439 research outputs found

    A Survey on Forensics and Compliance Auditing for Critical Infrastructure Protection

    Get PDF
    The broadening dependency and reliance that modern societies have on essential services provided by Critical Infrastructures is increasing the relevance of their trustworthiness. However, Critical Infrastructures are attractive targets for cyberattacks, due to the potential for considerable impact, not just at the economic level but also in terms of physical damage and even loss of human life. Complementing traditional security mechanisms, forensics and compliance audit processes play an important role in ensuring Critical Infrastructure trustworthiness. Compliance auditing contributes to checking if security measures are in place and compliant with standards and internal policies. Forensics assist the investigation of past security incidents. Since these two areas significantly overlap, in terms of data sources, tools and techniques, they can be merged into unified Forensics and Compliance Auditing (FCA) frameworks. In this paper, we survey the latest developments, methodologies, challenges, and solutions addressing forensics and compliance auditing in the scope of Critical Infrastructure Protection. This survey focuses on relevant contributions, capable of tackling the requirements imposed by massively distributed and complex Industrial Automation and Control Systems, in terms of handling large volumes of heterogeneous data (that can be noisy, ambiguous, and redundant) for analytic purposes, with adequate performance and reliability. The achieved results produced a taxonomy in the field of FCA whose key categories denote the relevant topics in the literature. Also, the collected knowledge resulted in the establishment of a reference FCA architecture, proposed as a generic template for a converged platform. These results are intended to guide future research on forensics and compliance auditing for Critical Infrastructure Protection.info:eu-repo/semantics/publishedVersio

    UMSL Bulletin 2023-2024

    Get PDF
    The 2023-2024 Bulletin and Course Catalog for the University of Missouri St. Louis.https://irl.umsl.edu/bulletin/1088/thumbnail.jp

    UMSL Bulletin 2022-2023

    Get PDF
    The 2022-2023 Bulletin and Course Catalog for the University of Missouri St. Louis.https://irl.umsl.edu/bulletin/1087/thumbnail.jp

    A Process Model for Continuous Public Service Improvement: Demonstrated in Local Government Context for Smart Cities.

    Get PDF
    The new era of the smart city is accompanied by Information and Communication Technology (ICT) and many other technologies to improve the quality of life for the citizen of the modern city, that in turn, has brought immense opportunities as well as challenges for government and organizations. Local authorities of the cities provide multiple services across different domains to the citizens (e.g. transport, health, environment, housing, etc.). Citizens are involved during different stages of smart city services and provide their feedback across those domains. Existing smart city initiatives provide various technological platforms for gathering citizens’ feedback to provide improved quality of services to them. Even though technological developments have resulted in a higher degree of digitalization, there is a need for improvement in the services provided by municipalities. There are multiple engagement platforms to obtain citizens’ feedback for the improvement of smart city services and to transform public services. However, limited studies consider the challenges faced by practitioners at the local level during the incorporation of those feedback for further service improvement. As a result, city services fail to fulfil the need of citizens and do not meet the goals set by existing engagement platforms. Technology-oriented solutions in the public sector domain require a logical and structured approach for the transformation of public services and digitalization. Enterprise Architecture (EA) can provide this structured approach to transform public services by providing a medium to manage change, and to respond to the need of multiple stakeholders including citizens. Thus, this research proposes a process model based on the guidelines of EA and the collaboration with practitioners that would assist local authorities to provide improved services to the citizens and fulfil their needs

    Metaverse: A Vision, Architectural Elements, and Future Directions for Scalable and Realtime Virtual Worlds

    Full text link
    With the emergence of Cloud computing, Internet of Things-enabled Human-Computer Interfaces, Generative Artificial Intelligence, and high-accurate Machine and Deep-learning recognition and predictive models, along with the Post Covid-19 proliferation of social networking, and remote communications, the Metaverse gained a lot of popularity. Metaverse has the prospective to extend the physical world using virtual and augmented reality so the users can interact seamlessly with the real and virtual worlds using avatars and holograms. It has the potential to impact people in the way they interact on social media, collaborate in their work, perform marketing and business, teach, learn, and even access personalized healthcare. Several works in the literature examine Metaverse in terms of hardware wearable devices, and virtual reality gaming applications. However, the requirements of realizing the Metaverse in realtime and at a large-scale need yet to be examined for the technology to be usable. To address this limitation, this paper presents the temporal evolution of Metaverse definitions and captures its evolving requirements. Consequently, we provide insights into Metaverse requirements. In addition to enabling technologies, we lay out architectural elements for scalable, reliable, and efficient Metaverse systems, and a classification of existing Metaverse applications along with proposing required future research directions

    MetaOmniCity: Towards urban metaverse cyberspaces using immersive smart city digital twins

    Get PDF
    The movie - The Matrix (1999) - boosted our imagination about how further we can be immersed within the cyber world, i.e., how further the cyber world can be indistinguishable from the real world with the metaverse space travel. Nobody had expected involving the creators that the aspirational fictional virtual worlds such as "ActiveWorlds (1995)", and ``Second Life (2003)'' with many urban experiences embedded into a rich featured 3D environment would impact the way of experiencing our real urban environments. Are we going to feel/become ourselves - our cyber-physical presence (e.g., our augmented avatars) - in other mirror worlds doing many other things? Are the created imaginary worlds becoming a part of the real worlds or vice versa? The recent once-in-a-lifetime pandemic has confirmed the importance of location and time-independent Digital Twins (DTs) (i.e., virtual scale models) of cities and their automated services that can provide everybody with equity and accessibility by democratising all types of services leading to increased Quality of Life (QoL). This study analyses how the metaverse (3D elevation of linear Internet), that aims to build high-fidelity virtual worlds with which to interact with the real world, can be engaged within the Smart City (SC) ecosystem with high immersive Quality of Experiences (QoE) and an urban metaverse ecosystem framework — MetaOmniCity — that is designed to demonstrate a variety of insights and orchestrational directions for policymakers, city planners and all other stakeholders about how to transform data-driven SCs with DTs into virtually inhabitable cities with a network of shared urban experiences from a metaverse point of view. MetaOmniCity, allowing the metaversification of cities with granular virtual societies, i.e., MetaSocieties, and eliminating the boundaries (e.g., time, space and language) between the real world and their virtual counterparts, can be shaped to the particular requirements and features of cities. This can pave the way for immersive globalisation with the bigger and richer metaverse of Country (MoC) and metaverse of World (MoW) being an immersive DT of the broader universe with digitally connected cities by removing physical borders. MetaOmniCity is expected to accelerate the building, deployment, and adoption of immersive urban metaverse worlds/networks for citizens to interface with as an extension of real urban social and individual experiences

    Spatial-temporal domain charging optimization and charging scenario iteration for EV

    Get PDF
    Environmental problems have become increasingly serious around the world. With lower carbon emissions, Electric Vehicles (EVs) have been utilized on a large scale over the past few years. However, EVs are limited by battery capacity and require frequent charging. Currently, EVs suffer from long charging time and charging congestion. Therefore, EV charging optimization is vital to ensure drivers’ mobility. This study first presents a literature analysis of the current charging modes taxonomy to elucidate the advantages and disadvantages of different charging modes. In specific optimization, under plug-in charging mode, an Urgency First Charging (UFC) scheduling policy is proposed with collaborative optimization of the spatialtemporal domain. The UFC policy allows those EVs with charging urgency to get preempted charging services. As conventional plug-in charging mode is limited by the deployment of Charging Stations (CSs), this study further introduces and optimizes Vehicle-to-Vehicle (V2V) charging. This is aim to maximize the utilization of charging infrastructures and to balance the grid load. This proposed reservation-based V2V charging scheme optimizes pair matching of EVs based on minimized distance. Meanwhile, this V2V scheme allows more EVs get fully charged via minimized waiting time based parking lot allocation. Constrained by shortcomings (rigid location of CSs and slow charging power under V2V converters), a single charging mode can hardly meet a large number of parallel charging requests. Thus, this study further proposes a hybrid charging mode. This mode is to utilize the advantages of plug-in and V2V modes to alleviate the pressure on the grid. Finally, this study addresses the potential problems of EV charging with a view to further optimizing EV charging in subsequent studies

    Split Federated Learning for 6G Enabled-Networks: Requirements, Challenges and Future Directions

    Full text link
    Sixth-generation (6G) networks anticipate intelligently supporting a wide range of smart services and innovative applications. Such a context urges a heavy usage of Machine Learning (ML) techniques, particularly Deep Learning (DL), to foster innovation and ease the deployment of intelligent network functions/operations, which are able to fulfill the various requirements of the envisioned 6G services. Specifically, collaborative ML/DL consists of deploying a set of distributed agents that collaboratively train learning models without sharing their data, thus improving data privacy and reducing the time/communication overhead. This work provides a comprehensive study on how collaborative learning can be effectively deployed over 6G wireless networks. In particular, our study focuses on Split Federated Learning (SFL), a technique recently emerged promising better performance compared with existing collaborative learning approaches. We first provide an overview of three emerging collaborative learning paradigms, including federated learning, split learning, and split federated learning, as well as of 6G networks along with their main vision and timeline of key developments. We then highlight the need for split federated learning towards the upcoming 6G networks in every aspect, including 6G technologies (e.g., intelligent physical layer, intelligent edge computing, zero-touch network management, intelligent resource management) and 6G use cases (e.g., smart grid 2.0, Industry 5.0, connected and autonomous systems). Furthermore, we review existing datasets along with frameworks that can help in implementing SFL for 6G networks. We finally identify key technical challenges, open issues, and future research directions related to SFL-enabled 6G networks

    Integration of hybrid networks, AI, Ultra Massive-MIMO, THz frequency, and FBMC modulation toward 6g requirements : A Review

    Get PDF
    The fifth-generation (5G) wireless communications have been deployed in many countries with the following features: wireless networks at 20 Gbps as peak data rate, a latency of 1-ms, reliability of 99.999%, maximum mobility of 500 km/h, a bandwidth of 1-GHz, and a capacity of 106 up to Mbps/m2. Nonetheless, the rapid growth of applications, such as extended/virtual reality (XR/VR), online gaming, telemedicine, cloud computing, smart cities, the Internet of Everything (IoE), and others, demand lower latency, higher data rates, ubiquitous coverage, and better reliability. These higher requirements are the main problems that have challenged 5G while concurrently encouraging researchers and practitioners to introduce viable solutions. In this review paper, the sixth-generation (6G) technology could solve the 5G limitations, achieve higher requirements, and support future applications. The integration of multiple access techniques, terahertz (THz), visible light communications (VLC), ultra-massive multiple-input multiple-output ( ÎĽm -MIMO), hybrid networks, cell-free massive MIMO, and artificial intelligence (AI)/machine learning (ML) have been proposed for 6G. The main contributions of this paper are a comprehensive review of the 6G vision, KPIs (key performance indicators), and advanced potential technologies proposed with operation principles. Besides, this paper reviewed multiple access and modulation techniques, concentrating on Filter-Bank Multicarrier (FBMC) as a potential technology for 6G. This paper ends by discussing potential applications with challenges and lessons identified from prior studies to pave the path for future research
    • …
    corecore