by an eigenvalue decomposition (EVD) to the case of a parahermitian matrix that is analytic at least on an annulus containing the unit circle. Such parahermitian matrices contain polynomials or rational functions in the complex variable z, and arise e.g. as cross spectral density matrices in broadband array problems. Specifically, conditions for the existence and uniqueness of eigenvalues and eigenvectors of a parahermitian matrix EVD are given, such that these can be represented by a power or Laurent series that is absolutely convergent, at least on the unit circle, permitting a direct realisation in the time domain. Based on an analysis on the unit circle, we prove that eigenvalues exist as unique and convergent but likely infinite-length Laurent series. The eigenvectors can have an arbitrary phase response, and are shown to exist as convergent Laurent series if eigenvalues are selected as analytic functions on the unit circle, and if the phase response is selected such that the eigenvectors are Hölder continuous with α>½ on the unit circle. In the case of a discontinuous phase response or if spectral majorisation is enforced for intersecting eigenvalues, an absolutely convergent Laurent series solution for the eigenvectors of a parahermitian EVD does not exist. We provide some examples, comment on the approximation of a parahermitian matrix EVD by Laurent polynomial factors, and compare our findings to the solutions provided by polynomial matrix EVD algorithms

    Learning Algebraic Varieties from Samples

    Full text link
    We seek to determine a real algebraic variety from a fixed finite subset of points. Existing methods are studied and new methods are developed. Our focus lies on aspects of topology and algebraic geometry, such as dimension and defining polynomials. All algorithms are tested on a range of datasets and made available in a Julia package

    Characterizations of Families of Rectangular, Finite Impulse Response, Para-Unitary Systems

    Get PDF
    We here study Finite Impulse Response (FIR) rectangular, not necessarily causal, systems which are (para)-unitary on the unit circle (=the class U). First, we offer three characterizations of these systems. Then, introduce a description of all FIRs in U, as copies of a real polytope, parametrized by the dimensions and the McMillan degree of the FIRs. Finally, we present six simple ways (along with their combinations) to construct, from any FIR, a large family of FIRs, of various dimensions and McMillan degrees, so that whenever the original system is in U, so is the whole family. A key role is played by Hankel matrices

    Characterizations of rectangular (para)-unitary rational Functions

    Get PDF
    We here present three characterizations of not necessarily causal, rational functions which are (co)-isometric on the unit circle: (i) Through the realization matrix of Schur stable systems. (ii) The Blaschke-Potapov product, which is then employed to introduce an easy-to-use description of all these functions with dimensions and McMillan degree as parameters. (iii) Through the (not necessarily reducible) Matrix Fraction Description (MFD). In cases (ii) and (iii) the poles of the rational functions involved may be anywhere in the complex plane, but the unit circle (including both zero and infinity). A special attention is devoted to exploring the gap between the square and rectangular cases.Comment: Improved versio

    A fast and well-conditioned spectral method for singular integral equations

    Get PDF
    We develop a spectral method for solving univariate singular integral equations over unions of intervals by utilizing Chebyshev and ultraspherical polynomials to reformulate the equations as almost-banded infinite-dimensional systems. This is accomplished by utilizing low rank approximations for sparse representations of the bivariate kernels. The resulting system can be solved in O(m2n){\cal O}(m^2n) operations using an adaptive QR factorization, where mm is the bandwidth and nn is the optimal number of unknowns needed to resolve the true solution. The complexity is reduced to O(mn){\cal O}(m n) operations by pre-caching the QR factorization when the same operator is used for multiple right-hand sides. Stability is proved by showing that the resulting linear operator can be diagonally preconditioned to be a compact perturbation of the identity. Applications considered include the Faraday cage, and acoustic scattering for the Helmholtz and gravity Helmholtz equations, including spectrally accurate numerical evaluation of the far- and near-field solution. The Julia software package SingularIntegralEquations.jl implements our method with a convenient, user-friendly interface

    Fast Empirical Scenarios

    Full text link
    We seek to extract a small number of representative scenarios from large and high-dimensional panel data that are consistent with sample moments. Among two novel algorithms, the first identifies scenarios that have not been observed before, and comes with a scenario-based representation of covariance matrices. The second proposal picks important data points from states of the world that have already realized, and are consistent with higher-order sample moment information. Both algorithms are efficient to compute, and lend themselves to consistent scenario-based modeling and high-dimensional numerical integration. Extensive numerical benchmarking studies and an application in portfolio optimization favor the proposed algorithms.Comment: 22 pages, 7 figure

    Polynomial eigenvalue decomposition for multichannel broadband signal processing

    Get PDF
    This article is devoted to the polynomial eigenvalue decomposition (PEVD) and its applications in broadband multichannel signal processing, motivated by the optimum solutions provided by the eigenvalue decomposition (EVD) for the narrow-band case [1], [2]. In general, the successful techniques from narrowband problems can also be applied to broadband ones, leading to improved solutions. Multichannel broadband signals arise at the core of many essential commercial applications such as telecommunications, speech processing, healthcare monitoring, astronomy and seismic surveillance, and military technologies like radar, sonar and communications [3]. The success of these applications often depends on the performance of signal processing tasks, including data compression [4], source localization [5], channel coding [6], signal enhancement [7], beamforming [8], and source separation [9]. In most cases and for narrowband signals, performing an EVD is the key to the signal processing algorithm. Therefore, this paper aims to introduce PEVD as a novel mathematical technique suitable for many broadband signal processing applications
    corecore