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I. INTRODUCTION

This article is devoted to the polynomial eigenvalue decompo-
sition (PEVD) and its applications in broadband multichannel 
signal processing, motivated by the optimum solutions pro-
vided by the eigenvalue decomposition (EVD) for the narrow-
band case [1], [2]. In general, the successful techniques from
narrowband problems can also be applied to broadband ones, 
leading to improved solutions. Multichannel broadband signals 
arise at the core of many essential commercial applications 
such as telecommunications, speech processing, healthcare 
monitoring, astronomy and seismic surveillance, and military
technologies like radar, sonar and communications [3]. The 
success of these applications often depends on the performance 
of signal processing tasks, including data compression [4], 
source localization [5], channel coding [6], signal enhance-
ment [7], beamforming [8], and source separation [9]. In most 
cases and for narrowband signals, performing an EVD is the
key to the signal processing algorithm. Therefore, this paper 
aims to introduce PEVD as a novel mathematical technique 
suitable for many broadband signal processing applications.

A. Motivations and Significance

In many narrowband signal processing applications, such as 
beamforming [8], signal enhancement [7], subband coding [6]
and source separation [9], the processing is performed based 
on the covariance matrix. The instantaneous spatial covariance
matrix, computed using the outer product of the multichannel
data vector, can capture the phase shifts between narrowband 
signals arriving at different sensors. In the narrowband case,
diagonalization of the spatial covariance matrix often leads to
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optimum solutions. For example, the multiple signal classifi-
cation (MUSIC) algorithm uses an EVD of the instantaneous 
spatial covariance matrix to perform super-resolution direction 
finding [5], [10].

The defining feature of a narrowband problem is the fact 
that a time delayed version of a signal can be approximated by 
the undelayed signal multiplied by a phase shift. The success 
of narrowband processing therefore depends on the accuracy 
of this approximation which varies from problem to problem. 
It is well known that as this approximation degrades, various 
issues start to occur when using narrowband algorithms. In 
array processing problems, this is often because some quantity 
in the algorithm that is related to direction of arrival starts 
to depend on the frequency of the signal. For example, in 
direction of arrival (DOA) algorithms, a wideband source can 
appear to be spatially distributed. Another issue is that of 
multipath. Reflections can cause problems as the different 
multipath signals are derived from a single source but arrive 
at the sensors at different times. This leads to various issues 
which can be advantageous or disadvantageous depending on 
one’s point of view. In beamforming and direction of arrival 
estimation this causes a problem as the bearing to the source is 
clearly not well defined. However in signal recovery problems 
like speech enhancement or communication systems, multipath 
is advantageous as the signals can be combined to improve 
the signal-to-noise ratio. This is however only possible if the 
multipath signals are coherent. With narrowband processing, 
multipath signals appear to decorrelate as the delay increases. 
Multipath signals can also cause frequency dependent fading 
whereas narrowband processing can only deal with flat fading. 
Hence for some problems it is desirable to depart from 
narrowband processing and introduce some form of frequency 
dependent processing.

For the broadband case, one common approach is to divide 
each broadband signal into multiple narrowband signals. While 
these narrowband signals are often processed independently by 
well-established and optimal narrowband techniques that are 
typically based on the EVD, splitting the broadband signal 
into independent frequency bins neglects spectral coherence 
and thus ignores correlations between different discrete Fourier 
transform (DFT) bins [11], [12]. As a result, optimal nar-
rowband solutions applied in independent DFT bins give rise 
to suboptimal approaches to the overall broadband problem 
[13]. Broadband optimal solutions in the DFT domain need 
to consider the cross-coupling between DFT bins via cross-
terms, but the number of terms depends on the signal-to-
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noise ratio (SNR) and cannot be determined in advance
[14], [15]. Another approach uses tapped delay line (TDL)
processing [16]–[18], but the performance depends on the
filter length, which is challenging to determine in practice.
These approaches highlight the lack of generic tools to solve
broadband problems directly.

Polynomial matrices are widely used in control theory and
signal processing. In the control domain, these matrices are
used to describe multivariable transfer functions for multiple-
input multiple-output (MIMO) systems [19]. Control systems
are usually designed for continuous-time systems and are
analyzed in the Laplace domain. There, factorizations, such
as the Smith or Smith–McMillan decomposition, of matrices
in the Laplace variable s, target unimodularity which is critical
in the control context for invertibility, or spectral factorizations
with minimum phase components in order to minimize time
delays [20]. More recently, within digital signal processing
(DSP), multirate DSP exploits polynomial matrices to describe
lossless filter bank systems using polyphase notation [6],
[20]. In multichannel broadband arrays or convolutively mixed
signals, the array signals are generally correlated in time across
different sensors. Therefore, the time delays for broadband
signals cannot be represented by only phase shifts but need to
be explicitly modelled. The relative time shifts are captured
using the space-time covariance polynomial matrix, where
decorrelation over a range of time shifts can be achieved using
a PEVD [21].

While the initial work on the PEVD was a numerical
algorithm [21], the existence of the decomposition of an
analytic, positive semi-definite parahermitian matrix like the
space-time covariance matrix has only recently been proved
[22]–[24]. In most cases, unique parahermitian eigenvalues
and paraunitary eigenvectors for a parahermitian matrix EVD
exist but are of infinite length. However, being analytic, they
permit good approximations by finite-length factors, which are
still helpful in many practical applications such as beamform-
ers [25], MIMO communications [26], source coding [27],
signal enhancement [28], [29], source separation [30], source
identification [31] and DOA estimation [32].

B. Outline of the Article
This article is organized as follows. Section II provides a
primer on the relevant mathematical concepts. Section III in-
troduces the notations and gives a background on multichannel
array processing, including the use of spatial and space-time
covariance matrices and the inadequacies of two common
approaches. Section IV first introduces the PEVD, whose
analytic eigenvalues and eigenvectors are first described before
their approximations by numerical algorithms are presented.
Section V will demonstrate the use of PEVD for some multi-
channel broadband applications, namely adaptive beamform-
ing, subband coding, and speech enhancement. Concluding
remarks and future perspectives are provided in Section VI.

II. MATHEMATICAL BACKGROUND

Analytic Functions. In the time-domain, the key to describing
the propagation of a broadband signal through a linear time-
invariant system (LTI) is the difference equation, where the

system output y[n] depends on a weighted average of the input
x[n] and past values of both y[n] and x[n]. This difference
equation

y[n] =
∑
ν≥0

b[ν]x[n− ν] +
∑
µ>0

a[µ]y[n− µ] (1)

is straightforward to implement but does not lend itself to
simple algebraic manipulations. For example, the difference
equation for the concatenation of two LTI systems is not
easily expressed in terms of the difference equations for the
two component systems. For this reason, the z-transform
x(z) =

∑
n x[n]z

−n with z ∈ C, or for short x(z) •—◦ x[n],
can be used to turn the time-domain convolution into the
multiplicative expression y(z) = h(z) · x(z), which is easy
to manipulate [33], [34].

The z-transform exists as long as the time-domain quantities
are absolutely summable, i.e. for x(z) we require

∑
n |x[n]| <

∞. Values of z for which the z-transform is finite define the
region of convergence (RoC), which therefore must include
at least the unit circle since

∑
n x[n]e

−jΩn ≤
∑

n |x[n]|. For
values of z within this RoC, the function x(z) is complex
analytic, which has profound consequences. Analytic functions
mathematically belong to a ring, such that any addition,
subtraction, and multiplication will produce an analytic result.
These operations potentially reduce the RoC. Dividing by
an analytic function also results in an analytic function, as
long as the divisor does not have spectral zeros; again this
operation may shrink the RoC. For example with b(z) and
a(z) analytic and the latter without any zeros on the unit
circle then h(z) = b(z)/a(z) is also guaranteed to be analytic.
Note that the same cannot be said for non-analytic functions.
This is important since non-analytic functions can be difficult
to approximate optimally in practice – see below. (For more
on the algebra of analytic functions see the “Algebra of
Functions” siderbar.)

Laurent Series, Power Series, and Polynomials. Throughout
this article, we often represent z-transforms by series, i.e., by
expressions of the form

h(z) =

N2∑
n=N1

h[n]z−n . (2)

This is motivated by the fact that analytic functions can
be represented by a Taylor (or, equivalently, power) series
within the region of convergence. More generally, we are
interested in Laurent series, power series, Laurent polynomials
and polynomials, which we distinguish below.

For finite N1 and N2 in (2), h(z) is a Laurent polynomial if
N1 and N2 have opposing signs. If N1 and N2 share the same
sign, i.e. if h(z) is purely an expression in powers of either z−1

or z, it is a polynomial. Typically, by a polynomial, we refer to
an expression that contains powers in z−1. If interpreted as a
transfer function, a polynomial h(z) in z−1 refers to a causal
finite impulse response filter. If it possesses finite coefficients,
then a polynomial or Laurent polynomial h(z) will always be
absolutely summable and hence be analytic.

A Laurent series is characterized by N1 → −∞ and N2 →
∞, while for a power series, h(z) only contains powers in
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strictly either z−1 (for N1 ≥ 0 and N2 → ∞) or z (for
N1 → −∞ and N2 ≤ 0). Both Laurent and power series
possess a generally infinite coefficient sequence {h[n]}. Such
sequences can be used to represent rational functions, where
h(z) = b(z)/a(z) is a ratio of two polynomials; with respect
to (1), such a power series can describe an infinite impulse
response filter. Further and more generally, Laurent and power
series can also represent transcendental functions, which are
absolutely convergent but may not be representable by a finite
number of algebraic operations such as a ratio.

In signal processing, polynomials and convergent power
series can represent quantities such as finite or infinite impulse
responses of either causal or anti-causal stable systems. In
contrast, Laurent series or Laurent polynomials appear as a
result of correlation operations. First, assume that a zero-mean
unit-variance uncorrelated random signal x[n] excites a system
with impulse response h[n]. With the input autocorrelation
sequence rx[τ ] = E{x[n]x∗[n− τ ]} = δ[τ ], the output auto-
correlation is ry[τ ] =

∑
n h

∗[−n]h[τ − n] [35], where E{·}
and [·]∗ are the expectation and complex conjugate operators,
respectively. Then its z-transform, the power spectral density
ry(z) •—◦ ry[τ ], ry(z) = h(z)h∗(1/z∗), will be a Laurent
series if h(z) is a power series, and a Laurent polynomial if
h(z) is a polynomial.

Polynomial Approximation and Polynomial Arithmetic. By
the Weierstrass Theorem, any continuous function can be
arbitrarily well approximated by a polynomial of sufficient
degree, but in general it can be nontrivial to construct the
approximating polynomials. However, for analytic functions,
such as Laurent or power series h(z), this approximation
can be easily obtained by truncating h[n] ◦—• h(z) to the
required order. If the result is a Laurent polynomial as in (2),
describing, e.g., the impulse response of a non-causal system,
then a polynomial (or causal system) can be obtained by a
delay by N1 sampling periods. Thus, by delay and truncation,
all of the above expressions describing analytic functions —
Laurent series, power series, and Laurent polynomials — can
be arbitrarily closely approximated by polynomials.

Key Statement

While operations on analytic functions tend to yield
analytic functions, the same is not true for polynomials:
e.g. the ratio of polynomials generally yields a rational
function but not a polynomial. Nonetheless, since the
resulting function is analytic, it can be approximated
arbitrarily closely by a polynomial via appropriate delay
and truncation operations.

Matrices of Analytic Functions and Polynomial Matrices.
In this article, we consider matrices whose entries are ana-
lytic functions in general and their close approximation by
polynomial matrices, in particular. The mathematical theory
of polynomial matrices that depend on a real parameter has
been studied in e.g. [36]. This has found application, for
example, in the control domain [37]. Within signal processing,
polynomial matrices have been used in filter bank theory.
Specifically, polyphase notation [38] has been utilized to allow

efficient implementation. Here, polynomial matrices in the
form of polyphase analysis and synthesis matrices describe
networks of filters operating on demultiplexed single-channel
data. More generally, polynomial matrices have been used to
define space-time covariance matrices on the demultiplexed
data streams [20] or directly for multichannel data [21].

Algebra of Functions

We are interested in matrices whose entries are more 
general than complex numbers. Specifically, we are 
interested in entries that are analytic functions. Matrices 
whose entries are analytic functions rather than real or 
complex numbers, and the algebraic manipulation of 
these matrices may at first seem a little exotic, but many 
operations for real or complex numbers carry over to this 
setting.

There are several different classes of function depending 
on what properties they have. For example there are dis-
continuous functions, continuous but non-differentiable 
functions, functions that are continuous and differen-
tiable up to a certain order, and functions that are 
continuous and differentiable for all orders. The class 
of analytic functions, by definition, have locally con-
vergent power series. Consequently, they are infinitely 
differentiable and are easier to work with than other 
types of function. These series might have a finite 
number of terms but in general there are infinitely many. 
The truncation of these series results in polynomial 
approximations of the underlying analytic function.

Analytic functions can be algebraic or transcendental. 
An algebraic function f(x) is a function that is a 
root of a polynomial equation. More specifically, f 
is algebraic if it satisfies p(x, f(x)) = 0 for some 
irreducible polynomial p(x, y) with coefficients in some 
field. Examples of algebraic functions include rational 
functions and nth roots of polynomials. Note that the 
inverse function of an algebraic function (if it exists) is 
also algebraic. An analytic function that is not algebraic 
is called a transcendental function. Examples include 
ex, sin(x) and cos(x). Such functions have power series 
representations with an infinite number of terms.

Let us first c onsider a nalytic f unctions o n t heir own. 
A function f(z) is (complex) analytic in a domain (an
open set) D ⊂ C if at each point, it can be written 
as a locally convergent Taylor series. (Note that this 
means that such a function is infinitely differentiable.) 
The set D is known as the domain of analyticity of f(z). 
We note that two different analytic functions f(z) and 
g(z), may have different domains of analyticity, say Df 
and Dg. When we operate on these functions, we will 
assume that Df and Dg overlap, i.e., that they have a 
nontrivial intersection, and will restrict f(z) and g(z) to 
this common domain D = Df ∩ Dg.

Then, we can perform certain fundamental operations
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on analytic functions, and the result will also be an
analytic function with the same domain of analyticity
D. In particular, if f(z) and g(z) are analytic on a
domain D ⊂ C then f(z) + g(z) is analytic, that is,
it can be expressed as a locally convergent power series
for any z ∈ D. Similarly, f(z) − g(z) and f(z) · g(z)
are analytic. Things become a little more complicated
when we consider quotients of the form f(z)/g(z), but
the result is analytic everywhere except at zeros of g(z),
as might be expected. This “closure” is important since
it means that as we manipulate analytic functions we
do not need to worry if the result is also analytic. Note
as well that if the product f(z) · g(z) ≡ 0 on D then
f(z) ≡ 0 on D or g(z) ≡ 0 on D.

If we now restrict our attention to polynomials in z,
which are analytic everywhere, and Laurent polynomi-
als, which are analytic everywhere except z = 0, then
we can say something more. Indeed, if f(z) and g(z)
are (Laurent) polynomials, then f(z)+g(z), f(z)−g(z)
and f(z)·g(z) are not just analytic but are also (Laurent)
polynomials. Now, however, we must exercise some
care when considering quotients f(z)/g(z), since the
result will be analytic in D (except at the zeros of
g(z)) but will not be a (Laurent) polynomial in general.
However, f(z)/g(z), or indeed any analytic function
can be arbitrarily well approximated by polynomials as
discussed above.

Let us now consider matrices R(z) whose entries are
analytic functions in D ⊂ C. We start by noting that for
any fixed z0 ∈ C, the matrix R(z0) is simply a matrix of
complex numbers that can be manipulated in the usual
ways. For example, we can multiply R(z0) by another
(conformable) matrix or vector, or compute the EVD
of R(z0). When we instead allow z to vary, it is still
possible to form, say, matrix–matrix or matrix–vector
products with R(z). Indeed, using the arguments in the
previous paragraphs, if R(z) has analytic (polynomial)
entries then the resulting matrix or vector will also
have analytic (polynomial) entries. However, it is not
immediately obvious that we can write down a single, z-
dependent eigenvalue decomposition of R(z) that holds
for all values of z ∈ D. That this is true in certain
circumstances is proved in a remarkable result from
Rellich [39].

Polynomial Matrix Factorizations. A number of polynomial
matrix factorizations have been introduced in the past. Since
we are particularly interested in diagonalizations of matrices,
these prominently include the Smith and the Smith–Macmillan
forms for matrices of polynomials and rational functions,
respectively [20]. Popular in the control domain, these allow
a decomposition into a diagonal term and two outer factors
that are invertible but generally non-orthogonal polynomial
matrices. Further, spectral factorizations [37], [40] involve the
decomposition of a matrix into a product of a causal, stable
matrix and its time-reversed, complex conjugated, and trans-
posed version. These are matrix-valued extensions of Wiener’s

factorization of a power spectral density into minimum- and
maximum phase components, and are supported by numerical
tools such as PolyX [41].

In control theory, minimizing the delay of a system is a
critical design issue, and hence many of the existing matrix
decompositions, such as spectral factorization, emphasize the
minimum-phase equivalent of the resulting matrix factors.
In signal processing, the delay is often a secondary issue,
while e.g. energy preservation (or unitarity) of a transform
is crucial. Therefore, in the following, we will explore the
diagonalization of an analytic matrix by means of energy-
preserving transformations.

III. PRELIMINARIES: REPRESENTING BROADBAND
SIGNALS

A. Signal Model

The received signal at the mth sensor for the discrete-time
index n is

xm[n] =
L∑

ℓ=1

T∑
τ=0

aℓ,m[τ ]sℓ[n− τ ] + vm[n], m = 1, . . . ,M ,

(3)
where aℓ,m[n] models the channel from the ℓth source signal
sℓ[n] to the mth sensor and is an element of A[n] ∈ CL×M×T ,
vm[n] is the additive noise at the mth sensor assumed uncorre-
lated with the L source signals, and T is the maximum order
of any of the channel impulse responses. The received data
vector for M sensors is x[n] = [x1[n], . . . , xM [n]]T ∈ CM ,
and each element has a mean of E{xm[n]} = 0 ∀m , where
[·]T represents the transpose operator. Similarly, the source and
noise data vectors are s[n] ∈ CL and v[n] ∈ CM , respectively.

Broadband source signals, which naturally arise in, for
example, audio, speech, communications, sonar, and radar, are
directly reflected by (3). It is also applicable for narrowband
systems. Here, the source signal is often described by a
complex exponential, ejΩn, where j =

√
−1 is the imaginary

number and Ω is the normalized angular frequency. This
means that (3) can be simplified by setting T = 0. As an
alternative to (3), as shown in Fig. 1, the L source signals,
sℓ[n] ∀ℓ, could be generated using spectral-shaped noise
obtained by filtering uncorrelated, zero mean unit variance
complex Gaussian random variables, uℓ[n] ∈ N (0, 1), through
the innovation filters, fℓ[n] [35].

The channel model in (3) can describe systems in di-
verse scenarios, for example, instantaneous and convolutive
mixtures, near-field and far-field sources, and anechoic and
reverberant environments. The signal model in (3) is often
simplified by taking the z-transform. However, care is needed
as the z-transform of a random signal does not exist. Nonethe-
less, in the case of deterministic, absolutely summable signals,
the z-transform of (3) may be written, in matrix-vector form,
as

x(z) = AP (z)s(z) + v(z) , (4)

where A[n]� A(z) ∈ CL×M , s[n]� s(z) ∈ CL, and
v[n] � v(z) ∈ CM are z-transform pairs of the channel
matrix, source and noise vectors, respectively. The symbol
[·]P denotes the parahermitian operator, AP(z) = AH(1/z∗),
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u1[n]

uL[n]

...

f1[n]
s1[n]

...

fL[n]
sL[n]

Channel

A[n]

x1[n]

xM [n]

... Processor

y1[n]

yM [n]

...

L sources M sensors

Fig. 1: Multichannel system model for L spectral-shaped
source signals and M sensors. Uncorrelated noise signals v[n],
not drawn in the figure, are optionally added to each sensor
based on (3).

which involves a hermitian transpose followed by a time-
reversal operation [20], where [.]H denotes the hermitian trans-
pose operator. The well-known equivalence of convolution in
the time-domain and multiplication in the z-domain [33] is
expressed in (3) and (4).

B. Covariance Matrices

The covariance matrix used in many narrowband subspace-
based approaches [5], [8], [10] is described by

R = E{x[n]xH[n]} , (5)

using the data vector obtained from (3). The (m, ℓ)th element
of R is rm,ℓ = E{xm(n)x∗ℓ (n)}, and the expectation op-
eration is performed over n. In practice, the expectation is
approximated using the sample mean where the inner product
between the received signals at the mth and ℓth sensor is
computed before normalizing by the total number of samples
N . Because the inner product is calculated sample-wise, the
covariance matrix instantaneously captures the spatial rela-
tionship between different sensors. This paper will call it the
instantaneous (or spatial) covariance matrix.

When the system involves convolutive mixing or broadband
signals, time delays between signals at different sensors need
to be modelled. This spatio-temporal relationship is explicitly
captured by the space-time covariance matrix, parameterized
by the discrete-time lag parameter τ ∈ Z, defined as [21]

R[τ ] = E{x[n]xH[n− τ ]} . (6)

The (m, ℓ)th element of R[τ ], arising from sensors with a
fixed geometry, is rm,ℓ[τ ] = E{xm[n]x∗ℓ [n − τ ]} and again
the expectation operation is performed over n, where wide-
sense temporal stationarity is assumed. The auto-correlation
and cross-correlation sequences are obtained when m = ℓ and
m ̸= ℓ, respectively. Furthermore, (5) can be seen as a special
case of (6) when only the instantaneous lag is considered, i.e.,
R[0] is the coefficient of z0 when τ = 0, as shown in Fig. 2.

The z-transform of the space-time covariance matrix in (6),
R[τ ]� R(z) ∈ CM×M , is known as a cross spectral density
(CSD) and is represented by

R(z) =

∞∑
τ=−∞

R[τ ]z−τ , (7)

is a parahermitian polynomial matrix satisfying the property,
RP(z) = R(z). The polynomial matrix can be interpreted as

a matrix-valued polynomial (function) or a polynomial with
matrix coefficients, i.e., R[τ ] is the matrix coefficient of z−τ .
This is visualized in the middle of Fig. 2 , which describes the
temporal evolution of the spatial relationship across the entire
array. Equivalently, the same polynomial matrix can also be
interpreted as a matrix with polynomial elements, representing
the temporal correlation in the z-domain between sensor pairs,
for example, element r3,1(z) for sensors 3 and 1 on the right
of Fig. 2.

Key Statement

The space-time covariance matrix completely captures
the second-order statistics of multichannel broadband
signals via auto- and cross-correlation functions. Its z-
transform has the useful property of being parahermi-
tian.

C. Comparison With Other Broadband Signal Representations

The multichannel signal model introduced in Section III will
be compared against two signal representations commonly
encountered in array processing. They are the TDL and short-
time Fourier transform (STFT) approaches.

1) Tapped Delay Line (TDL) Processing: The relative de-
lays with which broadband signals arrive at different sensors
cannot be sufficiently modelled by phase shifts because they
can only be accurate at a single frequency. Therefore, these
delays need to be implemented by filters that possess at the
very least frequency-dependent phase shifts. Such filters must
rely on processing a temporal window of the signals; the
access to this window can, in the FIR case, be provided by
TDLs that are attached to each of the M array signals. The
length T of these TDLs will determine the accuracy with
which such delays—often of a fractional nature [18]—are
realized.

Based on the array signal vector x[n], a T -element TDL
provides data that can be represented by a concatenated vector
χ[n] = [xT[n], . . . ,xT[n − T + 1]]T ∈ CMT , which holds
both spatial and temporal samples. For the covariance matrix
of χ[n], Rχ = E{χ[n]χH[n]}, we have

Rχ =

 R[0] . . . R[T − 1]
...

. . .
...

R[−T + 1] . . . R[0]

 . (8)

Although of different dimensions, the covariance Rχ thus
contains as sub-matrices the same terms that also make up
the space-time covariance matrix R[τ ]. However, it is not
necessarily clear prior to processing how large or small T
should be selected. Apart from its impact on the accuracy
of a delay implementation, if T is selected smaller than the
coherence time of the signal, then some temporal correlations
for lags |τ | ≥ T in the signals are missed, leading to a
potentially insufficient characterization of the signals’ second
order statistics. If T is set too large, then no extra correlation
information is included but additional noise is added.

The EVD of the covariance matrix Rχ = QχΛχQ
H
χ

gives access to MT eigenvalues in Λχ. In inspecting these
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1
1

1

.7

-.3

0
-.3.7

0
Example of matrix at zero-lag.

0 00
0 .5.8
0 00

Polynomial with matrix coefficients. Matrix with polynomial elements.

Fig. 2: A typical spatial covariance matrix for the zero lag, i.e., τ = 0, is the matrix coefficient of z0, shown on the left. In
general, each matrix slice corresponds to a coefficient of the polynomial, shown in the centre. The same polynomial matrix is
also a matrix comprising polynomial elements represented by tubes in the same cube shown on the right.

eigenvalues, there no longer is any separation between space
and time, and, for example, a single broadband source that
is captured by the array in its data vector x[n] can generate,
depending on its bandwidth, anything between one and T +∆
non-zero eigenvalues, where ∆ is the maximum propagation
delay across the array that any source can experience. Hence,
tasks such as source enumeration can become challenging.

Furthermore, in narrowband processing, a common proce-
dure is to project the received signals x onto the so-called
signal subspace as this would suppress some of the noise [7].
The signal subspace is defined by partitioning the eigenvalues
by magnitude and selecting the subset of eigenvectors cor-
responding to the larger eigenvalues. Mimicking this in the
broadband case would mean partitioning Qχ =

[
Qs Qn

]
where Qs correspond to the larger eigenvalues. In the nar-
rowband case, it is well known that, in general, the projected
signals y[n] = QH

s χ[n] are not the source signals but merely
span the same space. However, if only one source signal is
present then the projected signal is the source signal. In the
broadband case, not even this is true since, as noted above,
we might have more than one eigenvalue per signal.

2) Short-time Fourier Transform (STFT): If we take a T -
point DFT W of each of the TDLs in χ[n], we evaluate
ξ[n] = (W ⊙ IM )χ[n], with ⊙ the Kronecker product.
The DFT-domain covariance Rξ = E{ξ[n]ξH[n]} = (W ⊙
IM )Rχ(W ⊙ IM )H is generally non-sparse due to cross-
coupling between DFT bins. This cross-coupling does not
subside even as T is increased. For bin-wise processing —
i.e. processing each of the frequency bins across the array
independently of other frequency bins — many of the terms in
Rξ are neglected, leading to processing that can be very low-
cost but generally is only suboptimal. To achieve optimality,
time-domain criteria must be embedded in the processing,
which generally leads to cross-terms between bins [14], [42].
The generally dense nature of Rξ can be relaxed when em-
ploying more frequency-selective subband methods over DFT-
processing, but cross-terms at least between adjacent subband
still remain [43]. Together with the increased computation
cost of such filters over the DFT, this thus negates the low-
complexity aspiration of this approach.

Key Statement

Broadband processing requires accurately representing
fractional time delays. Previous approaches do not lead
to proper generalizations of the narrowband algorithms
and are often suboptimal.

IV. POLYNOMIAL MATRIX EIGENVALUE DECOMPOSITION

As discussed in Section III-C, conventional approaches to pro-
cessing broadband signals have some shortcomings. Arguably,
this is because the incorrect signal representation was used.
Specifically, the use of a tapped delay-line, with either time-
domain or frequency domain processing, mixes up the spatial
and temporal dimensions. This section builds on the signal
model in Section III, representing the broadband system using
z-transforms or “polynomials”. Guided by the successful use
of linear algebra, i.e. EVD, in narrowband systems, this section
focuses on the decomposition of parahermitian polynomial
matrices such as the space-time covariance matrix. That is,
given a parahermitian polynomial matrix R(z) = RP(z), does
a decomposition R(z) = Q(z)Λ(z)QP(z) exist, where Λ(z)
is diagonal and Q(z) is paraunitary?

Note that the EVD can diagonalize a parahermitian matrix
R[τ ] for only one specific lag τ = τ0, or alternatively
R(z) •—◦ R[τ ] for one specific value z = z0. The unitary
matrices that accomplish the diagonalization at that value are
unlikely to diagonalize the matrix at other values τ ̸= τ0 or
z ̸= z0. We, therefore, require a decomposition that diagonal-
izes R[τ ] for all values of τ , or R(z) for all values of z within
the RoC. We address the existence of such a decomposition
via the analytic EVD in Section IV-A, and provide some
comments on numerical algorithms in Section IV-B.

A. Analytic EVD

The key to a more general EVD is the work by Franz
Rellich [44], who in the context of quantum mechanics,
investigated a matrix-valued function A(t) that is self-adjoint,
i.e. A(t) = AH(t), and analytic in t on some real interval.
Matrix-valued functions of this type admit a decomposition
A(t) = U(t)Γ(t)UH(t) with matrix-valued functions U(t)
and Γ(t) that are also analytic in t, and where Γ(t) is diagonal
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and U(t0) is unitary for any specific value t = t0. These
results were obtained through perturbation analysis [45], where
for the EVD of a matrix A(t0) = U(t0)Γ(t0)U

H(t0), a
change of A(t0) by some small Hermitian matrix results
in only a limited perturbation of both the eigenvalues and
eigenvectors. There is no such guarantee if A(t) is not analytic
in t; even infinite differentiability does not suffice [45].

To decompose a matrix R(z) that is analytic in the complex-
valued parameter z, it suffices to investigate R(z) on the unit
circle for z = ejΩ. This is due to the uniqueness theorem for
analytic functions, which guarantees that if two functions are
identical on some part of their region of convergence (ROC)
—here the unit circle, which must always be included — they
must be identical across the entire ROC. Although Ω ∈ R,
Rellich’s results do not directly apply as they do not imply a
2π-periodicity. Without such periodicity, it is not possible to
re-parameterize the EVD factors by replacing ejΩ with z and
hence produce an EVD that is analytic in z. However, it has
recently been shown that Rellich’s result admits 2πN -periodic
eigenvalue functions, and, furthermore, N = 1 unless the data
generating R(z) emerges from N -fold multiplexing or block
filtering [23], [24]. Analytic eigenvector functions then exist
with the same periodicity as the eigenvalues [46]. Therefore,
an analytic EVD for this N -fold multiplexed system

R(zN ) = Q(z)Λ(z)QP(z) (9)

exists with analytic factors such that Λ(z) is diagonal. The ma-
trix Q(z) contains the eigenvector functions and for z = ejΩ0

is unitary. For a general z, Q(z) is paraunitary, such that
Q(z)QP(z) = QP(z)Q(z) = I. Paraunitarity is an extension of
the orthonormal and unitary properties of matrices from the
real- and complex-valued cases to matrices that are functions
in a complex variable [20]. For ease of exposition in the
following, we will talk of ‘analytic matrices X(z)’ with the
understanding that X(z) is a matrix-valued analytic function.

In the analytic EVD of (9), the eigenvalue function is
Λ(z) = diag{λ1(z), . . . , λM (z)}, where diag(·) forms a
diagonal matrix from its argument. When evaluated on the
unit circle, the eigenvalues λm(ejΩ), m = 1, . . . ,M , are real-
valued, and unique up to a permutation. If there are M distinct
eigenvalues, i.e., λm(ejΩ) = λµ(e

jΩ) only for m = µ for any
m,µ = 1, . . . ,M , then the corresponding eigenvectors qm(z)
in Q(z) = [q1(z), . . . , qM (z)] are unique up to an arbitrary
allpass function, i.e., q′m(z) = ψm(z) qm(z) is also a valid
analytic eigenvector of R(zN ), where ψm(z) is allpass.

As an example, consider the system from [23]

R(z) =

[
1−j
2 z + 3 + 1+j

2 z−1 1+j
2 z2 + 1−j

2
1+j
2 + 1−j

2 z−2 1−j
2 z + 3 + 1+j

2 z−1

]
,

(10)

which is constructed from eigenvalues Λ(z) =
diag

{
z + 3 + z−1, jz + 3− jz−1

}
, and corresponding

eigenvectors q1,2(z) = 1/
√
2[1, ±z−1]T. The evaluation

of the eigenvalues on the unit circle, λ1,2(e
jΩ) is

shown in Fig. 3(a). For the eigenvectors, the Hermitian
angle φm(ejΩ) = arccos(|qH1 (ej0) qm(ejΩ)|), is drawn in
Fig. 3(b). Note that due to the analyticity of the EVD
factors, all these quantities evolve smoothly with the

0 /4 /2 3 /4 5 /4 3 /2 7 /4 2
1

2

3

4

5

(a)

0 /4 /2 3 /4 5 /4 3 /2 7 /4 2
0

/8

/4

3 /8

/2

(b)

m=1

m=2

Fig. 3: Example for (a) analytic eigenvalues on the unit
circle and (b) Hermitian angles of the corresponding analytic
eigenvectors, measured against a reference vector [23].

normalized angular frequency Ω. An allpass modification of
the eigenvectors might be as simple as imposing a delay;
while this will not affect φm(ejΩ), it can increase support of
Q[n] ◦—• Q(z).

While in the above example, the factorization yields poly-
nomial factors, this does not have to be the case – they
could be Laurent or power series. For example, modifying
the previous eigenvectors by arbitrary allpass functions does
not invalidate the decomposition but it may change the order
of qm(z) to ∞, i.e, a power series. More generally, Laurent
polynomial matrices R(z) are likely to lead to algebraic
or even transcendental functions as EVD factors [23], [24].
Nonetheless, recall from Section I that analyticity implies
absolute convergence in the time-domain. Therefore, the best
least-squares approximation is achieved by truncation. Further,
as the approximation order increases, the approximation error
can be made arbitrarily small.

The components of the analytic PEVD also have some
useful properties. The matrix of eigenvectors Q[n] can be
viewed as a lossless filter bank. Clearly, it transforms the input
times series into another set of time series. However, being
paraunitary, the energy in the output signals is the same as
that of the input signals. Furthermore, the output signals are
strongly decorrelated. That is, any two signals have zero cross-
correlation coefficient at all lags. Significantly, the signals
are not temporally whitened, i.e., do not have an impulse
as their auto-correlation function. Note that the order of a
z-transform is connected to the time-domain support of the
corresponding time-series. Thus, the computational cost of
implementing such a filter bank is related to the order of Q(z).
In general, the eigenvalues of a narrowband covariance matrix
have differing magnitudes, with the presence of small values
indicating approximate linear dependency between the input
signals. Similarly, the eigenvalues on the diagonal of Λ[n] can
show linear dependence but in a frequency-dependent manner.
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Key Statement

The pioneering work of Rellich showed that an ana-
lytic EVD exists for a matrix function. Applying this
to a space-time covariance matrix on the unit circle
introduces some additional constraints but results in the
existence of an analytic PEVD.

B. PEVD Algorithms

The first attempt at producing a PEVD algorithm began with
the second-order sequential best rotation (SBR2) [21], which
was motivated by Jacobi’s method for numerically computing
the EVD [2]. The PEVD of R(z), i.e., (7), as given by (9) for
N = 1 and established in Section IV-A can be approximated
using an iterative algorithm and is expressed as [21], [47]

R(z) ≈ U(z)Λ(z)UP(z) , (11)

where the columns of the polynomial matrix, U(z) ∈ CM×M ,
correspond to the eigenvectors with their associated eigenval-
ues on the diagonal polynomial matrix, Λ(z) ∈ CM×M . The
Laurent polynomial matrix factors U(z) and Λ(z) are neces-
sarily analytic being of finite order. However, under certain
circumstances, the theoretical factors in the PEVD might not
be analytic [23], [24]. In which case, the Laurent polynomial
matrix factors U(z) and Λ(z) are only approximations to the
true factors. Hence, the approximation in (11).

Rewriting (11) as

Λ(z) ≈ UP(z)R(z)U(z) , (12)

the diagonalization of R(z) can be achieved by generalized
similarity transformations with U(z) satisfying the paraunitary
or lossless condition [20]

UP(z)U(z) = U(z)UP(z) = I , (13)

where I is the identity matrix. The similarity transform
U(z) may be calculated via an iterative algorithm such as
the SBR2 or sequential matrix diagonalization (SMD) [47].
Here, a sequence of elementary paraunitary transformations
Gi(z) (i = 1, . . . ) are applied to R(z) until the polynomial
matrix becomes approximately diagonal i.e. starting from
R̃0(z) = R(z), the following expression is iterated

R̃i(z) = GP
i (z)R̃i−1(z)Gi(z) (14)

until R̃NI
(z) is approximately diagonal for some NI . An

elementary paraunitary transformation takes the form of the
product of a unitary transformation and a polynomial delay
matrix, diag{1, . . . , 1, zn, 1, . . . , 1}.

Figure 4 shows the steps involved during every iteration
of SBR2. At each iteration, the algorithm searches for the
off-diagonal element with the largest magnitude across all z-
planes, as marked in red in Fig. 4. If the magnitude exceeds
a predefined threshold, a delay polynomial matrix is applied
to bring the element to the principal z0-plane, as shown in
Fig. 4. A unitary matrix, designed to zero out two elements on
the zero-lag plane, is applied to the entire polynomial matrix.
Note that applying one elementary paraunitary transformation
may make some previously small off-diagonal elements larger,

but overall the algorithm converges to a diagonal matrix. As 
observed in Fig. 4, the delay step can increase the polynomial 
order and make it unnecessarily large. Therefore, a trimming 
procedure [21] is used to control the growth of polynomial 
order by discarding negligibly small coefficients i n t he outer 
planes, e.g., z−4 and z4 in Fig. 4. Furthermore, the similarity 
transformations in (12) affect a pair of dominant elements so 
that the search space can be halved due to the preservation 
of symmetry. The algorithm terminates when the magnitudes 
of all off-diagonal elements fall below the pre-set threshold or 
when a user-defined maximum number of iterations is reached.

This has led to a family of time-domain algorithms based 
on SBR2 [21] and SMD [47]. The computational complexity 
of these numerical algorithms is at least O(M3T ) due to 
matrix multiplication applied to every lag [48]. The additional 
complexity incurred over the EVD approach is essential for 
the temporal decoupling of broadband signals. Furthermore, 
some promising efforts using parallelizable hardware [49] and 
numerical tricks [50] have been proposed and the decom-
position can be computed in a fraction of a second. These 
algorithms are also guaranteed to produce polynomial, parau-
nitary eigenvectors but tend to generate spectrally majorized 
eigenvalues, which may not be analytic. Two functions f1(z) 
and f2(z) are said to be spectrally majorized if, on the unit 
circle, one function’s magnitude is always greater than the 
other’s. Figure 5 shows the results of using the SMD algorithm 
to process the matrix used to generate Fig. 3. In Fig. 5, the 
eigenvalue in blue is always greater than the one in red. In 
contrast, the (analytic) eigenvalues in Fig. 3 intersect and 
are not spectrally majorized. As shown in Fig. 5(b), forcing 
a spectrally majorized solution for the eigenvalues leads to 
the eigenvectors having discontinuities which are difficult to 
approximate with polynomials. To get an accurate result, high-
order polynomials are required. This, in turn, has consequences 
for the implementation cost of any signal processing based on 
the output of these algorithms. Note, however, that spectral 
majorization can be advantageous in some situations – see 
Section V-B.

Unlike the SBR2 algorithm [21], there is no proof that 
the SMD algorithm will always produce spectrally majorized 
eigenvalues, although evidence from the use of this algorithm 
strongly supports this conjecture. Given the issues that spectral 
majorization produces in terms of exploiting Q(z) as a filter 
bank or for identifying subspaces, recent work has been 
directed at designing an algorithm that can produce a PEVD 
whose components are guaranteed to be analytic. One such 
approach [51] involves working in the frequency domain and 
taking steps to ensure that the spectral coherence is not lost.

A number of algorithms have been designed for decompo-
sitions of fixed o rder, a nd w ithout p roven c onvergence. This 
includes the approximate EVD (AEVD) algorithm [52], which 
in the time-domain applies a fixed n umber o f elementary 
paraunitary operations in an attempt to diagonalise R(z). In 
the DFT domain, [53] aims to extracts maximally smooth 
eigenvalues and eigenvectors, which therefore can target the 
extraction of the analytic solution.
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Search. Delay. Zero. Trim.

Fig. 4: Each PEVD iteration involves the following four steps. The polynomial matrix is first searched for the maximum
off-diagonal across all lags (leftmost). The second delay step brings the largest element to the principal z0-plane (second from
the left). The third is the zeroing step which transfers energy from the off-diagonal elements to the diagonal (second from the
right). The final trimming step discards negligibly small coefficients in the outer matrix slices (rightmost).
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Fig. 5: Results of using SMD to decompose the matrix used in
Figure 3: (a) eigenvalues on the unit circle and (b) Hermitian
angles of the corresponding analytic eigenvectors, measured
against a reference vector [23].

Key Statement

Approximating analytic functions by polynomials al-
lows the development of PEVD algorithms based on
an elementary paraunitary operator. The resulting al-
gorithms are guaranteed to produce polynomial, pa-
raunitary eigenvectors but tend to generate spectrally
majorized eigenvalues. This property has benefits as well
as drawbacks.

V. EXAMPLE APPLICATIONS USING PEVD

This section highlights three application cases, that demon-
strate key examples where PEVD-based approaches can offer
advantages over state-of-the-art processing. In Section V-A,
we demonstrate how for adaptive beamforming, the computa-
tional complexity is decoupled from the tap delay line length
that otherwise determines the cost of a broadband adaptive
beamformer. Section V-B shows how in subband coding, the
PEVD can generate a system with optimized coding gain,
and helps to formulate optimum compaction filter banks that
previously could only be stated for the two-channel case.

Finally, Section V-C addresses how the preservation of spectral
coherence can provide perceptually superior results over DFT-
based speech enhancement algorithms.

A. PEVD-based Adaptive Beamforming

To explore PEVD-based beamforming, we first recall some
aspects of narrowband beamforming before defining a linearly
constrained minimum variance (LCMV) beamformer using
both tapped delay line (TDL) and PEVD-based formulations.
We work with an arbitrary geometry of M sensors, but for
simplicity, assume free-space propagation and for the array to
be sufficiently far-field to neglect any loss in amplitude across
its sensors.

Spatial Filtering and Steering Vector. Spatial filtering uses
the fact that wavefronts arriving from different sources have
a different delay profile when arriving at the sensors. If there
are L spatially separated sources, then for the ℓth source, ℓ =
1, . . . , L, let this delay profile be {τℓ,1, . . . , τℓ,M}, where τℓ,m
is the delay at the mth sensor with respect to some common
reference point. We further define a vector of transfer functions
aℓ(z) = [dτℓ,1(z), . . . , dτℓ,M (z)]T containing fractional delay
filters, where dτ [n] ◦—• dτ (z) implements a delay by τ ∈ R
samples [18]. We refer to aℓ(z) as a broadband steering vector
since, when evaluated at a fixed frequency Ωℓ, the ℓth source
can be regarded as a narrowband signal with centre frequency
Ωℓ, in which this vector of functions reduces to the well-known
steering vector aℓ(z)|z=ejΩℓ = aℓ(e

jΩℓ) ∈ CM . The latter
contains the phase shifts that each sensor experiences with
respect to the ℓth source. If at least two sensors satisfy the
spatial sampling theorem, and for a particular frequency Ωℓ =
Ω0, this steering vector is unique with respect to the direction
of arrival of the ℓth source.

We want to process the array data x[n] ∈ CM by a vector
of filters w[n] ◦—• w(z), with wP(z) = [W1(z), . . . ,WM (z)]
and Wm(z) •—◦ wm[n] is the filter processing the mth sensor
signal, such that the array output y[n] is sum of the filtering op-
erations, y[n] =

∑
ν w

H[−ν]x[n− ν] =
∑

m,ν wm[ν]xm[n−
ν]. The definition of the filter vector w[n] with its time
reversed and conjugated weights may seem cumbersome, but
it follows similar conventions for complex-valued data [54]
and will later simplify the z-transform notation.
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Narrowband Beamforming. In the narrowband case, the
delay filters can be replaced by complex coefficients in a vector
wH = [w1, . . . , wM ] ∈ CM that implement phase shifts. To
generate a different gain fℓ, ℓ = 1, . . . , L with respect to each
of the L sources, the beamformer defined by w must satisfy
the constraint equation aH

1 (e
jΩ1)

...
aH
L(e

jΩM )


︸ ︷︷ ︸

C

w =

 f1
...
fL


︸ ︷︷ ︸

f

, (15)

where C ∈ CL×M and f ∈ CL are the constraint ma-
trix and associated gain vector for the L constraints. In
the presence of spatially white noise, the minimum mean-
square error (MMSE) solution is the quiescent beamformer
wq = C†f [54], where C† is the pseudo-inverse of C. If the
noise is spatially correlated, then the LCMV formulation

min
w

E
{
|y[n]|2

}
s.t. Cw = f (16)

provides the MMSE solution, now constrained by (15). So-
lutions to (16) include, for example, the Capon beamformer,
wopt = (R[0])−1CH[C(R[0])−1CH]−1f or the generalized
sidelobe canceller (GSC). For the GSC, a ‘quiescent beam-
former’ wq implements the constraints in C, and a ‘blocking
matrix’ B is constructed such that CB = 0; thus, when
operating on the array data x[n], its output is free of any
components appearing in the quiescent beamformer output.
All that remains is to suppress any signal components in the
quiescent beamformer output that correlate with the blocking
matrix output. This unconstrained optimization problem for
the vector wa in Fig. 6(a) can be addressed by adaptive
filtering algorithms via a noise cancellation architecture [54].
The overall response of the adapted GSC is w = wq −Bwa.

TDL-based Generalized Sidelobe Canceller. In the broad-
band case, each sensor is followed by a TDL of length T in
order to implement a finite impulse response filter that can re-
solve explicit time delays [55]. This leads to the concatenated
data vector χ[n] = [xH[n], . . . ,xH[n − T + 1]]H ∈ CMT

presented in Section III-C1. The weight vector v ∈ CMT

now performs a linear combination across this spatio-temporal
window, such that the beamformer output becomes y[n] =
vHχ[n]. Analogous to (15), a constraint equation Cbv = fb
defines the frequency responses in a number of directions. The
constraint formulation for a linear array with a look direction
towards broadside is as straightforward as in the narrowband
case [56]. For linear arrays with off-broadside constraints, or
for arbitrary arrays, the formulation of constraints becomes
more tricky, and can be based on stacked narrowband con-
straints across a number of DFT bins akin to the single
frequency formulation that leads to (15). Since it may not
be clear how many such constraints should be stacked, robust
approaches start with a large number of these, which are then
trimmed to a reduced set of linearly independent constraints
using e.g., a QR decomposition [57]. Overall, with respect to
the narrowband case, the dimensions of the constraint matrix

vq

Bb va

+ y[n]
−

χ[n]x[n]

T
D
L

(b)

Fig. 6: Generalized sidelobe canceller for (a) the narrowband
(black quantities in boxes) and the PEVD-based cases (blue
quantities in boxes), and (b) the TDL-based case.

and constraining vector will increase approximately T -fold
such that Cb ∈ CTL×TM and fb ∈ CTL.

For the broadband GSC [58], a quiescent beamformer
vq = C†

bfb ∈ CTL will generate an output that still
contains any structured interference that is not addressed by
the constraint equation. A signal vector correlated with this
remaining interference is produced by the blocking matrix
Bb ∈ CT (M−L)×TM , whose columns, akin to the narrowband
case, must span the nullspace of Cb such that CbBb = 0.
Its output is then linearly combined by an adaptive filter
va ∈ CT (M−L) such that the overall beamformer output in
Fig. 6(b) is minimized in the MSE sense. Note that the TDL
length determines the dimensions of all GSC components, with
the overall adapted response of the beamformer, with respect
to the input x[n] extended to the TDL representation in χ[n],
being v = vq −Bbva.

PEVD-Based Generalized Sidelobe Canceller. In the PEVD-
based approach, we replace narrowband quantities in the
narrowband formulation by their polynomial equivalents to
address the broadband case. This includes substituting the
Hermitian transpose {·}H by a parahermitian transposition
{·}P. Thus, the constraint equation becomes aP

1(z)
...

aP
L(z)


︸ ︷︷ ︸

C(z)

w(z) =

 f1(z)
...

fL(z)


︸ ︷︷ ︸

f(z)

. (17)

The constraint matrix C(z) is therefore made up of broadband
steering vectors, and the gain vector f(z) contains the transfer
functions fℓ(z), ℓ = 1, . . . , L that should be imposed on the
L sources at the beamformer output. Both quantities are of
the same dimensions as in the narrowband case, but are now
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functions of the complex variable z. Writing the beamformer
output as y[n] =

∑
ν w

H[−ν]x[n − ν] allows the broadband
LCMV problem to be formulated as [25]

min
w(z)

∮
|z|=1

wP(z)R(z)w(z)
dz

z
s.t. C(z)w(z) = f(z) ,

(18)

where R(z) is the CSD matrix of x[n]. The evaluation of
(18) at a single frequency Ω0 leads back to the narrowband
formulation via the substitution z = ejΩ0 .

The solution to the broadband LCMV problem can be
found as the equivalent of the Capon beamformer wopt =
R−1(z)CP(z){C(z)R−1(z)CP(z)}−1f(z), which is a direct
extension of the narrowband formulation. In order to access
this solution, the inversion of the parahermitian matrices R(z)
and subsequently C(z)R−1(z)CP(z) can be accomplished via
PEVDs [59]. Once factorized, the resulting paraunitary matri-
ces are straightforward to invert, and it remains to invert the
individual eigenvalues; for this, recall the comment on analytic
functions as divisors in Section II. Alternatively, to avoid the
nested matrix inversions of the Capon beamformer and to
exploit iterative schemes for their general numerical robust-
ness, an iterative unconstrained optimization can be performed
via a broadband PEVD-based generalized sidelobe canceller
(GSC), whereby with respect to Fig. 6(a), the quiescent beam-
former is wq(z) = CP(z){C(z)CP(z)}−1f(z). The pseudo-
inverse of a polynomial matrix for the quiescent solution can
again be obtained via a PEVD of the parahermitian term
C(z)CP(z) [59]. Furthermore, its subspace decomposition also
reveals the nullspace of C(z) that can be used to define the
columns of the blocking matrix B(z) such that C(z)B(z) = 0.
It only remains to operate a vector wa(z) of (M−L) adaptive
filters on the output of the blocking matrix to complete the
optimization of this PEVD-based GSC. Note that the overall
response of the beamformer is w(z) = wq(z)−B(z)wa(z).

Key Statement

Using polynomial matrix notations and the PEVD, nar-
rowband approaches, such as the Capon beamformer or
the GSC, can be directly extended to the broadband case.

Note that compared to the narrowband GSC in Fig. 6(a),
all quantities have retained their dimensions but are now
functions of z. It now remains to set the polynomial orders
of the different GSC components for an implementation. The
quiescent vector wq(z) depends on the constraint formulation,
and its order J1 determines the accuracy of the fractional delay
filters. The order J2 of the blocking matrix B(z) needs to
be sufficiently high such that no source signal components
covered by the constraint equation leak into the adaptive
part wa(z). The order J3 of the latter has to be sufficient
to minimize the power of the output, y[n]. Thus, unlike in
the TDL-based broadband beamformer case, the orders of the
components are somewhat decoupled.

If the optimization of the adaptive part is addressed by
inexpensive least-squares-type algorithms, the computational
cost in both the TDL and the PEVD-based approaches is
governed by the blocking matrix. In the TDL-based case, it

requires T 2(M2 −ML) multiplications and additions, while
the PEVD-based blocking matrix only expends J2(M2−ML)
such operations. With typically J2 ≈ T , the PEVD-based
realization is less expensive by a factor of approximately the
length of the TDL, T .

Numerical Example. A linear array with M = 8 elements
spaced by half the wavelength of the highest frequency compo-
nent has a look direction towards ϑ = 30◦, which is protected
by a constraint. Three ‘unknown’ interferers with directions
ϑ = {−40◦,−10◦, 80◦} are active over a frequency range of
0.2 ≤ Ω/π ≤ 0.9 at -20 dB SINR, and need to be adaptively
suppressed. The data is further corrupted by spatially and tem-
porally white additive noise 50 dB below the signal levels of
the interferers. A TDL-based GSC operates with a TDL length
of T = 175. For a PEVD-based GSC, the adaptive filter uses
the same temporal dimension J3 = T , but to match the MSE
performance of the TDL-based version, a length of J1 = 51
for the fractional delay filters in the quiescent beamformer and
a temporal dimension of J2 = 168 for the blocking matrix
suffices. The adaptive filter is adjusted by a normalized least
mean squares algorithm [54]. Note that J2 < T . Overall, per
iteration, the PEVD-based GSC takes 12.3 kMACs, while the
TDL-based GSC requires 3.46 MMACs, which is indeed more
than a factor of T higher.

To evaluate the beamformer performance, we determine the
gain response or directivity pattern of the beamformer by
probing the adapted overall beamformer response by sweeping
a broadband steering vector ai(z) across a set of angles {φi}
with a corresponding delay profile. For the directivity pattern,
the angle-dependent transfer function G(z, φi) = wP(z)ai(z)
can be evaluated on the unit circle. For the PEVD-based GSC,
this directivity pattern is shown in Fig. 7(a); the response
(not displayed) for the TDL-based GSC is very similar. A
difference can, however, be noted in the look direction, which
in the case of the TDL-based GSC is protected by a number
of point constraints along the frequency axis, as highlighted in
Fig. 7(b). The gain response satisfies these point constraints,
but it shows significant deviations from the ideal, flat response
between the constrained frequencies. In contrast, the PEVD-
based beamformer is based on a single broadband constraint
equation, which shows a significantly lower deviation from
the desired look direction gain. This is due to the formulation
in the time-domain, which preserves spectral coherence. There
are downsides, and the gain response will break down closer to
Ω = π due to the imperfections that are inherent in fractional
delay filters operating close to half the sampling rate.

Key Statement

The PEVD-based generalized sidelobe canceller can
implement the constraint equation more easily and more
precisely than the TDL-based version, and possesses
a significantly lower complexity when addressing non-
trivial constraints.

B. PEVD-Based Subband Coding
Data Representation and Task. Although this article addresses
techniques for array signals, in many circumstances, mul-
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TDL-based

PEVD-based

TDL constraints

Fig. 7: (a) directivity patterns for adapted PEVD-based gen-
eralized sidelobe canceller, plotted above, and (b) the gain
response in look direction (φ = 30◦) for both the PEVD- and
TDL-based GSC, plotted below.

tichannel signal representations are derived from a single-
channel signal by demultiplexing [20], [60]–[62]. Let x[ν] be
such a single channel signal. Demultiplexing by M and an
implicit decimation operation by the same factor, or serial-
to-parallel conversion, is performed to obtain a data vector
x[n] = [x[nM ], x[nM − 1] , . . . , x[nM − M + 1]]T. This
demultiplexed vector x[n] possesses the same form as the
data vectors previously considered in Section III-A. While
the amount and type of samples that are held in x[n] remain
unaltered from those in x[ν], the representation in x[n] allows
clever data reduction and coding schemes through filter bank-
based processing, for which we will ultimately exploit the
PEVD.

Principal Component Filter Banks and Subband Coding.
Generally, we want to process the data x[n] through a transfor-
mation such that y[n] =

∑
ν Q

H[−ν]x[n−ν]. Specifically, we
wish this transformation to be lossless, i.e. for Q(z) •—◦ Q[n]
to be paraunitary, such that a perfect reconstruction via x[n] =∑

ν Q[ν]y[n − ν] is possible. To the original unmultiplexed
single channel signal, the transformation QH represents the
analysis filter bank, whereas the transformation Q implements
the synthesis (reconstruction) filter bank [20]. The matrices
QP(z) and Q(z) are known as the analysis and synthesis
polyphase matrices, respectively, and the paraunitarity of Q(z)
guarantees perfect reconstruction of the overall filter bank
system when operating back-to-back.

The polyphase matrix Q(z) can be designed to implement
a series of lowpass, bandpass, and highpass filters to split
the signal x[ν] into signal components with different spectral
content. However, the filter bank Q(z) can also be signal-
dependent. Chiefly amongst such systems are principal com-

ponent, or optimum compaction, filter banks (PCFBs) which
aim to assign as much power of x[ν] into as few successive
components of y[n] as possible. The purpose of this is to
discard some components of y[n], thus producing a lower-
dimensional representation of the data. A closely related task
is subband coding, where a quantization is performed on y[n]
rather than on x[ν]. Thus, a higher bit resolution is dedicated
to those subbands of y[n] that possess higher power. By not
increasing the overall number of bits w.r.t. x[ν], the judicious
distribution of the coding effort results in an increase in the
coding gain measure: the ratio between the arithmetic and
geometric means of the variances of the subband signals in
y[n] [60]. A coding gain greater than one can be exploited as
an increased signal to quantization noise power under constant
word length, or in terms of a reduction in the number of bits
required for quantization while retaining the same quality for
the quantized signals.

Optimum Coding Gain and PEVD. To maximize the coding
gain under the constraint of paraunitarity of Q(z), two neces-
sary and sufficient conditions of y[n] have been identified [60]:
(i) the subband signals in y[n] must be strongly decorrelated,
such that Ry(z) is diagonal; and (ii) they must be spectrally
majorized, such that for the elements Sm(z) along its diagonal,
on the unit circle, we have Sm(ejΩ) ≥ Sm+1(e

jΩ) ∀Ω and
m = 1, . . . , (M − 1). Due to Parseval’s theorem, this implies
that the powers of the subband signals are also ordered in a
descending fashion. While under the paraunitary constraint,
this does not change the arithmetic mean, it minimizes the
geometric mean of the subband variances and thus maximizes
the coding gain. Optimum subband coders Q(z) have been
derived for the case of a zeroth order filter bank, where
they reduce to the Karhunen-Loève transform (KLT), and
for the infinite-order filter bank case [60], [62]. Executing
the PEVD, described in Section IV-B, on R[τ ] leads to
Ry[τ ] = Λ[τ ] that directly satisfies the above conditions, and
thus provides a solution to a subband coder of finite order [27],
whose theoretical evaluation had otherwise eluded the research
community except for the case of M = 2 [61].

As discussed in Section IV-B, at each SBR2-algorithm
iteration, the parameters of the elementary paraunitary operator
are selected such that the most dominant cross-covariance term
of the input space-time covariance matrix is zeroed. There
are two problems with this “greedy” optimization approach:
(i) cross-correlation energies spread amongst subbands of
weakest power can, in general, be ignored, which limits the
extent to which spectral majorization is performed; (ii) there
is a stronger tendency to annihilate cross-correlations due
to noise in powerful subbands rather than true cross-terms
related to weak subbands, which causes a degradation in strong
decorrelation performance. The coding-gain variant of SBR2,
namely SBR2C [27], alleviates these problems because it uses
a cost function based on the coding-gain measure, which is
proportionately equally receptive to cross-correlations between
any of the subbands.

Numerical Example. Consider a signal x[ν] described by a
fourth-order autoregressive model [27], [35]; its PSD S(ejΩ)
is shown in Fig. 8(top). Demultiplexing by M = 4 produces
a pseudo-circulant matrix R(z) whose analytic eigenvalues
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Fig. 8: PSD of input x[ν] (top) and eigenvalues (bottom)
extracted by the SMD algorithm for the subband coding
problem; the M = 4 times folded PSD of the input signal
is underlaid in grey.

Fig. 9: Magnitude responses |Hm(ejΩ)|, m = 1, . . . , 4, of
the M = 4 channel filter bank equivalent to the polyphase
analysis matrix Q(z), with the theoretical PCFB of infinite
order underlaid in grey.

Sm(Ω) = S(ej(Ω/M−2π(m−1))), m = 1, . . . ,M , are 8π-
periodic, modulated versions of this PSD [20]. For 0 ≤ Ω ≤
2π, they are depicted as grey underlaid curves in Fig. 8(bot-
tom). Although the 8π periodicity of these functions means
that R(z) has no analytic eigenvalues, an estimated CSD
matrix R̂(z), here based on 104 samples of x[ν], does possess
an analytic EVD due to the perturbation by the estimation
error [24]. Applying the SMD [27] to R̂(z) will generate
a strongly decorrelated signal vector y[n] via a paraunitary
operation Q(z). The eigenvalues λ̂m(ejΩ) extracted by the
SMD algorithms are also shown in Fig. 8(bottom). These
closely match the folded PSD of x[ν] underlaid in grey, but
are spectrally majorized.

Interpreting Q(z) as a polyphase analysis matrix, the as-
sociated four-channel filter bank is characterized in Fig. 9.
The theoretically optimum infinite-order PCFB [60] is also
shown. These are obtained by assigning every demultiplexed
frequency component of x[ν] to one of four filters, in de-
scending magnitude. This yields a binary mask in the Fourier
domain, which would require the implementation of infinite
sinc functions in the time-domain. In contrast, the finite order
filters computed by the SMD algorithm, each derived from an
eigenvector in Q(z) corresponding to the eigenvalues in Fig. 8,
very closely approximate the PCFB, except where the input
PSD is small and arguably unimportant.

Ensemble Results. To demonstrate the wider benefit of the

Fig. 10: Averaged normalized coding gain in dependence of 
the length (order plus one) of Q(z) for an ensemble of random 
MA(14) processes and for the case of demultiplexing with 
M = 4.

proposed subband coder design, a randomly generated ensem-
ble of 100 moving average processes of order 14 (MA(14)) 
produces signals x[ν] that are demultiplexed by M = 4. 
For each ensemble probe, the space-time covariance matrix is 
estimated from 211 samples of x[ν] as a basis for the subband 
coder design. In order to average subband coding results across 
this ensemble, we normalize the coding gain obtained for each 
instance in the ensemble by the maximum coding gain of the 
infinite-order PCFB; the latter can be derived from each of the 
MA(14) processes [27]. This ensemble-averaged normalized 
coding gain verses the order of the polynomial matrix Q(z) 
is shown in Fig. 10. The figure s hows r esults f or t he KLT, 
the approximate EVD (AEVD) algorithm in [52], as well 
as for SBR2C and SMD. The KLT is the optimum zeroth 
order subband coder. The AEVD algorithm is a fixed order 
technique that aims to generate a polynomial EVD but without 
proven convergence. Note that, like the AEVD algorithm, 
the SMD algorithm for zeroth order systems (i.e. length one 
polynomials) reduces to an ordinary EVD that is equivalent 
to the KLT and optimum for narrowband source signals — as 
shown in the figure. Both SBR2C and SMD converge towards 
the optimum performance of an infinite-order PCFB as the 
polynomial order of Q(z) increases. This is indeed what would 
be expected since the PEVD is effectively the broadband 
generalization of the KLT. Due its specific targeting of the 
coding gain and the resulting enhanced spectral majorization, 
SBR2C here outperforms SMD, and thus provides a highly 
useful trade-off between polynomial order and coding gain.

Key Statement

Hitherto, algorithms for M > 2-channel paraunitary
filter banks for subband coding were suboptimal. PEVD-
designed M -channel filter banks now closely approxi-
mate the ideal system.

C. Polynomial Subspace Speech Enhancement
Speech enhancement is important for applications involv-
ing human-to-human communications, such as hearing aids
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and telecommunications and human-to-machine interactions,
like robot audition, voice-controlled systems and automatic
speech recognition (ASR). These speech signals are often
captured by multiple microphones, commonly found in many
devices today, and provide opportunities for spatial processing.
Moreover, speech signals captured by different microphones
naturally exhibit temporal correlations, especially in reverber-
ant acoustic environments. This section will show that it is
advantageous to use PEVD algorithms to capture and process
these spatio-temporal correlations, thus preserving spectral
coherence. A more comprehensive treatment with listening
examples and code is available [28].

Multichannel Reverberant Signal Model. Consider a sce-
nario where there is a single speaker s[n], an array of
microphones, and uncorrelated background noise v[n]. The
speech propagates from the source to each microphone m
through the channels with acoustic impulse responses (AIRs),
aℓ,m[n], assumed to be time-invariant. The AIR models the
direct path propagation of the speech signal from the speaker
to the microphone as well as reverberation due to multipath
reflections from objects and walls in enclosed rooms. Back-
ground noise is then added to each microphone. The signal
models in Section III-A with ℓ = 1 can describe this situation.
Across M microphones, the signal vector x[n] ∈ CM is used
to compute the space-time covariance matrix Rx[τ ] in (6) and
its z-transform Rx(z) in (7).

Exploiting the reverberation model in [63], the early re-
flections in the AIR represent closely spaced distinct echoes
that perceptually reinforce the direct path component and may
improve speech intelligibility in certain conditions. On the
other hand, the late reflections in the AIR consist of randomly
distributed small amplitude components and the associated late
reverberant signal components are commonly assumed to be
mutually uncorrelated with the direct path and early signal
components [28], [63]. Thus, (7) can be written as

Rx(z) = ã(z)ãP(z)rs(z) +Rl(z) +Rv(z) (19)
= Rs̃(z) +Rṽ(z) , (20)

where rs(z) � rs[τ ] and rs[τ ] is the auto-correlation se-
quence of the source. The space-time covariance matrices of
the late reverberation Rl(z) is modelled as a spatially diffuse
field. This is combined with the space-time covariance of the
ambient noise Rv(z) to form Rṽ(z). The channel polynomial
vector is ã(z) = [ã1(z), . . . , ãM (z)] ∈ CM , where ãm(z) is
a polynomial obtained by taking the z-transform of the direct
path and early reflections in the AIR from the source to the
mth microphone, i.e., ãm(z) =

∑I
i=0 ãm[i]z−i, dropping ℓ

for brevity.
PEVD-based Speech Enhancement. The PEVD of (20)

decomposes the polynomial matrix into

Rx(z) =
[
Us̃(z) Uṽ(z)

] [ Λs̃(z) 0
0 Λṽ(z)

] [
UP

s̃(z)

UP
ṽ(z)

]
,

(21)

where {.}s̃ and {.}ṽ are associated with the signal-plus-noise
(or simply signal) and noise-only (or simply noise) subspaces,
respectively. Unlike some speech enhancement approaches,

the proposed method does not use any noise or relative
transfer function (RTF) estimation algorithms since the strong
decorrelation property of the PEVD implicitly orthogonalizes
the subspaces across all time lags in the range of τ . Conse-
quently, speech enhancement can be achieved by combining
components in the signal subspace while nulling components
residing in the noise subspace.

The paraunitary U(z) is a lossless filter bank with an all-
pass frequency response. This implies that U(z) can only
distribute spectral power among channels and not change
the total signal and noise power over all subspaces. The
eigenvector filter bank is used to process the microphone
signals using

y[n] =
∑
ν

UH[−ν]x[n− ν] , (22)

where U[n] � U(z) ∈ CM×M . Since the polynomial 
eigenvector matrix U(z) is constructed from a series of delay 
and unitary matrices, each filter u m[n] h as a  filter-and-sum 
structure.

For a single source, the signal subspace has a dimension 
of 1. Therefore, the enhanced signal can be extracted from 
the first channel of the processed outputs y [n]. The enhanced 
output y1[n], associated with the signal subspace, comprises 
mainly speech components, originally distributed over all 
microphones but now summed coherently. In contrast, the 
noise subspace is dominated by ambient noise and the late 
reverberation in the acoustic channels. The orthogonality be-
tween subspaces is a result of strong decorrelation, expressed 
as Ry(z) = Λ(z), where Ry(z) � Ry[τ ] is computed from

Ry[τ ] = E{y[n]yH[n − τ ]}.
In practice, assuming quasi-stationarity, the speech signals 

are processed frame by frame such that Rx[τ ] in (6) can be 
recursively estimated. Additionally, the two-sided z-transform 
Rx(z) in (7) can be approximated by some truncation window 
W , which determines the extent of the supported temporal 
correlation of the speech signal. The time-domain PEVD 
algorithms, such as SBR2 and SMD, are used to compute (21) 
because they preserve spectral coherence of the speech signals 
and do not introduce audible artefacts. The proposed algorithm 
can also cope in noise-only and reverberation-only scenarios, 
as explored in [28]. Experimental results are next presented to 
show these general principles applied for a specific case.

Experimental Setup. Anechoic speech signals, which were 
sampled at 16 kHz, were taken from the TIMIT corpus [64]. 
AIR measurements and babble noise recordings for the M = 3 
channel ‘mobile’ array were taken from the ACE corpus 
[65]. The ACE Lecture Room 2 has a reverberation time T60 
of 1.22 s. For each Monte-Carlo simulation, 50 trials were 
conducted. In each trial, sentences from a randomly selected 
speaker were concatenated to have 8 to 10 s duration. The 
anechoic speech signals were then convolved with the AIRs 
for each microphone before being corrupted by additive noise. 
The SNRs ranged from -10 dB to 20 dB.

Comparative Algorithms. PEVD-based enhancement can be 
compared against other algorithms such as the oracle mul-
tichannel Wiener filter ( OMWF), w eighted p ower minimum 
distortionless response (WPD) and two subspace approaches,
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multichannel subspace (MCSUB) [66] and coloured subspace 
(COLSUB) [67], which use an EVD and a generalized 
eigenvalue decomposition (GEVD), respectively. Furthermore, 
unlike the PEVD approach, noise estimation is required for 
GEVD. The OMWF is based on the concatenation of a min-
imum variance distortionless response (MVDR) beamformer 
followed by a single-channel Wiener filter. T he O MWF pro-
vides an ideal performance upper-bound since it uses complete 
prior knowledge of the clean speech signal, based on [68] 
where the filter l ength i s 8 0. P ractical m ultichannel Wiener 
filters, w hich r ely o n t he r elative t ransfer f unction a nd noise 
estimation algorithms, do not perform as well as OMWF, and 
comparative results can be found in [28]. WPD is an integrated 
method for noise reduction and dereverberation [69]. Ground 
truth DOA is provided to compute the steering vector for WPD 
to avoid signal direction mismatch errors. PEVD does not use 
any knowledge of the speech, DOA, and array geometry.

Experiments presented here to illustrate comparative perfor-
mance use PEVD parameters, chosen following [28], including
δ =

√
N1/3 × 10−2 denoting the threshold of the dominant

off-diagonal column norm, where N1 is the square of the
trace-norm of Rxx(0), trim factor µ = 10−3 and L = 500
iterations. In all experiments, the frame size T and window
W are set to 1600. With this parameter selection, correlations
within 100 ms, which were assumed to include the direct path
and early reflection components, were captured and used by
the algorithm. The source corresponding to these experiments
is available [28].

Evaluation Measures. Frequency-weighted segmental
signal-to-noise ratio (FwSegSNR) can be used to evaluate
noise reduction and normalized signal-to-reverberant
ratio (NSRR) and Bark spectral distortion (BSD) for
dereverberation [28]. To measure speech intelligibility and
to account for processing artefacts, short-time objective
intelligibility (STOI) can be used. These measures are
computed for the signals before and after enhancement using
the proposed and benchmark algorithms. The improvement
∆ is reported. Positive ∆ values show improvements in all
measures except ∆BSD, for which a negative value indicates
a reduction in spectral distortions.

Results and Discussions. An illustrative example based on
a clean speech s[n] corrupted by 5 dB babble noise in the
reverberant ACE Lecture Room 2 is presented in Fig. 11.
The spectrogram of the first microphone signal x1[n] shows
temporal smearing due to reverberation and the addition of
babble noise. Comparing the plots for x1[n] with the processed
signals y1[n], the dotted cyan boxes in Fig. 11 qualitatively
show the attenuation and some suppression of the babble noise
and reverberation for PEVD and COLSUB. This is supported
by Table I, which shows that PEVD significantly improves
STOI and NSRR while coming second in FwSegSNR and
BSD after COLSUB. Although COLSUB makes the most
significant improvement in FwSegSNR, speech structures are
destroyed during the processing, for example, the solid white
boxes comparing s[n] and y1[n] between 3.0 to 3.3 s and 4.2 to
4.7 s in Fig. 11, resulting in artefacts in the listening examples
and the lowest improvement in STOI. OMWF, which uses
complete knowledge of the clean speech signal, is the second

TABLE I: Enhancement of a single reverberant speech in
Lecture Room 2 and 5 dB ACE babble noise.

Algorithm FwSegSNR STOI NSRR BSD
Noisy -10.9 dB 0.664 -7.57 dB 0.69 dB

OMWF -11.1 dB 0.747 -7.42 dB 0.60 dB
MCSUB -11.7 dB 0.711 -11.5 dB 0.93 dB
COLSUB -6.60 dB 0.678 -7.90 dB 0.35 dB

PEVD -8.21 dB 0.750 -6.13 dB 0.40 dB
WPD -8.90 dB 0.723 -6.27 dB 0.45 dB

best in STOI and slightly improves other metrics, similar to
WPD, which uses the ground truth steering vector. MCSUB
offers limited improvement. Listening examples also highlight
that PEVD does not introduce audible processing artefacts into
the enhanced signal [28].

Results for the Monte-Carlo simulation involving 50 speak-
ers in Lecture Room 2 and corrupted by -10 dB to 20 dB
babble noise are shown in Fig. 12. For SNR≤10 dB, COLSUB
outperforms other algorithms in ∆FwSegSNR but gives the
worst ∆STOI. On the other hand, OMWF, designed to min-
imize speech distortion using knowledge of clean speech,
performs the best in ∆STOI but not in ∆FwSegSNR. This also
reflects the fact that speech intelligibility may not necessarily
be affected by noise levels, up to some limit. Despite not being
given any information on the target speech, PEVD performs
comparably to OMWF and ranks first in ∆NSRR and second
in ∆FwSegSNR and ∆STOI.

At 20 dB SNR, algorithms targeting reverberation like
WPD perform better than noise reduction approaches. Sim-
ilar to generalized weighted prediction error (GWPE) in the
reverberation-only case in [28], WPD processes the reverber-
ant signals aggressively by removing most early reflections
but not the direct path and late reflections, as observed in
the listening examples. Furthermore, WPD uses ground truth
DOA to compute the ideal steering vector, leading to the best
improvement in ∆BSD and ∆STOI. Listening examples for
PEVD indicate that the direct path and early reflections are
retained in the enhanced signal in the first channel. The late
reverberations, absent in the enhanced signal, are observed in
the second and third channels because of orthogonality [28].
Even without additional information, PEVD performs compa-
rably to WPD and ranks second in ∆NSRR and ∆STOI.

Despite not being given knowledge of the DOA, target
speech and array geometry, PEVD consistently ranks first
for ∆NSRR and second in ∆STOI and ∆FwSegSNR over
the range of scenarios. Comprehensive results with listening
examples and code for the noise-only, reverberation-only, and
more noisy reverberant scenarios are available [28].
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Fig. 11: Spectrograms, with corresponding time-domain signals above each, for the processing of a noisy reverberant speech
example in ACE Lecture Room 2 and 5 dB babble noise. Dotted cyan boxes highlight noise and reverberation suppressed
regions as a result of processing. Solid white boxes highlight regions where speech structures are lost using COLSUB but not
PEVD processing. Listening examples are available [28].

Key Statement

PEVD-based speech enhancement consistently improves
noise reduction metrics, speech intelligibility scores, and
dereverberation measures over a wide range of acoustic
scenarios. This blind and unsupervised algorithm re-
quires no knowledge of the array geometry and does not
use any channel or noise estimation algorithms but per-
forms comparably to an oracle algorithm. More notably,
due to the preservation of the spectral coherence using
time-domain PEVD algorithms, the proposed algorithm
does not introduce noticeable processing artefacts into
the enhanced signal. Code and listening examples are
provided in [28].

VI. CONCLUSIONS AND FUTURE PERSPECTIVES

This article has demonstrated the use of polynomial matrices
to model broadband multichannel signals and the use of the
PEVD to process them. Previous approaches of using tapped
delay lines and short-time Fourier transforms do not lead
to proper generalization of narrowband algorithms and are
sub-optimal. Instead of only considering the instantaneous
covariance matrix, the space-time covariance matrix has been
proposed to completely capture the second-order statistics of
multichannel broadband signals. Motivated by the optimum
processing of narrowband signals using the EVD, i.e. for a
single lag, the PEVD has been proposed to process broadband
signals across a range of time lags. In most cases, an ana-
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Fig. 12: Comparison of speech enhancement performance for recorded AIR and babble noise in ACE Lecture Room 2 with
1.22 s reverberation time.

lytic PEVD exists and can be approximated by polynomials
using numerical algorithms, which tend to generate spectrally
majorized eigenvalues and paraunitary eigenvectors.

PEVD-based processing for three example applications has
been presented and is advantageous over state-of-the-art pro-
cessing. The PEVD approach can implement the constraints
more easily and precisely for adaptive broadband beamforming
while achieving a lower complexity than the TDL-based
approach. For multichannel subband coding, the PEVD design
approximates the ideal optimal data encoding system and
overcomes the previous issues with the more than two-channel
case. The PEVD-based algorithm, which only uses the micro-
phone signals, can consistently enhance speech signals without
introducing any audible artefacts and performs comparably to
an oracle algorithm, as observed in the listening examples. In
addition to the applications presented in this article, PEVD is
also successfully used for blind source separation [30], MIMO
system design [26], source identification [31] and broadband
DOA estimation [32].

Future Work. Similar extensions from EVD to an analytic
or polynomial EVD can be undertaken for other linear alge-
braic operations, e.g., non-parahermition EVD, singular value
decomposition (SVD), QR decomposition, generalized SVD
(GSVD). Algorithms for the SVD and the QR decomposition
have appeared but are yet without a theoretical foundation with
respect to their existence. Powerful narrowband techniques
such as independent component analysis (ICA) may find their
polynomial equivalents. While a number of low-cost imple-
mentations have already emerged, algorithmic scalability is an
area of active investigation. We hope that these theoretical and
algorithmic developments will motivate the signal processing
community to experiment with polynomial techniques, and
take these beyond the successful application areas showcased
in this article. Resources including code and demo pages are
available [28], [70].
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