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Abstract

In this article, we address the problem of singular value decomposition of polynomial matrices and eigenvalue
decomposition of para-Hermitian matrices. Discrete Fourier transform enables us to propose a new algorithm based
on uniform sampling of polynomial matrices in frequency domain. This formulation of polynomial matrix
decomposition allows for controlling spectral properties of the decomposition. We set up a nonlinear quadratic
minimization for phase alignment of decomposition at each frequency sample, which leads to a compact order
approximation of decomposed matrices. Compact order approximation of decomposed matrices makes it suitable in
filterbank and multiple-input multiple-output (MIMO) precoding applications or any application dealing with
realization of polynomial matrices as transfer function of MIMO systems. Numerical examples demonstrate the
versatility of the proposed algorithm provided by relaxation of paraunitary constraint, and its configurability to select
different properties.

1 Introduction
Polynomial matrices have been used for a long time
for modeling and realization of multiple-input multiple-
output (MIMO) systems in the context of control theory
[1]. Nowadays, polynomial matrices have a wide spectrum
of applications in MIMO communications [2-6], source
separation [7], and broadband array processing [8]. They
also have a dominant role in development of multirate
filterbanks [9].
More recently, there have been much interest in poly-

nomial matrix decomposition such as QR decomposition
[10-12], eigenvalue decomposition (EVD) [13,14], and sin-
gular value decomposition (SVD) [5,11]. Lambert [15]
has utilized Discrete Fourier transform (DFT) domain to
change the problem of polynomial EVD to pointwise EVD.
Since EVD is obtained at each frequency separately, eigen-
vectors are known at each frequency up to a scaling factor.
Therefore, this method requires many frequency samples
to avoid abrupt changes in adjacent eigenvectors.
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Although, many methods of designing principle com-
ponent filterbanks have been developed that are equiv-
alent to EVD of pseudo circulant polynomial matrices
[16,17], the next pioneering work on polynomial matrix
EVD is presented by McWhirter et al. [13]. They use
an extension of Jacobi algorithm known as SBR2 for
EVD of para-Hermitian polynomial matrices which guar-
antees exact paraunitarity of eigenvector matrix. Since
final goal of SBR2 algorithm is to have strong decor-
relation, the decomposition does not necessarily satisfy
spectral majorization property. SBR2 algorithm has also
been modified for QR decomposition and SVD [10,11].
Jacobi-type algorithms are not the only proposed meth-

ods for polynomial matrix decomposition. Another itera-
tive method for spectrally majorized EVD is presented in
[14] which is based on the maximization of zeroth-order
diagonal energy. Spectral majorization property of this
algorithm is verified via simulation. Followed by the work
of [6], a DFT-based approximation of polynomial SVD is
also proposed in [18] which uses model order truncation
by phase optimization.
In this article, we present polynomial EVD and SVD

based on DFT formulation. It transforms the problem
of polynomial matrix decomposition to the problem
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of, pointwise in frequency, constant matrix decomposi-
tion. At first it seems that applying inverse DFT on the
decomposed matrices leads to polynomial EVD and SVD
of the corresponding polynomial matrix. However, we will
show later in this article that in order to have compact
order decomposition, phase alignment of decomposed
constant matrices in DFT domain results in polyno-
mial matrices with considerably lower order. For this
reason, a quadratic nonlinear minimization problem is
set up to minimize the decomposition error for a given
finite order constraint. Consequently, the required num-
ber of frequency samples and computational complexity
of decomposition reduce dramatically. The algorithm pro-
vides compact order matrices as an approximation of
polynomial matrix decomposition for an arbitrary poly-
nomial order. This is suitable in MIMO communications
and filterbank applications, where we deal with realiza-
tion of MIMO linear time invariant systems. Moreover,
formulation of polynomial EVD and SVD in DFT domain
enables us to select the property of decomposition. We
show that if eigenvalues (singular values) intersect at some
frequencies in frequency domain, smooth decomposition,
and spectrally majorized decomposition are distinct. The
proposed algorithm is able to reach to either of these
properties.
The remainder of this article is organized as fol-

lows. The relation between polynomial matrix decom-
position and DFT matrix decomposition is formulated
in Section 2. In Section 3, two important spectral prop-
erties of decomposition, namely spectral majorization
and smooth decomposition, are provided using appro-
priate arrangement of singular values (eigenvalues) and
corresponding singular vectors (eigenvectors). The equal-
ity of polynomial matrix and dft matrix decomposed
matrices decompositions are guaranteed via the finite
duration constraint, which is investigated in Section 4.
The finite duration constraint imposes the phase angles
of singular vector (eigenvector) to minimize a nonlin-
ear quadratic function. A solution for this problem is
proposed in Section 5. Section 6 presents the results of
some computer simulations which are considered to
demonstrate performance of the proposed decomposition
algorithm.

1.1 Notation
Some notational conventions are as follows: constant val-
ues, vectors, and matrices are in regular character lower
case, lower case over-arrow, and upper case, respectively.
Coefficients of polynomial (scalar, vector, and matrix) are
with indeterminate variable n in the square brackets. Any
polynomial (scalar, vector, and matrix) is distinguished
by bold character and indeterminate variable z in the
parenthesis and its DFT by bold character and indetermi-
nate variable k in the brackets.

2 Problem formulation
Denote a p×q polynomial matrixA(z) such that each ele-
ment ofA(z) is a polynomial. Equivalently, we can indicate
this type of matrix by coefficient matrix A[ n],

A(z) =
Nmax∑

n=Nmin

A[ n] z−n (1)

where A[ n] is only non-zero in the interval [Nmin,Nmax].
Define the effective degree of A(z) as Nmax −Nmin (or the
length of A[ n] as Nmax − Nmin + 1).
The polynomial matrix multiplication of a p × q matrix

A(z) and a q × t matrix B(z) is defined as

C(z) = A(z)B(z)
cij(z) = ∑q

k=1 aik(z)bkj(z).

We can obtain the coefficient matrix of product by matrix
convolution of A[ n] and B[ n], that is defined as

C[ n] = A[ n] ∗B[ n]
cij[ n] = ∑q

k=1 aik[ n] ∗bkj[ n]
where ∗ denotes the linear convolution operator.
Denote para-conjugate of a polynomial matrix as

Ã(z) = AT∗ (z−1) =
Nmax∑
Nmin

AH [ n] zn.

in which, ∗ as a subscript denotes the complex conjugate
of coefficients in the polynomial matrix A(z).
A matrix is said to be para-Hermitian if Ã(z) = A(z) or

equivalentlyA[ n]= AH [−n].We call a polynomial matrix
paraunitary if Ũ(z)U(z) = I, where I is a q × q identity
matrix.
Thin EVD of a p× p para-Hermitian polynomial matrix

A(z) is of the form

A(z) = U(z)�(z)Ũ(z), (2)

and thin SVD of a p × q arbitrary polynomial matrix is of
the form,

A(z) = U(z)�(z)Ṽ(z) (3)

whereU(z) andV(z) are p×r and q×r paraunitary matri-
ces, respectively. �(z) and �(z) represent r × r diagonal
matrices where r is the rank of A(z).
We can equivalently write EVD of a para-Hermitian

matrix and SVD of a polynomial matrix in coefficient
matrix form

A[ n]= U[ n] ∗�[ n] ∗UH [−n] (4)
A[ n]= U[ n] ∗�[ n] ∗VH [−n] (5)

in which, U[ n], V [ n], �[ n], and �[ n] are the coefficient
matrices corresponding to U(z), V(z), �(z), and �(z).
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In general, EVD and SVD of a finite-order polynomial
matrix are not finite order. As an example, suppose EVD
of para-Hermitian polynomial matrix

A(z) =
[

2 z−1 + 1
z + 1 2

]
. (6)

Eigenvalues and eigenvectors of the polynomial matrix in
(6) are neither of finite order nor rational

�(z)=
[
2 + (z−1 + 2 + z)1/2 0

0 2 − (z−1 + 2 + z)1/2
]

U(z)= 1√
2

[
(z−1+1)(z−1+2+z)−1/2 z−1

1 (z−1+1)(z−1+2+z)−1/2

]
.

The same results can be found for polynomial QR
decomposition in [12].
We mainly explain the proposed algorithm for polyno-

mial SVD, yet wherever it seems necessary we explain the
result for both decomposition.
The decomposition in (3) can also be approximated

by samples of discrete-time Fourier transform, yields a
decomposition off the form

A[ k]= U′[ k]�′[ k]V′H [ k] , k = 0, 1, . . . ,K − 1. (7)

Such a decomposition can be obtained by taking the K-
point DFT of coefficient matrix A[ n],

A[ k]= A(z)|z=wk
K

=
Nmax∑
Nmin

A[ n]wkn
K , k = 0, 1, . . . ,K−1,

(8)

where wK = exp(−j2π/K).
DFT formulation plays an important role in decomposi-

tion of polynomial matrices because it replaces the prob-
lem of polynomial SVD that involves many protracted
steps with K conventional SVD that are pointwise in fre-
quency. It also enables us to control spectral properties
of the decomposition. However, it causes two inherent
drawbacks:

1. Regardless of what is the trajectory of polynomial
singular values in frequency domain, conventional
SVD order singular values irrespectively of the
ordering in neighboring frequency samples.

2. In frequency domain, samples of polynomial singular
vectors are known up to a scalar complex
exponential by using the SVD at each frequency
sample, which yields to discontinuous variation
between neighboring frequency samples.

The first issue is directly dealt with the spectral proper-
ties of the decomposition. In Section 3, we would explain
why arranging singular values in decreasing order yields to
approximate spectral majorization, while smooth decom-
position requires rearrangement of singular values and
their corresponding singular vectors.

For the second issue, suppose conventional SVD of an
arbitrary constant matrix A. If the pair �u and �v are the
left and right singular vectors corresponding to a non-zero
singular value, for an arbitrary scalar phase angle θ , the
pair ejθ �u and ejθ�v are also left and right singular vectors
corresponding to the same singular value. Although this
non-uniqueness is trivial in conventional SVD, it plays a
crucial role in polynomial SVD. When we perform SVD
at each frequency of DFT matrix as in (7), these non-
uniquenesses in phase exist at each frequency regardless
of other frequency samples.
Denote �ui[ k] and �vi[ k] the ith column vector of the

desired matricesU(z) andV(z). Then all the vectors of the
form⎧⎪⎨
⎪⎩

�u′
i[ k]= ejθi[k]�ui[ k]

�v′
i[ k]= ejθi[k]�vi[ k] , i = 1, 2, . . . , r

σ ′
i [ k]= σi[ k]

(9)

have the chance to appear as the ith column of U′[ k]
and V′[ k], and ith diagonal element of �′[ k], respectively.
Moreover, in many applications, specially those which are
related to MIMO precoding, we can relax constraints of
the problem by letting singular values to be complex (see
applications of polynomial SVD in [4,18])⎧⎪⎪⎨
⎪⎪⎩

�u′
i[ k]= ejθ

u
i [k]�ui[ k]

�v′
i[ k]= ejθ

v
i [k]�vi[ k] , i = 1, 2, . . . , r.

σ ′
i [ k]= ej(θ

v
i [k]−θui [k])σi[ k]

(10)

Given this situation, singular values have not all their
conventional meaning. For instance, the greatest singu-
lar value is conventionally 2-norm of the corresponding
matrix, which is not true for complex singular values.
The process of compensating singular vectors for these
phases is what we call phase alignment and is developed
in Section 4.
Based on what was mentioned above, Algorithm 1 gives

the descriptive pseudo code for DFT-based SVD. Modifi-
cations of the algorithm for EVD of para-Hermitianmatri-
ces are straightforward. If at each frequency sample all
singular values are in decreasing order, REARRANGE
function (which is described in Algorithm 2) is only
required for smooth decomposition, otherwise for spec-
tral majorization, no further arrangement is required. For
the phase alignment, first we need to compute phase
angles which is indicated in the algorithm by DOGLEG
function and is described in Algorithm 3.

3 Spectral majorized decomposition versus
smooth decomposition

Two of the most appealing decomposition properties are
smooth decomposition [19] and spectral majorization [13].
These two objectives do not always occur at the same
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Algorithm 1 Approximate SVD[
U[ n] ,�[ n] ,V [ n]

]← ASVD (A[ n] )
for k = 0, 1, · · · ,K − 1

Compute A[ k] from (8):

A[ k]=∑Nmax
Nmin

A[ n]wkn
K

Decompose A[ k] from (7):[
U′[ k] ,�[ k] ,V′[ k]

]← SVD (A[ k] )
end(for)
If smooth decomposition is required use Algorithm 2:[

U′[ k] ,�′[ k] ,V′[ k]
]← REARRANGE

(
U′[ k] ,�′[ k] ,V′[ k]

)
for i = 1, 2, · · · , r

Compute phase angles using Algorithm 3:[
θui [ k] , θvi [ k]

]← DOGLEG
(�u′

i[ k] , �v′
i[ k]

)
for k = 0, 1, . . . ,K − 1

Phase alignment using (9) or (10)
end(for)

end(for)
for n = 0, 1, . . . ,M − 1

Compute decomposed polynomial matrices:

U[ n]←∑K
k=0U[ k]W−kn

V [ n]←∑K
k=0 V[ k]W−kn

�[ n]← Diagonal elements of UH [−n] ∗A[ n] ∗V [ n]
end(for)

time, hence we should choose which one we are willing to
use as our main objective.
In many filterbank applications which are dealt

with principle components filterbank, spectral majoriza-
tion and strong decorrelation are both required [16].
Since smooth decomposition leads to more compact
decomposition, in cases that the only objective is
strong decorrelation, exploiting smooth decomposition
is reasonable. The DFT-based approach of polyno-
mial matrix decomposition is capable of decomposing
a matrix with either of these properties with small
modification.
Polynomial EVD of a para-Hermitian matrix is said to

have spectral majorization property if [13,16]

λ1(ejω) ≥ λ2(ejω) ≥ · · · ≥ λr(ejω), ∀ω.

Note that, eigenvalues corresponding to para-Hermitian
matrices are real in all frequencies.
We can extend the definition to the polynomial SVD,

replacing singular values with eigenvalues in the defini-
tion, we have

σ 1(ejω) ≥ σ 2(ejω) ≥ · · · ≥ σ r(ejω), ∀ω.

If we let singular values to be complex, we can replace
absolute value of singular values in the definition.

A polynomial matrix have no discontinuity in frequency
domain, hence we modify definition of smooth decompo-
sition presented in [19] to fit with our problem and avoid
unnecessary discussions.
Polynomial EVD (SVD) of a matrix is said to possess

smooth decomposition if eigenvectors (singular vectors)
have no discontinuity in frequency domain, that is

∣∣∣∣ ddω
uil(ejω)

∣∣∣∣ < ∞, ∀ω and i = 1, 2, . . . , r
l = 1, 2, . . . , p, (11)

where uil is the lth element of �ui.
If eigenvalues (singular values) of a polynomial matrix

intersect at some frequencies, the spectral majorization
and smooth decomposition are not simultaneously realiz-
able. As an example, suppose A(z) is a polynomial matrix
with �u1(z) and �u2(z) are eigenvectors corresponding to
distinct eigenvalues λ1(z) and λ2(z), respectively. Lets
assume �u1(ejω) and �u2(ejω) have no discontinuity in fre-
quency domain, and λ1(ejω) and λ2(ejω) intersect at some
frequencies. Denote

λ′
1(ejω) =

{
λ1(ejω) λ1(ejω) ≥ λ2(ejω)

λ2(ejω) λ1(ejω) < λ2(ejω)
,

λ′
2(e

jω) =
{

λ2(ejω) λ1(ejω) ≥ λ2(ejω)

λ1(ejω) λ1(ejω) < λ2(ejω)
, (12)
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Algorithm 2 Rearrangement for smooth decomposition[
U′[ k] ,�[ k] ,V′[ k]

]←REARRANGE
(
U′[ k] ,�[ k] ,V′[ k]

)
for k = 1, 2, . . . ,K

Define S = {1, 2, . . . , r}
for i = 1, 2, . . . , r

ı ← argmax
j∈S

|cu′
ij [ k] | + |cv′ij [ k] |

2
�u′′
i [ k]← �u′

ı[ k]
�v′′
i [ k]← �v′

ı[ k]
σ ′′
i [ k]← σı[ k]

S ← S − {ı}
end(for)
U′[ k]← U′′[ k]
V′[ k]← V′′[ k]
�[ k]← �′′[ k]

end(for)

and

�u′
1(e

jω) =
{ �u1(ejω) λ1(ejω) ≥ λ2(ejω)

�u2(ejω) λ1(ejω) < λ2(ejω)
,

�u′
2(e

jω) =
{ �u2(ejω) λ1(ejω) ≥ λ2(ejω)

�u1(ejω) λ1(ejω) < λ2(ejω)
. (13)

Obviously, �u′
1(ejω) and �u′

2(ejω) are eigenvectors cor-
responding to distinct eigenvalues λ′

1(ejω) and λ′
2(ejω),

respectively. Note that, λ′
1(ejω) ≥ λ′

2(ejω) for all fre-
quencies, which means λ1(ejω) and λ2(ejω) are spectrally
majorized. However, �u′

1(ejω) and �u′
2(ejω) are discontin-

uous at intersection frequencies of λ1(ejω) and λ2(ejω),
which implies that they are not smooth anymore. In this
situation, although λ′

1(ejω), λ′
2(ejω), �u′

1(ejω), and �u′
2(ejω)

are not even analytic, we can approximate themwith finite
order polynomials.
If a decomposition has spectral majorization, its eigen-

values (singular values) are of decreasing order in all
frequencies. Therefore, they are in decreasing order in any
arbitrary frequency sample set, including DFT frequen-
cies. Obviously the converse is only approximately true.
Hence, for polynomial EVD to possess spectral majoriza-
tion approximately, it suffices to arrange sampled eigen-
values (singular values) of (7) in decreasing order. Since we
only justify spectral majorization at DFT frequency sam-
ples, the resulting EVD (SVD) may possess the property
only approximately. Similar results can be seen in [14,20].
To have smooth singular vectors, we propose an algo-

rithm based on inner product of consecutive frequency
samples of singular vectors. We can accumulate smooth-
ing requirement in (11) for all r elements as∥∥∥∥ d

dω
�ui(ejω)

∥∥∥∥ < ∞, ∀ω and i = 1, 2, . . . , r. (14)

Let B be the upper bound of norm of derivative and �{·}
be the real value of a complex value.

For an arbitrary �ω we have∥∥∥�ui(ej(ω+�ω)) − �ui(ejω)

∥∥∥2=2 − 2�
{
�uHi (ej(ω+�ω))�ui(ejω)

}
< (�ωB)2 ∀ω, (15)

that is, for a smooth singular vector � {�ui(ej(ω+�ω))

�ui(ejω)
}
can be made to be as close to unity as desired

by making �ω sufficiently small. In our problem �ui(ejω)

is sampled uniformly with �ω = 2π
K . Since EVD is per-

formed at each frequency sample independently, �ui[ k]
and �ui[ k + 1] are not necessarily two consecutive fre-
quency samples of a smooth eigenvector. Therefore, we
should rearrange eigenvalues and eigenvectors to yield
smooth decomposition. This can be done for each sam-
ple of eigenvector �ui[ k] by seeking for the eigenvector
of successor sample �uj[ k + 1] with the most value of
� {�uHi [ k] �uj[ k + 1]

}
.

Define inner product cuij[ k] as

cuij[ k]= �uHi [ k − 1] �uj[ k] .
Since, �u′i[ k] is a scalar phase multiplication of �ui[ k],

computation of �{cuij[ k] } is not possible before phase
alignment. Due to (15), for sufficiently small�ω, two con-
secutive samples of a smooth singular vector can be as
close as desired and we can approximate

�
{
cuij[ k]

}
≈ |cuij[ k] | = |cu′

ij [ k] |,
which allows us to use inner product of �u′[ k] instead
of �u[ k]. From (12) and (13), it can be seen that before
the intersection of eigenvalues, consecutive eigenvectors
which are sorted by conventional EVD in decreasing
order, are from the same smooth eigenvector and so
|cu′
11[ k] | and |cu′

22[ k] | are near unity. However, if k − 1 and
k are two frequency sample before and after the intersec-
tion, respectively, due to decreasing order of eigenvalues,
smoothed eigenvectors are swapped after intersection.
Therefore, |cu′

11[ k] | and |cu′
22[ k] | are some values near zero,

instead |cu′
12[ k] | and |cu′

21[ k] | are near unity.
Algorithm 2 describes a simple rearrangement proce-

dure to track eigenvectors (singular vectors) for smooth
decomposition.

4 Finite duration constraint
Phase alignment is critical to have compact order decom-
position. Another aspect of this fact is revealed in the
coefficient’s domain perspective of (7). In this domain, the
multiplication is replaced by circular convolution

A[ ((n))K ] = U ′[ ((n))K ]��′[ ((n))K ]�V ′H [ ((−n))K ]
= U[ ((n))K ]��[ ((n))K ]�VH [ ((−n))K ]

(16)

in which � is the circular convolution operator and ((n))K
denotes nmodule K.
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Polynomial SVD corresponds to linear convolution in the coefficients domain, however the decomposition obtained
from DFT corresponds to circular convolution. Recalling from discrete-time signal processing, it is well known that
we can equivalently utilize circular convolution instead of linear convolution if convoluted signals are zero-padded
adequately. That is, for x1[ n] and x2[ 2] are two signals with the length of N1 and N2, respectively, apply zero padding
such that zero padded signals have the length N1 +N2 − 1 [21]. Hence, if the lastM − 1 coefficients of U[ n], �[ n], and
V [ n], are zero, the following results are hold:

A[ ((n))K ]= U[ ((n))K ]��[ ((n))K ]�VH [ ((−n))K ] ⇒ A[ n]= U[ n] ∗�[ n] ∗VH [−n] ,
U[ ((n))K ]�UH [ ((−n))K ]= δ[ ((n))K ] I ⇒ U[ n] ∗UH [−n]= δ[ n] I,
V [ ((n))K ]�VH [ ((−n))K ]= δ[ ((n))K ] I ⇒ V [ n] ∗VH [−n]= δ[ n] I.

(17)

Therefore, the problem is to obtain the phase set
{�θi[ k] } and correcting the singular vectors using (9).
The phase set {�θi[ k] } should be such that the resulting
coefficients satisfy (17).
Without loss of generality, let U[ n] and V [ n] be causal,

i.e., U[ n]= V [ n]= 0 for n < 0. U[ n] and V [ n] (which
are supposed to be of lengthM) should be multi-sequence
zero-padded at least with (M − 1) zeros.

U[ n]= 1
K

K−1∑
k=0

U[ k]w−kn
K = 0 (18)

for n = M,M + 1, . . . ,K − 1, in which K ≥ 2M − 1. If
these conditions are satisfied, circular convolution can be
used instead of linear convolution.
Since the available matrix of singular vectors at each

frequency is U′[ k], inserting (9) in (18) for each singular
vector separately leads to

K−1∑
k=0

u′
i[ k] e−jθui [k]w−kn

K = 0 (19)

for n = M,M + 1, . . . ,K − 1.
Without loss of generality, let θi[ 0]= 0. In a more com-

pact form we can express these (K −M)-folded equations
in matrix form

FM(�u′
i)�x(�θui ) = −�fM(�u′

i) i = 1, 2, . . . , r (20)

in which �x(�θui ) = [ exp(jθui [ 1] ), exp(jθui [ 2] ), . . . ,
exp(jθui [K−1] )]T , �fM(�u′

i) =[ �u′T
i [ 0] , �u′T

i [ 0] , . . . , �u′T
i [ 0] ]T

is a p(K − M) × 1 vector, and

FM(�u′
i) =⎡

⎢⎢⎢⎣
�u′
i[1]w

−M
K �u′

i[2]w
−2M
K ··· �u′

i[K−1]w−(K−1)M
K

�u′
i[1]w

−(M+1)
K �u′

i[2]w
−2(M+1)
K ··· �u′

i[K−1]w−(K−1)(M+1)
K

...
...

...
�u′
i[1]w

−(K−1)
K �u′

i[2]w
−2(K−1)
K ··· �u′

i[K−1]w−(K−1)2
K

⎤
⎥⎥⎥⎦ .

For polynomial EVD, Equation (20) is enough, however,
for polynomial SVD we have two options. To approximate
SVD with approximately positive singular values, we must

augment FM(�u′
i) and �fM(�u′

i) with similar defined matrix
and vector for v′

i[ k]

FM(�u′
i, �v′

i) =
[
FM(�u′

i)
FM(�v′

i)

]
and �fM(�u′

i, �v′
i) =

[�fM(�u′
i)�fM(�v′
i)

]
,

then solve

FM(�u′
i, �v′

i)�x(�θi) = −�fM(�u′
i, �v′

i) i = 1, 2, . . . , r. (21)

An additional degree of freedom is obtained by letting
singular values to be complex. However, an straightfor-
ward solution which yield to singular values and singular
vectors of orderM is complicated. Instead, we impose the
finite duration constraint only two singular vectors

{
FM(�u′

i)�x(�θvi ) = −�fM(�u′
i)

FM(�v′
i)�x(�θvi ) = −�fM(�v′

i)
i = 1, 2, . . . , r. (22)

If K ≥ 2M−1, then the lastM−1 coefficients of resulting
polynomial vectors are zero. Therefore, according to (17),
U(z) and V(z) are paraunitary. On the other hand, if K ≥
2M + Nmax − Nmin − 1, circular convolution relation of
coefficient

�[ ((n))K ]= UH [ ((−n))K ]�A[ ((n))K ]�V [ ((n))K ]

results in the linear convolution �[ n]= UH [−n] ∗A[ n]
∗V [ n]. This guarantee that �(z) is a diagonal polynomial
matrix of order 2M+Nmax −Nmin − 2. Obviously, if U(z)
and V(z) are paraunitary and �(z) = Ũ(z)A(z)V(z) is a
diagonal matrix, A(z) = U(z)�(z)Ṽ(z) is the polynomial
SVD of A(z).
Once the set of phase {θui [ k] , θvi [ k] } are obtained from

(20), (21), or (22), phase alignment of �u′
i[ k] and �v′

i[ k] can
be done using (10) and inverse DFT of U[ k] and V[ k]
yield to coefficient matrices U[ n] and V [ n]. For obtain-
ing singular values, we have two options, we can either set
K ≥ 2M−1 and phase align σ ′

i[ k] using (10). After inverse
DFT of �[ k], we should truncate �[ n] to have duration
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M. Another option which yields to more accurate results
is by calculating Ũ(z)A(z)V(z) and replacing off-diagonal
elements with zero.
Next, we provide a minimization approach to determine

the unknown set {θi[ k] }.

5 Gradient descent solution
In general, there may exist no phase vector �θ which sat-
isfies (20). Even when there exists a phase vector that
satisfies the finite duration constraint, the solution is not
straightforward. For these reasons, we can view (20) as a
minimization problem [6]. We use energy of the highest
order coefficients (the coefficients that we equate to zero
in (18)) as the objective to the minimization problem

J(�θi) =
∥∥∥FM(�u′

i)�x(�θui ) + �fM(�u′
i)
∥∥∥2 , i = 1, 2, . . . , r.

(23)

An alternative minimization technique as a solution for
this phase optimization problem is proposed in [6], which
we describe it in this section.
Throughout this section, we focus on solving �θi =

argmin J(�θi) as a least square solution for a single singular
vector �ui[ k], so we drop the subscript “i” from the quan-
tity �θi and use F and �f , instead of FM(�u′

i) and �fM(�u′
i) to

simplify the notation. The objective J(�θ) is intentionally
presented as a function of �θ to emphasize the fact that our
problem is classified as an unconstrained optimization.
We exploit the trusted region strategy for the prob-

lem (23). By utilizing the information about the gradient
vector and Hessian matrix in each step, trusted region
strategy constructs amodel functionmk which have a sim-
ilar behavior close to the current point �θ(k). The model
mk is usually defined as the second-order Taylor series
expansion (or its approximation) of J(�θ + �ϕ) around �θ ,
that is

mk( �ϕ) = J(�θ) + �ϕT∇J(�θ) + �ϕT∇2J(�θ) �ϕ,

where ∇J(�θ) and ∇2J(�θ) are the gradient vector and the
Hessian matrix corresponding to J(�θ), respectively. The
model mk is designed to be a good approximation of J(�θ)

near the current point and is not trustworthy on regions
far from the current point. Consequently, the restriction
in minimization of mk on a region around �θ(k) is crucial,
that is

�ϕ = argmin
�ϕ

mk( �ϕ) ‖�ϕ‖ < R. (24)

where R is the trusted region radius.
The decision about shrinking of the trusted region is

determined by comparing the actual reduction inobjective

function and predicted reduction. Given a step �ϕ, the ratio

ρ = J(�θ) − J(�θ + �ϕ)

mk(0) − mk( �ϕ)
(25)

is used as a criterion to indicate if the trusted region is
small enough.
Among methods which approximate the solution of the

constrained minimization (24) dogleg procedure is the
only one which leads to analytical approximation. It also
promises to achieve at least as much reduction inmk as is
possible by Cauchy point (the minimizer of mk along the
steepest descent direction −∇J(�θ), subject to the trusted
region) [22]. However, this procedure requires Hessian
matrix (or an approximation of it) to be positive definite.

5.1 Hessian matrix modification
The gradient vector and Hessian matrix corresponding to
J(�θ) are as follows

�g(�θ) = 2�
{
X(�θ)FH(F�x(�θ) + �f )

}
,

H(�θ) = 2� {X(�θ)FHFX(�θ)H
}

−2�
{
diag

(
X(�θ)FH(F�x(�θ) + �f )

)}
,

(26)

where X(�θ) is a diagonal matrix with the kth diagonal
element exp(−jθ [ k] ) and k = 0, 1, . . . ,K − 1.
In general, Hessian matrix in (26) does not promise to

be always positive definite. Therefore, we should modify
Hessian matrix to yield a positive definite approximation.
We provide a simple modification which brings some

desirable features by omitting the second term from the
Hessian matrix and diagonal loading to guarantee positive
definiteness

H(�θ) ≈ 2� {X(�θ)FHFX(�θ)H
}+ αI. (27)

The term 2� {X(�θ)FHFX(�θ)H
}
is positive semi-definite

and in many situations, it is much more significant than
the second term of Hessian matrix in (26). Hence, with
diagonal loading αI (I is with conformable size and α is
very small), the modified Hessian matrix guarantees (27)
to be positive definite and provides the desired properties
in contrast to use the exact Hessian matrix.

5.2 Dogleg method
Dogleg method starts with the unconstrained minimiza-
tion of (24)

φh = −H−1�g (28)

When the trusted region radius is so large that
∥∥φH∥∥ ≤

R, it is the exact solution of (24) and we select it as the
dogleg method answer. On the other hand, for small R the
solution of (24) is −R�g/ ∥∥�g∥∥. For intermediate values of R,
the optimal solution lies on a curved trajectory between
these two points [22].
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Algorithm 3 Trusted region dogleg algorithm
Obtain �θ0 from (33)
Given R0 < R̄
for i = 0, 1, 2, · · ·

Obtain �φh from (28)

if
∥∥∥ �φh
∥∥∥ < R0

�φi ← �φu

else
Obtain �φg from (29)

if
∥∥∥ �φg
∥∥∥ > Ri

�φi ← Ri
�φg

‖ �φg‖
else

�φd ← �φh − �φg

Solve
∥∥∥ �φd
∥∥∥τ 2+2( �φg)H �φdτ +

∥∥∥ �φg
∥∥∥−R2

i =0
Select the root τ > 0
�φi ← �φg + τ �φh

Evaluate ρi from (25)
if ρi < 1

4
Ri+1 ← 0.25Ri

elseif ρ > 3
4 and ‖ �φi‖ = Ri

Ri+1 ← min(2Ri, R̄)

else
Ri+1 ← Ri

if ρi > 0
θi+1 ← θi + φi

else
θi+1 ← θi

end(for)

The dogleg method approximates this trajectory by a
path consisting of two line segments. The first line seg-
ment starts from the origin to the unconstrained mini-
mized point along the steepest descent direction

φg = − �gT�g
�gTH�g �g. (29)

The second line segment starts from φg to φh. These two
line segments form an approximate trajectory which its
intersection with the sphere ‖φ‖ = R is the approximate
solution of (24) when

∥∥φh∥∥ > R.

5.3 Alternating minimization
Another solution of (23) is provided by converting the
problem of multivariate minimization to a sequence of
single-variate minimization problem via alternating min-
imization [6]. In each iteration, a series of single-variate
minimization is performed, while other parameters are
held unchanged. Each Iteration consists of K − 1 steps,

which at each step one parameter θ [ k] is updated. Sup-
pose we are at step k of ith iteration. At this step k − 1
first parameters were updated in the current iteration, and
K − k − 2 last parameters were updated from the previ-
ous iteration. These parameters are held fixed, while θ [ k]
is minimized at the current step,

θi[ k]= argmin
θ [k]

J (θi[1],...,θi[k−1],θ [k],θi−1[k+1],...,θi−1[K−1] ) .

(30)

The cost function is guaranteed to be non-incremental
at each step; however, this method is also converges to a
local minima which highly depend on the initial guess of
the algorithm. For solving (30) it is suffices to make the
kth element of gradient vector in (26) equal to zero. Sup-
pose the calculation are performed for phase alignment of
�u′[ k] k = 0, 1, . . . ,K − 1,

∂J
∂θ [ k]

= �
{
e−jθ [k]ti[ k]

}
= 2 |ti[ k] |2 sin(∠ti[ k]−θ [ k] ) = 0,

(31)

where ∠t(i)u [ k] is the phase angle of t(i)u [ k] and

ti[ k]=
k−1∑
l=0

ejθi[l]�u′H [ k] �u′[ l]
w(k−l)M
K − 1

1 − w(k−l)
K

+
K−1∑
l=k+1

ejθi−1[l]�u′H [ k] �u′[ l]
w(k−l)M
K − 1

1 − w(k−l)
K

.

Fortunately, Equation (31) has a closed form solution

θi[ k]=
{
∠ti[ k]
∠ti[ k]+π

. (32)

However, only the second case of (32) has positive second
partial deviation. Therefore, the global minima of (30) is

θi[ k]= ∠ti[ k]+π .

5.4 Initial guess
All algorithms of unconstrained minimization require to
be supplied by a starting point, which we denoted by �θ0.
To avoid getting stuck in local minima, we should select
a good initial guess. This can be accomplished by min-
imizing a different but similar cost function denoted by
J ′(�θ)

J ′(�θ) =
∥∥∥�x(�θi) − F†�f

∥∥∥2
in which † represents pseudo inverse.
Solving J ′(�θ) yields to a simple initial guess

�θ0 = ∠F†�f . (33)

Based on what have been mentioned in this section,
a pseudo-code description of the trusted region dogleg
algorithm is given by Algorithm 3. In this algorithm,
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we start with the initial guess of (33) and a trusted
region radius upper bound R̄. Then we continue the
trusted region minimization procedure as described in
this section.

6 Simulation results
In this section, we present some examples to demonstrate
the performance of the proposed algorithm. For the first
example, our algorithm is applied to a polynomial matrix
example from [11]

A(z) =
⎡
⎣ 2 0 2z+1

z+1 1 0
0 z−1 1

⎤
⎦ . (34)

Frequency behavior of singular values can be seen in
Figure 1. There is no intersection of singular values, so the
setup of the algorithm either for spectral majorization or
frequency smoothness leads to identical decomposition.
For having approximately positive singular values, we

use (21). Define the average energy of highest order coef-
ficients for the pair of polynomial singular vectors �ui and
�vi as Eu,vi = J(�θi)/(K − M) (we expect energy of highest
order coefficients to be zero or at least minimized). A plot
of Ei versus iteration for each pair of singular vectors is
depicted in Figure 2. The decomposition length is M = 9
(order is 8) and we use K = 2M + (Nmax − Nmin) = 20
number of DFT points.
As it is seen, the use of dogleg method with approximate

Hessianmatrix leads to a fast convergence in contrast with
using alternative minimization and Cauchy-point (which
is always selected along the gradient direction). Of course
we should consider that due tomatrix inversion, computa-
tional complexity of Dogleg method is O(K3) while com-
putational complexity of alternative minimization and
Cauchy point is O(K2).
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Figure 1 Singular values versus frequency.

The final value of average highest order coefficient for
three pair of singular vectors are 5.54 × 10−5, 3.5 ×
10−3, and 0.43, respectively. The first singular vector sat-
isfies finite duration constraint almost exactly. The second
singular vector fairly satisfies this constraint. However,
highest order coefficients of last singular vector, pos-
sess considerable amount of energy, that seems to cause
decomposition error.
Denote the relative error of the decomposition as

EA =
∥∥∥A(z) − U(z)�(z)Ṽ(z)

∥∥∥
F

‖A(z)‖F
in which ‖·‖F is the extension of Frobenius norm for
polynomial matrices and is defined by

‖A(z)‖F =
√∑

n
‖A[ n] ‖2F .

Since in our optimization procedure we only seek for
finite duration approximation, U(z) and V(z) are only
approximately paraunitary. Therefore, we also define rela-
tive error of paraunitarity as

EU =
∥∥∥Ũ(z)U(z) − I

∥∥∥
F

r
.

An upper bound for EU can be obtained as

EU ≤2

√√√√K − M
K

r∑
i=1

E(u)
i (1 − E(u)

i )

+
√√√√K − M

K

r∑
i=1

(E(u)
i )2,

which means as average energy on K − M highest order
goes to zero, EU diminishes.
The relative error of this decomposition is EA = 1.18 ×

10−2 while the error ofU(z) andV(z) are EU = 3.3×10−2

and EV = 3.08 × 10−2, respectively. The paraunitar-
ity error is relatively high in contrast with decomposition
error. This is due to the difference between the first two
singular values and the last singular value.
A plot of relative errors EA, EU , and EV for various

amount of M is shown in Figure 3. The number of fre-
quency samples is fixed at K = 2M + 2(Nmax − Nmin).
The number of frequency samples K is an optional

choice, however as discussed in Section 4, it should sat-
isfy K ≥ 2M + Nmax − Nmin − 1. In order to demonstrate
the effect of number of frequency samples on the decom-
position error, a plot of relative error versus different
amount of K is depicted in Figure 4. Increasing the num-
ber of frequency samples does not lead to reduction of
relative error. Moreover, it increases computational bur-
den. Therefore, a value near 2M + (Nmax − Nmin) − 1 is a
reasonable choice for the number of frequency samples.
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Figure 2 Average highest order coefficients energy Ei versus iteration number for a decomposition with approximately positive singular
values. Dotted line: Cauchy points. Dashed line: Alternative minimization. Solid Line: proposed algorithm.

Now, lets relax the problem by allowing singular values
to be complex and using (22). A plot of Eui and Evi versus
iteration for each pair of singular vectors is depicted in
Figure 5. The decomposition length is M = 9 (order is 8)
and we use K = 2M + (Nmax − Nmin) = 20 number of
DFT points.
Again Dogleg method converges very rapidly while

alternative minimization and Cauchy point converge
slowly. The final value of average energy for three left
singular vectors are 1.23 × 10−10, 9.7 × 10−4, and 10−3,
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Figure 3 Relative error versusM for a decomposition with
approximately positive singular values. K = 2M = 2.

respectively. This is while these values for right singu-
lar vectors are 1.12 × 10−10, 1.4 × 10−3, and 8.7−4,
respectively.
Note that the average energy of highest order coeffi-

cients for the third pair of singular vectors alleviate mean-
ingfully. Figure 1 shows that the third singular value goes
to zero and then returns to positive values. If we constrain
singular values to be positive, a phase jump of π radian,
is imposed to one of third singular vectors near the fre-
quency which singular vector goes to zero. However, by
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Figure 4 Relative error versusK for a decomposition with
approximately positive singular values.M = 31.
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Figure 5 Average highest order coefficients energy Ei versus iteration number for a decomposition with complex singular values. Dotted
line: Cauchy points. Dashed line: Alternative minimization. Solid Line: proposed algorithm.

letting singular values to be complex, the zero crossing
occur which requires no discontinuity of singular vectors.
The relative error of this decomposition is EA = 4.9 ×

10−3 while the error ofU(z) andV(z) are EU = 2.5×10−3

and EV = 3.5 × 10−3, respectively. In contrast with con-
straining singular values to be positive, having complex
singular values decrease decomposition and paraunitarity
error significantly.
Plots of relative errors EA, EU , and EV for various

amount of M and K are shown in Figures 6 and 7,
respectively. Letting singular values be complex causes

significant reduction of all relative errors. As it was men-
tioned, Figure 7 shows that increasingK from 2M+Nmax−
Nmin −1 causes no improvement in relative errors while it
makes additional computational burden.
McWhirter and coauthors [11] have reported the rel-

ative error of decomposition. Provided that paraunitary
matricesU(z) andV(z) are of order 33, the relative error of
their algorithm is 0.0469. This is while our algorithm only
requires paraunitary matrices of order 3 for relative error
of 0.035 with positive singular values and relative error
of 2.45 × 10−6 with complex singular values. In addition,
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Figure 6 Relative error versusM for a decomposition with complex singular values. K = 2M + 2.
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Figure 7 Relative error versusK for a decomposition with complex singular values.M = 9.

in the new approach, exploiting paraunitary matrices of
order 33, the relative error is 0.0032 with positive singular
values and 4.7 × 10−6 with complex singular values.
This large difference is not caused by iteration num-

bers because we compare results while all algorithms
relatively converges, and with continuation of iterations
trivial improvement are obtained. The main reason lies
on different constraints of the solution presented in [11]
in contrast to our proposed method. While they impose
paraunitary constraint on Ũ(z)A(z)V(z) to yield a diago-
nalized�(z), we impose the finite duration constraint and
obtain approximation of U(z) and V(z) with fair fitting
to the decomposed matrices at each frequency samples.
Therefore, we can consider this method as a finite dura-
tion polynomial regression of matrices which is obtained
by uniformly sampling U(z) and V(z) on the unit circle in
z-plane.
As a second example, consider EVD of the following

para-Hermitian matrix

A(z) =
[
.5z2 + 3 + .5z−2 −.5z2 + .5z−2

.5z2 − .5z−2 −.5z2 + 1 − .5z−2

]

The exact smooth EVD of this matrix is of finite order

U(z) = 1
2

[
1 + z−1 1 − z−1

1 − z−1 1 + z−1

]
, (35)

�(z) =
[
z1 + 2 + z−1 0

0 −z1 + 2 − z−1

]
.

Frequency behavior of eigenvalues can be seen in
Figure 8. Since eigenvalues intersect at two frequencies,

smooth decomposition and spectrally majorized decom-
position result two distinct solutions.
To perform smooth decomposition, we need to track

and rearrange eigenvectors to avoid any discontinuity
using Algorithm 2. The resulting |cu′

ij [ k] | are shown in
Figure 9 for k = 0, 1, . . . ,K − 1. Using these |cu′

ij [ k] | the
Algorithm 2 swap first and second eigenvalues and eigen-
vectors for k = 12 : 32 which results in continuity of
eigenvalues and eigenvectors.
Now that all eigenvalues and eigenvectors are rear-

ranged in DFT domain, it’s time for phase alignment of

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4

Normalized Frequency

E
ig

en
va

lu
e

Figure 8 Eigenvalues of smooth decomposition versus
frequency.
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eigenvectors. A plot of Ei versus iteration for M = 3 and
smooth decomposition is depicted in Figure 10. It is pre-
dictable that dogleg algorithm converges rapidly while the
alternative minimization and Cauchy point has a long way
to converge.
Since the energy of highest order coefficients of eigen-

vectors are trifling, using the proposed method for
smooth decomposition results in very high accuracy, as

seem in the figures. Relative error of smooth decomposi-
tion versusM is shown in Figure 11.
While using frequency smooth EVD of (35) leads to rel-

ative error below 10−5 for M ≥ 3 with a few number of
iterations, Spectrally majorized EVD requires a lot more
polynomial order to reach a reasonable relative error.
Unlike smooth decomposition which requires rear-

rangement of eigenvalues and eigenvectors, spectral
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Figure 10 Ei versus iteration number corresponding to smooth decomposition. Dotted line: Cauchy points. Dashed line: Alternative
minimization. Solid Line: proposed algorithm.
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majorization requires only to sort eigenvalues at each
frequency sample in decreasing order. Most of con-
ventional EVD algorithm sort eigenvalues in decreasing
order, which we should only align eigenvector phases
using 3. A plot of Ei versus iteration for M = 20
and spectrally majorized decomposition is depicted in
Figure 12.
Due to an abrupt change in eigenvectors at the intersec-

tion frequency of eigenvalues, increasing the decomposi-
tion order leads to a slow decay of relative error. Figure 13
shows the relative error as a function ofM.

To see the difference between smooth and spectrally
majorized decomposition results, eigenvalues of spec-
trally majorized decomposition is shown in Figure 14,
which is comparable with Figure 8 which corresponds to
eigenvalues of smooth decomposition. Therefore, a low
order polynomial is required using smooth decomposi-
tion and much higher polynomial order for spectrally
majorized decomposition. Even with M = 20 the decom-
position have relatively high error.

7 Conclusion
An algorithm for polynomial EVD and SVD based on
DFT formulation has been presented. One of the advan-
tages of the DFT formulation is that it enables us to
control properties of decomposition. Among these prop-
erties, we introduce how to setup the decomposition to
achieve spectrally majorization and frequency smooth-
ness. We have shown, if singular values (eigenvalues)
intersect at some frequency, then simultaneous achieve-
ment of spectral majorization and smooth decomposition
is not possible. In this situation, setting up the decom-
position to possess spectral majorization requires con-
siderably higher order polynomial decomposition and
more computational complexity. Highest order polyno-
mial coefficients of singular vectors (eigenvectors) are
utilized as square error to obtain a compact decompo-
sition based on phase alignment of frequency samples.
The algorithm has the flexibility to compute a decom-
position with approximately positive singular values, and
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Figure 12 Ei versus iteration number corresponding to spectrally majorized decomposition. Dotted line: Cauchy points. Dashed line:
Alternative minimization. Solid Line: proposed algorithm.
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Figure 13 Relative error of spectrally majorized decomposition
versusM.

a more relaxed decomposition with complex singular
values. A solution for this nonlinear quadratic problem
is proposed via Newton’s method. Since we apply an
approximate Hessian matrix to assist the Newton opti-
mization, a fast convergence is achieved. The algorithm
capability to control the order of polynomial elements of
decomposed matrices and to select properties of decom-
position, make the proposed method as a good choice
for filterbank and MIMO precoding applications. Finally,
performance of the proposed algorithm under different
conditions is demonstrated via simulations. Simulation
results reveal superior decomposition accuracy in con-
trast with coefficient domain algorithms due to relaxation
of paraunitarity.
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Figure 14 Eigenvalues of spectrally majorized decomposition
versus frequency.M = 20.
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