8 research outputs found

    The Senso Question Answering approach to Portuguese QA@CLEF-2007

    Get PDF
    This article has the Working Notes about the Universidade de Évora's participation in QA@CLEF2007 (http://www.clef-campaign.org/), based on the Senso question answer system and the Portuguese monolingual task

    Searching for musical features using natural language queries: the C@merata evaluations at MediaEval

    Get PDF
    Musicological texts about classical music frequently include detailed technical discussions concerning the works being analysed. These references can be specific (e.g. C sharp in the treble clef) or general (fugal passage, Thor’s Hammer).Experts can usually identify the features in question in music scores but a means of performing this task automatically could be very useful for experts and beginnersalike. Following work on textual question answering over many years as co-or-ganisers of the QA tasks at the Cross Language Evaluation Forum, we decided in 2013 to propose a new type of task where the input would be a natural language phrase, together with a music score in MusicXML, and the required output would be one or more matching passages in the score. We report here on 3 years of theC@merata task at MediaEval. We describe the design of the task, the evaluation methods we devised for it, the approaches adopted by participant systems and the results obtained. Finally, we assess the progress which has been made in aligning natural language text with music and map out the main steps for the future. The novel aspects of this work are: (1) the task itself, linking musical references to actual music scores, (2) the evaluation methods we devised, based on modified versions of precision and recall, applied to demarcated musical passages, and (3) the progress which has been made in analysing and interpreting detailed technical references to music within texts

    Knowledge-based and data-driven approaches for geographical information access

    Get PDF
    Geographical Information Access (GeoIA) can be defined as a way of retrieving information from textual collections that includes the automatic analysis and interpretation of the geographical constraints and terms present in queries and documents. This PhD thesis presents, describes and evaluates several heterogeneous approaches for the following three GeoIA tasks: Geographical Information Retrieval (GIR), Geographical Question Answering (GeoQA), and Textual Georeferencing (TG). The GIR task deals with user queries that search over documents (e.g. ¿vineyards in California?) and the GeoQA task treats questions that retrieve answers (e.g. ¿What is the capital of France?). On the other hand, TG is the task of associate one or more georeferences (such as polygons or coordinates in a geodetic reference system) to electronic documents. Current state-of-the-art AI algorithms are not yet fully understanding the semantic meaning and the geographical constraints and terms present in queries and document collections. This thesis attempts to improve the effectiveness results of GeoIA tasks by: 1) improving the detection, understanding, and use of a part of the geographical and the thematic content of queries and documents with Toponym Recognition, Toponym Disambiguation and Natural Language Processing (NLP) techniques, and 2) combining Geographical Knowledge-Based Heuristics based on common sense with Data-Driven IR algorithms. The main contributions of this thesis to the state-of-the-art of GeoIA tasks are: 1) The presentation of 10 novel approaches for GeoIA tasks: 3 approaches for GIR, 3 for GeoQA, and 4 for Textual Georeferencing (TG). 2) The evaluation of these novel approaches in these contexts: within official evaluation benchmarks, after evaluation benchmarks with the test collections, and with other specific datasets. Most of these algorithms have been evaluated in international evaluations and some of them achieved top-ranked state-of-the-art results, including top-performing results in GIR (GeoCLEF 2007) and TG (MediaEval 2014) benchmarks. 3) The experiments reported in this PhD thesis show that the approaches can combine effectively Geographical Knowledge and NLP with Data-Driven techniques to improve the efectiveness measures of the three Geographical Information Access tasks investigated. 4) TALPGeoIR: a novel GIR approach that combines Geographical Knowledge ReRanking (GeoKR), NLP and Relevance Feedback (RF) that achieved state-of-the-art results in official GeoCLEF benchmarks (Ferrés and Rodríguez, 2008; Mandl et al., 2008) and posterior experiments (Ferrés and Rodríguez, 2015a). This approach has been evaluated with the full GeoCLEF corpus (100 topics) and showed that GeoKR, NLP, and RF techniques evaluated separately or in combination improve the results in MAP and R-Precision effectiveness measures of the state-of-the-art IR algorithms TF-IDF, BM25 and InL2 and show statistical significance in most of the experiments. 5) GeoTALP-QA: a scope-based GeoQA approach for Spanish and English and its evaluation with a set of questions of the Spanish geography (Ferrés and Rodríguez, 2006). 6) Four state-of-the-art Textual Georeferencing approaches for informal and formal documents that achieved state-of-the-art results in evaluation benchmarks (Ferrés and Rodríguez, 2014) and posterior experiments (Ferrés and Rodríguez, 2011; Ferrés and Rodríguez, 2015b).L'Accés a la Informació Geogràfica (GeoAI) pot ser definit com una forma de recuperar informació de col·lecions textuals que inclou l'anàlisi automàtic i la interpretació dels termes i restriccions geogràfiques que apareixen en consultes i documents. Aquesta tesi doctoral presenta, descriu i avalua varies aproximacions heterogènies a les seguents tasques de GeoAI: Recuperació de la Informació Geogràfica (RIG), Cerca de la Resposta Geogràfica (GeoCR), i Georeferenciament Textual (GT). La tasca de RIG tracta amb consultes d'usuari que cerquen documents (e.g. ¿vinyes a California?) i la tasca GeoCR tracta de recuperar respostes concretes a preguntes (e.g. ¿Quina és la capital de França?). D'altra banda, GT es la tasca de relacionar una o més referències geogràfiques (com polígons o coordenades en un sistema de referència geodètic) a documents electrònics. Els algoritmes de l'estat de l'art actual en Intel·ligència Artificial encara no comprenen completament el significat semàntic i els termes i les restriccions geogràfiques presents en consultes i col·leccions de documents. Aquesta tesi intenta millorar els resultats en efectivitat de les tasques de GeoAI de la seguent manera: 1) millorant la detecció, comprensió, i la utilització d'una part del contingut geogràfic i temàtic de les consultes i documents amb tècniques de reconeixement de topònims, desambiguació de topònims, i Processament del Llenguatge Natural (PLN), i 2) combinant heurístics basats en Coneixement Geogràfic i en el sentit comú humà amb algoritmes de Recuperació de la Informació basats en dades. Les principals contribucions d'aquesta tesi a l'estat de l'art de les tasques de GeoAI són: 1) La presentació de 10 noves aproximacions a les tasques de GeoAI: 3 aproximacions per RIG, 3 per GeoCR, i 4 per Georeferenciament Textual (GT). 2) L'avaluació d'aquestes noves aproximacions en aquests contexts: en el marc d'avaluacions comparatives internacionals, posteriorment a avaluacions comparatives internacionals amb les col·lections de test, i amb altres conjunts de dades específics. La majoria d'aquests algoritmes han estat avaluats en avaluacions comparatives internacionals i alguns d'ells aconseguiren alguns dels millors resultats en l'estat de l'art, com per exemple els resultats en comparatives de RIG (GeoCLEF 2007) i GT (MediaEval 2014). 3) Els experiments descrits en aquesta tesi mostren que les aproximacions poden combinar coneixement geogràfic i PLN amb tècniques basades en dades per millorar les mesures d'efectivitat en les tres tasques de l'Accés a la Informació Geogràfica investigades. 4) TALPGeoIR: una nova aproximació a la RIG que combina Re-Ranking amb Coneixement Geogràfic (GeoKR), PLN i Retroalimentació de Rellevancia (RR) que aconseguí resultats en l'estat de l'art en comparatives oficials GeoCLEF (Ferrés and Rodríguez, 2008; Mandl et al., 2008) i en experiments posteriors (Ferrés and Rodríguez, 2015a). Aquesta aproximació ha estat avaluada amb el conjunt complert del corpus GeoCLEF (100 topics) i ha mostrat que les tècniques GeoKR, PLN i RR avaluades separadament o en combinació milloren els resultats en les mesures efectivitat MAP i R-Precision dels algoritmes de l'estat de l'art en Recuperació de la Infomació TF-IDF, BM25 i InL2 i a més mostren significació estadística en la majoria dels experiments. 5) GeoTALP-QA: una aproximació basada en l'àmbit geogràfic per espanyol i anglès i la seva avaluació amb un conjunt de preguntes de la geografía espanyola (Ferrés and Rodríguez, 2006). 6) Quatre aproximacions per al georeferenciament de documents formals i informals que obtingueren resultats en l'estat de l'art en avaluacions comparatives (Ferrés and Rodríguez, 2014) i en experiments posteriors (Ferrés and Rodríguez, 2011; Ferrés and Rodríguez, 2015b).Postprint (published version

    Knowledge-based and data-driven approaches for geographical information access

    Get PDF
    Geographical Information Access (GeoIA) can be defined as a way of retrieving information from textual collections that includes the automatic analysis and interpretation of the geographical constraints and terms present in queries and documents. This PhD thesis presents, describes and evaluates several heterogeneous approaches for the following three GeoIA tasks: Geographical Information Retrieval (GIR), Geographical Question Answering (GeoQA), and Textual Georeferencing (TG). The GIR task deals with user queries that search over documents (e.g. ¿vineyards in California?) and the GeoQA task treats questions that retrieve answers (e.g. ¿What is the capital of France?). On the other hand, TG is the task of associate one or more georeferences (such as polygons or coordinates in a geodetic reference system) to electronic documents. Current state-of-the-art AI algorithms are not yet fully understanding the semantic meaning and the geographical constraints and terms present in queries and document collections. This thesis attempts to improve the effectiveness results of GeoIA tasks by: 1) improving the detection, understanding, and use of a part of the geographical and the thematic content of queries and documents with Toponym Recognition, Toponym Disambiguation and Natural Language Processing (NLP) techniques, and 2) combining Geographical Knowledge-Based Heuristics based on common sense with Data-Driven IR algorithms. The main contributions of this thesis to the state-of-the-art of GeoIA tasks are: 1) The presentation of 10 novel approaches for GeoIA tasks: 3 approaches for GIR, 3 for GeoQA, and 4 for Textual Georeferencing (TG). 2) The evaluation of these novel approaches in these contexts: within official evaluation benchmarks, after evaluation benchmarks with the test collections, and with other specific datasets. Most of these algorithms have been evaluated in international evaluations and some of them achieved top-ranked state-of-the-art results, including top-performing results in GIR (GeoCLEF 2007) and TG (MediaEval 2014) benchmarks. 3) The experiments reported in this PhD thesis show that the approaches can combine effectively Geographical Knowledge and NLP with Data-Driven techniques to improve the efectiveness measures of the three Geographical Information Access tasks investigated. 4) TALPGeoIR: a novel GIR approach that combines Geographical Knowledge ReRanking (GeoKR), NLP and Relevance Feedback (RF) that achieved state-of-the-art results in official GeoCLEF benchmarks (Ferrés and Rodríguez, 2008; Mandl et al., 2008) and posterior experiments (Ferrés and Rodríguez, 2015a). This approach has been evaluated with the full GeoCLEF corpus (100 topics) and showed that GeoKR, NLP, and RF techniques evaluated separately or in combination improve the results in MAP and R-Precision effectiveness measures of the state-of-the-art IR algorithms TF-IDF, BM25 and InL2 and show statistical significance in most of the experiments. 5) GeoTALP-QA: a scope-based GeoQA approach for Spanish and English and its evaluation with a set of questions of the Spanish geography (Ferrés and Rodríguez, 2006). 6) Four state-of-the-art Textual Georeferencing approaches for informal and formal documents that achieved state-of-the-art results in evaluation benchmarks (Ferrés and Rodríguez, 2014) and posterior experiments (Ferrés and Rodríguez, 2011; Ferrés and Rodríguez, 2015b).L'Accés a la Informació Geogràfica (GeoAI) pot ser definit com una forma de recuperar informació de col·lecions textuals que inclou l'anàlisi automàtic i la interpretació dels termes i restriccions geogràfiques que apareixen en consultes i documents. Aquesta tesi doctoral presenta, descriu i avalua varies aproximacions heterogènies a les seguents tasques de GeoAI: Recuperació de la Informació Geogràfica (RIG), Cerca de la Resposta Geogràfica (GeoCR), i Georeferenciament Textual (GT). La tasca de RIG tracta amb consultes d'usuari que cerquen documents (e.g. ¿vinyes a California?) i la tasca GeoCR tracta de recuperar respostes concretes a preguntes (e.g. ¿Quina és la capital de França?). D'altra banda, GT es la tasca de relacionar una o més referències geogràfiques (com polígons o coordenades en un sistema de referència geodètic) a documents electrònics. Els algoritmes de l'estat de l'art actual en Intel·ligència Artificial encara no comprenen completament el significat semàntic i els termes i les restriccions geogràfiques presents en consultes i col·leccions de documents. Aquesta tesi intenta millorar els resultats en efectivitat de les tasques de GeoAI de la seguent manera: 1) millorant la detecció, comprensió, i la utilització d'una part del contingut geogràfic i temàtic de les consultes i documents amb tècniques de reconeixement de topònims, desambiguació de topònims, i Processament del Llenguatge Natural (PLN), i 2) combinant heurístics basats en Coneixement Geogràfic i en el sentit comú humà amb algoritmes de Recuperació de la Informació basats en dades. Les principals contribucions d'aquesta tesi a l'estat de l'art de les tasques de GeoAI són: 1) La presentació de 10 noves aproximacions a les tasques de GeoAI: 3 aproximacions per RIG, 3 per GeoCR, i 4 per Georeferenciament Textual (GT). 2) L'avaluació d'aquestes noves aproximacions en aquests contexts: en el marc d'avaluacions comparatives internacionals, posteriorment a avaluacions comparatives internacionals amb les col·lections de test, i amb altres conjunts de dades específics. La majoria d'aquests algoritmes han estat avaluats en avaluacions comparatives internacionals i alguns d'ells aconseguiren alguns dels millors resultats en l'estat de l'art, com per exemple els resultats en comparatives de RIG (GeoCLEF 2007) i GT (MediaEval 2014). 3) Els experiments descrits en aquesta tesi mostren que les aproximacions poden combinar coneixement geogràfic i PLN amb tècniques basades en dades per millorar les mesures d'efectivitat en les tres tasques de l'Accés a la Informació Geogràfica investigades. 4) TALPGeoIR: una nova aproximació a la RIG que combina Re-Ranking amb Coneixement Geogràfic (GeoKR), PLN i Retroalimentació de Rellevancia (RR) que aconseguí resultats en l'estat de l'art en comparatives oficials GeoCLEF (Ferrés and Rodríguez, 2008; Mandl et al., 2008) i en experiments posteriors (Ferrés and Rodríguez, 2015a). Aquesta aproximació ha estat avaluada amb el conjunt complert del corpus GeoCLEF (100 topics) i ha mostrat que les tècniques GeoKR, PLN i RR avaluades separadament o en combinació milloren els resultats en les mesures efectivitat MAP i R-Precision dels algoritmes de l'estat de l'art en Recuperació de la Infomació TF-IDF, BM25 i InL2 i a més mostren significació estadística en la majoria dels experiments. 5) GeoTALP-QA: una aproximació basada en l'àmbit geogràfic per espanyol i anglès i la seva avaluació amb un conjunt de preguntes de la geografía espanyola (Ferrés and Rodríguez, 2006). 6) Quatre aproximacions per al georeferenciament de documents formals i informals que obtingueren resultats en l'estat de l'art en avaluacions comparatives (Ferrés and Rodríguez, 2014) i en experiments posteriors (Ferrés and Rodríguez, 2011; Ferrés and Rodríguez, 2015b)

    Encyclopaedic question answering

    Get PDF
    Open-domain question answering (QA) is an established NLP task which enables users to search for speciVc pieces of information in large collections of texts. Instead of using keyword-based queries and a standard information retrieval engine, QA systems allow the use of natural language questions and return the exact answer (or a list of plausible answers) with supporting snippets of text. In the past decade, open-domain QA research has been dominated by evaluation fora such as TREC and CLEF, where shallow techniques relying on information redundancy have achieved very good performance. However, this performance is generally limited to simple factoid and deVnition questions because the answer is usually explicitly present in the document collection. Current approaches are much less successful in Vnding implicit answers and are diXcult to adapt to more complex question types which are likely to be posed by users. In order to advance the Veld of QA, this thesis proposes a shift in focus from simple factoid questions to encyclopaedic questions: list questions composed of several constraints. These questions have more than one correct answer which usually cannot be extracted from one small snippet of text. To correctly interpret the question, systems need to combine classic knowledge-based approaches with advanced NLP techniques. To Vnd and extract answers, systems need to aggregate atomic facts from heterogeneous sources as opposed to simply relying on keyword-based similarity. Encyclopaedic questions promote QA systems which use basic reasoning, making them more robust and easier to extend with new types of constraints and new types of questions. A novel semantic architecture is proposed which represents a paradigm shift in open-domain QA system design, using semantic concepts and knowledge representation instead of words and information retrieval. The architecture consists of two phases, analysis – responsible for interpreting questions and Vnding answers, and feedback – responsible for interacting with the user. This architecture provides the basis for EQUAL, a semantic QA system developed as part of the thesis, which uses Wikipedia as a source of world knowledge and iii employs simple forms of open-domain inference to answer encyclopaedic questions. EQUAL combines the output of a syntactic parser with semantic information from Wikipedia to analyse questions. To address natural language ambiguity, the system builds several formal interpretations containing the constraints speciVed by the user and addresses each interpretation in parallel. To Vnd answers, the system then tests these constraints individually for each candidate answer, considering information from diUerent documents and/or sources. The correctness of an answer is not proved using a logical formalism, instead a conVdence-based measure is employed. This measure reWects the validation of constraints from raw natural language, automatically extracted entities, relations and available structured and semi-structured knowledge from Wikipedia and the Semantic Web. When searching for and validating answers, EQUAL uses the Wikipedia link graph to Vnd relevant information. This method achieves good precision and allows only pages of a certain type to be considered, but is aUected by the incompleteness of the existing markup targeted towards human readers. In order to address this, a semantic analysis module which disambiguates entities is developed to enrich Wikipedia articles with additional links to other pages. The module increases recall, enabling the system to rely more on the link structure of Wikipedia than on word-based similarity between pages. It also allows authoritative information from diUerent sources to be linked to the encyclopaedia, further enhancing the coverage of the system. The viability of the proposed approach was evaluated in an independent setting by participating in two competitions at CLEF 2008 and 2009. In both competitions, EQUAL outperformed standard textual QA systems as well as semi-automatic approaches. Having established a feasible way forward for the design of open-domain QA systems, future work will attempt to further improve performance to take advantage of recent advances in information extraction and knowledge representation, as well as by experimenting with formal reasoning and inferencing capabilities.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Robust question answering

    Get PDF
    Tese de Doutoramento em Informática na especialidade de Informática apresentada à Universidade AbertaUm sistema automático de pergunta resposta tem como objectivo dar uma resposta curta e precisa a uma pergunta formulada em língua natural, pesquisando uma base de conhecimento constituída por texto em língua natural. As fontes deste tipo de conhecimento são numerosas, dado que o texto escrito constitui uma forma preferencial de comunicação humana. A informação varia desde o tradicional texto editado, como é o caso das enciclopédias e dos artigos de jornal, até texto obtido através de modernos processos automáticos, como os reconhecedores automáticos de fala. O trabalho descrito no presente documento centra-se na língua Portuguesa e em sistemas de pergunta resposta de domínio aberto, o que significa que nem a pergunta nem a colecção de textos se restringem a uma área específica. Ambas as formas de texto escrito referidas no parágrafo anterior sãoo consideradas. Dado que a recuperação de informação é essencial num sistema de pergunta resposta, as técnicas mais actuais utilizadas nestas duas áreas neste tipo de sistema são objecto de um estudo aprofundado, tanto no que diz respeito aos seus aspectos mais práticos, como as suas motivações teóricas. Uma vez que um sistema nunca pode ser simples demais, desde que cumpra as especificações e produza resultados de elevada qualidade, é feita uma análise de custo benefício das técnicas passíveis de serem utilizadas, dando preferência a soluções simples. O principal objectivo do presente trabalho é assim estudar e desenvolver componentes inovadores para recuperação de informação e pergunta resposta, e a construção de um sistema de pergunta resposta completo, eficiente e robusto, capaz de competir com os sistemas mais avançados existentes actualmente. Uma opção importante tomada foi a utilização da língua Portuguesa, uma língua falada por um vasto número de pessoas, o que constitui um requisito importante para um sistema de pergunta resposta, quer pela existência de um volume importante de texto escrito disponível nesta língua, quer pelo número de possíveis utilizadores de uma aplicação específica para o Português. Há no entanto que ter em conta a existiência de menor número de recursos linguísticos para a língua Portuguesa, especialmente se comparada com a língua Inglesa, que é correntemente a "língua franca" da investigação científica. É precisamente este o motivo do presente documento estar escrito na língua Inglesa: permitir a participação nos trabalhos e a validação de resultados internacionalmente, sendo este facto totalmente compatível com a focalização do estudo e dos trabalhos na língua Portuguesa, alargando inclusivamente a sua divulgação para públicos não falantes da mesma. Na abordagem para a realização deste trabalho esta opção foi tomada em conjunto com uma outra que foi explorar as potencialidades da Wikipedia como recurso de base de QA, e que se revelou de extrema utilidade em várias vertentes do trabalho desenvolvido. As caracteristicas da Wikipedia que se consideraram mais relevantes foram o facto da informação estar disponível gratuitamente, e de resultar do esforço conjunto de um elevado número de utilizadores, o que viabiliza o desenvolvimento de aplicações para as quais seja util conhecimento enciclopédico e conhecimento de natureza ontológica. Ambas as vertentes foram utilizadas de forma inovadora no presente sistema. Apresenta-se neste trabalho o sistema de pergunta resposta, que foi desenvolvido de raiz, e que provou estar ao nível dos melhores sistemas de pergunta resposta, dado que foi submetido a avaliação em 2008 no Fórum de Avaliação Internacional CLEF (Cross Language Evaluation F orum) e se classificou em terceiro lugar entre os seis participantes concorrentes na categoria de sistemas de pergunta resposta em Português, onde era o único sistema a participar pela primeira vez. A taxa de primeiras respostas correctas foi de 32,5%. Este resultado permitiu obter o 5º lugar entre os 21 sistemas participantes nas 11 línguas disponíveis, sendo de referir o elevado nível dos sistemas concorrentes para o Português, dado que nos três primeiros lugares se classificaram dois sistemas para o Português, com o sistema da companhia Portuguesa Priberam ocupando a primeira posição com uma taxa de primeiras respostas correctas de 63,5% e o sistema da Universidade de Evora classificado em terceiro lugar, com uma taxa de primeiras respostas correctas de 46,5%. Os melhoramentos introduzidos após a análise dos resultados obtidos, que foi feita considerando quer as respostas do próprio sistema, quer as respostas produzidas pelos restantes sistemas, resultaram num considerável aumento da taxa de primeiras respostas correctas, para 50,5%, o que se seria correspondente a um segundo lugar nos resultados para o Português. O sistema desenvolvido é eficiente na indexação e resposta a perguntas, levando, na sua versão melhorada, apenas 4 horas para indexar toda a colecção de textos utilizada na tarefa do QA@CLEF 2008, e cerca de dois minutos a responder as 200 perguntas da tarefa, o que corresponde a uma média de 0,6 segundos para responder a uma pergunta. De referir que nenhum participante divulgou dados sobre a eficiência do sistema. Apenas se encontraram publicados dados de eficiência para um sistema que não participou na avaliação, que reporta valores médios de resposta por pergunta de 22 segundos. O sistema foi ainda testado num caso de estudo envolvendo perguntas efectuadas sobre o conteúdo de peças faladas. A base de textos que é pesquisada neste caso, consiste nos textos obtidos de forma automática a partir do reconhecimento automático da fala. Dado que a tarefa do Fórum de Avaliação CLEF para sistemas automáticos a responder a perguntas sobre transcrições automáticas (QAST - Question Answering over Speech Transcripts) não incluí a língua Portuguesa, os dados tiveram que ser todos recolhidos e organizados tendo sido criado um recurso que permite fazer testes de sistemas para o Português. Este recurso tem como base um corpo constituído pelos Telejornais da Rádio Televisão Portuguesa, RTP, nas suas edições da noite dos canais 1 e 2, correspondente aos meses de Junho a Setembro de 2008. Este corpo consiste em cerca de 180 horas de duração, transcritas automaticamente e enriquecidas com colocação automática de pontuação. Foi feito um conjunto de 100 perguntas, baseadas em transcrições manuais, e que foi utilizado para testar o sistema. O sistema demonstrou ser robusto, pois mesmo na presença de texto com palavras incorrectamente reconhecidas, ou pontuação colocada fora dos locais correctos, o sistema obteve 30% de taxa de primeiras respostas correctas, 42% de taxa de respostas correctas nas três primeiras respostas, e uma taxa de 60% de localização do excerto onde se encontra a resposta correcta. Este ultimo valor tem uma aplicação interessante de localização de um determinado tema num conjunto de diversas horas de vídeo, através de uma pergunta formulada em língua natural. Os resultados obtidos estão ao nível dos melhores reportados nas avaliações QAST do QA@CLEF. Dado que o principal objectivo traçado para o presente projecto de doutoramento, era estudar e desenvolver componentes inovadores de recuperação de informação e pergunta resposta que conduzissem a construção de um sistema de pergunta resposta para o Português, completo eficiente e robusto, e com resultados ao nível dos melhores sistemas, considera-se que o objectivo foi plenamente atingido. Relativamente ao uso do Português como língua de trabalho, confirma-se o facto de que os resultados obtidos para esta língua na área de sistemas de pergunta resposta estão ao melhor nível dos sistemas actuais para outras línguas, provando-se ser possível ultrapassar o problema de escassez de recursos. Os resultados validam também o conceito da existência de corpus onde coexistem textos com origem em distintas variantes de Português, nomeadamente Europeia e Brasileira, mas não só. No que diz respeito a língua falada, os resultados obtidos no caso de estudo indicam uma necessidade de tratamento específico para estas duas diferentes variantes do Português.A Question Answering (QA) system should provide a short and precise answer to a question in natural language, by searching a large knowledge base consisting of natural language text. The sources of the knowledge base are widely available, for written natural language text is a preferential form of human communication. The information ranges from the more traditional edited texts, for example encyclopaedias or newspaper articles, to text obtained by modern automatic processes, as automatic speech recognizers. The work described in the present document focuses on the Portuguese language and open domain question answering, meaning that neither the questions nor the texts are restricted to a speci c area, and it aims to address both types of written text. Since information retrieval is essential for a QA system, a careful analysis of the current state-of-the-art in information retrieval and question answering components is conducted. A complete, e cient and robust question answering system is developed in this thesis, consisting of new modules for information retrieval and question answering, that is competitive with current QA systems. The system was evaluated at the Portuguese monolingual task of QA@CLEF 2008 and achieved the 3rd place in 6 Portuguese participants and 5th place among the 21 participants of 11 languages. The system was also tested in Question Answering over Speech Transcripts (QAST), but outside the o cial evaluation QAST of QA@CLEF, since Portuguese was not among the available languages for this task. For that reason, an entire test environment consisting of a corpus of transcribed broadcast news and a matching question set was built in the scope of this work, so that experiments could be made. The system proved to be robust in the presence of automatically transcribed data, with results in line with the best reported at QAST

    Overview of the clef 2007 multilingual question answering track

    Get PDF
    Abstract The fifth QA campaign at CLEF [1], having its first edition in 2003, offered not only a main task but an Answer Validation Exercise (AVE) [2], which continued last year’s pilot, and a new pilot: the Question Answering on Speech Transcripts (QAST) [3, 15]. The main task was characterized by the focus on cross-linguality, while covering as many European languages as possible. As novelty, some QA pairs were grouped in clusters. Every cluster was characterized by a topic (not given to participants). The questions from a cluster possibly contain co-references between one of them and the others. Finally, the need for searching answers in web formats was satisfied by introducing Wikipedia 1 as document corpus. The results and the analyses reported by the participants suggest that the introduction of Wikipedia and the topic related questions led to a drop in systems’ performance.
    corecore