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Abstract

Open-domain question answering (QA) is an established NLP task which enables users

to search for speciVc pieces of information in large collections of texts. Instead of

using keyword-based queries and a standard information retrieval engine, QA systems

allow the use of natural language questions and return the exact answer (or a list of

plausible answers) with supporting snippets of text. In the past decade, open-domain QA

research has been dominated by evaluation fora such as TREC and CLEF, where shallow

techniques relying on information redundancy have achieved very good performance.

However, this performance is generally limited to simple factoid and deVnition questions

because the answer is usually explicitly present in the document collection. Current

approaches are much less successful in Vnding implicit answers and are diXcult to adapt

to more complex question types which are likely to be posed by users.

In order to advance the Veld of QA, this thesis proposes a shift in focus from simple factoid

questions to encyclopaedic questions: list questions composed of several constraints.

These questions have more than one correct answer which usually cannot be extracted

from one small snippet of text. To correctly interpret the question, systems need to

combine classic knowledge-based approaches with advanced NLP techniques. To Vnd

and extract answers, systems need to aggregate atomic facts from heterogeneous sources

as opposed to simply relying on keyword-based similarity. Encyclopaedic questions

promote QA systems which use basic reasoning, making them more robust and easier

to extend with new types of constraints and new types of questions. A novel semantic

architecture is proposed which represents a paradigm shift in open-domain QA system

design, using semantic concepts and knowledge representation instead of words and

information retrieval. The architecture consists of two phases, analysis – responsible for

interpreting questions and Vnding answers, and feedback – responsible for interacting

with the user.

This architecture provides the basis for EQUAL, a semantic QA system developed

as part of the thesis, which uses Wikipedia as a source of world knowledge and
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employs simple forms of open-domain inference to answer encyclopaedic questions.

EQUAL combines the output of a syntactic parser with semantic information from

Wikipedia to analyse questions. To address natural language ambiguity, the system

builds several formal interpretations containing the constraints speciVed by the user

and addresses each interpretation in parallel. To Vnd answers, the system then tests

these constraints individually for each candidate answer, considering information from

diUerent documents and/or sources. The correctness of an answer is not proved using a

logical formalism, instead a conVdence-based measure is employed. This measure reWects

the validation of constraints from raw natural language, automatically extracted entities,

relations and available structured and semi-structured knowledge fromWikipedia and the

Semantic Web. When searching for and validating answers, EQUAL uses the Wikipedia

link graph to Vnd relevant information. This method achieves good precision and allows

only pages of a certain type to be considered, but is aUected by the incompleteness of the

existing markup targeted towards human readers. In order to address this, a semantic

analysis module which disambiguates entities is developed to enrich Wikipedia articles

with additional links to other pages. The module increases recall, enabling the system

to rely more on the link structure of Wikipedia than on word-based similarity between

pages. It also allows authoritative information from diUerent sources to be linked to the

encyclopaedia, further enhancing the coverage of the system.

The viability of the proposed approach was evaluated in an independent setting by

participating in two competitions at CLEF 2008 and 2009. In both competitions, EQUAL

outperformed standard textual QA systems as well as semi-automatic approaches. Having

established a feasible way forward for the design of open-domain QA systems, future

work will attempt to further improve performance to take advantage of recent advances

in information extraction and knowledge representation, as well as by experimenting

with formal reasoning and inferencing capabilities.
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Chapter 1

Introduction

1.1 Overview

The World Wide Web has grown dramatically since its inception in 1992 as a global

interconnected system for document sharing amongst researchers (Berners-Lee et al.,

1992). With over 130 million1 domains and a billion unique URLs (Alpert and Hajaj,

2008) and with more than two billion estimated users (Lynn, 2010), it has fundamentally

transformed the way information is shared, distributed and accessed. As the amount

of information available online started to grow exponentially, the need for increasingly

sophisticated search tools led to the creation of Web search engines that allowed users to

retrieve documents based on keyword queries. While search engines are very well suited

for retrieving relevant documents, they are much less eUective when users need to Vnd

very speciVc pieces of information.

To reduce time and eUort in formulating eUective queries, question answering (QA)

systems were proposed as an alternative to Web search engines to help users who need

to Vnd small pieces of factual information rather than whole documents. Question

answering is a specialised type of information access in which systems must return

an exact answer to a natural language question (Maybury, 2004a). It uses natural

language processing (NLP) techniques to process a question, then searches for the

required information to identify the answer and presents the answer to the user.

1In February 2012, http://www.domaintools.com/internet-statistics/ reported 137 million

1

http://www.domaintools.com/internet-statistics/


When searching for very speciVc information, phrasing the request as a question and

receiving a short answer snippet was seen as a far more natural and eXcient process

than repeatedly creating complex keyword-based queries and reading through the list

of relevant documents retrieved by a standard search engine. This process is embodied

in open-domain QA systems, which have recently seen a surge in research interest,

motivated by the opportunity to provide an alternative to popular search engines such as

Google, Yahoo and Bing. A typical open-domain QA system uses the words in a question

to automatically create queries, processes documents retrieved by an IR engine, selects

relevant text snippets and identiVes the exact answer of the question (Harabagiu and

Moldovan, 2003). Usually, a system creates a ranked list of candidate answers, each

accompanied by a link to its source document and a relevant text snippet.

Research in QA was catalysed by a series of competitive evaluations such as those

conducted in the Text REtrieval Conference (TREC) (Voorhees, 2001) and Cross-lingual

Evaluation Forum2 (CLEF). These have been instrumental in providing a shared

evaluation platform and deVning a roadmap for the community. Open-domain QA

research has addressed several types of questions such as:

• factoid – In what year was Warren Moon born?

• list –What celebrities have appeared on The Daily Show?

• deVnition –What does LPGA stand for?

• how – How can I eliminate stress?

• why – Why did David Koresh ask the FBI for a word processor?

• time-dependent – What cruise line attempted to take over NCL in December 1999?

• semantically constrained – How have thefts impacted on the safety of Russia’s

nuclear navy, and has the theft problem been increased or reduced over time?

Despite signiVcant research carried out in the past decade, open-domain QA systems

have only been successful for a handful of question types, mainly those seeking simple

factual information such as deVnition or factoid questions, most likely because these are

2http://clef.isti.cnr.it/ from 2000 to 2009, http://www.clef-initiative.eu/ since 2008

2
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easy to answer using simple question patterns which exploit information redundancy

(Hovy et al., 2000). Information redundancy assumes that in large corpora the correct

answer is present in many documents and is phrased in a variety of ways, some of which

are likely to match a small set of simple surface patterns. Standard QA systems are

designed to identify paragraphs that are likely to contain the answer. This strategy is less

suitable for more complex questions, whose answers are not phrased explicitly in one

snippet of text and instead require the system to deduce them by combining information

from more than one snippet.

This thesis addresses a type of complex question which is challenging for existing

approaches, for example Which Brazilian football players play in clubs in the Iberian

Peninsula? or Which Portuguese rivers Wow through cities with more than 150,000

inhabitants? These are encyclopaedic questions: open list questions that explicitly ask

for a speciVc type of named entity and usually contain additional conditions or constraints.

They are challenging because instead of one correct answer they have a whole set of

named entities which usually need to be identiVed and validated independently. To

address this type of question QA systems need to go beyond searching for the paragraphs

containing explicit answers and instead take steps towards employing world knowledge

and using simple forms of common-sense reasoning.

Wikipedia3 is a resource which can help bootstrap a new generation of open-domain

QA systems capable of dealing with such questions. Intensively studied by the research

community, it is of interest not only because of its wide coverage of encyclopaedic content

but also because of the semi-structured information embedded in its structure. This thesis

advocates the use of Wikipedia as a backbone in the next generation of open-domain

QA, by employing it as the main source of generic world knowledge. It brings together

open-domain QA and Wikipedia to address encyclopaedic questions, whose answers

are not typically located in one small textual snippet but instead have to be found by

combining pieces of information from multiple sources.

3http://wikipedia.org

3
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1.2 Aims and contributions

The aim of this thesis is to advance open-domain QA research by enabling more complex

questions to be addressed than possible using current approaches. A shift of focus is

proposed from textual, factoid questions to more complex types, such as encyclopaedic

questions. To achieve this aim, several goals need to be met:

Goal 1 is to advance a paradigm shift in the design of open-domain QA systems by

proposing a new semantic QA approach that does not use words at its core, but concepts,

enabling a QA system to combine simple facts from various sources, both unstructured

(textual) and semi-structured (knowledge bases).

Goal 2 is to test the viability of this novel semantic approach by implementing it in a

new QA system and evaluating its performance in comparison with other QA systems.

Goal 3 is to develop and evaluate a semantic analysis method which enables a QA system

to link textual documents to its core knowledge base, enabling it to extend its coverage by

linking mentions of terms and named entities from arbitrary texts to relevant Wikipedia

articles.

By achieving these goals, this research makes several contributions to the Velds of

open-domain question answering and semantic analysis.

The Vrst original contribution of this work is the proposal of a paradigm shift in

open-domain QA research in order to broaden the types of questions covered by

existing QA systems. This paradigm shift consists of moving away from the textual

approach which uses words and information retrieval at the core of the QA architecture,

towards a semantic approach which relies on concepts, atomic facts and knowledge

representation instead. More concretely, this thesis proposes a novel architecture for

semantic QA systems which can address encyclopaedic questions, a generalisation of

factoid questions. The architecture contains two main processing phases: analysis,

4



responsible for interpreting questions, identifying ambiguities and Vnding answers, and

feedback, responsible for creating an informative response and facilitating eUective

interaction with the user.

The second original contribution of this work is the development of EQUAL, a QA

system which implements the analysis phase of the architecture summarised above. The

system transforms Wikipedia into an entity-relationship graph which is explored when

searching for answers. It makes use of both textual information and semi-structured

data when validating answers. To demonstrate that the approach is suitable for dealing

with encyclopaedic questions the system is independently tested in two competitions

alongside both standard textual QA systems and semi-automatic submissions.

The third original contribution of the thesis is the development of a new semantic

analysis task which transforms unstructured raw text into semi-structured information

by linking mentions of entities or terms to relevant Wikipedia articles. This task, called

densiVcation, is related to the popular wikiVcation method of Mihalcea and Csomai

(2007). However, while the latter is focused on identifying a few high-conVdence entity

disambiguations, densiVcation is not limited to prominent mentions and aims instead

for a more complete semantic analysis in which most entities and terms are linked to

relevant Wikipedia articles. This method allows any document collection to be connected

to a semi-structured knowledge base extracted from Wikipedia and enables semantic QA

systems to detect and (in)validate facts exploiting additional document collections. The

impact of this method when adopted by EQUAL is also evaluated.

1.3 Structure

This thesis comprises three parts. The Vrst part, represented by Chapter 2, provides

the background for the thesis, oUering an introduction to question answering and

an overview of Wikipedia-based NLP tools and resources which are relevant to QA

research. Chapters 3 and 4 constitute the second part of the thesis which argues for a

5



diUerent approach in open-domain QA to address limitations of the standard approach.

Encyclopaedic questions are advocated as key challenge for open-domain QA research.

A new architecture is then proposed which represents a paradigm shift from the textual

approach, built around words and based on information retrieval, to a semantic approach,

built around concepts and based on knowledge representation. This novel approach

is implemented by EQUAL, a QA system developed as part of the thesis, which was

tested in two QA competitions, GikiP and GikiCLEF. Chapter 5 represents the third

part of the thesis and investigates the problem of transforming unstructured text into

semi-structured information that can be used by encyclopaedic QA systems. A new

semantic analysis task to link ambiguous mentions of entities and terms from a text

to relevant semantic concepts represented by Wikipedia articles is proposed and then

evaluated by measuring its impact on EQUAL.

Chapter 2 provides a review of previous work relevant to question answering, focusing

mainly on NLP resources which have been developed based on Wikipedia. The chapter

starts with a brief overview of the three main types of QA systems, then discusses

the standard approach employed by current open-domain systems, and presents the

architecture typically employed by those systems which address primarily factoid

questions. This thesis proposes the use of Wikipedia as source of semantic information for

QA systems. The structure of Wikipedia is described and several NLP-related studies are

reviewed. These studies cover a variety of Velds such as information retrieval, information

extraction, knowledge representation and semantic relatedness, and reveal the potential

of the encyclopaedia as a source of both textual and semi-structured information.

Chapter 3 introduces the notion of textual QA to refer to the typical open-domain QA

approach which focuses on factoid questions and relies on an information retrieval

engine to retrieve text snippets that are very similar to the questions posed, then extracts

and ranks the most likely answer candidates using some form of aggregated conVdence

score. This thesis argues that the applicability of textual QA is limited to simple questions

whose answers are explicitly present in small textual snippets, and that as a result, it
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fails to address realistic user needs. A shift of focus is suggested to overcome these

limitations, from factoid questions towards more generic question types. One such type,

encyclopaedic list questions, is advocated as the next key challenge in open-domain QA

research. A generic, high-level architecture for semantic QA systems is proposed to

enable systems to address not only encyclopaedic questions but also to pave the way for

more intelligent systems which use automatic inference to answer other types of complex

questions.

Chapter 4 describes EQUAL, a QA system which implements the approach proposed in

Chapter 3. Built around concepts rather than words, it transforms Wikipedia into

an entity graph which it then explores to Vnd and validate answers. The system

detects diUerent types of ambiguity and creates multiple interpretations corresponding

to diUerent understandings of the question. A question interpretation consists of a

decomposition of the question into constituents which are then assigned to coarse-

grained semantic constraints involving entities, types, relations and properties. Instead

of retrieving paragraphs, EQUAL explores Wikipedia as an entity graph to determine

which entities are correct answers for a particular interpretation and enforces constraints

using structured, semi-structured and textual resources. The chapter also reports the

evaluation of the system in two competitions, GikiP (Santos et al., 2008) and GikiCLEF

(Santos and Cabral, 2009a). The results of the system in these contests are presented, and

the challenges facing this approach are then discussed.

Chapter 5 addresses the problem of converting unstructured text into semi-structured

information needed by the QA approach proposed in Chapter 3 and implemented in

Chapter 4. As the architecture centres around concepts rather than words, in order to

exploit new document collections a system Vrst needs to perform a semantic analysis

of those documents to link their contents to the reference knowledge base used by the

system. The chapter describes existing tools which link entity mentions in arbitrary

text to the Wikipedia entities to which they refer. As these tools usually focus on a few

prominent entities, the task of densiVcation is proposed, which aims to link all mentions

7



of entities or terms to relevant Wikipedia articles. An experiment involving human raters

is carried out to determine the feasibility of creating a large-scale gold standard for this

task and a densiVcation system is developed and evaluated in the context of the EQUAL

system.

Chapter 6 summarises the contributions of this research, discusses the extent to which

the goals of the thesis have been achieved and provides a review of the thesis. It then

draws conclusions and indicates directions for future research.
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Chapter 2

Question Answering and

Encyclopaedic Knowledge

2.1 Overview

This chapter provides background information to contextualise the research presented

in the thesis, introducing the area of question answering and Wikipedia as a relevant

resource. Section 2.2 starts with a brief overview of the question answering domain and a

classiVcation of QA systems. The focus then moves to standard open-domain QA systems,

the most relevant type of system for this research, with a description of their typical

architecture. In this thesis, it is argued that Wikipedia, the world’s largest encyclopaedia,

is a pivotal resource which can enable QA systems to address more complex question

types than those currently addressed by existing approaches. Section 2.3 describes its

structure, and Section 2.4 reviews a range of natural language processing studies which

reveal its potential as a source of both textual and semi-structured information with

direct application to question answering.

2.2 Question answering

Question answering is a specialised type of information retrieval (IR) in which systems

must return an exact answer to a natural language question. It uses complex natural

language processing techniques to process a question, search for the required information
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in a collection of documents and then extract the exact answer and present it to the user,

usually accompanied by the textual snippet where it was found. According to Maybury

(2004a, page 3),

“Question answering is an interactive human computer process that

encompasses understanding a user’s information need, typically expressed in

a natural language query; retrieving relevant documents, data, or knowledge

from selected sources; extracting, qualifying and prioritizing available

answers from these sources; and presenting and explaining responses in

an eUective manner.”

The amount of information available on the Internet is ever-increasing: it grew from

26 million Web pages in 1998 to over 1 trillion in 2008, when several billion new pages

were being created every day (Alpert and Hajaj, 2008). This exponential growth means

that increasingly advanced search tools are necessary to Vnd relevant information.

To this end, QA was proposed as a solution for users who search for speciVc pieces

of factual information rather than whole documents. Developing an automatic QA

system is not a new task, with the earliest eUorts dating from around 50 years ago; for

example BASEBALL (Green et al., 1961) answered natural language questions about

baseball league results. The task is still very challenging: building such a system requires

many resources and complex natural language processing tools, such as named-entity

recognisers, coreference resolvers, word sense disambiguators and temporal and spatial

reasoners. As these tools have evolved and more resources have become available,

increasingly sophisticated systems can be developed. The next sections of the chapter

present the main types of QA systems (Section 2.2.1), and then examine the standard

approach adopted in the development of the QA systems most relevant for this research

(Section 2.2.2).
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2.2.1 Types of QA systems

Depending on the target domain and the way questions are answered, there are three

main types of QA systems: canned, closed-domain and open-domain (Harabagiu and

Moldovan, 2003).

Canned QA Systems are the simplest type of QA systems because they do not answer

questions automatically, but instead rely on a very large repository of questions for which

the answer is known. Extending coverage with new questions and their answers relies

on human eUort. To answer unseen questions, systems usually retrieve the answer of the

most similar existing question. They can be useful in restricted domains, where users’

information needs are predetermined, e.g., a help desk.

This type of system originated from lists of Frequently Asked Questions and bulletin

board systems, such as FidoNet and UseNet. Web 2.0 technologies enabled the

development of social Q&A Forums, such as Yahoo!Answers1, WikiAnswers2, Stack

Exchange3 and Quora4. In these collaborative systems, users post new questions and

contribute answers to existing ones, thus broadening the coverage of the systems. To

increase recall and eliminate inconsistencies caused by duplicates, each question may

have an associated set of alternative phrasings. Users also rate the correctness and

utility of answers. These repositories are usually available on the Web and users can

simply employ their favourite Web search engine to Vnd out if their question already

has an answer. Their advantage is that most questions and their answers cover complex

information needs which require human-like cognitive skills.

The main contribution such systems make to QA research is the amount of data they

provide, which could be used in developing and testing automatic QA systems. They can

also be exploited to investigate question similarity metrics to establish when diUerent

1http://answers.yahoo.com/
2http://wiki.answers.com/
3http://stackexchange.com//
4http://www.quora.com/
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questions ask the same thing. A good similarity metric can distinguish whether two

questions are simply alternates, for example when the word order diUers or when

synonyms or rephrasing are used, or whether the questions ask for diUerent information.

Closed-domain QA Systems are built for very speciVc domains and exploit expert

knowledge which is embedded in them, usually in the form of hand-written rules or

purpose-built ontologies. The Vrst QA systems of this type were developed in the 1960s

and answered questions concerning information included in a database. Any data not

present in the database is usually considered out-of-domain.

The advantage of this type of system is that it deals with very speciVc data which usually

does not contain ambiguous terms and as a result can be processed more easily. For

example, in a naval domain the word bow refers to the front of a ship, whereas generally,

bow can also be a weapon, a tied ribbon or an action. When modelling a speciVc domain,

the relevant concepts and the relations between these concepts are predetermined and

explicitly stored, thereby reducing the number of possible interpretations that a question

might have. Due to lexical and syntactic constraints within speciVc domains, questions

are actually phrased in a sub-language. Users of such systems are usually trained to

phrase natural questions in the format accepted by the system.

Natural language interfaces to databases are a good example of closed-domain QA

systems. Instead of learning a complex query language such as SQL5, users are able to

interrogate the data using natural language and the system automatically converts the

user’s question into a complex database query. Despite their usefulness, the development

of such systems is expensive, they are schema-speciVc and diXcult to extend to a broader

domain (Mollá and Vicedo, 2007).

Two of the most cited closed-domain QA systems are BASEBALL (Green et al., 1961, 1986)

and LUNAR (Woods, 1977).6 Developed in the 1960s, BASEBALL answered questions

5Structured Query Language, commonly used for retrieval and management of data in relational
database systems

6For a comprehensive overview of QA over restricted domains see Mollá and Vicedo (2007)

12



about one season of the American baseball league, such as: Who did the Red Sox lose to

on March 5? or How many games did the Yankees play in May? or On how many days in

August did eight teams play? (Hirschman and Gaizauskas, 2001). According to Mollá and

Vicedo (2007), although the textual analysis of the question was complex, it exploited the

fact that all the data was stored in one single database table. This enabled a mapping

from the semantic interpretation of the question to a database query. The user had to

be aware of the kind of data that was available in the database when formulating the

question, otherwise the question could not be answered. Given a question like Which

players scored a home run on Independence Day?, the system would not be able to answer

it because the fact that the Independence Day of the United States is celebrated on the

4th of July is not part of the domain. Information about the meaning of Independence

Day can be added, but this question demonstrates that even closed domain systems need

various types of world knowledge to correctly understand and interpret some questions.

LUNAR answered questions about the geological analysis of rocks returned by the Apollo

moon missions, such asWhat is the average concentration of aluminium in high alkali

rocks? or How many Brescias contain Olivine? The system was demonstrated at a lunar

science convention and was able to correctly answer 90% of the in-domain questions

posed by geologists (Hirschman and Gaizauskas, 2001). This high performance can be

explained by the speciVcity of the domain which allowed the system to correctly answer

questions posed by domain experts even though they did not receive prior training.

Today, domain knowledge is represented not only in structured databases, but also in

semantic networks and ontologies (see Section 2.4.4), using standards for knowledge

representation such as RDF7 and OWL8. An example of a closed-domain QA system

is provided by QALL-ME9, a project which developed a multilingual and multimodal

QA system in the tourism domain, able to answer questions such as: Where can I eat

7http://www.w3.org/RDF/
8http://www.w3.org/TR/owl-features/
9Question Answering Learning technologies in a multiLingual andMultimodal Environment http:

//qallme.fbk.eu/
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paella tonight?, In which cinema in Birmingham is Avatar on this weekend? and I want

to know a hotel in Wolverhampton that has wireless internet in the rooms and is close

to the train station. The domain is modelled using an OWL ontology10 and data is

stored in RDF format. Given a question, the system uses an advanced semantic textual

entailment engine to select the most appropriate question patterns (Săcăleanu et al., 2008).

Each pattern corresponds to a database query procedure that retrieves the relevant data.

As well as the answer itself, the system provides the user with additional multimodal

information such as city maps, routes, timetables, Vlm trailers and images.

Ontologies and technologies developed for the Semantic Web, make it possible to develop

portable closed-domain systems, such as AquaLog (Lopez et al., 2007), an ontology-driven

question answering system which can be quickly adapted to new, albeit limited, domains

by changing the underlying ontology. The system is noteworthy in that it uses natural

language processing to extract triples from a question which are then matched to the

terminology used by the domain ontology. Systems which automatically generate a

domain lexicon by processing ontology lexicalisations are also known as portable QA

sytems. Unlike earlier systems where the mapping had to be performed at design time,

this system uses PowerMap, an algorithm which performs the mapping at run time

(Lopez, Sabou and Motta, 2006). The interactive interface of AquaLog allows users to

select the best match when more than one alternative is possible, and these mappings

are automatically added to the lexicon. This allows the system to quickly learn how to

transform natural language questions into structured queries. AquaLog makes a priori

assumptions regarding the relevance of the ontology to all queries, essentially using a

controlled natural language for the questions.

Other applications are able to use multiple ontologies by dynamically exploiting the

Semantic Web as a large scale source of distributed knowledge (d’Aquin et al., 2008).

Multiple, heterogeneous online ontologies can be automatically analysed to harvest

10http://qallme.fbk.eu/index.php?location=ontology
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knowledge to derive ontology mappings (Sabou et al., 2008). This enables ontology-

driven QA systems to break the conVnes of a single ontology and instead Vnd answers

in the entire Semantic Web. PowerAqua (Lopez, Motta and Uren, 2006) is a QA system

designed to exploit semantic markup on the Web to provide answers to questions posed

in natural language. The system transforms the questions into a set of logical queries

which are then answered separately by consulting and aggregating information derived

from multiple heterogeneous semantic sources. A more recent version of the system

(Lopez et al., 2009) uses a Triple Similarity Service to match queries to triples found in

diUerent ontologies of the Semantic Web.

Creating QA systems for the Semantic Web means tackling several non-trivial technical

issues (Lopez et al., 2011). This provides an interesting opportunity to develop ontology-

based QA systems for Linked Open Data (LOD). The challenge is to automatically convert

a natural question into a form which can be expressed using Semantic Web technologies

for query processing and inferencing. QALD111 is a recent evaluation campaign aimed at

scaling ontology-based QA to Linked Data scale. The main challenges involve dealing

with a heterogeneous, distributed and huge set of inter-linked data.

FREyA is an interactive natural language interface for querying ontologies (Damljanovic

et al., 2010, 2011). Unlike PowerAqua which automatically maps and includes new

ontologies at query time, FREyA tries to limit complexity by only using a limited

number of ontologies, because the more speciVc to the domain a system is, the better the

performance it achieves. Although it qualiVes as a closed-domain system, it is of special

interest here as it uses an approach which shares similarities with the open-domain

architecture (Dornescu, 2009) presented in the following chapter. A linguistic analysis

of the question employing a syntactic parser yields a set of phrases (POCs) which are

possible mentions of concepts from the underlying ontology, such as classes, properties,

instances, property values, etc., using a rule-based heuristic method. An ontology look-up

algorithm matches the POCs with actual ontology concepts and a consolidation algorithm

11http://www.sc.cit-ec.uni-bielefeld.de/qald-1
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creates a SPARQL query. When the system fails due to ambiguity or an incomplete

lexicon, it prompts the user for clariVcations. A learning module enables the system to

learn from these interactions in order to produce conVdence scores. The system achieved

the best results in the QALD1 competition, with 27 of 50 questions interpreted correctly.

Open-domain QA Systems can be asked about virtually any topic and can theoretically

extract the answer from any textual collection, in contrast to the previous types of

systems. They evolved as an alternative to search engines, as more and more information

became available on the Web.

Existing search engines excel at retrieving a ranked list of documents which are relevant

to a keyword query, but they are unable to answer questions.12 When searching for a

speciVc piece of information rather than relevant documents, the user needs to construct

complex queries, trying to guess a probable context of the answer and repeatedly reVning

the query until the most relevant text snippets returned contain the information sought.

In contrast, in open-domain QA, instead of providing a list of relevant keywords – ideally

a perfect query – the user just asks a question. Radev et al. (2005) claims that it is

more natural for a user to type a question like: Who wrote King Lear? than to create

a query such as: (wrote or written or author) and (�King Lear�). As shown

in Section 2.2.2, a QA system will automatically build queries and retrieve relevant

documents, extract answers from the retrieved text snippets and present them as a

conVdence-ranked list to the user.

The majority of open-domain QA systems search for answers in large textual repositories

rather than in databases or knowledge bases as is the case with closed-domain QA.

Usually systems are developed and tested on a particular document collection. The

documents may come from heterogeneous information sources ranging from newswire

12Some search engines (such as Google) have started to add QA capabilities for answering simple
questions, e.g., Who is the prime minister of Romania?. However these capabilities are not clearly
advertised or are presented as experimental features and their coverage is limited, resembling canned QA
rather than open-domain QA.
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corpora to encyclopaedias and the World Wide Web, as long as the system can convert

them to plain text.

Open-domain QA is viewed as the “holy grail” of information retrieval as it requires

complex text comprehension which is a diXcult problem. Current open-domain QA

systems can be asked about any topic, as long as the complexity of the question is

moderate, i.e., understanding both the question and the text necessary to extract the

answer can be simulated or approximated. Questions that require the systems to “reason”,

e.g., extract and combine information from several documents or deduce information

using common-sense inference, are considered diXcult. Despite substantial research

carried out in the last decade, open-domain QA systems have not become an alternative to

Web search engines. This can be explained by the standard approach typically employed

by open-domain QA systems, which is presented in Section 2.2.2.

The Vrst Web-based QA system was START13 (SynTactic Analysis using Reversible

Transformations) by Katz (1997). It uses complex NLP modules that transform English

sentences into ternary expressions (T-expressions): 〈subject, relation, object〉. These

expressions are added to the knowledge base in the form of annotations of text documents.

By applying similar processing to the question, the system extracts template expressions

which it then uses to Vnd answers in the annotated knowledge base. Hand crafted rules

are added to the system in order to better deal with lexical variations. The system does

not perform any form of reasoning: answering is limited to matching expressions from

the question to T-expressions extracted from a single sentence. For example, START

knows all the capitals in Africa, and for each one it also knows the population size.

However it cannot deal with input such as: Capitals in Africa and their population or

Which capitals in Africa have population over 100,000, because it does not have this exact

answer in the knowledge base, and this question requires more processing than simply

matching an S-expression.

13http://start.csail.mit.edu/
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Other approaches in QA are evidenced by a number of new systems which have

become known very recently, for example, systems which oUer natural language based

search interfaces to structured knowledge, typically based on data that is manually

coded and homogeneous (e.g. Wolfram Alpha14 and Powerset15) or proprietary (e.g.

TrueKnowledge16). Another type of QA system, made popular by the smartphone

industry, is the virtual personal assistant: a tool which helps you achieve certain

things using your mobile just by asking. It allows you to perform actions such as

sending messages, scheduling meetings, making phone calls, and more, by issuing spoken

instructions (Sadun and Sande, 2012). Probably the most widely publicised success story

in the domain of open-domain QA is IBM’s Watson (Ferrucci, 2012), the system built for

the American Jeopardy! quiz, which defeated the two highest ranked human champions

in a nationally televised two-game match.

True Knowledge (Tunstall-Pedoe, 2010) is a natural language search engine and question

answering site, which maintains a large knowledge base of facts about the world and

allows users to contribute facts and knowledge as well as to provide answers to questions.

The knowledge is stored in a form allowing automatic reasoning which enables the

system to combine knowledge by inferring new facts and cross-referencing existent

information to produce a reasoned answer together with a detailed justiVcation which

displays the rules that were applied in Vnding the answer. For each piece of discrete

information the system can determine where it comes from, when it was created, the

conVdence that it is true and even in what spans of time it is correct. Facts come in

two types, source facts stored in the knowledge base and inferred facts, created by the

knowledge generator via applying inference rules to existing facts. A key feature of the

approach employed by TrueKnowledge is that users can not only add and curate facts,

they can also extend the questions that can be addressed and even provide new inference

rules for the knowledge generator (including code for steps that involve calculations).

14http://www.wolframalpha.com
15http://powerset.com
16http://www.evi.com
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Whilst free datasets such as Freebase and DBpedia (see Section 2.4.4) are incorporated,

the system’s knowledge base is not publicly available. However, API access is provided,

enabling third parties to build applications using the True Knowledge technology.

Watson (Ferrucci, 2012) is the result of the challenge taken on in 2007 by IBM Research:

that of building a computer system that could compete with human champions at the

game of Jeopardy!. The quiz show requires participants to quickly understand and

answer natural language questions (clues), which cover a very broad range of topics. The

competition penalises inaccurate answers, therefore the system needs to reliably compute

a conVdence score and refrain from answering questions when this score is not high

enough. To be competitive, the aim was to achieve 85% Precision@70 which means that

Watson is expected to be conVdent enough to buzz in for 70% of the questions, and it

should answer correctly at least 85% of these questions, spending mere seconds to answer

each question.

The QA system PIQUANT (Chu-Carroll et al., 2005), which IBM had previously built for

TREC competitions, only achieved roughly 16% Precision@70 and needed more than two

hours to answer each question, when using a single machine. The DeepQA architecture

(Ferrucci et al., 2010) was therefore proposed as a highly parallel approach which would

allow the processing to be accelerated by orders of magnitude, but would also enable the

researchers to combine multiple technologies to answer questions much more reliably.

25 full-time researchers participated in the endeavour and after almost 5 years and

more that 8000 individual experiments involving tens of thousands of questions, Watson

made history defeating the highest ranked players. Watson is specialised for the type

of clues used in Jeopardy! and it would probably need to be re-conVgured in order to

achieve similar performance on other question types. However, it is, without a doubt, an

extremely impressive QA system.

The DeepQA architecture used by Watson deVnes for main stages of analysis. Each stage

has multiple implementations which can produce alternative results. The alternatives are

processed independently in a massively parallel computation. Evidence is gathered and
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analysed for each answer and each alternative. Statistical machine learning algorithms

are used to aggregated all evidence into a single conVdence score. In the Vrst stage, the

system analyses the question type and its topic (Lally et al., 2012), and then uses an

English Slot Grammar parser and predicate-argument structure generator (McCord et al.,

2012) to prepare deeper linguistic information for subsequent steps.

The next stage is hypothesis generation. An analysis of tens of thousands of Jeopardy!

questions used in the past revealed that although more that 95% of the answers have

a page in Wikipedia, only 2% of answers could be found using DBpedia alone, which

means that the system must use all available data sources simultaneously. Instead of

searching for the correct answer directly, the system identiVes a large set of candidate

answers (Chu-Carroll et al., 2012). Each candidate answer is then combined with the

question to create an independent hypothesis.

The system then searches for evidence supporting each of the hypotheses, independently

examining all of the information sources available (encyclopedias, dictionaries, thesauri,

newswire articles, and literary works, databases, taxonomies and ontologies, speciVcally,

DBPedia, WordNet, and Yago). The most important types of evidence sought are the

expected answer type (Murdock et al., 2012) and relation extraction and validation (Wang

et al., 2012). In the Vnal stage, a statistical machine learning approach is used to weigh

and combine scores, using various evidence scoring algorithms, and a single conVdence

score is computed for each candidate answer (Gondek et al., 2012). Of course, at the time

of the competition Watson ranked in the top 100 supercomputers in the world, which

meant that all the stages were usually completed in under 3 seconds.

2.2.2 General architecture of open-domain QA systems

Harabagiu and Moldovan (2003) present the standard architecture of an open-domain

QA system, governed by the stages it must perform, namely question analysis:

understanding what the question is asking, document retrieval: Vnding relevant textual

paragraphs, and answer extraction: identifying the exact answer in one of the retrieved
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paragraphs. For a more comprehensive description of the architecture with further

details regarding individual components see Hirschman and Gaizauskas (2001). The exact

architecture of speciVc systems can be quite complex, accommodating features such as

cross-linguality, e.g., when a question is asked in French, but the answer is searched for in

an English corpus, answer fusion, when an answer is extracted from several documents,

or Web ranking, when candidate answers are Vrst searched for and identiVed on the Web

and then they are located and ranked in the target collection.

Question analysis is concerned with processing input questions and determining the

question type, the expected answer type, the question focus and what other entities

and/or keywords are present. The question type is selected from a question taxonomy

that the system uses for example, deVnition questions: What is the Top Quark?, factoid

questions: When was X born?, yes-no questions: Is Barack Obama the US president?, list

questions: Give me capitals of Africa. Hovy et al. (2000) proposed a semantic taxonomy

of 94 types based on the user’s intention. Each question type has a speciVc set of patterns

which are used to extract answers.

Another feature determined at this stage is the expected answer type (EAT) such as

person, location, time-date, which is used when processing the text snippets retrieved.

Only the snippets containing an entity of the expected type will be processed further. Li

and Roth (2002) use a two-stage classiVer which assigns each question one of 6 coarse-

types and one of 50 sub-types of EAT (see Table 2.1). They built a dataset comprising

5500 questions for training and 500 for testing, achieving 91% classiVcation accuracy

for coarse types and 84.2% accuracy for subtypes. Techniques usually employed by

QA systems for classifying questions range from regular expressions and hand-crafted

rules (Hermjakob, 2001), to language models (Pinto et al., 2002), support vector machines

(Zhang and Lee, 2003) or maximum entropy (Le Nguyen et al., 2007). The models use

features such as words, n-grams, syntactic information from parse trees, and semantic

types from Word-Net.

The question focus usually indicates which entity the question is about, e.g., Bush in

When was Bush born?. Keywords and entities are also extracted in order to construct

21



Table 2.1: Expected answer type classiVcation scheme proposed by Li and Roth (2002),
commonly used by TREC participants.

Coarse EAT Fine EAT subtype

ABBREVIATION abbreviation, expression abbreviated
ENTITY animal, body, color, creative, currency, diseases and

medical, event, food, instrument, lang, letter, other, plant,
product, religion, sport, substance, symbol, technique,
term, vehicle, word

DESCRIPTION deVnition, description, manner, reason
HUMAN group, individual, title, description
LOCATION city, country, mountain, other, state
NUMERIC code, count, date, distance, money, order, other, period,

percent, speed, temperature, size, weight

queries that will be sent to an information retrieval engine. NLP tools, such as part

of speech taggers, syntactical parsers, shallow parsers and semantic role labellers, are

employed in order to create a complex representation that encodes the meaning of the

question, as interpreted by the system.

Document retrieval has as input the question representation built in the previous

stage. It constructs queries corresponding to the question and uses a search engine to

identify relevant text snippets in the target collection. The IR engine can make use of

diUerent types of linguistic annotations. When a small document collection is used,

their text can be annotated during indexing with lexical information (words, stems,

lemmas), syntactic information (chunks, multi-word expressions, dependency trees),

named entities annotations, semantic role labels or discourse structures. These can be

used at the retrieval stage for improving the relevance of the retrieved data. When

dealing with large or dynamic collections (such as the Web) it is impractical to perform

these annotations on all documents, thus the more complex analysis is performed only on

the sub-set of documents retrieved. Usually retrieval is a multi-stage process: at Vrst, full

documents are retrieved using simple techniques, and then, increasingly more complex

techniques are applied to smaller text snippets, usually paragraphs or even sentences.

Alternations can be used to create more advanced queries (Harabagiu and Moldovan,
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2003). Morpho-lexical alternations are employed to increase recall: using resources

such as WordNet (Fellbaum, 1998) the query is expanded with synonyms and

morphological variations of the keywords, e.g., singular and plural forms. Another

form of alternation is rephrasing the question, e.g., from the question When was X born?

the phrase query “X was born in” is generated. These semantic alternations allow more

precise retrieval due to information redundancy in large collections such as the Web,

where it is probable to Vnd such rephrased answers using a small set of high-precision,

low-recall patterns.

Answer extraction is the third step performed by this type of QA system. At this

stage, the retrieved snippets are processed and candidate answers are extracted using

all the information gathered in the previous steps, e.g., keywords, entities and relations.

Documents that do not have a candidate of the expected answer type are discarded.

The remaining candidate answers are then Vltered and ranked according to diUerent

measures of similarity to the question (Harabagiu et al., 2003; Moldovan et al., 2007).

Pattern-based extraction is one of the most common ways to extract and rank

answers for certain types of questions. For example, given the question What is the

population of London? the system can use templates such as “the population of 〈?city〉 is

〈?number〉 inhabitants”, “〈?city〉 has a population of 〈?number〉”, “〈?city〉 has 〈?number〉

inhabitants”. These template patterns can be automatically acquired by training the

system on known 〈question, answer〉 pairs. For example, if the system knows that the

correct answer to the questionWhat is the population of London? is 7, 855, 600, then it

can automatically extract patterns that would help Vnd the answer to the similar question

What is the population of Birmingham? Usually these patterns are learned when building

the system, by using training data (Schlaefer et al., 2006; Schlaefer, 2007).

Answer Vltering uses the EAT and pre-compiled lists of entities derived from ontologies,

gazetteers and encyclopaedias to Vlter out candidates with incompatible types. As

more of these resources are employed and their coverage is expanded, the number of

eponymous entities also grows and the semantic ambiguity of entities is also increased,
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which can negatively impact overall performance (Schlobach et al., 2004; Prager et al.,

2003). The most relevant answers are selected using diUerent measures such as word

similarity, e.g., the tf·idf score of the exact matched words, the score of the unmatched

words, the number of adjacent words in both the question and the snippet, the average

distance between the candidate answer and the question words, and syntactic similarity

between the parse tree of the question and that of the phrase containing the candidate

answer.

Answer re-ranking is the stage when the ranked list of answers is computed. Nyberg

et al. (2003) uses a clustering algorithm to merge evidence from several documents

which supports a similar answer. For each cluster a representative answer is selected

and an aggregated conVdence score is computed. Ranking is more complex when

multiple strategies are employed (Jijkoun et al., 2006), as each strategy has diUerent

score distributions. To combine and re-rank the answers found by multiple QA agents, a

simple conVdence-based voting is used by Chu-Carroll et al. (2003), a maximum-entropy

model was proposed by Echihabi et al. (2004) and a successful probabilistic framework

for answer selection is employed by Ko et al. (2010).

To improve accuracy, answer validation methods can be used to determine the

correctness of the extracted answer. Both the question and the answer are generally

transformed to a deeper representation (logical form) and then formal methods such

as theorem proving algorithms try to assess the connection between the two, by using

information and facts contained within the documents, world knowledge (which is

often extracted from WordNet), and domain speciVc ontologies. For example, textual

entailment and logic formalisms are used by Moldovan et al. (2007), while a simpler

alternative is to use the edit distance between the question and the answer as a measure

of similarity.

Systems typically use the Web as an additional resource for both Vnding and validating

answers, because vast amounts of data means greater coverage, greater redundancy and

greater chances that simple patterns previously observed during system development
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will also occur on the Web: Where is the EiUel Tower located? → “The EiUel Tower is

located in”. These simple lexical patterns exploit the redundancy of information on the

Web: presumably the answer to most factoid questions is present in multiple documents

and formulations (Clarke, Cormack and Lynam, 2001). Answers that are found on the

Web are then searched for and validated in the target collection.

To illustrate the whole process with an example of a textual QA system, FALCON was one

of the top-performing systems in the TREC 9 and TREC 10 campaigns (Harabagiu et al.,

2000, 2001). In the Vrst stage, question analysis, the question is processed to determine

the expected answer type and to extract a list of keywords used for retrieval. In the

second stage, document retrieval, an IR engine which supports boolean operators is used

to retrieve paragraphs from the TREC document collection. A feedback loop modiVes the

query if the search space becomes either too restrictive or too broad, in order to select

roughly 500 paragraphs. These are passed on to the last stage, answer extraction, which

is concerned with extracting the answer. Paragraphs that do not contain a candidate

answer of the expected type are discarded. The remaining paragraphs are parsed and

head-modiVer relations are extracted from their parse trees. Lexico-semantic uniVcations

are tried between the features of the answer and those of the question, allowing linguistic

variations, such as diUerent morphological forms, synonyms, or rephrasing. A conVdence

score is assigned for each candidate answer snippet based on features such as the number

of words present in the question and the compactness of the answer. A ranked list of

answers is returned by the system.

2.2.3 QA and Web search

Open-domain QA research has primarily focused on factoid questions: those questions

whose answers are named entities, concepts, measures, temporal expressions, etc., and on

description questions: deVnition, why, relation. We call these types of systems textual

QA systems because the core technology is not based on understanding meaning, i.e.,

using automatic inference or formal reasoning, but on searching for the most relevant
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paragraphs in a large textual collection by relying primarily on lexical similarity. Such

systems have been intensely studied in the past decade, but despite eUorts they have not

fulVlled the promise of replacing Web search engines. These engines have themselves

evolved signiVcantly and users can usually search and Vnd answers to factoid questions

quite easily, which has limited the impact of textual QA systems on the way users

access information. In addition, some description questions, such as deVnitions and

how questions, can be addressed by Web search engines which index existing Q&A

sites. They also oUer their users a familiar interface as a ‘universal’ search tool. Current

ranking methods employed by search engines rely less on keywords and more on users’

behaviour: clicking a search result is equivalent to assigning a tag to that particular URL.

In eUect, a Web search engine allows a semantic search based on the tags assigned by

users during searching rather than a lexical search based on the words in the document.

Because of the capabilities of Web search engines, QA systems need to robustly address

more realistic questions if they are to provide a real alternative.

To address more complex information needs and to deliver more accurate answers,

semantic knowledge should be embedded at every stage of the QA pipeline. In the

following section, Wikipedia17 is presented as a core multi-faceted resource which is

already fostering signiVcant advances throughout the NLP research landscape and which

can provide semantic world knowledge for QA systems.

2.3 Wikipedia: a collaborative encyclopaedia

Wikipedia is a free online encyclopaedia supported by the non-proVt Wikimedia

Foundation.18 It contains more than 250 language editions totalling over 20 million

articles that are collaboratively written and maintained by volunteers. About 100,000

active users make regular contributions, but anyone with Internet access can edit (almost)

all articles. Since its launch in 2001, it has become the largest and most popular general

17http://www.wikipedia.org/
18http://wikimediafoundation.org/wiki/Home
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reference work on the Internet. For QA, Wikipedia is interesting not only because of the

large amount of encyclopaedic articles that are continuously updated, but also because

of structural properties that make it easier to process by computers than generic Web

content.

As an encyclopaedia, Wikipedia has attracted criticism regarding the accuracy of its

articles and the information bias in terms of coverage19. Many consider that the free-

collaboration edit policy led to inaccurate, unreliable content. However, in a controversial

article, Giles (2005) showed that the errors are comparable to the ones in Encyclopaedia

Britannica20, and concluded that, due to the coordination and organisation eUorts, the

quality of Wikipedia articles is on a par with standard printed encyclopaedias. A review

of articles in the Veld of pathology found that Wikipedia’s coverage were of a high

standard (Wood and Struthers, 2010). While the accuracy is acceptable (due to the many

edits a certain level of consensus is achieved), the coverage is biased by the interests

of the contributors. General concepts and recent events tend to be better represented

with more detailed information and more frequent updates. Wikipedia is one of the

most visited domains on the Web, currently ranked sixth globally among all websites on

Alexa21 and has an estimated 365 million readers worldwide.

As a corpus, Wikipedia is of great interest. While large amounts of text can be crawled

on the Web, Wikipedia articles are much better suited for creating corpora due to their

structure and uniform style, their contents being peer reviewed and constantly updated

in order to conform to the guidelines. DiUerent language versions are aligned, thus

Wikipedia is a well suited collection for multilingual applications. The way information

is structured and stored is inWuenced by its purpose as an encyclopaedia, and by the wiki

software22 it uses. Wikipedia is a large collection of interlinked documents called pages.

According to their content, each page is part of a namespace.23 The most important

19http://en.wikipedia.org/wiki/Reliability_of_Wikipedia
20http://www.britannica.com/
21http://www.alexa.com/siteinfo/wikipedia.org?range=5y&size=large&y=t
22http://www.mediawiki.org/
23http://en.wikipedia.org/wiki/Wikipedia:Namespace
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namespaces for QA research are Main, Categories and Templates, while the less relevant

ones include Talk, User, User talk, Portal, Wikipedia and Help. The namespace is usually

preVxed to the page title creating a unique identiVer for each page, e.g., Liverpool F.C.,

Category:English football clubs or Template:Football club infobox. In the remainder of

this section the structure of Wikipedia is described to contextualise terminology used

throughout the thesis and to present ways in which the encyclopaedia can be exploited

in NLP applications relevant to QA research.

Main namespace namespace24

The pages from the Main namespace are those containing encyclopaedic content.

Depending on what they contain, there are Vve page types:

• articles represent the majority of pages in the Main namespace. According to the

Wikipedia guidelines, each article must describe only one concept, the one denoted

by the title. The Vrst sentence or paragraph of the article must clearly deVne what

concept the article is about – the deVnition. Generally, in addition to the deVnition,

each article must contain at least one link to another page, and there must be at

least one incoming link to the article.

• stub articles only contain a brief description of the concept (its deVnition) and

need to be expanded. They are usually very short (less than 100 words), but contain

valuable information such as the classiVcation of the concept. Stubs are clearly

marked to facilitate user contributions.

• redirect pages are pages whose title represents a common synonym of a concept

that is already described in another article. In order to avoid duplicating

information, these articles consist only of an automatic redirect directive to the

article that contains the actual information, e.g., Elisabeth 2 and over 90 other

articles redirect to Elizabeth II of the United Kingdom. Redirect pages usually

represent partial names, common misspellings and abbreviations, and therefore

24http://en.wikipedia.org/wiki/Wikipedia:Main_namespace
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are an excellent source of synonyms for named entities that can be exploited when

analysing questions or when extracting answers, where identifying the mention

of a known entity is more useful than just recognising that a span of text denotes

some unknown entity.

• disambiguation pages have a list of links to all the known entities in cases

where the same title can denote several distinct entities, for example, Paris

(disambiguation) has links such as Paris (mythology), Paris (2008 Vlm), Paris

(The Cure album), Paris, New York or Paris Simmons. Disambiguation pages are a

source of homonyms and eponymous entities, and they are important for creating

a thesaurus.

• list pages usually contain lists or tables of links to articles that have a certain

characteristic or are part of a category. They are used to organise articles. Their

main advantage consists of the fact that they may contain links to articles that do

not exist yet, called red links. It is thus possible to identify candidate answers or

infer some of their properties even if the corresponding articles have not yet been

created.

Category namespace namespace25

These pages, called categories, provide a mechanism for structuring and organising

the contents of Wikipedia, enabling the automatic creation of tables of contents and

indexing functionalities. Each category page contains an introduction, which can be

edited like any other page, and a body containing an automatically generated list of

links to its articles and sub-categories. All pages, including categories themselves, must

be part of at least one category, e.g., the article Douro is part of Category:Rivers of

Portugal, and Category:Rivers itself is part of Category:Water streams. Categories form a

hierarchical structure but not a taxonomy, since each article can appear in more than

one category and each category can have more than one parent category. This allows

multiple categorisation schemes to be used simultaneously, e.g., the article Douro is also

25http://en.wikipedia.org/wiki/Wikipedia:Category_namespace
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Figure 2.1: Partial view of Wikipedia’s Category Graph

part of Category:Wine regions of Portugal. The category system in Wikipedia is a result

of a collaborative eUort to organise articles, i.e., a folksonomy (Vander Wal, 2007; Peters,

2009), which can be automatically processed and linked to ontologies on the Semantic

Web (Specia and Motta, 2007).

There are two main types of categories: topic categories, which contain articles

related to a particular topic, such as Category:Education or Category:London, and

list categories, which contain articles of a certain type, such as Category:Capitals

in Europe or Category:British actors. List categories act as a speciVc gazetteer, useful

when searching for answers of a speciVed type. For example, given the questionWhich

rivers from Portugal are longer than 500 Km? the system can automatically identify

the Category:Rivers of Portugal and only examine the articles that actually describe

Portuguese rivers. The information embedded in the Wikipedia category system can lead

to much better precision when searching for information than a standard keyword-based

IR engine.
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Template namespace namespace26

Template pages provide information to help readers, such as navigation aids, links to

disambiguation pages and editorial notes to help manage the collaborative editing process.

They can be used for various purposes including formatting, displaying information

consistently, creating navigational boxes and sidebars which link series of related articles

together, and also for coordinating and organising the editorial eUort.

The wiki software27 provides a mechanism called transclusion28 to include in a page the

content of any template page. This helps when updating contents, since only the display

of information is redundant (the same content is displayed in several pages) while the

storage is eXcient because the update only requires the modiVcation of the template

page. An important feature of this mechanism is that templates can have parameters.

For example {{flagicon|Romania}} inserts a small in-line Wag of Romania . If the

Romanian Wag is changed, none of the thousands of pages that display it needs any

modiVcation. Another role of the templates is to automatically assign the articles that use

them to categories, for example, the template call {{Birth date|df=yes|1879|3|14}}

results in the output: “March 14, 1879”, and at the same time makes the article Albert

Einstein part of Category:1879 Births.

An infobox is a particular type of template that is used to display factual information

in a consistent format, usually as a Woating table in the upper right region of the article.

Infoboxes make extensive use of parameters (see Figure 2.2b) which is why they can be

associated with the templates used in Information Extraction. By extracting the values

of the parameters used, a system can obtain more reliable data than can be obtained

by analysing natural language text. As shown in Figure 2.2b, infobox template calls

have a semistructured content that can be exploited to reliably extract information in an

automatic fashion. For example the nickname, the stadium and the manager of Liverpool

26http://en.wikipedia.org/wiki/Wikipedia:Template_namespace
27MediaWiki: http://www.mediawiki.org/
28http://en.wikipedia.org/wiki/Wikipedia:Transclusion
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(a) rendered infobox (b) infobox wikitext

Figure 2.2: Templates in Wikipedia

F.C. can be directly extracted from the wiki source text. Infoboxes are a source of

〈attribute, value〉 pairs that can be exploited by QA systems and other NLP applications.

By employing information extraction techniques, large amounts of structured data can be

extracted fromWikipedia in the form of factual databases or ontologies (see Section 2.4.4).

Hyperlinks

All the pages in Wikipedia are connected using hyperlinks. There are several types of

links: wiki links are internal links between articles, inter-wiki links connect corresponding

pages from diUerent language versions of Wikipedia, external links are hyperlinks to

other websites or Web resources, and category links connect each page to the categories

it belongs to. The most important sub-graphs of this large scale directed multi-graph are

the Wikipedia article graph (WAG) and the category graph (WCG) a part of which is

shown in Figure 2.1.

Wiki links can be exploited in several ways in a QA system. By extracting the anchor

text of each hyperlink, a thesaurus of aliases can be created. The anchor text is also

a disambiguated reference to a concept, thus the context of a snippet is not only the
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surrounding text, but also the pages it has links to. By accessing the linked articles,

additional information can be used in the diUerent phases of the QA pipeline. Wiki links

are intended for human users, and contributors try to avoid clutter and redundant or

irrelevant links. For this reason not all relevant links may be present in an article.

2.4 Wikipedia: a resource for NLP research

Since its inception in 2001, Wikipedia has become one of the most accessed sites on

the Web. In the past few years Wikipedia has become the target of an increasing

number of research projects in domains relevant to question answering, such as

information extraction, knowledge representation, information retrieval and Semantic

Web technologies (Medelyan et al., 2009). In some domains (including QA) the structure

of Wikipedia has just started to be exploited, and so signiVcant improvements can be

expected in the near future. Wikipedia is attractive to QA research not only because of

the huge amount of continually updated data, but also because of its structure and the

many tools and resources that have already been built on top of it.

2.4.1 Wikipedia and semantic relatedness

Formal analysis of the Wikipedia graph (Zesch and Gurevych, 2007) revealed that it has

the characteristics of semantic networks such as WordNet (Fellbaum, 1998). Ponzetto

and Strube (2006, 2007b) show that Wikipedia is much more suitable as a semantic

network than WordNet due to its broader coverage and rich link structure. Therefore

Wikipedia can be used to measure the similarity of words or documents by creating an

appropriate similarity measure. Given two words, WikiRelate! (Strube and Ponzetto,

2006) Vnds two corresponding Wikipedia articles that contain the respective words in

their title and then computes the articles’ relatedness from the bag-of-words similarity of

their texts and the distance between their categories in the Wikipedia category graph.

Explicit Semantic Analysis (ESA), proposed by Gabrilovich and Markovitch (2007), also

uses a vector similarity measure, but instead of representing the documents as word-

vectors (bags-of-words), the documents are vectors in the Wikipedia article space. They
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construct an inverted index from words to the Wikipedia articles they are used in so

that given a document, the system constructs an article-vector by aggregating index

information for each of its words. The similarity score of any two documents is the

cosine similarity of their associated article-vectors, and the authors demonstrate that the

system can recognise similar documents even when they have little lexical overlap.

2.4.2 Wikipedia and information retrieval

Given its broad information coverage, its structural properties, and its continual updates,

Wikipedia appeals to the information retrieval (IR) community for both enhancing

existing methods and developing new ones. One such method has been query expansion,

namely adding synonyms, alternative spellings, abbreviations and aliases, in order to

increase recall. Many participants in the TREC HARD Track29 use Wikipedia to construct

a thesaurus containing this kind of information (Allan, 2005). Milne, Witten and Nichols

(2007) Vrst select a set of Wikipedia articles that are relevant to the TREC document

collection and build a corpus-speciVc thesaurus. They map the keywords of a query

to this resource and use the extracted redirects, misspellings and synonyms in order to

create an advanced expanded query. Using the TREC HARD data they report signiVcantly

better performance in terms of F-measure.

Li, Luk, Ho and Chung (2007) use Wikipedia as an external corpus: they Vrst run

the query and retrieve 100 relevant articles from the encyclopaedia, and extract their

categories. The list of articles is re-ranked according to the most frequent categories.

The 20 highest-ranked articles are analysed to extract 40 terms which are then added to

the initial query. They report mixed results when evaluating on the TREC HARD data

(Allan, 2005), with better results for weak queries, usually containing two or three words.

Query segmentation is another method which makes use of Wikipedia in order to

improve retrieval accuracy. It aims to separate the keywords of a query into segments so

29High Accuracy Retrieval from Documents: http://trec.nist.gov/data/hard.html
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that each segment maps to a semantic concept or entity. Correctly splitting the phrase

into chunks is crucial for search engines, e.g., [new york times subscription] should be

segmented as [“new york times” subscription], not as [“new york” “times subscription”].

Tan and Peng (2008) train a generative query model using n-gram statistics from the

Web and the titles of Wikipedia articles. They use an expectation-maximization (EM)

algorithm, to optimise the model parameters outperforming the traditional approach by

22%, from 0.530 to 0.646. Just by adding Wikipedia information they report an additional

24.3% increase over the standard approach which uses point-wise mutual information

(MI) between pairs of query words: if the MI value between two adjacent query keywords

is below a pre- deVned threshold, a segment boundary is inserted at that position.

The multilingual nature of Wikipedia has been exploited for cross-lingual information

retrieval (CL-IR). The inter-wiki links can be used to create multilingual entity

dictionaries that can be used to translate queries from the source language to the target

language. Additionally, the entries can be expanded using the redirect links in each

language version of Wikipedia. This method was used in cross-lingual QA (Dornescu,

Puşcaşu and Orăsan, 2008).

Potthast, Stein and Anderka (2008) extend the ESA similarity metric and propose a

new retrieval model called Cross-Language Explicit Semantic Analysis (CL-ESA). The

main idea is that most of the concepts, i.e., articles, used to represent documents in ESA

have mappings to other language versions of Wikipedia, making these concepts largely

language independent. They hypothesise that the relevance of a document (written in the

target language) to a query (source language) can be calculated without translating neither

the document nor the keywords of the query. To test this hypothesis, an English document

was used as query in EN Wikipedia, and the German translation of the document as

a query in the DE Wikipedia. The two results sets had an average correlation of 72%.

The authors point out that the dimensionality of the concept space, i.e., the numbers of

aligned articles in Wikipedia, is very important and that the method performs better on

the large Wikipedias (EN,DE,FR,PT) because the concept space overlaps better.
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2.4.3 Wikipedia and information extraction

The goal of information extraction (IE) is to automatically extract structured

information from text documents. Typical subtasks of IE are:

• named entity recognition (NER) — recognition of spans of text that represent

entity names (people, organisations, places), temporal expressions (times, dates),

numerical expressions (physical measure, currency), and so on;

• coreference and anaphora resolution — identiVcation of chains of noun phrases and

pronouns that refer to the same entity;

• relation extraction — identiVcation of relations between entities, such as

bornIn(Person,Country) or worksAt(Person,Organisation).

Named Entity Recognition

Named Entity Recognition (NER) is concerned with identifying spans of text that

denote entity names and classifying them using a type taxonomy. The most

common classiVcation is that employed in the MUC conferences30: Location, Person,

Organisation, Date, Other. According to the Wikipedia guidelines, in each page

at least the Vrst mention of an entity should be linked to its corresponding article

(disambiguated references). Also, the category system can be exploited in order to have

a Vne-grained classiVcation (entity types). These properties make Wikipedia a perfect

corpus candidate for developing new models.

Toral and Muñoz (2006) note the possibility of using Wikipedia in NER and propose a

method to automatically extract a gazetteer for the MUC categories, using just a part-

of-speech tagger and WordNet. They suggest that the method is easily applicable to

other languages by using EuroWordNet. They did not demonstrate the usefulness of the

extracted gazetteers in actual NER systems and they used the general MUC classiVcation

scheme.

30Message Understanding Conference http://www-nlpir.nist.gov/related_projects/muc/
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Kazama and Torisawa (2007) propose a simple NER method which exploits the

encyclopaedia: given an input sentence, they extract all its n-grams and identify which

ones are entries in the thesaurus extracted from Wikipedia (titles of articles). The class of

the identiVed name is extracted from the Vrst sentence of the article (the deVnition) using

lexical rules. These type labels are used as an additional feature by a conditional random

Velds (CRF) tagger, along with standard features such as surface form and part of speech

tag. They report an increase in NER performance using the additional information from

Wikipedia.

Watanabe, Asahara and Matsumoto (2007) go beyond the deVnitions in Wikipedia articles:

they extract a gazetteer of entities by mining lists and tables from the articles, based

on the hypothesis that entities that are collocated in such semi-structured elements

share similar semantic types. They train a graph CRF model based on context features

extracted from the HTML markup, the deVnition and the categories of Wikipedia articles.

A random set of 2300 articles from the Japanese version of Wikipedia was manually

annotated, and the identiVed 14285 distinct named entities were tagged using a set of

13 categories selected from the 200+ types present in the full hierarchy of Sekine, Sudo

and Nobata (2002). They report an F1 score of 78% for all the entities and their method

obtained an F1 score of 54% for the 3898 entities that had no associated Wikipedia article.

Entity Disambiguation

Entity Disambiguation is a reVned version of NER in which names need to be linked

to the entities they actually denote, a form of cross-document coreference resolution

also known as entity linking (EL). It is particularly relevant in information retrieval and

question answering since it enables systems to correlate information about one entity

when examining documents from heterogeneous sources.

This task is particularly important since the same name can denote several distinct

entities, e.g., Paris — capital of France, several cities in USA, a mythological Vgure, a

celebrity and so on. Also, one entity can be classiVed simultaneously with diUerent

37

http://en.wikipedia.org/wiki/Paris


categorisation schemes in Wikipedia, e.g., Nicolas Sarkozy is a person, a University of

Paris alumni, a lawyer, a mayor and a president. Such granularity is more useful than

the coarse-grained classes usually employed in NER.

Bunescu and Pasca (2006) created a thesaurus using article titles and known redirects.

When several entries match, they use a cosine similarity metric between the query and

the document or between the query and the document’s categories in order to select

the best match. From all the wiki links to entity articles they extract tuples 〈anchor

text, entity, context〉 (Bunescu, 2007). Entity disambiguation is formulated as a ranking

problem: given an ambiguous name 〈anchor texti, ?, contexti〉, rank the possible entities

and select the one that is most similar to training observations. In order to measure the

similarity, 〈context-word, category〉 correlations are used in training a ranking Support

Vector Machines (SVM) kernel on the dataset of disambiguated name occurrences. Their

experiments show that the use of word-category correlations yields substantially better

accuracy than the context-article cosine-similarity baseline.

Cucerzan (2007) created a more complete dictionary by exploiting not only the anchor text

of the wiki links but also list pages and the category graph. He generates 〈entity,tag〉 pairs

from the links within list pages (e.g., 〈R.E.M. (band), LIST band name etymologies〉) and

from the category tags (e.g., 〈Texas (band), CAT Scottish musical groups〉). Additionally,

a much larger set of context pairs 〈entity, context entities〉 is also extracted. Using this

rich set of features, he performs entity disambiguation on names identiVed with a simple

system based on capitalisation rules. He reports accuracy around 90%, and the method is

independent of the language version of Wikipedia used.

The Text Analysis Conference (TAC) is a series of evaluations and workshops organised to

foster NLP research by providing a common evaluation platform enabling organisations

to share their results. Since 2009, one of the tasks of the yearly challenge has been Entity

Linking: given a name (of a Person, Organisation, or Geopolitical Entity) and a document

containing that name, systems must determine automatically if the reference knowledge

base contains a node corresponding to the named entity, and which node is the best
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match. The task is focused on semi-structured data: a set of Wikipedia infoboxes are used

as the reference knowledge base and systems are encouraged not to use additional text

from the Wikipedia articles (Ji et al., 2010). The results show that usually systems perform

best for persons and worst for geo-political entities. Using semantic features extracted

from the structure of the encyclopaedia usually improves performance. Some systems

submitted entity linking runs both with and without using Wikipedia text. Employing the

textual content usually yields performance improvement that is statistically signiVcant at

89% conVdence level.

Coreference Resolution

The purpose of this task is to determine whether two spans of text (called referential

entities) denote the same entity from the real world, without disambiguating which

entity. It is related to anaphora resolution which consists of determining when a word

or phrase, the anaphor, refers to a previously mentioned entity, the antecedent (see

Mitkov, 2002).

Ponzetto and Strube (2006) use features such as similarity metrics between the Vrst

sentences of the articles describing the two potential coreferent expressions, the number

of wiki links between them and the semantic distance between the articles using the

category graph. Compared to a baseline method, they report a decrease of precision,

but an increase in recall and F-measure, on the MUC data. On the same data, Yang and

Su (2007) also report an increase in performance, using a similar baseline. They do not

exploit the Wikipedia structure, but rather extract co-occurrence patterns in Wikipedia

in order to assess the relatedness.

Mihalcea and Csomai (2007) employ Wikipedia as a resource for automatic keyword

extraction and word sense disambiguation to wikify (hyper)text by automatically

extracting the most important words and phrases in the document, and identifying

for each such keyword the appropriate link to a Wikipedia article. The best ranking

method for keyword extraction was to sort candidates by the prior probability of the
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n-gram to be a link. For disambiguation, they use a data-driven method that integrates

both local and topical features into a machine learning classiVer, which outperforms the

most-frequent-sense baseline.

Milne and Witten (2008b, 2009) propose a three stage approach to detect and disambiguate

Wikipedia topics in documents. In the Vrst step, candidate anchors are selected based on

their probability to be a link. In the second step, a classiVer predicts for every anchor the

probability of each possible target topic to be the correct ‘sense’. The classiVer is trained

on several hundred of random articles, using features such as the topic commonness (the

most frequent ‘sense’ is preferred) and the relatedness to the other ambiguous topics,

measured by a link-based relatedness measure (Milne and Witten, 2008a). In the third

stage, for every disambiguated topic another classiVer predicts how central it is to the

entire document. Topics which are very related to each other are sought, and speciVc

topics are preferred to more generic ones. The list of noteworthy topics is ordered based

on the predicted probability.

Commercial services exist which oUer a similar functionality, e.g., AlchemyAPI31 or

Zemanta32 and OpenCalais33, which also return the topics most relevant to a text

document. Wikipedia has become the de-facto reference repository of real-world entities.

Relation Extraction

The encyclopaedic nature and the uniform style of the articles in Wikipedia is appealing

for methods that extract relations between entities from plain text. Additionally, many

methods exploit the semi-structured text (infoboxes, templates, tables) and the links

(category assignment) in order to extract high accuracy relations and map them to

ontologies (see Section 2.4.4).

Extracting relations from plain text usually means starting with a set of known relations

(called seeds), such as capitalOf(Lisbon,Portugal). By extracting snippets of texts where

31http://www.alchemyapi.com/
32http://www.zemanta.com/
33http://www.opencalais.com/
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the known entities occur, examples of positive and negative contexts are automatically

identiVed and used to construct extraction patterns, e.g., ?x ( * ) is the capital and largest

city of ?y. Using these patterns, new text fragments are identiVed, and new 〈entity,

relation, entity〉 triples are extracted (Wu and Weld, 2007).

Wikipedia is well suited for such a task thanks to the wiki links: there are over 60 million

links in the article graph (WAG), and considerably more if we consider it a multi-graph.

In addition, since each article describes only one concept, all the entities mentioned in its

content are candidates for semantic relations, e.g., as the object in 〈subject,relation,object〉

triples. For example, in the article describing the Douro river all the links to articles

describing cities are candidates for the relation WowsThrough(Douro,?x). Thus the

link structure of Wikipedia and the category system can provide valuable additional

information.

Ruiz-Casado, Alfonseca and Castells (2007) use nouns from WordNet to identify new

relations in the Simple English version of Wikipedia34. They report accuracy of 61%-69%,

depending on the relation type. While this method is aimed at enriching WordNet

(discovering new relations between WordNet concepts), Ruiz-Casado, Alfonseca and

Castells (2006) apply a similar method to more general entity types. They extract pages

relevant to Vve topics and then apply the method to extract a set of eight relations:

birth-year, birth-place, death-year, actor-Vlm, writer-book, country-capital, country-

chiefOfState, player-club. They obtain high accuracy on the subset that corresponds to

the topic of each relation, e.g., 93% for player-club in the football subset, but the accuracy

is greatly decreased when the patterns are applied to the rest of the articles, e.g., 8% for

player-club. This suggests that the same surface pattern can express diUerent relations

depending on the domain, and that more semantic constraints are needed.

Wang, Zhang, Wang and Yu (2007) extract seed examples from the infoboxes. However,

they do not extract instances of the relations whenever the extraction patterns match.

34http://simple.wikipedia.org/
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Instead, they use selectional constraints in order to increase the precision of regular

expressions without reducing coverage. For example, for the directedBy(Vlm,director)

relation they obtain patterns such as: ?x (is|was) (a|an) * (Vlm|movie) directed by ?y. The

selectional constraint in this case means that ?x has to be a Vlm and ?y a person, in order

to extract a valid instance of the relation when the pattern matches. The authors report

precision and accuracy values above 90%.

Wang, Yu and Zhu (2007) propose a diUerent approach. They no longer use lexical

patterns, but rather extract features from the articles corresponding to the candidate

entities. These features include the head nouns from their deVnition and categories titles,

infobox attributes and terms that appear in sentences in which the two entities co-occur.

They use a special machine learning algorithm designed for situations when only positive

instances are available for training. Accuracy depends on the relation and the amount

of training data, ranging from 80% for the hasArtist relation to 50% for the isMemberOf

relation.

Wu and Weld (2007) propose a bootstrapping system that can automatically discover

missing links and enhance the taxonomic data and the infoboxes’ structure. They describe

a prototype of a semi-supervised machine learning system which accomplishes these

tasks on a subset of Wikipedia. Similar to previous approaches, they start with the data

present in the infoboxes in order to create training data. Their system, Kylin, trains two

classiVers. A document classiVer selects the most appropriate infobox for a given article

by using heuristics that try to Vnd a category very similar to the infobox title. Then a

sentence classiVer is trained using the data extracted from infoboxes. This classiVer tags

each sentence with the relation it is likely to contain. For each relation a CRF model is

trained in order to extract the triple from the sentence.

Wu and Weld (2007) go beyond simple relation extraction. They use a discriminant

rule model to recover links that are not marked in the wikitext. While the evaluation

performed on a subset of Wikipedia articles shows good results, it is possible that the

heuristics they use do not perform as well on the entire Wikipedia. Future improvements
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they propose include the enhancing of infoboxes by adding new Velds from similar

infoboxes, inheriting Velds from parent infoboxes using WordNet hypernymy relations

and replacing infoboxes that are either rarely used or just small variations of more popular

ones. The system is also sensitive to the amount and bias of the training data. In order to

be able to extract information for completing less popular infoboxes, Wu, HoUmann and

Weld (2008) extend the Kylin system by exploiting information from the Web. The new

system, K2, yields a substantial improvement in recall without compromising precision.

Most IE systems are developed to identify speciVc relations based on the available training

data. Their coverage is limited and performance drops if applied to a diUerent corpus.

TextRunner (Banko et al., 2007) pioneered an alternative approach: open information

extraction, where an unbounded number of relations are extracted from text in a domain-

independent fashion by automatically extracting the relation name as well as its two

arguments. Wu and Weld (2010) propose an open-IE approach based on Wikipedia

which also uses the infobox attributes to identify seed samples of relations in Wikipedia

articles. However, instead of learning specialised, lexicalised patterns, it builds relation

independent training data to learn an unlexicalised extractor. The best performance was

achieved using the path between the two arguments in the dependency tree.

These advancements open new avenues for semi-structured information access: retrieving

data using triples is no longer limited to a small set of relations with a constrained

expressive power, but open to a potentially unlimited set of relations, while still allowing

more control than keyword-based IR. Furthermore, using wikiVcation these triples can

be linked to Wikipedia topics, enabling a new generation of semantic search engines

which have IE at their core rather than IR. The following section presents extraction

mechanisms designed to exploit mainly the semi-structured information from Wikipedia

and make it available in a machine readable format.

2.4.4 Wikipedia and knowledge representation

Ontologies are a means of formally representing knowledge. In an ontology, concepts are

linked by relations and are described by attributes. Concepts usually denote classes of
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objects (such as person, country, band) while entities are instances of these classes, e.g.,

Nicolas Sarkozy, France, The Beatles. An ontology has three components:

1. the schema vocabulary: the classes and the relations amongst them, also known as

the terminology – T-BOX

2. the data: the instances of concepts linked using the schema vocabulary, also known

as the assertions – A-BOX

3. the ontology language: specifying, for example, whether the is-A relation is

transitive or not

The expressivity of the ontology language is what makes automatic inference possible. Its

complexity ranges from thesaurus level to description logics (e.g., OWL Lite, OWL DL),

full Vrst-order logics (e.g., OWL Full, McGuinness and van Harmelen, 2004) or higher

logics (e.g., the CycL language, Lenat and Guha, 1989, 1991).

DBpedia (Auer et al., 2008) is a project aimed at extracting information from Wikipedia

and making the data available on the Internet as RDF triples. It uses the category

hierarchy from Wikipedia in order to create classes of concepts. Attributes and relations

are extracted from the infoboxes, while the articles are instances of concepts. The RDF

data is exposed to the Semantic Web and is available for consumption by computers.35

The main source of information for the DBpedia dataset consists of the infobox templates

used in the Wikipedia articles. As shown in Section 2.3, infoboxes are a particular case of

templates which are used to display information that is stored as attribute-value pairs

(see Figure 2.2b). For example, from the article describing England, the template infobox

country can be used to extract the relation hasCapital(England, London) and the attribute

populationTotal(England, 49,138,831). Extracting structured data form articles is not

a trivial task. Wikipedia, being a collaborative eUort, is sometimes inconsistent and

ambiguous, and contains contradictory data, errors and even spam. In many cases the

35see http://dbpedia.org for details
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same meaning is represented inconsistently, e.g., three diUerent relations with the same

meaning: dateOfBirth, birthDate or birth_date. These problems are generated by the fact

that Wikipedia is intended to be read by humans, who can easily view and understand

the generated HTML document using a Web browser.

Initially, DBpedia was only concerned with making the infobox content available as RDF

data, and did not even attempt to create a taxonomy of the concepts. Apart from the

infobox relations directly extracted from the infoboxes, only the category links were

extracted and labelled with the relation isRelatedTo. The RDF data was only meant

to be machine readable, and it was not intended for automatic inference (i.e., not a

true ontology). Version 3.1 of DBpedia (released in August 2008) included a core OWL

ontology comprising 170 classes and 900 class properties. This ontology is very Wat: the

path to Andre Agassi is Resource→ Person→ Athlete→ TennisPlayer, while for Albert

Einstein it is Resource→ Person→ Scientist. This enables many diUerent names that exist

for the same relation to be uniVed (mapped to the same ontology property, in this case

Person#birthdate). The latest version of DBpedia has more than 1 billion of RDF triples, a

quarter of which were extracted from the English language version of Wikipedia alone.

One of the shortcomings of the Wikipedia category graph is that the category types are

not explicit. Links to list categories (as mentioned in Section 2.3) correspond to the

hypernym ↔ hyponym relations of type is-A. This relation is very important in QA

(and other NLP applications as well) because it encodes the types of each entity. Topic

categories can introduce erroneous is-A relations, with a negative impact on the overall

performance of the system.

The ambiguity of is-A category links is tackled by Yago — Yet Another Great Ontology

(Suchanek, Kasneci and Weikum, 2007a,b). This is an ontology that maps Wikipedia leaf

categories to WordNet synsets. For example Category:People from Paris is a subClass

of wordnet_person_ 100007846. By assigning the WordNet synsets to Wikipedia articles

based on their categories, a large concept taxonomy is produced. On top of it, several

heuristics are employed for extracting further relations to add to the knowledge base.
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For example, person names are analysed in order to diUerentiate between given and

family names, adding relations like familyNameOf(Albert Einstein, “Einstein”), while

other heuristics extract relations from the category names, for example bornInYear,

establishedIn and locatedIn. Yago provides formal inference capabilities, using its own

language. The data is available online as RDF triples.36 A manual veriVcation showed

that average accuracy for all relations was above 90% (Suchanek et al., 2007a).

Both DBpedia and Yago are part of the Linking Open Data (LOD) project37. Thus, they

are interlinked and entities have dereferentiable URI identiVers, i.e., the data for each

resource is available online and can be accessed using a Semantic Web browser. The

greatest achievement of the LOD project is the interlinking of DBpedia with other data

sources: the LOD Cloud38 (see Figure 2.3). The most relevant datasets for this research

are39:

• Geonames, Eurostat and World Factbook: three important datasets providing

up-to-date geographical information and statistics about places and countries

• OpenCyc and WordNet: two important semantic networks, which provide

accurate is-A links

• Linked MDB, Music-brainz and RDF Book Mashup: datasets providing

information about Vlms, musical artists and books, respectively.

Another project that extracts relations from Wikipedia is WikiTaxonomy (Zirn, Nastase

and Strube, 2008; Ponzetto and Strube, 2007a). Explicit relations are extracted by splitting

the category title. For example, given an article ?x from Category:Movies directed by

Woody Allen they extract triples like directedBy(?x, “Woody Allen”) and isA(?x, “movie”).

More importantly they use heuristics to extract implicit relations from categories like

Category:Albums by The Beatles. Articles directly linked to this category are marked

36http://www.mpi-inf.mpg.de/~suchanek/downloads/yago/home.htm
37http://esw.w3.org/topic/SweoIG/TaskForces/CommunityProjects/LinkingOpenData
38http://www4.wiwiss.fu-berlin.de/lodcloud/state/
39a comprehensive list is found at http://esw.w3.org/topic/TaskForces/

CommunityProjects/LinkingOpenData/DataSets
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Figure 2.3: Linked Open Data cloud diagram, by Richard Cyganiak and Anja Jentzsch.
http://lod-cloud.net/
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with the relation is-A(?a, “album”) but also artist(?a, “The Beatles”), and for articles

that represent songs on the album, the implicit relation artist(?song, “The Beatles”).

They extract a total of 3.4 million is-A and 3.2 million spatial relations (e.g., locatedIn),

along with 43,000 memberOf relations and 44,000 other relations such as causedBy and

writtenBy. These relations are not part of a formal ontology (just assertions, no inference

capabilities), but they can be merged with other datasets (e.g., the DBpedia dataset) or

mapped to an ontology.

Freebase40 is to structured knowledge data what Wikipedia is to encyclopaedic

knowledge: a collaborative eUort in which users contribute facts and create an ever-

growing knowledge base. As is the case with other resources, the focus is not fostering

automatic reasoning, but rather making data machine-accessible. Following Semantic

Web vision, applications that automatically aggregate data from several sources can

be easily developed, creating informative new views, i.e., mashups. Most of the initial

facts were extracted from Wikipedia. The mapping links between Freebase and DBpedia

resources are part of the LOD cloud.

2.4.5 Wikipedia and question answering

Wikipedia articles span numerous domains (coverage) and oUer a great deal of detail

(factual information), which makes them a promising source of answers. The fact that

each article starts with a brief deVnition is exploited by Web search engines like Google

(the deVne: operator) and Ask.com (queries starting with What is . . . or Who is . . . ),

which return the deVnition from the relevant Wikipedia article. The encyclopaedia has

also been used by QA systems in academic competitions, at Vrst as an additional resource,

and more recently as the target document collection.

In the TREC QA Track41, Wikipedia was used for the Vrst time in the 2004 competition.

Lita, Hunt and Nyberg (2004) only used the entities from Wikipedia as an additional

40http://freebase.com
41http://trec.nist.gov/data/qa.html
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gazetteer and found that it had a possible answer coverage higher than traditional

resources such as WordNet, Geonames and CIA World Fact Book. Ahn et al. (2005)

used Wikipedia, amongst other sources, to locate relevant articles and extract candidate

answers.

The QA@CLEF Track42 is another popular forum for evaluating QA systems.

Monolingual and cross-lingual QA are addressed by providing corpora and tasks in many

diUerent languages. Along with traditional newswire collections, a Wikipedia HTML

snapshot (from November 2006) was used as a target collection. Participants generally

transformed it to plain text and ignored the structure of the encyclopaedia, therefore

their systems are of little interest from the point of view of the method proposed in this

research. However, Wikipedia articles received special attention mainly for deVnition

questions like What is a Top Quark? or Who is the president of France?. Additionally,

the inter-wiki links were examined in order to better address translation issues in the

cross-lingual tasks (see Dornescu, Puşcaşu and Orăsan, 2008).

WiQA43 was another CLEF Track speciVcally designed for Wikipedia. It was aimed at

assisting Wikipedia contributors when editing an article, by suggesting snippets from

related articles that contain relevant information which should be added to the article

(Jijkoun and de Rijke, 2007). Participants mainly used a bag-of-words similarity measure

to identify related articles and then employed a ranking method to select paragraphs that

contained novel information.

In 2007, the Initiative for Evaluation of XML Retrieval (INEX)44 organised an Entity

Ranking Track in which systems had to return a list of relevant Wikipedia entities in

response to queries (de Vries et al., 2008). Vercoustre et al. (2007) used an adapted

PageRank algorithm and combined Wikipedia features with a standard search engine,

doubling the performance of the search engine alone. The track was organized again in

42http://www.clef-initiative.eu/track/qaclef
43http://http://ilps.science.uva.nl/WiQA/
44http://www.inex.otago.ac.nz/
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2008 along with a new Question Answering Track which also used Wikipedia as target

document collection. It is important to note the entity–article duality in these tasks.

GikiP (Santos et al., 2008), a pilot task that exploited Wikipedia structure, was organized

at GeoCLEF in 2008 (see Section 4.2). Its purpose was to foster the development of

systems able to return a list of entities from Wikipedia that correspond to a topic that

has some sort of geographic constraint. The task was multilingual (English, German and

Portuguese) and the topics were translated into all participating languages, to facilitate

system development.

GikiCLEF (Santos and Cabral, 2009a,b) was the successor of GikiP organised at CLEF

in 2009. The focus on geographically motivated questions remained, but the number of

languages was increased to ten, and the total number of topics was also increased. It

attracted more participations, covering open-domain QA systems, interactive information

retrieval and novel semantic QA approaches.

This thesis proposes a novel QA approach which was tested in GikiP and GikiCLEF. The

generic architecture is described in Chapter 3. Details of the system components and the

system’s results are presented in Chapter 4.

2.4.6 Conclusions

This chapter gave an overview of previous works to contextualise the research pursued

in this thesis along two aspects: Vrst, introducing question answering and the main types

of QA systems; and second, illustrating the potential of Wikipedia in various NLP Velds

relevant to QA research.

The standard architecture of open-domain QA systems was presented in Section 2.2.2,

with an emphasis on textual QA – systems which rely on an information retrieval engine

to identify relevant text snippets based on their words rather than on their meaning. The

next chapter will further analyse various limitations which aUect this type of system
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and which are inherent in their design, arguing that to overcome these limitations new

semantic approaches which exploit world knowledge are needed.

Wikipedia, a large repository of human knowledge, is a pivotal resource with tremendous

potential for NLP and QA research. Section 2.3 described how Wikipedia is structured

and deVned the terminology used throughout the thesis. Section 2.4 reviewed several

NLP studies in the Velds of information retrieval, information extraction, knowledge

representation and semantic relatedness, which exploit the semi-structured content of

the encyclopaedia. The majority of these studies create tools or resources which can be

directly employed by the diUerent NLP components of a QA system.

Using Wikipedia as a resource opens up the possibility for QA systems to use world

knowledge and to perform simple forms of common-sense reasoning which could

allow more diXcult questions to be answered. Chapter 3 proposes a novel semantic

QA approach which builds upon these ideas. Chapter 4 describes a QA system that

implements the approach and directly exploits Wikipedia at a semantic level.
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Chapter 3

Novel Approach for

Encyclopaedic Question Answering

3.1 Overview

This chapter proposes a paradigm shift in open-domain question answering from the

textual approach, built around a keyword-based document retrieval engine, to a semantic

approach, based on concepts and relations. Section 3.3 presents some of the problems

aUecting state-of-the-art textual QA technologies. Section 3.4 advocates that a paradigm

shift is necessary to address these problems and to enable more complex question types.

Section 3.5 proposes a novel architecture for semantic QA systems which exploit world

knowledge extracted from encyclopaedias at a semantic level. The key issues regarding

this innovative approach and its challenges are then outlined.

3.2 Textual QA

The Internet has started a “digital revolution”, changing the way people communicate,

the way they publish and access documents and the way they interact with each-other.

As the amounts of information available started to grow exponentially, the need to Vnd

documents on the Web gave birth to search engines such as Yahoo! and Google which

allow users to search for web pages based on the words they contain.
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One of the limitations of such Information Retrieval (IR) engines is that they are designed

to retrieve documents. When a user is not searching for a document but for a very speciVc

piece of information, he has to retrieve relevant documents using the IR engine and then

examine them to manually locate the speciVc information sought. Sometimes the user has

to repeat this tedious process, adjusting his query until he Vnds, in one of the retrieved

documents, a paragraph containing the exact piece of information he was looking for.

For some types of factual information needs, this process can be very repetitive and

could lend itself to automation. Towards the end of the 20th century, open-domain QA

was touted as the key to address this problem: users would not be limited to searching

documents using complex keyword-based queries, but instead leverage NLP technologies

and ask natural language questions: the computers would search for relevant documents

and extract the answer on behalf of the user.

This proved to be an elusive vision. Answering questions, in its general form, is an

AI-hard problem: computers need to posses extensive world knowledge as well as a

number of human cognitive/intellectual skills. In general, natural language questions

can cover any topic. Most information processing tasks can be phrased as natural

language questions: summarisation, information extraction, reading comprehension,

politics, maths, physics, philosophy and so on. Questions are also employed in tests

meant to asses human abilities and skills, e.g., essay, multiple choice or short answer

questions.

Because questions can be very complicated, QA research has focused on types of questions

which deal with less complex information needs. As shown in section 2.2, closed-domain

QA limits the necessary amounts of world knowledge to what is explicitly modelled

when building the domain speciVc system, open-domain QA limits the types of questions

addressable to those which can be answered by a single textual snippet, such as deVnition,

factoid or list (enumeration) queries, while canned-QA systems are limited to huge

collections of Q&A pairs, focusing on retrieving the ones that best match what is asked.
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In open-domain QA, evaluation fora such as TREC1 and QA@CLEF2 have been

instrumental in shaping the Veld: they helped create a community and provided

common means to objectively compare systems’ performance. Having an IR origin,

they have focused on questions which can be answered by a single textual snippet, such

as deVnitions or factoid questions, envisioning a gradual increase in question complexity

(Burger et al., 2000). While there are strong arguments supporting the use of a controlled

question taxonomy, the limitation to single-snippet answers imposed a signiVcant

constraint on the amount of information systems need to take into consideration: the

underlying hypothesis is that the context of a snippet does not aUect the answer. As

shown in section 2.2.2, textual QA approaches are essentially ‘smart’ paragraph retrieval

systems, enhanced with extraction and ranking. They focus not on understanding

text, but on identifying the snippet most likely to answer the question. Aggregating

information from multiple documents usually means re-ranking candidates based on

their frequency.

Despite the interest generated and the amounts of research dedicated to this topic, the

open-domain QA vision has not yet materialised and it has made little impact on the

way people search information on the Web. The next section will outline some of the

factors that contributed to the relatively limited success of QA.

3.3 Criticism of textual QA

There are many obstacles that prevented textual QA from becoming a viable alternative

to Web search engines. This section examines some of the key factors which have a

negative impact on the performance of state-of-the-art textual QA systems, as well as

factors which hinder user adoption of QA technologies. Section 3.3.1 presents common

sources of natural language ambiguity which aUect NLP tools in general, and textual QA

1Question Answering Track at the Text REtrieval Conference http://trec.nist.gov/data/

qamain.html
2Multi Lingual Question Answering Track http://nlp.uned.es/clef-qa/
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in particular. Section 3.3.2 then argues that textual QA systems are diXcult to extend

to more complex types of questions, because they are too focused on factoid questions.

Section 3.3.3 describes the role of QA evaluation campaigns, which focused almost

exclusively on batch performance, thus favouring the development of non-interactive

systems, rather than aiming to enhance the “perceived performance” experienced by

human users.

3.3.1 Natural language ambiguity

What makes textual QA a diXcult task is the complexity of processing highly ambiguous

natural language. Ambiguity aUects both humans and machines, but to diUerent

extents. Humans use their knowledge of the world to disambiguate amongst possible

interpretations of natural language and are much less likely to get confused by apparently

simple input. While misunderstandings among humans are not only possible, but

frequent, computers lack similar knowledge representation abilities and get confused

much easier.

The reason why machines Vnd it hard to process text is because of the way meaning

is expressed in natural language. On the one hand, the problem is that the same form

can encode diUerent meanings and selecting the correct one usually depends on context.

Failure to disambiguate the correct meaning leads to a decrease in precision, as irrelevant

data is retrieved. On the other hand, the converse problem is that the same meaning

can be encoded in diUerent forms. This causes a decrease in recall when the system is

unable to Vnd all the relevant information. Ambiguity can arise at diUerent levels of

representation.

Lexical ambiguity is the simplest form of ambiguity. It is caused for example by

homophones in speech (words with the same pronunciation but diUerent meaning, e.g.,

to, too, two) or homographs in writing (same spelling, diUerent meaning, e.g., port: a type

of wine or a city by the sea). Polysemy is a particular case when homographs have related

meanings (e.g, bank the building or the Vnancial institution). These phenomena cause
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imprecise retrieval. The converse eUect (poor recall) is caused by synonyms (diUerent

words having the same meaning, e.g., association football and soccer), especially when

words are partial synonyms (depending on context, e.g., a long or extended period of

time vs. long arm and extended arm). The problems are similar when it comes to named

entities: one entity can have diUerent aliases (Paris, the French capital, Leucetia), while

one name can denote/refer to diUerent real world entities (Paris – capital, Vlm, legendary

Vgure, etc.). Other lexical-semantic relations such as hypernymy and hyponymy (the

relations between general and speciVc terms, e.g., colour and red) have similar eUects.

Syntactic ambiguity is another type of ambiguity. The most common type of problem

is caused by prepositional phrase attachment (e.g., the classic example “I saw the man on

the hill with the telescope”, Newell 1993). This is a case of surface-structural ambiguity:

diUerent syntactic parses convey diUerent semantic interpretations of the text. Finding

the correct parse usually requires a certain level of common-sense reasoning, combining

world knowledge and contextual information. In the given example, replacing man with

star or telescope with forest preserves the same part-of-speech sequence, but changes the

more likely reading of the sentence. A state-of-the-art syntactic parser cannot distinguish

between these examples unless they were present in the training data. In contrast, a

system that works with concepts could determine, for example, that it is more likely to

use a telescope to look at stars than at people, and that it makes little sense to use a forest

as a seeing instrument. This type of ambiguity is particularly important for questions

because constraints are often expressed as prepositional phrases.

Semantic and pragmatic ambiguities are more diXcult to tackle. In the case of deep-

structural ambiguities, two or more readings of a sentence are possible despite having the

same parse tree, as in, e.g., Mary likes horses more than John. It is even more challenging

to tackle coreferential and anaphoric ambiguities, such as: “John kissed his wife, and so

did George.” – whose wife did George kiss? Other ambiguity sources are phenomena

such as metonymy (when a concept is replaced with the name of something intimately

associated with it, e.g., Downing Street instead of the British Prime Minister’s OXce)
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and synecdoche (when a speciVc part of something is used to refer to the whole, e.g., I

have three mouths to feed). Ambiguity can reside also at the pragmatic level, when the

correct interpretation depends on the context: “Do you know the time in Paris?” – where

both “Yes” and “GMT+1” are valid answers, but not necessarily informative because the

person asking the question probably wants to know the actual time.

These are but a few sources of ambiguity that aUect the performance of NLP tools.

Realistically, ambiguity cannot be completely eliminated as utterances can be themselves

deliberately ambiguous. There is a further obstacle: inferences such as presupposition

and entailment help humans recover additional information, bridging the gap between

what is explicitly stated and what is implied. This ability cannot be reproduced by current

automatic techniques.

3.3.2 Design issues

Textual QA systems cannot deal properly with the issues described in the previous section

because they were not designed to do so: systems simply exploit the similarity between

certain types of questions and corresponding answer bearing snippets by primarily

using lexical resources (usually dictionaries, thesauri, or knowledge from WordNet).

Although answering questions is a complex task, standard QA systems have focused

almost exclusively on the surface, textual side of the problem. This skewed the focus of

QA research towards devising ever more complex retrieval mechanisms and conVdence

estimators for answer extraction. In this section, it is argued that the generic architecture

employed in standard textual QA systems is inherently limiting both the achievable level

of performance as well as the extensibility of the system.

The way QA systems usually deal with ambiguity is by employing existent NLP tools

(from part of speech taggers and parsers that address lexical and syntactic ambiguities,

to anaphora resolvers, named entity recognisers and word sense disambiguators) which

try to “augment” plain text by adding annotation layers on top of each other, in order

to construct a richer, deeper semantic representation. NLP tasks can be solved more or
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less successfully and there is a plethora of tools that were developed to address them

individually. However, the fact that in free text usually multiple ambiguity sources

manifest simultaneously makes it even more challenging for a QA system to correctly

interpret and understand the meaning of natural language.

Besides the fact that most tools assume perfect input, which is not the case in a NLP

processing pipeline, they usually have exactly one output: the most probable given the

input. By delegating the responsibility of solving ambiguity to general purpose tools, QA

systems are eUectively ignoring ambiguity. Using a sequential pipeline of tools tends to

accumulate errors rather than eliminate them.

In order to achieve a good performance in the standard evaluation campaigns, most of

the current textual QA systems are designed to pinpoint a small text snippet – usually

a paragraph or a sentence – from the document collection that contains the answer.

QA systems are usually unable to reliably extract the answer if such a snippet does

not exist and the information necessary to compile the answer is spread across several

documents, or requires analysing structured data such as tables. As shown in Section 2.2,

most systems employ multiple extraction strategies and rank the candidate answers

based on aggregated conVdence. This ranking approach is limited to simple factoid

answers, because textual QA systems lack the semantic representations necessary to

reliably combine diUerent pieces of information.

Another shortcoming of current textual QA systems is that they usually remove document

meta-data. Because the document collections that were initially used in open-domain

QA consisted mainly of newswire articles, systems usually transform all the documents

to plain text in order to perform standard keyword-based document retrieval. Valuable

information is ignored when, for example, the hyper-links from Wikipedia articles or

links from newswire corpora are removed.

In this research, it is argued that QA systems should make full use of all the data and

meta-data present in documents. Of particular interest are hyperlinks since they point
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to other documents that are related in some way, providing a “hyper-context” of the

document in the collection. Ignoring the hyperlinks means that the documents are treated

independently (they do not have a context, they just have words in common). QA should

focus on entities, e.g., documents that talk about the same individuals, rather than on

words, e.g., documents having similar words. Link analysis could help reveal connectivity

patterns that reWect a semantic similarity between documents (Thelwall, 2004).

3.3.3 Perceived performance

The open-domain QA roadmap (Burger et al., 2000) envisioned addressing increasingly

complex questions. However, state-of-the-art performance is acceptable only for simple

factoid and deVnition questions. This causes systems to be perceived as unreliable and

feeble, as users are likely to ask questions which the system is unable to answer correctly.

An important issue is the amount of time required to identify the answer: the CLEF

campaign allowed systems up to 5 days to answer 200 questions. While in practice

this was more than suXcient, by comparison, Web search engines return results almost

instantly, even while the query is being typed.

The TREC evaluation metrics are in line with the IR tradition: the number of correct

results in the top 10 or 20 answers. The user still has to check each answer and

accompanying snippet, the way they do when using a standard search engine. The

combination of limited coverage and low accuracy make textual QA systems a poor

alternative to Web search engines which are already familiar to all Web users.

Perhaps one of the biggest factors limiting QA is the fact that the performance achieved

does not justify the user interface paradigm adopted: that of a single interaction

communication paradigm: one request – one response. QA systems are designed as ‘black

boxes’: users are presented with the Vnal results. Mistakes occurring at any intermediate

stage of the complex processing pipeline propagate and result in erroneous answers. The

complex processing steps are diXcult to debug, even by the developer: each answer has

to be manually traced in order to determine the error sources. This is a tedious task, and
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most published research tends to evaluate modules individually, isolated from the other

components. This makes it diXcult for the system to learn from past experience, as the

evaluation is performed end-to-end and modules interact in complex ways.

Open-domain QA research had a substantial surge in interest during the last decade, with

a very active community. Despite many variations and enhancements which have been

proposed over the years, QA systems that rely mainly on processing text using NLP tools

are still conVned to the laboratory, far from becoming a true natural language alternative

to search engines. The main cause is probably the speciVcity/narrow coverage of QA

systems compared to the generality of IR systems. Research drifted towards complex IR,

instead of trying to incorporate world knowledge. The term “open-domain” is, in this

respect, a bad choice as it implies the ability to answer any question, in the way a human

can. Unfortunately, this is not yet the case and users are likely to feel disappointed with

the performance of available systems and quickly go back to their favourite Web-search

engine. To address this problem, a new paradigm is proposed in the next section.

3.4 Proposed approach: paradigm shift

The textual approach has prevailed because computers do not have common-sense or

reasoning abilities resembling those of humans. As existing technology does not enable

machines to ‘understand’ the contents of a textual document, standard textual QA

systems rely instead on the similarity between the question and the answer-bearing

snippet. While this approach is suitable for some types of questions, it cannot address

questions whose answers are not contained in one text snippet. As new resources have

become available, the time is now right to add more semantic processing to the QA

task. Wikipedia has already proved transformational in several Velds of NLP, as shown

in Section 2.4. It amasses large amounts of encyclopaedic information which could

be readily exploited as world knowledge, especially since extracting structured data is

currently a very active and successful research area. Wikipedia is already a knowledge

hub for connecting various data sources. The emergence of a web-of-data, the availability
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of linked-open-datasets, and the amounts of information represented in ontologies, which

aUord a certain level of automated inference, prompt us to propose a new approach to

QA: an architecture which is built around concepts rather than words to allow linking

the vast amounts of textual information available to the formal representations enabling

simple inference. This new approach would help QA systems Vnd answers when the

supporting information is spread across several documents.

The massive amounts of RDF data available are an essential resource for reinvigorating

QA research according to the proposed approach. This thesis advocates shifting the focus

from the widely accepted textual QA to an encyclopaedic factual QA in which Vnding

answers means combining various pieces of supporting information. One way to achieve

this is by linking free text to a structured knowledge base. To do so, systems need to

identify and disambiguate entities and their types, properties and relations. The aim is

not to create a formal, rigid, unambiguous ontology that empowers formal reasoning and

inference, as is the case in closed-domain ontology-driven QA, but instead to combine

using structured data and semantic links, with aggregating heterogeneous knowledge

sources and accessing free text. Advances in information extraction, ontology mapping

and probabilistic reasoning make it possible to leverage semantic resources to employ

simple inference methods.

Building QA systems around concepts using Semantic Web technologies means that

systems can take advantage of structured data-sources. For example, a system does

not need to extract the birth date of an actor from news-wire articles using the textual

approach, because this information is likely to be already available in a structured format

in IMDB, Freebase or DBpedia and can be queried directly. The QA system can evolve

from the current IR approach towards an encyclopaedic approach where systems use an

IE framework to extract semantic data from text. Using semi-structured data allows a QA

system to focus on integrating existent resources and deciding which data sources need

to be queried for relevant information, regardless of their textual or structured nature.

Answering questions is seen more as a higher-level integration problem rather than as a
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complex retrieval ‘script’. Of course, a system cannot rely exclusively on existing external

databases: it should use IE tools to actively extract new data to continuously populate

and update its knowledge base and it should also expand its coverage by incorporating

new semi-structured datases. This also enables eXcient data access mechanisms by

limiting the amounts of information that need to be extracted from raw data at query

time.

To achieve this in an open-domain setting, it is essential to exploit Wikipedia. Current

systems usually use the encyclopaedia as source for lists of named entities or as an

additional textual collection. To fully exploit its contents, new QA systems should use

Wikipedia as a backbone for representing world knowledge, albeit in an underspeciVed

semantic format. For example, there are various links from the page describing Fernando

Alonso to pages such as Formula 1, Renault, Ferrari and Red Bull Racing but they only

imply a possible relation. The QA system can exploit these links simply as proof that

a semantic association between entities exists. Automatically distinguishing diUerent

types of relations can provide the type of information necessary to answer questions, e.g.,

distinguishing the Formula 1 teams the champion drove for from the ones he did not.

Web of Data resources such as DBpedia and the LOD Cloud previously mentioned in

Section 2.4.4 allow machines to access the contents of Wikipedia at a semantic level, rather

than an annotated lexical level. Instead of performing classic keyword retrieval, systems

can browse the concept graph and search for patterns that help uncover semantically

relevant information. In addition to lexical similarity based on a bag-of-words document

representation, QA systems should also employ semantic relatedness measures such as

explicit semantic analysis (ESA) or Wikipedia Miner (WM) described in Section 2.4.1.

Besides, semantic similarity measures can also be developed to distinguish documents

which are similar because they discuss the same entities from documents which describe

similarly typed entities, e.g., to distinguish documents describing the Eyjafjallajökull

volcano from documents describing the same type of eUusive eruptions as the one which
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occurred in 2010.3 Another advantage of the concept-based approach is that systems

can deal with eponymous entities when their mentions are disambiguated and linked

correctly. This also enables systems to Vnd relevant information regardless of the actual

alias present in a particular document. Evolving from analysing plain text towards

processing semantically enriched text requires a large repository of entities and the LOD

Cloud is a strong candidate for this role.

One way to foster the development of such systems is to employ more diXcult questions

in the shared evaluation campaigns. Questions are more diXcult to answer if QA systems

have to gather and integrate various pieces of support information from distinct sources

in order to extract a correct answer. Open list questions are such an example because

the system does not know how many correct answers exist and at the same time it is

unlikely that all of them are simply enumerated in some paragraph of the document

collection. This means that, instead of searching for the most likely candidate answer,

a QA system has to verify all the possible answers. Another type of questions which

are also diXcult to answer are the so called “complex questions” (Diekema et al., 2004;

Harabagiu et al., 2001, 2006). They usually contain several modifying prepositional

phrases and can be regarded as a composition of constraints regarding events, entities,

relations and attributes. Typically, relevant information for these kinds of questions is

spread across various documents and/or data sources. These pieces of information need

to be fused together to produce a Vnal answer.

Complexity should be focused on integrating information rather than on performing

human-like inference such as deduction, entailment or presupposition. To do so, systems

need to manipulate concepts rather than just words, tokens and chunks of text. Newer

campaigns, such as the GikiCLEF task4 or the INEX Entity Ranking task5, focus on list

questions, while the 1st Workshop on Question Answering over Linked Data6 (QALD-

1) Open Challenge addresses the problem of translating natural language questions

3http://en.wikipedia.org/wiki/2010_eruptions_of_Eyjafjallajökull
4http://www.linguateca.pt/GikiCLEF/
5http://www.inex.otago.ac.nz/tracks/entity-ranking/entity-ranking.asp
6http://www.sc.cit-ec.uni-bielefeld.de/qald-1
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into a form that can be evaluated using standard Semantic Web query processing and

inferencing techniques.

The distinction between response and answer needs to be emphasised. Besides results,

a response should suggest ways to reVne or clarify the question. In case the results are

inaccurate, a human user can provide feedback to the system e.g., by selection from a list

of suggestions or by modifying the question. A subsequent response can thus have more

relevant answers and the system can collect data to improve its performance. End-to-end

performance may be a good way to compare systems, but it might not reWect whether or

not people Vnd a certain system useful as an information access tool. One way to involve

human users in evaluation campaigns is to consider limited time sessions. The number of

correct answers that a user Vnds assisted by the system should correlate with real-world

performance. This would foster research and development of QA systems which help

actual users Vnd information, complementing other search tools.

3.5 Semantic architecture for open-domain QA

The previous section argues that a paradigm shift is necessary to develop new QA systems

capable of addressing more complex questions. This thesis proposes a novel approach that

can be seen as a hybrid between textual QA, based on IR, and semantic QA, based on IE

and Semantic Web technologies. The architecture described in this section combines both

structured and unstructured data to analyse questions, identify answers and generate

responses. The paradigmatic shift consists in that the architecture does not have words

at its core, but concepts, i.e., classes, instances, relations and properties. This allows the

aggregation of information from across data sources, combining textual information with

structured and semi-structured data in a way that enables primitive forms of inference in

an open domain.

In this new approach, answering questions is a process involving two main phases: a)

the analysis phase, which is responsible for understanding the question and identifying
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answers, and b) the feedback phase, responsible for interacting with the user. The

purpose of the latter is two-fold. Firstly, it should provide a more eXcient interface

between the human and the machine, allowing, for example, disambiguation, justiVcation

and presentation of additional information using interactive interfaces, enabling QA

as a useful tool for information search. Secondly, use data could be collected for user

modelling and extracting feedback information from the logs. This will allow the system

to ‘remember’ both errors and successes. Developing such interfaces pertains to the

domain of human-computer interaction, and is not the focus of this thesis.

The data model adopted in the semantic QA architecture is closely related to conceptual

modeling approaches such as entity-relationship models, entity–attribute–value models

and RDF7 models. Each entity corresponds to a node in a graph and has relations with

other nodes, such as wrote-novel or president-of and attributes, such as population-size

or date-of-birth. This model facilitates the aggregation of information from various

sources as needed at query time. For example, instead of having Paris as an entry in the

LOCATION gazetteer, this model allows a QA system to “know” that Paris is a Roman

establishment, an European capital and a French city, to “know” its population size, its

mayor, what universities it has, and so on.

By putting the concepts at the centre, a QA system can directly use non-textual resources

from diUerent NLP sub-Velds (e.g., IE, KR as shown in Section 2.4), meaning that

questions which have answers beyond the scope of a particular passage can be addressed.

Systems should use structured data available from authoritative sources, and only extract

information from text if necessary. In this uniVed approach, text is no longer a bag of

words and entity names, but a context which refers to classes and instances, embedding

their properties and relations. During pre-processing, textual documents should be linked

to the unique identiVers of the concepts and entities it mentiones. For example, given

a question about Paris (France), the system should not retrieve passages containing the

keyword “Paris”, the way textual QA systems typically do, but instead retrieve only those

7http://www.w3.org/RDF/
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Figure 3.1: Generic architecture for open-domain QA

snippets which refer to the French capital (increased precision), even if not mentioning

its name explicitly (increased recall).

One of the key ideas behind the proposed architecture is its ability to address ambiguity.

Rather than employing a pipeline of standard NLP tools to disambiguate the input

and produce the most probable output, the system must be aware of diUerent sources

of ambiguity and be able to deal with them directly during processing. Humans use

common sense and their knowledge of the world when understanding and interpreting

questions. To compensate for the lack of such abilities, during the analysis phase the

system must generate all possible interpretations and rank them based on prior likelihood,

their potential results and the context of the session. In the feedback phase, the system

should be able to explain its ‘understanding’ of the question, and the criteria justifying

the answers.

The three challenges posed by this architecture are: mapping natural language questions

to semantic structures (‘understanding’ the question), representing available information

according to the semantic model (Vnding and validating answers, integrating data

sources), and generating metadata to enable feedback and interaction.
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3.5.1 Analysis phase

In the Analysis phase the system performs question analysis and searches its knowledge

base to identify possible answers and validate the correct ones (Figure 3.1). This phase

corresponds to the main processing steps in the standard textual QA approach: question

analysis, document retrieval, answer extraction and validation. Using a concept-centric

representation enables atomic conditions in the questions to be addressed independently

by specialised components. A linguistic analysis of the natural language request is

initially carried out by the question analyser to determine the question type and to

identify possible sub-questions and conditions. This yields probable grammatical clues

regarding the structure of the question. The question interpreter then tries to map parts

of the question to high-level semantic constraints. A possible “understanding” of the

question consists of a composition of semantic constrains, information regarding the

expected answer type and regarding the entities and the concepts mentioned by the

question. Multiple question interpretations (QIs) are generated to reWect both uncertainty

regarding the type of the constraints and how they should be combined. All the generated

QIs are ranked and Vltered by the QI manager enabling the system to address the most

likely ones Vrst.

For each generated QI, the system will search its knowledge base to Vnd correct answers:

named entities which satisfy the constrains speciVed by the question interpretation. The

answer extractor no longer relies on a keyword-based IR engine, but on constraints

veriVers: high-level processing primitives which make use of specialised methods and

resources to check which named entities satisfy a particular type of constraint. Depending

on the nature of these veriVers diUernt strategies need to be employed to minimise

processing time. Because multiple veriVers are used, the answer validator needs to

normalise and aggregate multiple conVdence scores to Vlter the list of answers.

During question interpretation the key issue is ambiguity: the same span of text can be

part of several nested constraints and it could be read in diUerent ways. Classic concepts
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such as question type and expected answer type remain of interest, but they are part of

the interpretation, and are no longer unique (Vxed in the Vrst step). The analysis tries to

Vnd instances (i.e., entities, either singleton - Portugal, or ambiguous - Paris), concepts

(i.e., classes and types, either titles of category pages or RDF instances of WordNet and

Cyc, and relations (based on the name of the relation, e.g., bornIn). Exact matches

have the highest score, but additional hits may come from fuzzy matches: anchor text

of hyperlinks, disambiguation links or RDF aliases. From verbs, the system can use

lexico-semantic heuristics to Vnd possible relations and properites from the RDF data.

The system also tries to Vnd prepositional phrases or subordinate clauses and then

identify the correct antecedent. The question is viewed as a sequence of constraints that

have to be combined in a meaningful way. This is particularly true for encyclopaedic

questions which are structurally complex.

Depending on the interpretation, the system can synthesise a simpliVed question, e.g.

removing a constraint, and pass it to the question analyser. This can be used, for example,

to compare the structure of the two questions. This shows that this architecture is

not a strictly feed-forward pipeline, in contrast to the typical approach adopted by

open-domain QA systems.

In this phase three types of ambiguity need to be addressed:

• class ambiguity: in an open domain it is very likely that a simple phrase used

to specify a type of named entities can be interpreted in multiple ways by the

system, depending on the breadth of its coverage, for example, “football player”

is an ambiguous type because football covers several sports: association football

(soccer), American football or Australian football. Usually the phrase needs to

be automatically mapped to an intersection of more generic classes, which is

challenging in an open domain;

• instance ambiguity: the larger the knowledge base the more collusions between

entity names (eponyms), e.g.,“Bush” can refer to persons, brand names, locations,

69



band names, an aircraft carrier and other entities. When an ambiguous name is

found in the question, the system needs to address all the possible entities; the

problem also manifests when searching for factual evidence in textual documents.

• relation ambiguity: this aUects the way concepts and entities are inter-connected

and the type of evidence the system needs to search for. An “European athlete” is

an athlete competing for an European country, but an “European citizen” refers to

a person’s citizenship.

If a question contains such phrases, the question interpreter should create several

corresponding interpretations and answer them separately. The answer extractor is

also aUected by ambiguity when enforcing the semantic constraints. Using multiple,

probabilistic constraint veriVers means that the answer validator needs to aggregate the

resulting evidence, create a ranked list of answers and justify their correctness. While

instance ambiguities are easier to deal with, others may require an ontology language that

is both expressive and eXcient so such inference is feasible/tractable. Systems may use

mappings to OpenCyc to perform the inference required to select valid interpretations.

On the basis of the discussion above, it can be seen that the question analysis, document

retrieval and answer extraction are mixed. This is natural: in order to understand the

question, the system has to interpret the variables in the context of its knowledge base,

and its interpretation can change depending on the data it discovers. Depending on the

context, a question can have more than one meaning and a system must use methods

that allow more than one interpretation at the same time.

3.5.2 Feedback phase

The Feedback phase is the one responsible with presenting the results to the user, and

is coordinated by the session manager. Depending on the purpose of the system this

can mean a highly interactive Web interface, in which the user can disambiguate himself

among the interpretations, modify the question’s constraints and give feedback to the
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system, or just a simple interface in which the top ranked results are displayed with

supporting information, optionally allowing users to dismiss erroneous results.

The response generator receives the question interpretations generated by the system

together with their answers. It will generate a response which contains an explanation

of the most likely QI ans well as provide justiVcation of their answers. The system can

summarize these if they are too many, or suggest ways in which the question can be

altered. The remainder of the QIs can be used to show additional interpretations to

facilitate disambiguation by the user.

An important step is ranking the interpretations based on the interaction with the user

(session-sensitive context), the user model (collaborative Vltering), the conVdence of

the answers found (the top answers should be presented Vrst), and the similarity of the

interpretations (group the interpretations that treat Paris as a city separately to those that

treat Paris as a person).

If the selected interpretation of the question does not yield answers, the system can lower

the thresholds (allow less probable entities), or relax the constraints to Vnd answers and

give feedback to the user. Whenever it produces results, the QA system needs to give

informative feedback regarding which interpretation was used to create the returned set

of answers.

Given the complexities of QA, exposing this type of information can beneVt both the

user experience and the error analysis: it is much easier to track individual errors back

to their sources and to improve the system by analysing user actions. Collecting such

information has been transformational in Web-search, product ranking, collaborative

Vltering and other domains.

The focus of this research is on the analysis phase, since it represents a novel approach

to open-domain QA, a shift from a textual to a conceptual approach. The feedback

phase is something less explored in QA and research is needed regarding this new

functionality: how is feedback meta-data generated, how is it presented to the user, how

much information is the user willing to accept, and so on.
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3.5.3 Challenges

A crucial aspect of any QA system is the type of questions it can address. The conceptual

approach proposed is focused on embedding generic world knowledge and multiple

information sources at an encyclopaedic level. Achieving good performance would

perhaps create the necessary conditions for the next generation of QA systems. The

proposed Encyclopaedic QA uses questions that are expressed as a series of constraints

combined with logical operands and perhaps aggregates. The simplest of questions (those

having one or two constraints) correspond to factoid questions in standard textual QA

approaches, while average questions would use and, or, not to combine several constraints

in complex structures (arbitrary nesting). Questions using quantiVers and aggregates

could be too computationally demanding and their semantics could be unclear under

open domain assumptions of uncertainty and incompleteness. However an interesting

type of questions are those requiring the system to generalise: How high can planes Wy?,

What do novelists write? orWhat characterises Renaissance composers? or those using

aggregates: Which rivers Wow through more than 2 national capitals?

One challenge posed by complex questions is decomposition. Existing work is focused on

transforming a compound question into a series of (usually two) questions (Hartrumpf

et al., 2009). The generated questions are processed sequentially and their results are

combined according to the operand identiVed in the Vrst step (previous work only

use a limited set of combinations). The QA approach proposed can deal with more

complex cases of question decomposition because it does not limit the number or type

of constraints, nor their recursive nesting. Creating a correct question interpretation

is not only a NL parsing problem: constituents also need to be assigned semantic

constraints. As the new architecture relies on semantic relations between concepts

it can exploit any source of world knowledge to interpret questions. For example

“Romanian architects” can refer to the homonym category, while “Romanian volcanoes”

does not have such a corresponding category. It can be represented as isA(?x,Volcano)

∧ locatedIn(?x,Romania). The isA predicate must use subcategories as well as textual
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extraction to determine whether or not an entity is a volcano. The locatedIn extractors

must check the geographical constraint.

One of the challenges of such a system is the expressiveness of the semantic

representation. This concerns both the ability to interpret questions as well as the

corresponding mechanisms necessary to Vnd answers. A key issue is whether or not a

system is able to recognise questions or fragments of questions which it cannot deal with.

Explaining the interpretations derived can help the user understand the limitations of

the system and rephrase his question. The chosen formalism has to be generic enough to

allow consistent coverage over a variety of topics and also accommodate the seamless

addition of domain speciVc resources. The question answering system could aggregate

a number of specialised components for a better treatment of popular domains (e.g.,

regarding sports events or geographic constraints), and also fall-back to a textual QA

system or Web search engine.

A related challenge is that of storing and querying knowledge, as both coverage and time

constraints are crucial from the user’s point of view. In terms of automatic inference, an

expressive formalism may not be able to scale very well, while a simpler, robust approach

could provide better coverage and be more useful. Materialising all inferable information

is likely to have unrealistic space requirements, whereas query time inference might

not meet the time constraints expected by the user. One way to tackle this problem is

to distinguish necessary pre-conditions (which can be queried eXciently in a database)

and suXcient conditions (precise, but computationally expensive). In questions having

several constraints applying pre-conditions Vrst could signiVcantly reduce the number of

candidates. These can be further veriVed in parallel, allowing horizontal scalability of

the system. One research issue is whether an automatic scheduling of processing steps is

possible and what type of information is necessary to implement it.

When enforcing constraints, the system is likely to have multiple, overlapping sources.

For example, there are various ways in which a person’s nationality can be found in

Wikipedia ranging from surface patterns for free text to semi-structured data such as
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infoboxes or categories, in addition to structured data sources such as Freebase, or domain

dependent databases. The system needs to be able to accommodate new sources, new

IE capabilities and also deal with inconsistencies and contradictory evidence. A related

issue is that of information transience: many properties vary in time (continuously or

discretely). The knowledge base must record these changes and mark which value is

considered “current”. Approximative values also need to be dealt with consistently. The

system must also be able to deal with incompleteness of information: not all attributes

and relations are known for all entities. The algorithms employed need to be based on

these assumptions.

Until a signiVcant amount of world knowledge is represented using adequate semantic

formalisms, Wikipedia will be used as a proxy for this information. An important part

of the system is how to represent world knowledge as a semantic graph which allows

“browsing” for semantically relevant data, instead of using keyword-based retrieval and

tf·idf word weighting. The hyper-link structure of Wikipedia can present a starting point,

but not all links are marked in a Wikipedia page due to stylistic concerns. To recover the

missing links, named entity disambiguation (see Section 2.4.3) needs to be performed.

An important enhancement is to consider weighted links in order to capture the strength

of association between entities (and use it to estimate conVdence). Applying a spreading

activation algorithm on this graph could help detect which topics are most relevant to a

user’s question, to better rank interpretations and generate feedback-meta data.

An advantage of working at a semantic layer is that language becomes less important. The

knowledge base itself is language independent. It allows mappings to diUerent languages

via the IE framework. Entities, categories or attributes no longer need translation or

transliteration, instead being identiVed by their URI8: the names and aliases are just

labels used in a particular language. This makes it possible to extract answers from

other language versions of Wikipedia which have more information about a given topic.

DiUerent language versions can be used for validating and ranking answers.

8Uniform Resource IdentiVer
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There are some similarities between recent QA approaches (Section 2.2) such as the

DeepQA architecture used in Watson (Ferrucci et al., 2010) and the architecture employed

by FREyA (Damljanovic et al., 2011) and the novel semantic QA architecture developed

in this thesis and implemented in the EQUAL system (Chapter 4). These independent

developments which work to incorporate more semantic information and multiple sources

of evidence into QA provide further evidence that it is time for a shift in the Veld, and

that this new/semantic approach can produce signiVcantly better performance on more

complex types of questions.

3.6 Conclusions

This chapter argues that a paradigm shift is needed in open-domain QA and proposes a

novel approach which uses encyclopaedic knowledge. It was argued that the standard

evaluation campaigns, focused on questions which can be answered by single snippets,

have unwillingly biased research towards a textual approach characterised by the use

of keyword-based IR engines and by the reliance on lexical similarity between the

question and the answer bearing snippet. For this reason, despite the complexity of the

task, little progress was made into adding semantic world knowledge or common-sense

inference. The ability of the standard non-interactive pipeline architecture to deal with

NL ambiguity is questioned, as the propagation of errors along the QA pipeline limits

overall performance.

Two changes are proposed to address these issues. Firstly, encyclopaedic QA is seen as

new evaluation test-bed focused on open list questions composed of several constraints

which require information fusion from several documents and basic world understanding.

In addition to synthetic benchmarks, new evaluation methods should be employed to

reWect real world performance of QA as an information access tool, as experienced by

users. Secondly, a paradigmatic shift is proposed for QA systems from words to concepts.

The core of the system should be based on Semantic Web technologies which allow the

integration of various information sources and knowledge bases, enabling QA systems to

take advantage of advances in domains such as KR and IE.
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A new architecture is proposed consisting of two major components: Analysis,

which deals with interpreting questions and Vnding answers, and Feedback, which

is responsible with interacting with the user, explaining the results, and asking for

clariVcations. The central notion is that of semantic interpretation: the formal

representation of the question’s meaning, mediating the user’s needs and the system’s

capabilities, enabling ambiguity resolution and user feedback. The major challenges for

this approach were then outlined. The next chapter describes two implementations of

the Analysis component of the proposed architecture.
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Chapter 4

EQUAL: Encyclopaedic QUestion

Answering system for List questions

4.1 Overview

The previous chapter argued for a shift in focus from factoid questions towards

encyclopaedic questions, open list questions whose answers are named entities. These

explicitly ask for a more or less speciVc type of named entities and usually contain

additional conditions or constraints the entities must satisfy. To answer this type of

questions, QA systems must fuse information from various sources and establish the

correctness of each candidate answer, a more diXcult problem than standard factoid

QA where a single correct answer must be ranked in the top results returned. The

additional challenge posed by encyclopaedic QA is to combine simple facts in order to

deduce answers which are not explicitly present in a single textual snippet. To do so,

systems need a repository of named entities to which they can link textual documents,

database entries, knowledge bases and other sources of information. Wikipedia is a

perfect candidate for providing this type of information.

This chapter presents EQUAL – Encyclopaedic QUestion Answering for List questions,

a question answering system which implements the Vrst phase of the QA architecture

proposed in this thesis, the one responsible with interpreting questions and Vnding

answers. As discussed in Section 3.5, the proposed approach revolves around concepts, not
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words. EQUAL relies on structural information extracted fromWikipedia to answer open-

list questions. Instead of using it as a textual collection, EQUAL views the encyclopaedia

as a graph of entities: pages are nodes and their relations are edges.

EQUAL achieved the highest score in two question answering tasks, GikiP (Santos

et al., 2009) and GikiCLEF (Santos and Cabral, 2009a,b) which are brieWy described

in Section 4.2. Unlike the standard textual QA approach, EQUAL does not rely on

identifying the answer within a text snippet by using keyword retrieval. Instead, it

explores the Wikipedia page graph extracting and aggregating information from multiple

documents and enforcing semantic constraints. Section 4.3 describes the Vrst version

of the system which was employed in the GikiP pilot task. This system was further

developed and extended with more features for the GikiCLEF competition. The improved

system is described in Section 4.4. The results in the two competitions are analysed in

Section 4.5. Based on an error analysis carried out on the GikiCLEF data, Section 4.6

discusses challenges posed by the new approach.

4.2 Geographic question answering

The previous chapter argued that in order to advance the state of the art in QA it is

necessary to use more complex questions. Questions proposed by encyclopaedic QA

are diXcult because they are open-list questions with multiple constraints. Information

supporting each answer is unlikely to be found in a single paragraph and simple ranking

methods exploiting redundancy of information on the Web can no longer assume a

unique correct answer. List questions have been previously employed in competitions

such as CLEF and TREC, but they only accounted for a small fraction of the total number

of questions and they could usually be answered by a single paragraph in the target

collection, i.e., an enumeration. Two of the recent evaluation campaigns focusing on

encyclopaedic list questions were GikiP (Santos et al., 2009) and GikiCLEF (Santos and

Cabral, 2009b) and are described next.
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GP3: Portuguese rivers that Wow through cities with more than 150000 inhabitants
Douro, Mondego

GP9: Composers of Renaissance music born in Germany
Arnolt Schlick, Christoph Demantius, Conrad Paumann (12 more...)

GP6: Which Australian mountains are higher than 2000m?
Mount Kosciuszko, Mawson Peak, Mount Jagungal, Mount Townsend

(a) GikiP 2008 topics

GC09-01: List the Italian places which Ernest Hemingway visited during his life.
GC09-04: Name Romanian poets who published volumes with ballads until 1941.
GC09-09: Name places where Goethe fell in love.
GC09-11: What Belgians won the Ronde van Vlaanderen exactly twice?
GC09-29: Places above the Arctic circle with a population larger than 100,000 people
GC09-37: Which Norwegian musicians were convicted for burning churches?

(b) GikiCLEF 2009 topics

Figure 4.1: Sample of GikiP and GikiCLEF topics

GikiPwas a pilot QA task that took place in CLEF 2008 and combined QA and geographic

IR. The requests for information consisted of natural language topics, phrased either as

a question or as an imperative retrieval directive, which had some sort of geographical

constraint. The answer was supposed to be a set of results: Wikipedia articles describing

the entities that correspond to the information need expressed in the topic (see Figure 4.1a).

One of the aims of GikiP was to create truly multi-lingual systems that are able to exploit

information fromWikipedia in any of the three participating languages: English, German

and Portuguese. To this end, human translations of the topics were made available,

enabling participants to exploit the multi-lingual encyclopaedia and perform multilingual

processing. Each topic also had a brief narrative description of the information requested.

These were not used by the systems, but instead helped human assessors judge answers’

correctness. The GikiP pilot consisted of 23 topics: 8 for development and 15 for testing.

GikiCLEF was another evaluation task organised at CLEF 2009 and was a successor of

GikiP. As its predecessor, it also consisted of geographically challenging information

requests (see Figure 4.1b). Systems had to search the Wikipedia collections and return

answers as lists of document titles. GikiCLEF emphasised the multi-lingual component:

10 language versions of Wikipedia were used: Bulgarian, Dutch, English, German,
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Italian, Norwegian (both Bokmål and Nynorsk), Portuguese, Romanian and Spanish. The

evaluation campaign used 24 development topics and 50 test topics, all translated into

the 10 languages of the competition.

4.3 EQUAL in GikiP

This section describes the Vrst implementation of EQUAL which participated in GikiP.

The Vrst step of the method consists of pre-processing the Wikipedia dump distributed

by the task organisers and transforming it into an entity graph. Some articles denote

named entities, others refer to events or topics, while categories and list pages denote

possibly ambiguous sets of entities (see Section 2.3). For each node of the graph, two

types of information were extracted from its corresponding article: node properties,

e.g., title, infobox attributes, plain text, alternative names; and links, i.e., interwiki links

for crosslingual information, wiki links for semantic relatedness and category links

for semantic type information. The infobox attributes were extracted using regular

expressions from the wiki source text and added as additional node properties. Links

between nodes were not labelled, e.g., no distinction was made between topic— and

list–categories because this information is not explicit in the Wikipedia markup.

At query time, the system analyses the information associated with a node to extract

simple facts, such as population size of a city, elevation of a mountain or date of birth of

a person, or simple binary relations, such as the city or the country a person was born in.

Usually this information was extracted from infoboxes, but sometimes facts needed to be

extracted from the plain text of the article, using lexical patterns.

In the GikiP pilot task, the feedback phase is not important because there is no human

interaction, thus the system only implemented the analysis phase of the proposed

architecture. Processing consists of two steps: the question analysis and answer extraction.

In the Vrst step, the structure of the question is analysed and split in two parts: the

domain of possible answers which speciVes the expected answer type, and the Vlter
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which contains the conditions that the correct answers must satisfy. The split is made

based on simple linguistic information: the Vrst noun phrase indicates the type of named

entities sought by the question (the domain). The Vrst relative pronoun or verb which

follows this phrase marks the beginning of the Vlter. The system checks what semantic

constraints are compatible with each sub-part of the question. Based on an analysis of

the training questions, both parts may consist of one or two constraints.

The domain, the Vrst part of the question, contains the phrase used to specify the type of

named entities sought, also known as the expected answer type. The system maps it to

the title of a Wikipedia category. This phrase contains a noun in plural form which is

matched to a generic category. Then a subcategory is chosen, whose title contains the

most of the remaining words and their synonyms retrieved from WordNet. The initial set

of candidate answers consists of all the articles directly linked to this subcategory (rank I)

and all the articles linked to any subcategory (rank II). This breadth-Vrst distinction was

employed to limit ambiguity, because not all categories assigned to an article convey a

type relation (see Section 2.3); some categories mark an article as relevant to a particular

subject or topic. In Wikipedia, both types of category links are marked up in the same

way. For example, in GikiP topic GP4Which Swiss cantons border Germany? the domain

is "Swiss cantons" which is mapped to Category:Cantons of Switzerland, which lists all

the relevant candidate articles(rank I). This category also has several topic sub-categories,

e.g., Category:Canton of Bern which contains articles such as Emmental (cheese), Bernese

Mountain Dog or Swiss peasant war of 1653 which have rank II. These articles should not

be considered candidate answers.

The Vlter consists of one or two conditions that a candidate answer needs to satisfy. Two

types of Vlters were used for GikiP: entity and attribute. The entity Vlter is identiVed

in questions which mention an explicit named entity; it denotes that some relation

must exist between this named entity and the candidate answers. For example in topic

GP4 Which Swiss cantons border Germany? the Vlter is "border Germany". Because it

contains a named entity, this is considered an entity Vlter. The most likely article in
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Wikipedia that the name can refer to is then identiVed. In the GikiP there usually was

a straightforward match between the article title and the entity name. To satisfy an

entity Vlter, a candidate article must be connected to the article corresponding to the

named entity. To check this, the system searched either for a wiki link between the

two articles or at least for an explicit mention to each other in their corresponding text.

Eight of the Vfteen topics had an entity Vlter, e.g. GP1 Which waterfalls were used in

the Vlm "The last of the Mohicans"?, GP12 Places where Goethe lived, or GP14 Brazilian

architects who designed buildings in Europe.

An attribute Vlter constrains the values of a particular property a candidate answer

needs to have, e.g. GP6 Which Australian mountains are higher than 2000m?, GP9

Composers of Renaissance music born in Germany? or GP10 Polynesian islands with

more than 5000 inhabitants. To satisfy an attribute Vlter, the system tries to extract the

corresponding fact from the body of the article or from its infobox, and if successful,

compares its value with the criterion speciVed in the question. In the GikiP test set, the

attributes were related to the geographical domain: height/elevation (1 topic), nationality

(2 topics),population (3 topics) and length (1 topic). Candidate articles from which the

fact could not be extracted were dismissed. The selection criterion consists of one or

more reference values speciVed by the question. The value extracted from the candidate

document is compared with the reference values. The comparison can be numeric:

moreThan (5 topics), or set-based: inList (1 topic), not_inList (1 topic).

Results found in the English Wikipedia were mapped using the inter-wiki links into the

other two languages, thus EQUAL is essentially a mono-lingual system. To exploit cross-

lingual redundancy and rank the best results, the system should search for candidate

answers in each of the three languages and then combine the three resulting sets. This

approach was deemed infeasible for two reasons. Firstly, in a realistic setting, users are

unlikely to translate their own questions in more languages, therefore, relying on user-

translated topics limits the scope of the system. Secondly, diUerent language versions of

Wikipedia have diUerent coverage and structure, usually yielding distinct sets of answers
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that only partially overlap. Considerable amounts of training data are necessary to create

a reliable answer validation, i.e., not just intersection/union of the sets.

Analysis of the results reveals advantages of this approach over traditional textual QA

systems:

• ability to process complex entity types: the expected answer type is not limited

to gazetteer lists or generic NER super-tags – information present in the category

graph is used instead, e.g., ‘waterfalls’, ‘Dutch painters’ or ‘composers of

Renaissance music’;

• multilingual processing: by navigating the graph using inter-wiki links, the system

can search several language versions for information, e.g., it is possible that the

German language version of Wikipedia is more complete with regard to topics

such as Goethe and German cities. Checking wiki links (entity Vlter) and category

links (domain) is largely language independent, while extracting facts (attribute

Vlter) requires language dependent resources;

• semi-structured information analysis: in addition to textual information, semi-

structured data, RDF repositories and databases can be exploited as a source of

reliable attributes and properties, which can be integrated in the system (see

Section 2.4.4).

The system implements the architecture proposed in Section 3.5 using a rather small set of

generic constraints, primarily because of the limited amount of training data. Although

more expressive Vlters are needed to correctly address all the GikiP questions, the system

ranked Vrst amongst 8 submissions by 3 participants, outperforming both manual and

semi-automatic submissions (Santos et al., 2009). The evaluation results are presented in

Section 4.5.

4.4 EQUAL in GikiCLEF

For the second competition, EQUAL was extended by adding new semantic constraints

which enable more expressive question interpretations to be generated. Because GikiCLEF
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is a non-interactive task, the system implements the analysis phase. To tackle ambiguity

and uncertainty, the system may generate several question interpretations which are

addressed sequentially. This approach relies on the assumption that an erroneous

interpretation will likely yield either too many results or no results at all.

The task of interpreting questions is diXcult due to the ambiguity which characterises

natural language: very similar natural language expressions can have very diUerent

meanings, while the same meaning can be expressed in a variety of forms. Closed

domain QA systems have a narrow scope and rely on an unambiguous speciVcation,

such as a database schema or an ontology, to limit ambiguities. In open-domain QA,

even a simple question can have several interpretations, each corresponding to a diUerent

‘understanding’. In GikiCLEF a question interpretation is a composition of semantic

constraints involving entities, relations and properties. An analysis of the sample topics

was carried out to determine a set of generic constraints relevant to the entity-graph

model employed by EQUAL. These are listed below:

• EAT (expected answer type): indicates the type of entities sought in the question;

only entities of this type are considered valid answer candidates;

• type: constraint which indicates a type that an entity/article must have;

• entity: veriVes that some connection exists between two entities, usually a

candidate answer and a named entity mentioned in the question;

• relation: veriVes that a speciVed relation holds between a pair of entities, typically

denoted by verbs, e.g., born in, played for or moved to;

• property: restricts a set of entities to a subset characterised by a certain property,

e.g., population size, height or surface area;

• geographic: checks if an article is included in or part of a larger geographic entity,

e.g., a country or a region;

• temporal: constrains the temporal interval of a relation or event;

• introduction: marks the phrase used to start the question, this chunk is removed

from the question.
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EQUAL uses a simpliVed sequential model of the general architecture (see Section 3.5),

allowing it to stop when one of the interpretations yields results. The system is based on

a rule-based heuristic approach which was developed using the GikiCLEF 2009 training

question set.

4.4.1 Question parsing

In EQUAL, the question analyser examines the structure of a GikiCLEF topic using

linguistic information which results in a set of possible constituents of the input question.

This relies on certain classes of words that are typically delimiters, i.e., prepositions,

relative pronouns, conjunctions, adverbs and verbs, and the output of the Stanford Parser1

(Klein and Manning, 2003).

The chunking algorithm determines which of the chunks indicates the semantic type

of the expected answers. In general, this constituent is marked by an interrogative or a

demonstrative pronoun, but in the GikiCLEF collection, after the redundant introduction

is removed, the Vrst chunk always corresponds to the EAT constraint and it always

contains a noun in plural form. For example, topic GC09-18 In which Tuscan provinces

is Chianti produced? is split in two: “Tuscan provinces” and “Chianti produced”. The

irrelevant words, in, which and is are ignored. The Vrst constituent is the type-phrase,

and its head noun is extracted separately. The second constituent corresponds to

conditions and is split into chunks, see Table 4.1 (part of speech information and syntactic

information produced by Stanford parser is not shown).

4.4.2 Semantic interpretation and constraints

The question interpreter is responsible with determining which are the compatible

semantic constraint types for each chunk (sub-Vlter) and creating corresponding semantic

interpretations. To do so, this module needs to deal with ambiguities in the context of the

1http://nlp.stanford.edu/software/lex-parser.shtml
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Table 4.1: Decomposition of topics into chunks by the question analyser

topic Name Romanian writers who were living in USA in 2003
type-phrase Romanian writers
type-noun writers
conditions living in USA in 2003
chunks (VP living) (PP in USA) (PP in 2003)

topic Which Brazilian football players play in clubs in the Iberian Peninsula?
type-phrase Brazilian football players
type-noun football players
conditions play in clubs in the Iberian Peninsula
chunks (VP play) (PP in clubs) (PP in the Iberian Peninsula)

topic In which Tuscan provinces is Chianti produced?
type-phrase Tuscan provinces
type-noun provinces
conditions Chianti produced
chunks (NP Chianti) (VP produced)

semantic constraints that the system ‘understands’ and the way the relevant information

is present in Wikipedia and any associated data sources. The main ambiguities that are

dealt with during this phase are:

• referential ambiguity: the constraint refers to entities or concepts which need

to be disambiguated with respect to the knowledge base (“Who is the mayor of

Paris”? – several possible cities vs. “Who is the director of Paris”? – a 2008 Vlm);

• structural ambiguity: the same constraint can be attached to more than one head,

e.g., “Brazilian architects who designed buildings in Europe” has a prepositional

phrase attachment ambiguity: the question most likely refers to buildings which

are located in Europe, but it is possible that buildings outside of Europe were

designed by an architect while living in a European country. Unlike humans who

rely on intuition, the system needs to consider both possibilities.

• type ambiguity: the constraint can be interpreted in more than one way (“What

novels did Orwell publish before 1984?” – temporal constraint = year; entity

constraint = novel).
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The system examines each syntactic constituent produced by the question analyser to

determine its possible semantic type. For example phrases such as greater than or more

than indicate a numeric property constraint, while the preposition in can indicate several

types of constraints, e.g., geographical in USA, temporal in 2003 or in World War II,

or even an entity constraint in Paris (Vlm). For each type of constraint, EQUAL has

a set of speciVc rules which test if a given chunk contains the necessary information.

The geographic constraint needs the name of a geographic region, usually a country,

and a preposition which specifying inclusion or exclusion (in, within vs. outside of). A

temporal constraint requires a reference period (a year, a century, a span of time given by

two years) and one of the following prepositions before, after, during and in. An entity

constraint only requires the presence of a named entity, while a type constraint needs a

noun in a plural form which can be matched to a Wikipedia category.

Once the compatible constraint types are determined for each chunk, question

interpretations are generated. The parse tree given by the syntactic parser is used

to assign the most likely dependent for each chunk. This information is used to determine

how to combine the semantic constraints. For example, the relation constraint links

the candidate answers with a type or an entity constraint. Geographical constraints are

typically applied to the chunk preceding them, while the temporal constraint refers to

the relation constraint. EQUAL uses a very generic model and cannot take advantage of

ontologies the way closed domain QA systems do. It exploits the fact that in GikiCLEF

there are usually there are only two or three constraints, so it generates all possible

combinations.

An interactive QA system can ask the user for clariVcations, e.g., by providing a ranked

list of alternatives. In the non-interactive paradigm, a system needs to select the

choice most likely to match the expectations of the user. Where there is ambiguity,

the distinct interpretations are addressed sequentially. EQUAL analyses all the wiki

links in Wikipedia to determine for each anchor text which is the most frequent target

article. This information is used to determine the most likely article for each entity name
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mentioned by the question and to prioritise the generated interpretations. These are

passed to the answer extractor.

[Name] || Romanian writers || [who] [were] living | in USA | in 2003
{introName} {eatRomanian writers} {relliving} {geoin USA} {tempin 2003}

Figure 4.2: Example: decomposition of question GC09-32 into constraints

4.4.3 Answer extraction

The GikiCLEF question set is composed of entity list questions. While these are regarded

as more diXcult than factoid questions (most factoid questions can be rephrased as

list questions which have exactly one correct answer), they have three important

characteristics which make them accessible:

1. encyclopaedic domain — since all questions are asking about entities represented

in Wikipedia, certain assumptions regarding the “domain” can be made;

2. structural uniformity — most questions have few constraints combined using a

small set of syntactic patterns;

3. articles as answers — the system can search for/validate candidate answers

using disambiguated links in Wikipedia, instead of ambiguous entity names (the

abbreviation “USA” is used for more than thirty entities).

From Wikipedia’s redirect and disambiguation pages, entity aliases are extracted to be

used at the question analysis stage. Together with anchor text statistics they help rank

the most likely entities referred to in the question. The articles describing these entities

are indexed and the links between them are stored in a database, allowing access to the

set of pages that are linked to/from a given article. These are used for the entity Vlter, and

as a Vrst step in the relation Vlter. The categories and their links are stored in a separate

table for navigating the category graph.

The category folksonomy is used to derive type information for entities. Being

a folksonomy, the relations between categories are not speciVed, which results in
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ambiguities. There are both type and topic categories, but this distinction in not explicit in

the markup. Although most of the time a direct link from an article to a category denotes

a type relation, precautions should be taken when assuming transitivity. Section 2.4

describes DBpedia and Yago, which use more advanced methods to disambiguate these

links. Because these tools were still being developed, EQUAL employs a simple rule

which limits transitivity: subcategories are processed in a breadth-Vrst order, proceeding

to the next level only if no answers have been found yet. Transitivity Vltering refers to

categories which do not have a plural noun in their title, or which have a corresponding

article with exactly the same name (e.g., London). This rule is designed to limit the

recursive exploration of subcategories in the Wikipedia graph.

Apart from the straightforward query for the set of categories assigned to a page, EQUAL

can also check if the page is directly or indirectly within a speciVed category, by starting

with this category and exploring, level by level, the pages indirectly connected to category

it, with or without transitivity Vltering.

The advantage of the categories graph is that it exhibits various granularity levels. For

example, it is possible to directly map the question span “Brazilian football players” to the

category Brazilian footballers, instead of having to deduce the semantics of the individual

words, such as checking which “football players” were “born in Brazil” (see Figure 4.3a).

4.4.4 Constraint veriVers

EQUAL explores the Wikipedia graph verifying which entities satisfy the constraints of

the current question interpretation. The semantics of the constraints themselves in the

context of Wikipedia are deVned by constraint veriVers, i.e., the actual implementation

which veriVes whether a particular constraint holds. A constraint has several specialised

veriVers to take advantage of all the existing sources of information. For example, in

Wikipedia, geographic containment can be expressed using demonym modiVers (e.g.,

Nepalese), categories (e.g., Mountains of Nepal), tables, infoboxes and text. However, the

system could also use a geographical Web Service to verify relations such as containment,
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?

(a) Semantic interpretation using DBpedia relations

Football players from Brazil

Category:
Brazilian_footballers

Iberian 
Peninsula

inCategory*

linkTo

Category:
Football_(soccer)_clubs

inCategory*

linkTo

Which Brazilian football players play in clubs in the Iberian Peninsula ?

?

(b) Semantic interpretation by EQUAL

Figure 4.3: Example of semantic question interpretation for the question: Which
{eatBrazilian football players} {relplay in} {typeclubs} {geoin the Iberian Peninsula}?

neighbouring and distance using an article’s geo coordinates. The following constraints

veriVers were used:

Type constraint. It is used to determine the set of named entities which have a speciVc

type. It is typically used to determine the initial set of candidate answers sought by

the question, i.e., the expected answer type. The system Vrst matches the phrase used

to denote this type to a Wikipedia category. If the match is not straightforward, the

system considers the Vrst noun in plural form as the most generic hypernym to select a

category. For example, Which eight-thousanders are at least partly in Nepal? is directly

matched to Category:Eight-thousanders, List the 5 Italian regions with a special statute.

is partially matched to Category:Regions of Italy, and List the left side tributaries of the

Po river is only matched to Category:Tributaries. Apart from the EAT, some questions

can have a second constraint, for example in Which Portuguese rivers Wow through cities

with more than 150.000 inhabitants.

Entity constraint. Filters a set of articles based on which of them have some connection
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to a given named entity. This entity is usually mentioned in the question, e.g. In which

Tuscan provinces is Chianti produced?: the set of candidate articles which are provinces

in Tuscany are Vltered based on having links with Chianti. To enforce this type of

constraint the system checks for each article whether or not it mentions or is mentioned

by the article corresponding to the given named entity, in this case Chianti. EQUAL uses

both the links table and also the article text to identify mentions, to account for cases

where the link was not explicitly marked by the Wikipedia editors.

Relation constraint. This constraint is identiVed in questions that specify a relation

between the entities, and usually co-occurs alongside an entity constraint or a type

constraint. EQUAL must then conVrm that the context of the mention page is ‘compatible’

with the constraint identiVed in the question. Initial experiments revealed that in

many cases testing the compatibility needs more than synonym expansion or WordNet

similarity measures. Therefore this constraint was ignored in the GikiCLEF test set.

This means that for some topics, such as GC09-01: List the Italian places which Ernest

Hemingway visited during his life and GC09-09: Name places where Goethe fell in love,

EQUAL uses a more general interpretation, which usually leads to inaccurate answers

and a decrease in precision.

Temporal constraint. When interpreting questions that have a time constraint, this

is applied to further Vlter the candidates satisfying the relation constraint. The

implementation uses a temporal annotator developed for the QALL-ME project2 to

transform temporal expressions to time intervals, and then tests if the context of the

mention is compatible with the constraint from the question. This approach has similar

limitations as the relation constraint: matches in the context can be irrelevant to the

actual entity mention, leading to false positives. Therefore, for GikiCLEF EQUAL used a

simpler test: if the constraint is one year, then it must be textually present somewhere in

the article’s content. All other forms of temporal constraints are ignored, even if in other

interpretations the question span could be considered an entity constraint, e.g., GC09-42:

2http://qallme.fbk.eu/
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“Political parties in the National Council of Austria which were founded after the end of

World War II”.

Property constraint. EQUAL uses both the infobox content and the article text to

extract numeric attributes. The comparatives and other quantiVers from the question are

observed. If the noun denoting the property is not found or a numeric value cannot be

extracted, the constraint is not satisVed and the candidate article is discarded (favouring

precision).

Geographic constraint. This constraint is used to check if an article describes an entity

located in or associated with a country. Instead of processing the text of the article, the

fastest way to check this is to examine the article’s categories. There are two ways in

which category titles capture this information. The Vrst way is to combine a demonym

with the type in plural form, for example ’Romanian poets’, ’Dutch classical violinists’,

’Brazilian footballers’ and ’European countries’. The system uses a large list of demonyms

extracted from Wikipedia to deal with former countries names, e.g., ’Mercian people’ or

’Northumbrian folkloric beings’. The second way is to combine the hypernym in plural

form with the country name: $type (by|of|from|in) $country for example ’Mountains

of Nepal’, ’Monarchies in Europe’, ’World Heritage Sites in France’ or ’Rivers of Brazil’.

This strategy is also used when searching for the best category match for the EAT. If

such a pattern does not apply, as a fall-back strategy, EQUAL interprets this as an entity

constraint.

Introduction constraint. A list of interrogative pronouns (e.g., which), imperative verbs

(e.g., list, name) and declarative constructions (e.g., I’m interested. . . ) which was compiled

from the QALL-ME benchmark (Cabrio et al., 2008) is used to identify the spans of text

that typically introduce a question. These spans can be considered list-question markers,

but in the context of GikiCLEF this is information is redundant and these spans are

ignored in all subsequent processing.

The results achieved by the systems are presented in the next section. Insights into the

challenges posed by the approach are described in Section 4.6 based on an error analysis.
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4.5 Results

4.5.1 Evaluation metrics

The organisers of GikiP proposed an evaluation measure which rewards precision

(returning correct entity names of the adequate type, not the documents where the

answer can be found), recall (Vnding many correct entities) and multilinguality (ability

to Vnd answers in several languages). All questions are open list questions. In this

section, an answer refers to one named entity returned by the system in response to a

question. A system’s Vnal score S1 = 1
N
·
∑N

i=1 S1(i) is the average of its scores per

topic, which are computed regardless of language, according to the following formula:

S1(i) = mult · Ci · Ci/Ni where Ci =
∑

lang C
lang
i is the number of correct answers for

topic i across all languages, Ni =
∑

langN
lang
i is the number of answers given by the

system, and mult is the bonus factor representing the number of languages processed by

the system (possible values are 1,2 and 3).

The GikiCLEF organisers have chosen topics that have a strong cultural/national bias

(Santos et al., 2010), i.e., one language version of Wikipedia is very likely to contain

answers, while other language versions include few or even no answers. This bias was

used in order to reward systems that process multilingual pages. The evaluation measure

initially used in GikiP was also adjusted to better reWect the number of languages in

which answers are found for each topic, because the constant factormult represents in

fact just an upper bound accounting for the number of languages a system is processing

regardless of whether or not it Vnds correct answers. Therefore, the score was computed

per language instead of per topic using the formula Slang
2 = C lang · C lang/N lang , where

C lang =
∑

iC
lang
i and N lang =

∑
iN

lang
i . The Vnal score of a system is the sum of its

individual language scores S2 =
∑

lang S
lang
2 .

Despite providing an accurate ranking of the systems’ performance, there are three

main criticisms of the oXcial GikiCLEF scoring measure: 1) bias towards precision, 2)
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Table 4.2: GikiP oXcial results for all participants

# System Answers Correct Precision Languages Score

1 c11 123 94 0.63 3 16.14
2 c1 218 120 0.55 2 10.71
3 c7 79 9 0.11 3 0.70
4 c8 76 7 0.08 3 0.56
5 c9 84 7 0.07 3 0.50
6 c5 199 9 0.04 3 0.34
7 c10 189 9 0.05 3 0.32
8 c6 171 7 0.04 3 0.26

non-normalised range and 3) bias towards topics with many answers. The bias towards

precision stems from the fact that not all correct answers are known, thus recall cannot

be computed. Since the score range is not normalised, performance is not comparable

on distinct topics sets, i.e., development and testing. In addition to the oXcial score,

performance for list questions can be measured using metrics traditionally used in IR-

based, such as precision, recall and F-measure. To compute recall, the number of known

correct answers in the answer pool is used as a reference, although this is only a lower

bound for the absolute number of correct answers. Scores for a particular language can

be computed using both micro– and macro-averaging. For example micro-averaged

precision gives the probability that a random named entity returned by the system is

correct, while macro-averaged precision shows the expected performance for a random

question:

micro-averaged precision P en
micro =

∑n
i=1C

en
i∑n

i=1N
en
i

and recall Ren
micro =

∑n
i=1C

en
i∑n

i=1K
en
i

,

macro-averaged precision P en
macro =

1

n

n∑
i=1

Cen
i

N en
i

and recall Ren
macro =

1

n

n∑
i=1

Cen
i

Ken
i

.

4.5.2 GikiP results

In GikiP, despite having a few generic constraints, the Vrst version of the EQUAL system,

referred to as c11 in the oXcial results in Table 4.2, outperformed both automatic and

semi-automatic participants. The most likely reason for this success is that most property

constraints are easy to be veriVed using infobox attributes extracted by simple regular

expressions from the wikisource text of the article. In addition, by using the entire text
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Table 4.3: GikiP normalised results

micro-averaging macro-averaging
System P RR F1 P RR F1

RENOIR - c1 0.550 0.690 0.612 0.551 0.696 0.615
EQUAL - c11 0.764 0.540 0.633 0.634 0.573 0.602
GIRSA-WP - c7 0.114 0.052 0.071 0.107 0.060 0.077

of an article as support for unspeciVed relations also aUords high precision due to the

use of Vne-grained types. For example, a page which describes a Swiss canton and also

has a link to Germany is very likely to be a correct answer for GP4 Which Swiss cantons

border Germany? The two most common causes for errors are inaccurate category

mappings, e.g., “wars” in GP5 Name all wars that occurred on Greek soil, and insuXcient

expressiveness of the interpretations created for GP5 and GP15 French bridges which

were in construction between 1980 and 1990. The veriVers implemented are precise, at

the cost of recall: for 10/15 topics, the system returned no false positive answers (100%

precision), but it only Vnds the complete set of answers for 3/15 topics (low recall).

The third criticism of the oXcial scoring measure S1 is illustrated by Table 4.4: the Vve

topics (30% of the test set) having the most correct answers contribute almost 80% of the

total score of the system. This is also true for the second ranked system. In the case of

perfect output, topic GP7 yields a higher score than nine other topics combined.

GIRSA-WP (GIRSA for Wikipedia) is a fully-automatic, hybrid system which merges

results from InSicht, an open-domain QA system (Hartrumpf, 2005), with a list of

relevant documents retrieved by GIRSA, a system for textual geographic IR (Leveling

and Hartrumpf, 2008). To select answers from this list, the system Vrst extracts the

generic concept which indicates the expected answer type, e.g., for topic GP4 Which

Swiss cantons border Germany? the extracted concept is canton, which is an artiVcial

geographical entity denoting a kind of regional institution. Then, each document title is

parsed by WOCADI (Hartrumpf, 2003), a syntactico-semantic parser for German text,

in order to match its ontological sort and the semantic features to those of the concept
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extracted from the topic. The documents for which this match is successful are returned

as answers.

To deal with the complex topics in GikiP, InSicht employs question decomposition

(Hartrumpf, 2008) to generate several simple questions, e.g., topic GP4 Which Swiss

cantons border Germany? is decomposed into subquestions like Name a canton in

Switzerland, which yields subanswers such as Aargau, Basel and so on, and for each of

these a revised question is generated, for example Does Aargau border Germany?

RENOIR is an interactive tool where query procedures are executed, generating partial

and Vnal results for each GikiP topic (Santos et al., 2008, 2009). RENOIR makes extensive

use of REMBRANDT (Cardoso, 2008), a named entity recognition module for Portuguese

and English which uses nine main categories: person, organisation, local, timestamp,

value, abstraction, thing, masterpiece and event. For each topic the user creates a

sequence of query procedures. These processing actions can be executed automatically,

semi-automatically or manually by the user. There are four types of actions employed:

automatic retrieval actions, e.g. Vnd articles mentioning a term, pertaining to a given

category or linking to a given article; semi-automatic mapping actions, i.e., matching

named entities to Wikipedia articles; automatic NER actions, to process documents

text with REMBRANDT, and Vltering actions, e.g. automatically checking for a NER

category or manually validating if a candidate article is a correct answer. RENOIR is

conceptually very similar to EQUAL from the point of view of these high level actions,

however it relies entirely on the user creating the adequate processing sequence, whereas

EQUAL interprets the question and Vnds the answers automatically. Both approaches

tend to over-simplify the evidence needed to validate answers, e.g., in topic GP11 Which

plays of Shakespeare take place in an Italian setting? where a reference to a place in Italy

is enough for the system to consider that a given Shakespearean play actually happens in

Italy, although this is not a suXcient condition.

We have carried out an analysis of the top three submissions using the F1 score. Table 4.3

reports Precision P, pseudo-Recall RR and F1-measure computed using the set of known
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Table 4.4: GikiP results for EQUAL (c11)

Topic Answers Correct Precision Languages Score Ki

GP10 0 0 0 3 0 2
GP9 0 0 0 3 0 15
GP5 0 0 0 3 0 19
GP15 10 2 0.20 3 1.20 2
GP8 8 2 0.25 3 1.50 2
GP1 1 1 1.00 3 3.00 1
GP2 5 3 0.60 3 5.40 7
GP13 2 2 1.00 3 6.00 4
GP3 3 3 1.00 3 9.00 8
GP14 3 3 1.00 3 9.00 6
GP6 6 6 1.00 3 18.00 7
GP4 24 15 0.63 3 28.13 19
GP11 25 21 0.84 3 52.92 24
GP7 18 18 1.00 3 54.00 33
GP12 18 18 1.00 3 54.00 25

total c11 123 94 0.63 3 16.14 174

correct answers (both micro- and macro-averages). These measures show that the

semi-automatic approach employed by c1-RENOIR (Santos and Cardoso, 2008) is also

competitive, achieving better recall but lower precision. The precision drop between

micro and macro averaging is due to the three topics for which EQUAL does not return

any answer. RENOIR demonstrates more stability on the two measures. Interestingly,

from a total of 174 answers only 40 are found by both systems, suggesting that the two

approaches are complementary.

4.5.3 GikiCLEF results

EQUAL achieved the best performance also for GikiCLEF amongst 17 runs by 8

participants (see Table 4.5). The second highest ranked system, GREASE/XLDB (Cardoso

et al., 2009) is a semi-automatic submission consisting of hand crafted SPARQL queries

on the DBpedia dataset. The third submission, CHESIRE (Larson, 2009), consists of

documents retrieved by sending manually built queries to an advanced geographic

textual retrieval engine. The system ranked fourth, GIRSA-WP (Hartrumpf and Leveling,

2010), uses a recursive question decomposition approach which combines results from a
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Table 4.5: GikiCLEF results for all languages

# System Answers Correct Precision Score

1 EQUAL 813 385 0.47 181.93
2 GREASE/XLDB 1161 332 0.29 96.01
3 Cheshire 564 211 0.37 80.92
4 GIRSA-WP_1 38 31 0.82 24.76
5 GIRSA-WP_2 985 142 0.14 23.39
6 GIRSA-WP_3 994 107 0.11 14.52
7 JoostER_1 638 36 0.06 2.41
8 GikiTALP_3 356 26 0.07 1.90
9 GikiTALP_2 295 20 0.07 1.36
10 GikiTALP_1 526 18 0.03 0.70
11 bbk_ufrgs_1 726 8 0.01 0.09
12 UAICGIKI09_1 6420 8 0.00 0.02
13 bbk_ufrgs_2 734 3 0.00 0.01
14 UAICGIKI09_2 1133 2 0.00 0.01
15 JoostER_2 272 0 0.00 0.00
16 bbk_ufrgs_3 686 0 0.00 0.00
17 UAICGIKI09_3 4910 0 0.00 0.00

geographic information retrieval system with those of a semantic question answering

system. This fully automatic system achieves a good performance, but at lower levels of

precision and recall. The other systems are essentially traditional textual QA systems

which were more-or-less adapted for this task. Their performance shows that the

traditional architecture is ill suited to address complex questions.

To deal with all ten languages of the GikiCLEF competition, EQUAL processed English

due to the better coverage it aUords (Santos and Cabral, 2009b). The human assessors

classiVed the answers returned by EQUAL as follows: 69 correct, 10 unjustiVed and 59

incorrect, yielding a precision of 50% and a score of 34.5 (see Table 4.6). By mapping

these answers from English to the other nine languages using the inter-wiki links, the

cumulative results is 385 correct out of a total of 813 answers: precision 47%, score 181.93

(see Table 4.5).

GREASE/XLDB is a prototye system exploring the use of Semantic Web technologies for

answering GikiCLEF topics. The system uses three knowledge sources: the DBpedia v3.2

dataset (Auer et al., 2008); WikiWGO, a geographic ontology combining Wikipedia with
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a geographic knowledge base (Chaves et al., 2005), and articles from the Portuguese

Wikipedia which were processed by HENDRIX, a newly developed named-entity

recognition module based on Conditional Random Fields, which was trained to recognise

four categories: places, organisations, events and people. These entities are automatically

matched to concepts of the WikiWGO ontology. The system relies on the user to manually

create SPARQL queries corresponding to GikiCLEF topics. For example, for the training

topic Which romanian writers were born in Bucharest? the following query was created:

SELECT ?RomanianWriters WHERE {

?RomanianWriters skos:subject <http://dbpedia.org/resource/Category:Romanian_writers> .

?RomanianWriters dbpedia-owl:birthplace <http://dbpedia.org/resource/Bucharest>

}

Because these queries were manually created, the results are not directly comparable to

those of automatic submissions, but this study provides interesting insights regarding the

coverage of the DBpedia dataset for GikiCLEF topics. For example, English Wikipedia

infoboxes were only useful in Vnding answers for 9 out of 45 topics because in most

of the cases the relevant information is found in the text of the article and not in the

structured dataset; similarly, in the Portuguese language version, answers were only

found for 6 topics. The authors also showed that multilingual capabilities are important

for achieving robust performance: the Portuguese language version of Wikipedia has

suXcient information to validate only 27.6% of all the answers found by the GikiCLEF

participants. This type of cultural aspects relevant to GikiCLEF are further discussed in

Santos et al. (2010).

Cheshire (Larson, 2009) is an interactive approach which employed a state-of-the-art

cross-lingual information retrieval engine (Chen and Gey, 2004) using a version of the

Logistic Regression (LR) algorithm (Cooper et al., 1992). The title, body and anchor (a)

tags were extracted from the HTML documents when indexing the collections. When

executing queries, the system employs a blind relevance feedback algorithm based on the

probabilistic term relevance weighting formula developed by Robertson and Sparck Jones

(1988). The algorithm typically involves two stages. First, an initial search using the
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original topic statement is performed, after which a the top 10 terms with the highest

relevance weights are selected from the 10 top-ranked documents. The selected terms

are then weighted and merged with the initial query to formulate a new, expanded

query which is submitted against the same collection to produce a Vnal ranked list of

documents.

The queries were formulated by a human user interactively, a task which “involved a lot

of time spent reading pages and deciding whether or not the page was relevant.” Because

“each question took literally hours of work using the interactive system,” only only 22 out

of the 50 topics were addressed before the submission deadline (Larson, 2009). The results

of this submission illustrate that a good IR engine can be used to search for the correct

answers but only if the user is willing to spend time to repeatedly reVne the queries.

GIRSA-WP (Hartrumpf and Leveling, 2009) is an improved version of the fully automatic

system which participated in GikiP (Santos et al., 2009). It uses a recursive question

decomposition approach which generates a sequence of simple intermediate questions

(list, factoid and yes/no) which are answered by combining a QA system with an IR

engine. For example, for topic GC09-07 What capitals of Dutch provinces received

their town privileges before the fourteenth century?, GIRSA-WP generates the following

sequence of questions:

• Name capitals of Dutch provinces. This is recursively decomposed into:

• Name Dutch provinces. This question yields a list of entities such as Zeeland,

which are used replace the phrase ’Dutch provinces’ in question a) generating new

questions such as:

• Name capitals of Zeeland. This factoid questions yield one answer each, in this

case Middelburg, which are used to rephrase the original topic:

• Did Middelburg receive its town privileges before the fourteenth century?

Using this approach allows GIRSA-WP to gather the supporting evidence for each answer

it produces. The system submitted three runs: run 1 only used the results from the InSicht
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QA system, while runs 2 and 3 combined these with the results returned by the GIRSA

IR engine using diUerent weighting parameters. The intermediate questions generated by

GIRSA-WP test one atomic fact or a relation, which resembles the semantic constraint

veriVers, which suggests that EQUAL could also generate intermediate questions and use

a robust factoid QA system to verify constraints.

JoostER (Bouma and Duarte, 2009) is an automatic textual QA system for Dutch and

Spanish which adopts some of the ideas proposed by EQUAL. JoostER uses a linguistic

analysis consisting of shallow parsing the topic to determine the EAT and to extract the

additional constraints. These are used to build a query which results in a set of relevant

documents. The system incorporates additional knowledge sources (WordNet, Yago,

DBpedia) to improve the mapping of the EAT to the most relevant Wikipedia categories,

which enables the system to Vlter out documents which do not match the EAT. Instead

of only using the EAT phrase, JoostER uses query expansion to increase recall. One way

is to include additional hypernyms from DBpedia, e.g., in a topic about German artists

it adds types such as German writers, German comedians or German actors. Another

way is to include synonyms extracted from WordNet, from the redirect links and from

a list of country demonyms. An IR engine retrieves documents which are relevant to

the expanded query, and these are Vltered based on their type. To do this for a Spanish

article, the system uses the cross-lingual links to the corresponding English page, retrieve

its types from the Yago/DBpedia dataset and match them to the types extracted from the

topic. The Spanish system was implemented after GikiCLEF and its performance would

have ranked it 4th which is the best performance reported by an automatic textual QA

system.

The remainder of submissions3 are simple textual QA systems which automatically

convert the GikiCLEF topics into keyword queries and consider the top-ranked documents

as answers. These systems usually achieved poor results because they focus on retrieving

3these systems are described in more detail at http://clef.isti.cnr.it/2009/working_notes/
CLEF2009WN-Contents.html
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relevant documents, rather than correct entities. GikiTALP is a simple system based on a

full-text information retrieval engine, Sphinx4, which does not use explicit geographical

knowledge. It addressed two of the ten languages, English and Spanish. The topic

texts were considered as keyword queries and minimal NLP was employed, such as

lemmatisation and stop-word removal. BBK-UFRGS is similar system for Portuguese

which uses GATE5 and a list of geographical place names6 to analyse topics. The weight

of any geographic entities mentioned in the topic was boosted when building keyword

queries. The titles of the most relevant articles returned by an IR engine, Zettair7, were

considered answers. Since the list was not Vltering based on the semantic type speciVed

by the topic, the results were modest.

UAIC uses a textual QA approach which maps the EAT to person, location, organisation

or date. Instead of retrieving paragraphs to extract and validate answers, it uses

document-level retrieval. The nouns, verbs and named entities in the topic are used

to generate a Lucene8 query, e.g., for the topic List the Italian places where Ernest

Hemingway visited during his life, it builds the query (places�2 place) +Italian

+Ernest +Hemingway (visited�2 visit) during life (title:Italian

title:Ernest title:Hemingway title:Italian Ernest Hemingway) and

marks the EAT as location. The relevance score of the relevant articles is changed to

reWect whether or not the title mentions an entities matching the EAT. Because very

broad entity categories are used, and because GikiCLEF requires the title of the article

to be a named entity of the speciVc type sought by the topic, the UAIC system which

processed Romanian and Spanish collections had very low precision.

EQUAL ranked Vrst in GikiCLEF, ahead of semi-automatic, automatic and standard

textual QA approaches (Santos and Cabral, 2009a), proving that questions previously

considered too diXcult to answer can be successfully addressed using Wikipedia as

4http://www.sphinxsearch.com/
5http://http://gate.ac.uk/
6http://snowball.tartarus.org/
7www.seg.rmit.edu.au/zettair/
8
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Table 4.6: GikiCLEF results for English

# System Answers Correct Precision Score

1 EQUAL 138 69 0.50 34.50
2 Cheshire 139 56 0.40 22.56
3 GREASE/XLDB 198 52 0.26 13.66
4 GIRSA-WP_1 5 3 0.60 1.80
5 GikiTALP_3 296 22 0.07 1.64
6 JoostER 136 14 0.10 1.44
7 GIRSA-WP_3 141 14 0.10 1.39
8 GikiTALP_2 295 20 0.07 1.36
9 GIRSA-WP_2 129 11 0.09 0.94
10 GikiTALP_1 383 16 0.04 0.67
11 UAICGIKI09_2 642 1 0.00 0.00
12 UAICGIKI09_3 491 0 0.00 0.00

a repository of world knowledge. As well as precision, the system also had the best

performance in terms of the number of correct answers found. However, the results

reWect the bias towards precision: the system did not return any answers for 25 (half) of

the questions. Another interesting observation is that the systems ranked 2nd and 3rd

are semi-automatic systems: a user is responsible with manually creating queries and

checking the results in an iterative fashion. Despite being an automatic system, EQUAL

outperforms both of them achieving higher precision and higher recall.

In spite of the positive results, the prototype needs further improvements to be able

to answer more questions and to increase its recall. Although it uses more expressive

semantic constraints to its predecessor, EQUAL demonstrated a decrease in performance

for this task, reWecting the fact that the GikiCLEF topics were more diXcult than the

ones used in GikiP.

In GikiCLEF, both micro and macro averaging are needed because of the way answers are

distributed over topics. Micro averaging gives each answer the same weight, favouring

systems that solve the topics with most answers. For example the top 10 topics with most

answers account for 50% of the entire answer pool. The most proliVc topic has as many

answers as the 17 least proliVc topics combined. Because of this distribution, a system

which answers a proliVc topic by chance can score much higher than a system which
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Table 4.7: GikiCLEF normalised results for English

# micro-averaging macro-averaging
System P RR F1 P RR F1

EQUAL (25) 0.790 0.800 0.795 0.570 0.670 0.616
EQUAL (50) 0.395 0.400 0.397 0.570 0.410 0.477

answers perfectly many, but less proliVc topics. Macro averaging gives each topic the

same weight, favouring the systems which answer topics with fewer answers.

Table 4.7 shows the results without considering whether correct answers were justiVed

or not. Recall (RR) is computed relative to the entire set of English answers assessed

as correct by human judges, called the English answer pool. For the set of answered

questions, performance is satisfactory despite most of EQUAL’s modules being relatively

simple. While the prototype clearly outperformed standard textual QA systems

(Santos and Cabral, 2009a), the competition uncovered some limitations of the current

implementation. The fact that it did not return any answers for half of the questions

suggests that its components have a limited coverage and that the system is not

robust: more veriVers are necessary, as is ability to combine answers found by similar

interpretations.

4.6 Discussion

EQUAL implements a simpliVed version of the architecture proposed in Chapter 3. The

most important simpliVcation is due to the non-interactive nature of the task. Lacking

the feedback stage, EQUAL generates alternative question interpretations and addresses

them sequentially, until one yields results. The underlying hypothesis is that only a

correct interpretation of the question can have results. This bias also reWects the oXcial

scoring measure which is based on precision. This section discusses some issues arising

from this implementation, identifying solutions for future integration.

The constraint veriVers employed are generic, in order to avoid over-Vtting the sample

topics. Each has a method to be instantiated using a chunk from the question and a
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method to test a candidate solution. The implementations are quite general and achieve

a good balance between accuracy and coverage, but more specialised implementations

will lead to better performance. Currently, at least one of the veriVers must match for

a constraint to hold. This is a conservative behaviour favouring precision, given that

the training set was relatively small and only few veriVers were implemented. A future

challenge is to automatically learn veriVers from either seed examples or from user

feedback.

Analysis of the results revealed some of the limitations of the current veriVers. For

example, inGC09-09Name places where Goethe fell in love, the system cannot distinguish

between the places where Goethe lived, those he visited or those where he fell in love.

The relation constraint veriVer looks at the positions of the trigger words (fell, love)

in relation to the link to a candidate answer, but is not a specialised extractor for this

particular relation. Instead of the boolean model currently employed, EQUAL needs to

adopt a fuzzy model to estimate the likelihood that an entity satisVes a constraint,

enabling several partial clues to jointly contribute towards validating a constraint.

Ranking its conVdence means that EQUAL can provide more useful results to its users and

improve its answers, e.g., using an on-line learning algorithm exploiting user feedback.

It is arguably more useful for a user to see an answer with a low conVdence score and

marked as such, instead of a blank screen. One of the future research directions is to use

a probabilistic model and perform belief propagation to rank answers and interpretations.

A drawback of the current implementation is the computational eUort needed to test

all the veriVers at query time, especially those analysing the entire text of an article.

Answering questions with a large number of candidate articles was aborted if no

result was identiVed within a given time limit. To reduce runtime complexity, it is

necessary to optimise the order of evaluating veriVers and to enable the system to Vrst

use ‘pre-veriVers’, representing necessary conditions that can be tested eXciently. Such

information can be processed oU-line and combined with other structured data, such as

DBpedia or Freebase. The time-consuming veriVers should be applied to each candidate

in a second step, which can be easily parallelised to further reduce the answering time.
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EQUAL currently explores direct evidence (information mentioned in the article

corresponding to the entity). To enable indirect evidence, EQUAL needs a reliable

disambiguation method to recover links which are not present in articles due to Wikipedia

style guidelines. The next chapter studies existing tools and describes a new method for

enriching the Wikipedia link graph. This method can be also applied to external text:

for example large newswire corpora can be automatically linked to Wikipedia and used

by textual veriVers that search for indirect evidence. This can be performed at indexing

time, to support fast retrieval of relevant information.

The primary cause for imprecise answers is due to the fact that EQUAL uses few semantic

constraints: it lacks the expressive power required to accurately represent all the questions.

Sometimes, the generated interpretation misses relevant information from the question.

For example, in GC09-11What Belgians won the Ronde van Vlaanderen exactly twice?,

EQUAL returns all the Belgian winners, because it cannot ‘understand’ the constraint

exactly twice. One feature that needs to be added to EQUAL is support for aggregates

and quantiVers. Universal quantiVers have signiVcant implications regarding tractability.

In terms of verifying aggregates, EQUAL will need to combine textual extractors, i.e.,

Vnding an explicit textual mention such as ‘they had Vve children’, with set aggregates,

i.e., Vnding a list or a table mentioning the children or determining articles corresponding

to each child and then derive the cardinality of this set.

An important factor impacting the correctness of results is vagueness. For example

“Romanian writers” can mean writers of Romanian nationality, but also Romanian-

language writers of diUerent nationality, such as Moldovan writers, as well as writers of

Romanian descent that only wrote in other languages, e.g., German. By using information

from Wikipedia, the results provided by the system will reWect this vagueness, therefore

answers’ correctness should be considered in a lenient fashion: systems cannot be

expected to outperform their own sources. For example, for topic GC09-19 Name

mountains in Chile with permanent snow, the system only found one of the total of 14

answers judged correct, because its veriVers looked for an explicit reference to permanent
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snow. It is sometimes debatable what kind of proof should be accepted as valid; for

certain topics the judges had diXculties in reaching consensus (Santos and Cabral, 2009a),

suggesting that the task is also diXcult for humans, and that a lenient correctness

criterion is necessary in an open-domain task. If EQUAL provides conVdence scores and

supporting evidence, the user will Vnd its answers more informative.

The performance is also aUected by inconsistencies in Wikipedia. EQUAL assumes

that all the articles are assigned to correct and relevant categories, but this is not

always the case. Inaccurate categories decrease precision. For example, in GC09-18

In which Tuscan provinces is Chianti produced?, 13 pages were inaccurately assigned

to the category Provinces of Tuscany at the time of the competition, when in fact

they are places in Tuscany, and only 3 pages described actual provinces. Incomplete

categories lead to a decrease in recall and the system should consider combining

several sources of information to mitigate this. Although information in Wikipedia

is continuously improved and updated, such inconsistencies are inherent in a project this

size (Hammwöhner, 2007).

Mapping the EAT to categories needs further reVnement, as the current mechanism

assumes that there is a most relevant category and that the terms in the question are

similar to Wikipedia’s folksonomy. This is not always the case, usually because such a

category does not exist, e.g., German-speaking movies and Swiss casting show winners. In

GC09-15 List the basic elements of the cassata, the question is asking for the ingredients

of the Italian dessert (sponge cake, ricotta cheese, candied peel, marzipan, candied fruit,

and so on). Even though the system Vnds mentions of these articles, it discards them

because they are not ’elements’. As well as the conVdence of a category mapping, the

system should also estimate the likelihood that a ’correct’ category does not in fact exist.

A bad category mapping is the primary cause for not answering questions: either the

mapping is too generic, yielding too many results, or it is incorrect and no results are

found. If the number of answers EQUAL Vnds exceeds the maximum threshold of 30

answers, the entire result-set was dismissed at the expense of recall.
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Currently, EQUAL Vrst picks a starting category and then visits its articles. To increase

recall, another veriVer needs to be added which uses a keyword based retrieval using all

the semi-structured data available (such as categories, navigation boxes, infobox contents,

list pages, disambiguating terms) to create an alternative, high recall set of candidate

answers, and then employs a generic classiVer predicting the likelihood that an individual

article has the type speciVed in the question. Such a veriVer enables information from

more than one category to be used.

4.7 Conclusions

This chapter presented EQUAL, an encyclopaedic QA system which implements the

analysis phase of the architecture proposed in this thesis to answer complex open-list

questions against Wikipedia. It detects diUerent sources of ambiguity creates multiple

question interpretations, corresponding to diUerent understandings of the question. The

question interpretation consists of a decomposition of the question into constituents

which are then assigned to coarse-grained semantic constraints. Instead of retrieving

paragraphs, EQUAL explores the Wikipedia page graph to determine which entities are

correct answers for a particular interpretation. To enforce its constraints, EQUAL can

employ structured, semi-structured and textual resources.

Section 4.5 presented the results achieved in two competitions, where EQUAL

signiVcantly outperformed all automatic submissions and compared favourably with

semi-automatic approaches. The error analysis carried out revealed some of the

challenges facing this architecture. One of the limitations is the reliance on the existing

wiki links when creating the Wikipedia link graph. The next chapter will investigate the

problem of enriching the Wikipedia markup with additional links to improve the recall

of the system.

108



Chapter 5

Semantic Document Analysis

5.1 Overview

As a repository of encyclopaedic entities, Wikipedia is a valuable resource for QA

systems due to the wide variety of topics covered as well as the semi-structured nature

of the data. It was argued in Section 3.3 that plain text alone is too ambiguous for QA

applications because standard information retrieval engines yield imprecise data. One

way to improve retrieval accuracy is to distinguish distinct entities which share the

same name (homographs). Existing wiki links can help alleviate ambiguity, but even for

human readers these links are usually incomplete as the editorial guidelines1 recommend

only linking to the most relevant articles, to avoid clutter and redundant information.

As a result, Wikipedia markup is not complete, especially from the point of view of

automatic processing by computers. As demonstrated by EQUAL in the previous chapter,

searching using the existing wiki links yields precise answers but has a negative impact

on recall. To increase recall, it is therefore necessary to enrich the existing markup with

new, automatically detected links.

This chapter studies the problem of identifying and ranking Wikipedia entities mentioned

in a text, a task related to semantic analysis, word sense disambiguation and named entity

disambiguation. More speciVcally, given a textual document d and an encyclopaedic

knowledge base comprising a set of entities E, the task is to identify and disambiguate

1http://en.wikipedia.org/wiki/Wikipedia:Manual_of_Style
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textual references refi ∈ d, linking them to entries in the knowledge base. The

assumption is that the document d already contains a set V0 of disambiguated links.

The name densiVcation is used to refer to this task. The links identiVed and ranked by

a densiVcation system allow an arbitrary NLP application to then select those targets

that are relevant for the particular task at hand. DensiVcation can be used as a general

purpose iterative semantic analysis tool: in each step k a possibly empty set of validated

targets Vk is used to re-rank the remaining set Ck of candidates. The task is related

to wikiVcation (Mihalcea and Csomai, 2007; Cucerzan, 2007; Milne and Witten, 2008b),

which is discussed in more detail in Section 5.2.

Question answering is not the only application which can beneVt from this type of

semantic analysis. It can also be employed in other NLP applications such as information

extraction, text mining, coreference resolution and automatic summarisation. This type

of analysis blurs the boundaries between the textual Web documents and Semantic Web

meta-data. The analysis can be performed oU-line during indexing/pre-processing,

when text can be represented in a semantic space induced by Wikipedia articles.

Coordinates of a semantic vector represented in this space correspond to Wikipedia

article identiVers, weighted according to the disambiguation conVdence score and the

number of occurrences. Computing the weighted vector is a form of explicit semantic

indexing which enables eXcient, higher-level semantic retrieval procedures, such as

deVning queries to retrieve 〈paragraphs mentioning Manchester United (the association

football team) and also mentioning a stadium〉. This semantic representation is an

alternative to current approaches for semantic indexing, such as latent semantic indexing,

probabilistic latent semantic indexing, random indexing or latent Dirichlet allocation,

which construct semantic spaces based on word co-occurrence patterns in textual

documents. Such methods achieve state-of-the-art performance in modern information

retrieval engines, however, these models yield abstract conceptual spaces that are diXcult

to interpret. Using Wikipedia articles as concepts does not have this limitation. Instead

of using mathematical criteria to reduce the dimensionality of the space, the categories

in Wikipedia can be used to create a second-order vector space model which is easier to
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interpret. The links between articles allow the use of a generalised vector space model,

i.e., one in which the coordinates are not orthogonal.

This chapter is structured as follows: Section 5.2 reviews previous methods for

disambiguating entity mentions and linking arbitrary text to Wikipedia. Most of them

aim for balance between precision and recall. To increase the number of links identiVed

and to also include less prominent entities, a novel task, densiVcation, is proposed in

Section 5.3. A two-step method for addressing this task is described in Section 5.4, and

Section 5.5 describes three evaluation experiments. In the Vrst, human users are employed

to evaluate a sample of automatically predicted links. This experiment investigates the

feasibility of developing a large scale gold standard annotation. In the second experiment,

a set of Wikipedia articles are used to automatically estimate recall. The proposed method

is compared to some of the tools developed by other researchers which are described in

Section 5.2. The Vnal experiment investigates the impact of the densiVcation system on

question answering, i.e., whether it improves the recall achieved by the EQUAL system.

The chapter Vnishes with conclusions.

5.2 Related work

Amongst similar forms of semantic analysis which have been proposed in the past, the

most relevant approach is Explicit Semantic Analysis (ESA) (Gabrilovich and Markovitch,

2007). In ESA, the text of Wikipedia articles is used to create an inverted index: for

each word w, the ranked list of documents it appears in is built using tf·idf weighting:

docs(w) = {(diw, ri)|i = 1..n}. Given an input text fragment, the system combines the

vectors associated with each of its words, yielding an aggregated vector in the semantic

space. The coordinates of this space correspond to Wikipedia articles. The authors

demonstrate that this space can be used to measure semantic similarity between two

texts, even if their lexical overlap is low. ESA is similar to latent semantic indexing

approaches (such as latent semantic analysis) in that each word w has an associated

distribution over topics P (topici|w). The diUerence is that the components of the ESA
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semantic space are explicitly determined by a subset of Wikipedia articles, whereas the

abstract concepts in the latent spaces cannot be easily interpreted, making them less

attractive to QA.

Identifying mentions of Wikipedia concepts in texts, called wikiVcation, is an active

research area made popular by Wikify! (Mihalcea and Csomai, 2007) and WikipediaMiner

(Milne and Witten, 2008b). The potential of Wikipedia as a entity knowledge base was

studied by Bunescu and Pasca (2006) and Cucerzan (2007). In addition, more recent tools

such as DBpedia Spotlight (Mendes et al., 2011), as well as commercial systems such as

OpenCalais2 and AlchemyAPI3 have also been developed. WikiVcation is a special case

of analysis meant to replicate the current linking style of Wikipedia articles, when only

the most important entities are sought.

There are three main challenges for this type of entity disambiguation task: determining

possible mentions in the input text, disambiguating for each mention which Wikipedia

article is the best target, and selecting a set of links which have a high joint conVdence

score. The last step is necessary because Wikipedia is incomplete and the correct sense

might not be present. In the news collection used in the Entity Linking task at the

Text Analysis Conference4, 57% of named entity mentions did not have a corresponding

Wikipedia article. Depending on the nature of the relatedness measure used to rank the

targets, there are two main wikiVcation approaches. The Vrst uses a semantic relatedness

measure based on the Wikipedia link graph, while the second uses word-based similarity

between text snippets.

WikipediaMiner (Milne and Witten, 2008b) employs a two step pipeline. It considers as a

possible mention any word n-gram which has been used as the anchor text of at least

one link in Wikipedia. Those mentions which have exactly one possible target make

the set of unambiguous targets. This set is used as a reference context for the rest of

2http://www.opencalais.com
3http://www.alchemyapi.com/
4http://www.nist.gov/tac/about/index.html
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the ambiguous mentions to determine the relatedness of each possible target. Using this

relatedness score, the most likely target article is selected for each mention. In the second

step, the system decides which of the targets deemed plausible should be linked based

on their relatedness to each other as well as to the reference context. A decision tree

model is used to predict the conVdence of each link, and only the targets exceeding a

Vxed threshold are selected. The main contribution of WikipediaMiner is the semantic

relatedness measure employed, which is based on the Jaccard index of the two articles’

sets of neighbours. The system achieves 97% accuracy in the Vrst step (determining the

most valid target of an existing link), exceeding the most frequent target baseline of

90%. While promising, this result is measured only for existing links — those previously

marked by editors. When dealing with new texts, the system needs to also determine

the mentions themselves, which increases the complexity of the decision space with

a negative impact on disambiguation accuracy. The selection criterion in the second

step is biased towards prominent entities, favouring a nucleus of high conVdence and

unambiguous targets. The more challenging the disambiguation, the less likely it is to

rank high enough to pass the selection threshold. This is an eUective way to eliminate

errors made during the disambiguation step, but only because recall has less importance

for wikiVcation evaluation. To further enrich the interlinking in Wikipedia it is necessary

to employ more advanced measures which are able to also link less prominent articles.

Bunescu and Pasca (2006) show that using the cosine similarity between a mention

context and the text of each possible target article yields average results (55%). Applying

a Support Vector Machine (SVM) classiVer with a taxonomy kernel that exploits the

correlations between words and Wikipedia categories, e.g., conducted has a stronger

association with Category:Composers than it has with Category:Wrestlers. This leads

to a 20% error reduction. Performance is less impressive than more recent models, but

results are not directly comparable, especially as the most frequent target baseline is

not reported. The main limitation of this work is that it only addresses people mentions

which represent a small variation of the title of the corresponding article.

Cucerzan (2007) proposes a large scale disambiguation method based on Wikipedia
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data which can only be used for named entities, where mentions are identiVed by an

existing named entity recogniser. A vector representation for each article is used to

disambiguate between the candidate entities. The coordinates of this context vector

are the wiki links collected from the Vrst paragraph of an article together with its

categories. Disambiguation is seen as an assignment problem: the best solution is found

by maximising the agreement between the context vectors extracted from Wikipedia and

the context vector extracted from the document. When applied to Wikipedia articles, the

system achieves 88.3% accuracy, 2 points above the most frequent target baseline. This is

due to the fact that the majority of entity mentions are not ambiguous, i.e., they only

have one possible target. When applied to a newswire corpus, the system achieves 91.4%

accuracy, versus a 51.7% baseline.

Mendes et al. (2011) describe DBpedia Spotlight, a supervised memory-based learning

approach for disambiguating entities. A dictionary of references is built from the

entire contents of Wikipedia: for each article an associated meta-document is built

by concatenating the textual snippets surrounding each of its in-links. These meta-

documents are indexed by an IR engine. To disambiguate plain text, a query is built for

each plausible n-gram and sent to the IR engine, and the highest ranked article retrieved

is selected as the best link. In essence, the disambiguated target is the nearest neighbour

in a vector space representation using cosine similarity between tf·idf weighted word-

vectors. To evaluate the disambiguation performance, 155,000 wiki links with ambiguous

surface form are set aside for testing, while around 69 million links are used to build the

system. A random target baseline only achieves 17.77% accuracy, while the most frequent

target baseline achieves 55.12%. The best results were achieved by a regression model

which combines the target frequency observed in Wikipedia, i.e., the prior probability of

a target, with the cosine similarity score: 80.52%.

thewikimachine5 uses more than 1 million kernel-based classiVer models, each trained

to disambiguate an individual word (Bryl et al., 2010). Training data for this supervised

5http://thewikimachine.fbk.eu/
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WSD task is derived from the textual snippets surrounding wiki links. To allow the

use of a domain kernel exploiting linguistic knowledge, the system uses a mapping of

Wikipedia articles to WordNet synsets. The performance of the system is evaluated on

the ACE05-WIKI Extension (Bentivogli et al., 2010), a dataset which extends the English

Automatic Content Extraction6 (ACE) 2005 dataset with ground-truth links to Wikipedia.

The 599 documents in this collection contain a total of 29,300 entity mentions manually

linked to the Wikipedia articles they refer to. The system achieves an F1 score of 0.715,

compared to 0.587 obtained by WikipediaMiner on the same dataset.

Commercial systems such as OpenCalais7, Zemanta API8 or Alchemy API9 also allow the

linking of arbitrary text to Wikipedia topics, for example for automatic semantic tagging

of newswire articles or blog posts. Such systems are primarily focused on generic named

entities (such as person, organisation, location, and others), and the most common target

is usually used as a disambiguation method. Because of this, commercial systems are ill

suited as an oU-the-shelf solution for densiVcation and are not particularly relevant for

this research. However, they can provide candidate links for plain text documents, which

could be used as input for densiVcation.

5.3 DensiVcation: task deVnition

The aim of densiVcation is to identify articles from Wikipedia which are relevant to a

snippet of text. Such an article, called topic or target, is helpful for both human and

machine readers. It is usually referred to by a small span of text calledmention, anchor or

keyword. The following example illustrates some diXculties in automatically identifying

mention boundaries in text: in the sentence “The US President Barack Obama sent an

oXcial letter of apology.” the entire “The US President Barack Obama” span refers to the

person, but both “The US President” and “Barack Obama” are viable anchors with the

6http://www.itl.nist.gov/iad/mig//tests/ace/ace05/index.html
7http://www.opencalais.com/
8http://www.zemanta.com/api/
9http://www.alchemyapi.com/
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same target. The anchor “the US President” can also have as target the page President of

the United Stateswhich describes the oXce, not the incumbent. Other pairs of anchor text

and target article which contain relevant information could be, e.g., 〈president,President〉,

〈US,United States〉, 〈Obama,Obama (surname)〉 and even 〈The,English articles〉, even if

these are not coreferent in a strict sense.

As illustrated above, the problem is quite complex because a word can be used in

hundreds, even thousands of distinct anchors, each linking to tens of distinct pages. In

addition, due to its broad coverage, many entities in Wikipedia are homographs (spelled

the same), which means that in a text, mentions with an obvious meaning to a human

reader can be very ambiguous for computers. For example the Wikipedia page The

(disambiguation) lists four exact homographs, while most NLP tools typically consider

‘the’ to be the English deVnite article and discard it when analysing text; the article

President (disambiguation) lists more than 25 pages which are possible candidate targets,

while in WordNet, president has only 6 synsets.

On the one hand, densiVcation is more diXcult than word sense disambiguation due

to this increased ambiguity, but also because there are vastly more entity names than

English common nouns. On the other hand, the information contained in a Wikipedia

article is substantial compared to a WordNet synset gloss, or to a dictionary deVnition.

This information can be used to re-rank the likelihood of a target page by measuring

relatedness to other targets either locally (in the same paragraph), or globally (in the

entire document), thereby making the task less daunting.

In a way, densiVcation is similar to wikiVcation, as both tasks are a form of

disambiguating entity names by linking them to their corresponding Wikipedia articles.

However, there are two main diUerences between the two tasks. Firstly, wikiVcation

aims for strict disambiguation while densiVcation is designed to provide links to relevant

Wikipedia pages, enabling other tools to further Vlter these links to suit their needs.

Secondly, densiVcation employs existing links as seed meta-data in the disambiguation

context; this enables iterative annotation and integration with other tools, such as named

entity disambiguation models.
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5.4 DensiVcation: approach

Given a textual document d and a set of n seed topics S = {si|i = 1 . . . n}, the task

is to Vnd a set of relevant topics T = {tj} that are mentioned or referred to in the

document. The system must identify candidate topics and rank them by importance,

integrating local information extracted from snippets of d with global information

extracted from Wikipedia. The system collects 〈anchor text,target page〉 pairs from all

the wiki links in Wikipedia. Other alternative names are extracted from redirect pages,

disambiguation pages and title variants. Any span refk from d which is a known anchor

text (or alternative name) becomes a possible reference. All known targets of a possible

reference refk are considered candidate topics ctk,l. This yields a low precision–high

recall list of candidates C = {ctk,l|k = 1 . . .m, l = 1 . . . rk}, which needs to be Vltered.

The system employs a two-step approach: pruning and selection. In the Vrst step

candidate topics are Vltered out based on their semantic relatedness to the set of seeds

and to each-other. For each mention refk the topics with low overall conVdence are

removed. Section 5.4.1 describes how machine learning is used to achieve this. This

step reduces the number of candidates, while maintaining high recall. In the second

step, the system determines which of the remaining candidates should be selected by

giving more weight to the local context of the actual topic mentions and by dealing

with overlapping references. The aim of this step is to increase precision. It is described

further in Section 5.4.2.

5.4.1 Candidate pruning

This step is essentially a form of weak disambiguation. For each mention refk, candidate

topics that are semantically relevant to the document are passed to the next step, while

those with low relevance are removed. The main aims are to discard weak candidates

and to decrease complexity by favouring recall over precision.
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Context Weighting

The system relies on the relatedness between candidate topics and the reference set of

seed topics (the context). The importance of each seed topic si is Vrst ranked based

on occurrences in the document d as well as frequency information from Wikipedia

and average semantic relatedness between seeds. Several ranking methods were tested

empirically, as there is no “gold standard” for ranking the set of seed topics to enable the

direct measurement of performance. These methods assign a weight to seed as follows:

• simple – all seeds have equal weight: wi = 1

• tf – the weight of seed si, is proportional to tfi, the number of occurrences of its

known anchors in the document (possible seed mentions): wi = log(1 + tfi)

• tf·idf – considers possible occurrences in the document as well as the number of

Wikipedia articles which have a link to each seed: wi = log(1 + tfi) · log( W
inlinksi

),

whereW is the number of articles in Wikipedia, inlinksi represents the number of

articles that link to the topic si

• avg-rel – the average semantic relatedness to the other seeds, using the measure

proposed by Milne and Witten (2008b): wi =
1
N

∑N
j=1 rel(si, sj)

• avg-rel-tf·idf – combines the previous method with the weights provided by the

tf·idf method: wi =
∑N

j=1 rel(si,sj)·w
tf·idf
j∑N

j=1 w
tf·idf
j

• links-in – indicates the number of seed topics that have a direct wiki link to this

article: wi = |S ∩ inlinksi|

• links-out – indicates the number of seed topics that article si has a direct wiki

link to: wi = |S ∩ outlinksi|

• links-all – indicates the number of seed topics that article si is linked to:

wi = |S ∩ {outlinksi ∪ inlinksi}|

Candidate relevance

The next step is to rank the importance of each candidate topic ctk,l, by considering

all {S,Wm, ctk,l} triples independently. Candidates whose relevance does not pass a
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threshold value are discarded, pruning the decision space. The threshold is a parameter

which controls the trade-oU between precision (mainly valid candidates are selected) and

recall (most valid candidates are selected). A point-wise learning to rank approach is

employed to order the candidates.

A machine learning dataset is created using features which characterise the context

(number of seeds, average weights), the candidate topic (prior link probability, number of

references, number of in- and out-links), and the compatibility/relatedness between the

candidate topic and the set of seeds. To create training data, a random set of Wikipedia

articles is used. For each article, a fraction of its wiki links are considered as seeds,

while the remainder make the set of valid targets. Only a subset of all the ambiguous

references are used, namely those mentions refk′ that have at least one candidate topic

amongst the target articles. The resulting data is split into training and development sets

to avoid problems that can arise when using cross-validation alone, such as duplicate

instances with copies in more than one cross-validation fold. When applied to real-world

documents, while the seed set must be supplied as input, the set of valid targets is not

known and the model must make predictions for all ambiguous mentions refk. Without

a gold standard created speciVcally for densiVcation, this bias induced by sampling the

training data set is unavoidable. By varying the amount of seed data, we can gain insights

into the performance of the model.

Experiments

A random set of 100 Wikipedia articles were selected for training the models, and another

random set of 100 articles were used for testing. Point-wise ranking is employed: for

each candidate the model produces a conVdence score. Then, for each reference a simple

criterion is applied to select candidates, e.g., only selecting those that pass a threshold

or the top 3 highest ranked candidates per reference or both. The seeds are weighted

using the methods mentioned in the previous step, while the features describing the topic

are directly extracted from Wikipedia statistics. The most important features are those

reWecting the semantic association between a candidate topic and the set of seeds. Two
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Table 5.1: χ2 ranking of the candidate pruning features used to measure the relatedness
between a candidate target and the set of seed topics

Average χ2 merit Average Base relatedness Aggregation Seed topics’
and variation rank measure method weighting

7091.067 ±30.662 1 WM max tf·idf
6826.216 ±22.576 2 WM top10 tf·idf
5750.507 ±26.079 3 WM avg avg-rel
5654.750 ±19.512 4 WM top10 tf
5526.763 ±13.919 5 WM avg simple
5467.932 ±16.275 6 WM avg avg-rel
5102.377 ±46.585 7 WM max tf
4850.794 ±25.915 8 WM avg links-out
4687.179 ±20.891 9 WM avg link-all
4643.823 ±30.256 10 WM top10 avg-rel
4550.655 ±28.174 11 WM avg tf·idf
4258.057 ±46.608 12.7 WM max avg-rel
4237.392 ±25.958 12.8 links count links-in
4213.878 ±27.175 13.5 WM avg tf
4149.599 ±26.924 15 WM avg links-in
4054.404 ±20.434 16 WM top10 simple
3010.643 ±18.823 17.2 WM top10 avg-rel
2997.218 ±23.362 17.8 WM max simple
2816.212 ±36.212 19 links count links-all
2433.655 ±32.184 20.5 links islink link-all
2434.678 ±11.281 20.5 WM top10 links-out
2279.353 ±20.949 22.1 WM max avg-rel
2214.805 ±24.357 22.9 links count links-out
2023.238 ± 9.356 24 WM top10 link-all
1907.707 ±13.352 25 WM max links-in
1838.768 ± 7.598 26 WM top10 links-in
1676.377 ±13.025 27 links islink links-in
1519.758 ±16.815 28 WM max links-out
1071.573 ± 9.190 29 WM max link-all
868.720 ±15.587 30 links islink links-out
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base measures are used: WikipediaMiner’s semantic relatedness measure, which is based

on the average Jaccard index of the link-neighbourhood of two articles, and a measure

that accounts for direct mentions/links between the articles, information which is not

used by the previous measure. The base measure needs to be aggregated to account for

the fact that the context has several seeds, each mention has several candidates, and each

topic has several possible anchors/mentions. For direct-links, two aggregation methods

are used: link count (count) and has-at-least-a-link indicator (islink). For semantic

relatedness, average (avg), maximum (max), and average of top-10 nearest seed topics

(top10) are used. The diUerent seed topic weighting methods are combined with diUerent

relatedness functions with these aggregation methods. The resulting relatedness scores

are used as features by the statistical machine learning methods. Table 5.1 shows the χ2

ranking of these features.

Results

For comparison, the open-source WikipediaMiner (WM) package was used to train and

test a disambiguation model on the same set of articles (see Table 5.2). The WM model

performs slightly worse than the original results reported on a diUerent sample of articles

from an older version of Wikipedia. This suggests that the problem is more diXcult in

the newer version of Wikipedia, due to the increase in size, number of pages/links, and

article length. The main direct cause is the fact that, on average, the frequency of the

most common sense has decreased. The WM model relies on the prior probability of a

target given the anchor, which amounts to a strong bias towards the most frequent target

baseline. According to Cucerzan (2007), this baseline yields good results on text from

Wikipedia, better than when used on newswire text. Overall, the features obtained using

the WM semantic relatedness measure had higher predictive power than those using the

link-based measure. None of the aggregation methods consistently outrank the others.

As expected, there is a high positive correlation between features resulting from applying

diUerent aggregation methods to the same base relatedness measure.

The best model uses logistic regression and outperforms the state-of-the-art, halving the

error rate. Logistic regression is suitable for the binary dataset in this research, as the
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Table 5.2: Candidate pruning performance

Model Accuracy Error Rate Kappa

WM-disambig 91.33% 8.66% 0.7551
logistic regression 95.37% 4.06% 0.7773

conVdence value output by the algorithm is actually the probability that the instance is a

valid topic. This means that sorting topics based on this conVdence score yields a robust

ranking, which is desirable as it allows the use of a threshold value to favour recall over

precision. Table 5.3 illustrates that by varying the hyper-parameter θ the system can be

biased towards achieving high recall (few false negatives). This model reaches impressive

recall levels (97%) while maintaining reasonable precision (50%). In this dataset, on

average, there are 10 candidates for each mention, one of which is considered valid.

Using the regression model discards, on average, 8 out of 10 candidates.

Table 5.3: Trade-oU between recall and precision for candidate pruning

True False False True
Threshold θ pos. pos. neg. neg. R P F0.5 F1 F2

0.40 9600 1300 3400 104000 73% 87% 84% 79% 75%
0.30 9900 1700 3100 104000 76% 85% 83% 80% 78%
0.05 12800 13100 300 92700 97% 49% 54% 65% 81%

5.4.2 Candidate selection

In the second step, the focus shifts from the global-context, overall relatedness to all seeds,

to the local-context of each mention. For each mention, a score is computed factoring

in the relatedness to seeds and candidates mentioned nearby. The distance between

mentions, measured in words/tokens, is used to weight the relatedness score. For each

nearby mention only the most related candidate is considered. The length of an anchor is

also used as a feature, because longer anchors tend to be less ambiguous. Short mentions

overlapped by long mentions must be linked to one of the targets of the surrounding

mention, otherwise they are discarded. These criteria become numeric features which

can be used to train a classiVer or a regression model. Unfortunately, as its markup
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is incomplete, information extracted from Wikipedia is no longer suXcient to create

training data automatically. Without validation data that can quantify the performance

of a particular method, a relevance estimation function – a linear combination of the

numeric features – is used to rank the overall relevance of each topic candidate. The

system then selects the topics at the top of this list. The number of topics selected can be

expressed relative to the total number of candidates or to the number of seeds.

The weights used in the scoring function were established empirically, giving more

importance to seeds than to topics. To better determine a set of weights, an extrinsic

validation methodology was employed: a supervised document classiVcation task using

a subset of the 20-newsgroups dataset10 (Lang, 1995), consisting of 100 Vles for each

newsgroup. After removing headers and email addresses, the resulting 2000 Vles average

272.93 words per Vle. Unlike the usual 60-40 split between training and testing (or the

90-10 split used in 10-fold cross validation), only 10% of the documents are used for

training and the remaining 90% of data is used for testing, because such a split forces a

document classiVer to generalise, i.e., to rely more on semantic relatedness rather than

lexical overlap. All documents are Vrst wikiVed using WM to select the 5 most important

topics per document as seeds. Documents are then represented as feature vectors, each

coordinate corresponding to a Wikipedia article weighted according to the relevance

score computed by the densiVcation system. DiUerent relevance estimation functions

are used with diUerent weights. As a baseline, null-relevance densiVcation is used: it

passes through the input seeds, but does not add any new topics, which is equivalent to

using the wikiVcation system alone. The intuition is that the best performance in this

classiVcation task is achieved by choosing a good relevance weighting function.

5.5 Evaluation

The main reason that wikiVcation is popular is the availability of large amounts of training

and testing data directly fromWikipedia. The existing approaches give much more weight

10http://kdd.ics.uci.edu/databases/20newsgroups/20newsgroups.html
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to predicting precise prominent targets, rather than to completeness. DensiVcation aims

to Vnd new links in addition to the existing ones, therefore both precision and recall

need to be calculated to measure performance, which requires creating a reference gold

standard annotation, which can be a costly process. Therefore it is necessary to also

consider alternative ways to estimate performance.

Section 5.5.1 describes an experiment involving human raters carried out to determine

whether or not agreement is high enough to warrant the development of a large scale

gold standard annotation. In a second experiment (Section 5.5.2), a set of Wikipedia

articles are used to automatically estimate the recall of the proposed densiVcation method

by measuring how many of the existing wiki links are also predicted by the system.

Section 5.5.3 presents a third experiment which evaluates the impact the densiVcation

system has on EQUAL, the question answering system presented in Chapter 4.

5.5.1 Human evaluation

To reWect the ability to Vnd less obvious yet relevant links, an experiment involving

human annotators was performed to determine the agreement level for this task. Such

an annotation can be employed to create a reference gold standard, or to evaluate the

performance of systems. For a sample of paragraphs from Wikipedia articles, the set of

candidate topics was extracted, excluding those present in the original Wikipedia markup.

Human annotators were asked to assess the targets of these links using three criteria:

correctness of the proposed link, its relatedness to the text and the type of the target

article:

• correctness – the proposed target is a plausible disambiguation for the anchor

text in this document. This criterion reWects the ability to discard targets which

are obviously incorrect using a 3-level scale, see Table 5.4a

• relatedness – the content of the target article helps in understanding the current

document. This criterion distinguishes easy but irrelevant targets (such as numbers

or dates) using a 5-level scale, see Table 5.4b
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• type – the description included in the target page matches the type of the anchor

text. This criterion distinguishes Vve coarse categories described in Table 5.4c

The experiment focused on four paragraphs of text, totalling 94 links to 48 candidate

targets. The six annotators were given an explanation of the scoring scheme as well as

examples. In the Vrst step, annotators were shown a short text, usually a paragraph,

which they had to read. They then had to score the three criteria for each candidate link.

While such an experiment works towards creating a gold standard, the main goal here

was to study the three criteria, the agreement between annotators and the types of links

found in the sample data. This provides insights into the feasibility of creating a gold

standard for this task.

Correctness

Correctness is measured on an ordinal scale, but it can also be considered nominal

(categorical) as there are only 3 values. Overall, the six annotators marked 79.17% targets

as correct, 14.58% as possible and just 6.25% as incorrect. Because of the skewness of the

dataset three inter-rater agreement measures are used: simple agreement, Cohen’s kappa

(Cohen, 1960) and Krippendorf’s alpha (KrippendorU, 2004).

Table 5.5a shows pairwise agreement considering categorical ratings. The level of

agreement is high, but a better picture emerges when looking at Cohen’s kappa coeXcient

for pairwise agreement in Table 5.5b. The average level of agreement of 51.75% is

considered good for three categories. The average agreement of two raters (5 and 6)

seems to be substantially lower than the other four participants, suggesting that they

used a narrower sense for ‘correctness’. The average kappa for the remaining set of

four raters is 63%, which is slightly better. This result can be considered satisfactory, as

kappa is aUected by prevalence (Sim and Wright, 2005), and on this dataset the codes are

not equiprobable, instead their probabilities vary considerably. In addition, kappa does

not capture the ordinal nature of the criterion: there are only three cases of ‘extreme’
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Table 5.4: Criteria assessed by human raters

(a) Criterion A: correctness of the proposed target page for the keyword

Correct I the target proposed corresponds to the keyword, e.g.,
the same title, a synonym or an alternative name

Possible II the target is related to the keyword, but less exact, e.g.,
keyword expensive - target Cost

Incorrect III erroneous target, e.g., keyword foreign visitors - target
Foreign Policy (magazine)

(b) Criterion B: relatedness of the proposed target page

Very
relevant

I target page is central to the text, e.g., several valid
mentions in the text, or a strong relation to the topic,
usually entities or speciVc terminology

Relevant II target page describes an entity or concept referred to
in the text; it should have at least one valid mention in
the text

Somewhat
relevant

III target page provides additional information, but less
important (e.g., standard terminology, partial entity
names, disambiguation pages)

Not
relevant

IV irrelevant, generic terms e.g., years, dates,
measurement units, numbers

Other V if criterion A was deemed Incorrect

(c) Criterion C: type of the proposed target page

Named Entity I people, organizations, places, events, albums, etc.
e.g., Paris, Picasso, World War I

Term II terminology, scientiVc or technical concepts, common
words
e.g., public house, capital city, isomer, CPU

Topic III a generic topic, e.g., Geography of Germany, Characters
of Lost, Age of Enlightenment, Partition of India

Disambiguation IV a listing of pages with similar titles
e.g., Paris (disambiguation)

Other V none of the above
e.g., list pages (List of sovereign states) or dates (2003,
21st century, March 01)
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Figure 5.1: User interface employed in the experiment
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disagreement – when a target is rated correct by the Vrst rater and incorrect by the

second rater. Two of these cases involve both the two stricter annotators (4 and 5). In the

third outlier case, the rater felt that the link was ‘unnecessary’ as the target article was

the exact page the text was extracted from, i.e., Paris.

Table 5.5c shows pairwise agreement using KrippendorU’s alpha (Ka) (KrippendorU,

2004), a coeXcient that generalises a number of inter-rater agreement statistics, such

as Scott’s Pi (Scott, 1955), Fleiss’ kappa (Fleiss, 1971) and Spearman’s rank correlation

coeXcient rho (Spearman, 1904). It can be used for various types of data (including

nominal, ordinal and interval), and, like kappa, it also considers the level of chance

agreements. For more than two annotators, one can use either the average pairwise Ka

(61.71%) or the overall Ka statistic for all annotators (62.30%). The two stricter annotators

also stand out using this index, with lower average pairwise agreement. Removing

their ratings, the Ka statistic increases from 62.30% (for 6 annotators) to 73.93% (for 4

annotators). A level of 77.30% is reached if the third outlier rating mentioned previously

is also removed from the dataset. Agreement above 80% indicates strong agreement,

while values over 70% are considered as suXcient agreement.

Relatedness

One of the purposes of this experiment was to determine whether the proposed criterion

of relatedness corresponds to a natural attribute of the target that human raters can

recognise without special training. The “guidelines” given to the raters described the

scale and provided several examples, rather than contain an exhaustive set of strict rules.

The criterion was measured using a 5-point scale, but codes 4 (Not relevant) and 5 (Other)

are essentially equivalent. Code 5 should be used for irrelevant targets which had been

deemed ‘incorrect’; however, just two raters used this separate code, therefore we map

these ratings on a 4-point ordinal scale.

As Table 5.6a shows, the average simple agreement is substantially lower than for the

correctness criterion. To reWect the ordinal nature of the scale, a modiVed version of the
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Table 5.5: Agreement for criterion Correctness

(a) Pairwise simple agreement

2 3 4 5 6 Annotator average

1 87.50 87.50 83.33 81.25 83.33 84.58
2 87.50 91.67 83.33 83.33 86.67
3 83.33 77.08 87.50 84.58
4 79.17 81.25 83.75
5 72.92 78.75
6 81.67

83.33

(b) Pairwise Kappa agreement

2 3 4 5 6 Annotator average

1 62.89 65.55 54.07 53.94 40.19 55.33
2 64.36 76.24 57.94 36.32 59.55
3 54.82 44.71 57.33 57.36
4 49.74 36.00 54.17
5 22.10 45.69
6 38.39

51.75

(c) Pairwise Krippendorf’s alpha (ordinal)

2 3 4 5 6 Annotator average

1 70.21 70.81 70.24 58.67 45.96 63.18
2 77.74 88.60 67.73 52.84 71.42
3 67.56 55.74 55.83 65.54
4 67.31 44.35 67.61
5 32.10 56.31
6 46.22

61.71
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agreement measure can be used, which allows for one-point disagreements between a

pair of raters. Table 5.6b shows that the majority of the pairwise disagreements are one

scale point diUerences in rating. This means that agreement was relatively low when

relatedness ranking is seen as a categorical rating task (also reWected by the kappa index

in Table 5.6c), but higher agreement levels were achieved when using an ordinal index.

Table 5.6d shows that overall, the level of agreement using KrippendorU’s alpha is indeed

lower than for the previous criterion, with only half of raters achieving an average

pairwise index above 60% (raters 2,4 and 5). The pair that agrees best (raters 4 and 5) have

a moderate agreement index of 66.85% while the average pairwise index is 51.84%. This

suggests that there is too much subjectivity when assessing the relatedness criterion on a

4-point ordinal scale. Table 5.7 illustrates this point: rating I (Very Relevant) has higher

prevalence for annotator 4 (23 items, vs. a median of 10 items); rating II (Relevant) has

high prevalence for annotators 1 and 2 (though they agree on this code less than half of

the time); while rating IV is used by rater 6 twice as frequently as the overall average. The

disagreements are inconsistent even for pairwise decisions. By mapping the ratings to a

smaller scale (3-point or even 2-point), simple agreement is the only inter-rater agreement

index that increases. Both kappa and alpha decrease slightly, strongly suggesting that

there is a high degree of subjectivity. The conclusion is that relatedness is a less generic

and a more subjective concept than corectness: whether a target is deemed related to a

text or unrelated depends on the task at hand, as well as on the rater’s knowledge of the

topic. Some raters suggested the concept of relevance as a less ambiguous alternative

criterion (targets that are mentioned more often are more relevant), but relevance does

not consider the actual contents of the target page.

Type

The third criterion was designed to be used as a control signal, as the distinction between

named entities, terms and topics seemed a natural intuition. Analysis of this data revealed

two notable Vndings. The Vrst Vnding concerns code V (Other) which should to be used

for index pages from Wikipedia, such as lists of entities or dates/years. These pages,
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Table 5.6: Agreement for criterion Relatedness

(a) Pairwise simple agreement

2 3 4 5 6 Annotator average

1 52.08 39.58 35.42 45.83 27.08 40.00
2 43.75 35.42 64.58 33.33 45.83
3 56.25 41.67 47.92 45.83
4 35.42 39.58 40.42
5 37.50 45.00
6 37.08

42.36

(b) Pairwise ordinal agreement allowing one scale point mismatches between
raters

2 3 4 5 6 Annotator average

1 89.58 95.83 95.83 87.50 83.33 90.42
2 87.50 89.58 93.75 81.25 88.33
3 87.50 85.42 83.33 87.92
4 87.50 75.00 87.08
5 89.58 88.75
6 82.50

87.50

(c) Pairwise Kappa agreement

2 3 4 5 6 Annotator average

1 23.97 15.02 20.26 21.80 8.94 18.00
2 24.21 18.87 50.84 18.25 27.23
3 39.57 22.04 30.96 26.36
4 16.92 19.26 22.97
5 22.08 26.74
6 19.90

23.53

(d) Pairwise Krippendorf’s alpha (ordinal) agreement

2 3 4 5 6 Annotator average

1 48.59 48.38 54.94 48.59 37.65 47.63
2 44.05 52.97 66.85 52.54 53.00
3 56.33 45.41 48.29 48.49
4 59.50 46.34 54.01
5 64.41 56.95
6 49.85

51.66
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Table 5.7: Number of targets per code for criterion Relatedness

Rater
Code

I II III IV

1 6 30 9 3
2 10 24 7 7
3 12 14 18 4
4 23 5 15 5
5 11 18 10 9
6 10 7 16 15

average 12.00 16.33 12.50 7.17
median 10.50 16.00 12.50 6.00

while important for aiding navigation and for providing context for a particular target,

do not have one main subject (the encyclopaedic entry), which should be the case for the

Vrst three codes (I named entity, II term, III topic). Results show that raters 4 and 5 did

not use the whole scale to rate targets, suggesting perhaps an omission in the guidelines.

The second Vnding is that raters had very low agreement for code III (Topic). The typical

disagreement was for targets such as Economy, which could be considered both general

terms and topics in human knowledge. Most topics present in the dataset are rather

generic and are aUected by this problem. More speciVc topics such as Economy of France

which are easily distinguishable from terms such as Gross Domestic Product (GDP) are

less frequent in the data used. To address this issue, the examples given as guideline need

to be amended to reWect such borderline cases.

When measuring the agreement on one code vs. all the others, raters agreed best for

code I (Named Entities) with a Krippendorf’s alpha coeXcient of 79.4%, while for code

II (Terms) the agreement was 64%. The other codes, which were used for fewer targets,

demonstrated lower levels of agreement: 50.3% for codes IV and V (combined), and

4.62% for code III (Topic) due to its very low prevalence. If the coding is mapped onto a

3-category scheme (named entities, terms and other), the agreement amongst all raters is

65% and amongst the Vrst three best raters it is 77.3%. The best pair of annotators (2 and

4) achieve a Krippendorf’s alpha coeXcient of 84.1% using the original 5-categories scale.
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Table 5.8: Agreement for criterion Type

(a) Pairwise simple agreement

2 3 4 5 6 Annotator average

1 77.08 66.67 70.83 58.33 68.75 68.33
2 83.33 89.58 72.92 79.17 80.42
3 79.17 72.92 75.00 75.42
4 72.92 70.83 76.67
5 75.00 70.42
6 73.75

74.17

(b) Pairwise Kappa agreement

2 3 4 5 6 Annotator average

1 65.33 47.40 57.14 39.39 51.09 52.07
2 72.07 84.00 58.76 65.93 69.22
3 66.64 57.38 56.85 60.07
4 59.85 54.35 64.40
5 60.66 55.21
6 57.78

59.79

(c) Pairwise Krippendorf’s alpha (nominal) agreement

2 3 4 5 6 Annotator average

1 65.41 47.20 57.30 39.18 51.06 52.03
2 72.28 84.14 58.85 66.04 69.34
3 66.73 57.01 56.88 60.02
4 60.05 54.28 64.50
5 60.61 55.14
6 57.77

59.80
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For this pair of raters there is no target they simultaneously consider as code III (Topic),

but all their disagreements occur when one of them uses code III (10% of targets), while

all the other targets have perfect agreement. This is a positive result, showing that strong

agreement can be achieved. The detailed agreement results for the type criterion can be

found in Table 5.8.

Overall, the results of this experiment suggest that the level of agreement is average

for criteria relatedness and type, and good for criterion correctness. Some of the

disagreement can be explained by the fact that the guidelines were not comprehensive,

there was no specialised training for the raters and the annotators were not themselves

experts. Additionally, the distribution of the scores was skewed, which explains the

large diUerence between simple agreement and measures of agreement adjusted for

chance, such as Cohen’s kappa and KrippendorU’s alpha. The experiment was designed

to determine the reliability and generality of the Vrst two criteria, i.e., whether they

correspond to natural attributes characterising a target. Therefore the guidelines were

intentionally rather vague, to allow raters to use their common sense rather than be

restricted by a comprehensive set of rules. While the notion of correctness, a fuzzy

version of ‘identity’ or ‘cross-document coreference’ seems to correspond to this intuition,

relatedness appears to be a subjective, task-dependent and somewhat artiVcial concept.

This Vnding casts doubts over the practicality of developing a large-scale, general-purpose

gold standard annotation for relatedness. Based on these results, voting amongst raters

can be used to build a reliable reference annotation for correctness and type using a

slightly amended set of guidelines. Brief training of the raters is also recommended.

5.5.2 Wikipedia markup evaluation

This section evaluates the performance of densiVcation by automatically estimating

recall. In this experiment, the text of Wikipedia articles is used together with a random

sample of the existing links that form the set of seed topics. The set of remaining links,

deemed relevant by Wikipedia editors, is considered a biased sample of important links
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the system should Vnd and is used as a proxy to estimate recall – a subset of valid

targets. For each document, the recall score is averaged over 10 random splits. The main

advantage of this method is that it can be applied on a large scale as it does not require

manual data. The disadvantage is that precision cannot be estimated automatically, but

needs to be estimated by humans, using for example, a method similar to that described

in the previous section. OU-the-shelf wikiVcation systems should perform well in this

scenario, as only the ‘prominent’ links are considered for evaluation. DiUerent seed ratios

were used to study the impact of input set size.

To better understand the performance of the proposed densiVcation model, several other

oU-the-shelf tools were also tested on the same dataset. These tools were brieWy described

in Section 5.2, and a summary of their characteristics is outlined in Table 5.9. Almost all

tools identify both entities and terms, though not all directly create links to Wikipedia

or to the Linked Open Data cloud. Four of the seven systems provide descriptions of

their approach: two of them use a link-based measure to rank and disambiguate targets,

and two use a word-based approach. A recent analysis of popular linked data entity

extractors is given by Rizzo and Troncy (2011).

Table 5.9: WikiVcation tools

Alchemy
API

DBpedia
Spotlight

Open
Calais

thewiki
machine

Wikipedia
Miner

Zemanta
API

DensiV
cation

Link targets
• entities X X X × X X X
• terms X X × X X X X

Similarity
• word-based ? X ? X × ? ×
• link-based ? × ? × X ? X

Open source × X × × X × n/a
Fair-use X X X X X X n/a
Quota X X X X × X n/a
Subscription × × × × × × n/a

Table 5.10 presents the performance achieved by the diUerent wikiVcation tools using
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Table 5.10: Performance achieved by wikiVcation tools using diUerent seed ratios

(a) Macro-averaged Recall (and standard deviation)

System sr=0.1 sr=0.3 sr=0.5 sr=0.7

aapi 29.97 (15.95) 30.03 (16.11) 30.25 (16.16) 31.54 (17.05)
dbs 48.68 (16.70) 48.48 (16.86) 48.20 (16.26) 48.91 (18.37)
oc 25.44 (14.39) 25.34 (14.22) 25.13 (14.77) 27.64 (14.94)
twm2 8.20 (17.24) 8.89 (17.95) 9.85 (18.15) 12.49 (21.37)
wm1 61.80 (18.16) 61.88 (17.88) 61.13 (17.89) 61.54 (20.68)
wm2 61.81 (18.62) 61.89 (18.26) 61.19 (18.41) 61.86 (21.20)
zem 57.36 (17.40) 57.53 (17.60) 57.50 (17.09) 57.19 (18.88)

(b) Macro-averaged Precision (and standard deviation)

System sr=0.1 sr=0.3 sr=0.5 sr=0.7

aapi 52.86 (15.52) 47.41 (15.31) 40.16 (14.67) 30.13 (13.47)
dbs 32.89 (11.92) 27.92 (11.28) 22.02 (10.03) 14.95 (8.18)
oc 51.93 (15.42) 45.91 (16.25) 38.20 (15.96) 29.28 (14.55)
twm2 7.97 (8.17) 6.90 (7.35) 5.55 (6.70) 4.28 (4.83)
wm1 57.03 (15.00) 51.50 (15.11) 43.59 (15.17) 32.80 (14.42)
wm2 46.34 (13.94) 40.79 (13.70) 33.31 (13.29) 23.94 (11.92)
zem 59.85 (11.90) 54.14 (12.11) 46.29 (12.71) 34.69 (11.89)

(c) Macro-averaged F1 (and standard deviation)

System sr=0.1 sr=0.3 sr=0.5 sr=0.7

aapi 35.70 (15.04) 34.12 (14.65) 31.81 (13.44) 28.27 (12.73)
dbs 37.12 (10.83) 33.40 (10.58) 28.29 (9.32) 21.48 (8.34)
oc 31.73 (13.94) 30.24 (13.31) 27.68 (12.53) 26.05 (11.11)
twm2 6.66 (9.34) 6.47 (8.65) 6.04 (8.09) 5.45 (6.35)
wm1 57.17 (14.04) 54.00 (13.68) 48.60 (13.61) 40.58 (14.55)
wm2 50.82 (13.11) 47.00 (12.51) 40.96 (12.09) 32.59 (12.32)
zem 56.07 (11.95) 53.14 (11.36) 48.61 (10.72) 40.57 (11.20)
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diUerent seed ratios. The Vrst thing that is noticeable is that all systems behave similarly

when changing the seed ratio. This is expected as these tools do not employ the reference

set of seed entities to aid disambiguation. The recall level is quite stable, as demonstrated

by Table 5.10a, because as the seed ratio is increased, the remaining set of valid targets

is smaller but the predictions made by the systems do not change. Table 5.10b shows

that precision decreases for all the tools when the seed ratio is increased. This eUect is

due to most targets being used as seeds which leaves fewer valid targets for evaluating

precision. Formally, the precision of system s at seed ratio sra for a document is

P s
sra = NCsra

N
, where N is the number of predictions made by the system and NCsra is

the average number of correct answers. As sr is increased, NCsra can only decrease or

stay unchanged. As sr approaches 1, P s
sr reaches zero regardless of system. However,

for the purposes of densiVcation, precision calculated as above is ill-suited for assessing

performance due to lack of data: systems which produce relevant/correct targets that

are not in the original set are penalised. Recall is more stable relative to the seed ratio;

while variations do occur, these are small in magnitude. A smaller the set of valid targets

means a smaller denominator in the recall formula. The random selection of seeds does

impact the actual values, which is why the results are averaged over ten runs.

The most curious behaviour is displayed by thewikimachine tool, which consistently

has the lowest performance. This is probably because it tries to disambiguate simple

terms using specially trained SVM classiVers, rather than focus on encyclopaedic named

entities as seems to be the case with all other tools. This data can be used for a rough

comparison of wikiVcation performance, e.g., by examining the results for the minimum

seed ratio. Overall, WikipediaMiner reaches the highest recall values, while Zemanta

API edges ahead in terms of precision. The diUerences between these two systems, wm1

and zem, are not statistically signiVcant according to both the paired t-test and Wilcoxon

signed rank test. This experiment was not designed to be a benchmark for these tools,

but rather to provide insights into understanding performance when only using a subset

of the valid targets.

A full comparison between the results obtained by the wikiVcation tools presented
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Table 5.11: DensiVcation: results for Wikipedia markup evaluation

System Recall Precision (upper bound)

WikipediaMiner 1 46.60% 51.07% 100.00%
DensiVcation(1:1) 58.73% 57.26% 100.00%
DensiVcation(2:1) 71.27% 24.42% 50.00%
DensiVcation(3:1) 83.23% 14.51% 33.33%
DensiVcation(4:1) 87.13% 9.62% 25.00%

in Table 5.10 and the densiVcation method proposed here is is not possible because

they address diUerent tasks. However, for a more complete picture, the results of the

densiVcation method are estimated in a similar framework as wikiVcation. Table 5.11

shows the results achieved by the densiVcation system when seed ratio is 0.5, in

comparison with Wikipedia Miner 1 which performed best amongst the other tools.

In this setting, the number of links used as seeds is equal to the number of reference

targets which are used to estimate recall. Four diUerent threshold values were used

to specify the ratio between the number of topics predicted by densiVcation and the

number of targets sought. This shows how recall increases when more densiVed links are

considered, but also illustrates that this experiment is ill suited for estimating precision:

considering more links artiVcially limits precision, only because these links, even if

correct, are not present in the set of reference targets. In terms of recall, the densiVcation

method performs very well: the average recall is 71.27% when maximum precision is

50% (the number of predicted topics is twice the size of the target set). Average recall

increases to 83.23% when maximum precision is 33.33%, and reaches 87.13% for maximum

precision 25%.

5.5.3 DensiVcation impact on EQUAL

In the CLEF competitions, EQUAL demonstrated the highest performance amongst all

submissions, regardless whether they were automatic or they had human involvement,

and it retrieved more correct answers than any other participant. An important

performance bottleneck for the system was the limited types of semantic constraints:

for some questions, although phrased in a simple form, the system did not have the

138



representation power to accurately interpret the question. The interpreter, despite having

few, generic components, managed to return answers for half the questions. As new

types of semantic constraints are added and more constraint validators are included in

the system, increasingly large amounts of data are necessary to rank the most likely

interpretations for the questions involved. This requires a coordinated community eUort,

especially due to the high degree of interdisciplinary knowledge involved, and also due

to the amount of data and resources necessary.

DensiVcation is aimed to address the main performance bottleneck that aUects the

questions for which EQUAL found at least a compatible interpretation. In many such

cases, the QA system did not Vnd all of the answers when exploring the Wikipedia link

graph, because the constraint veriVers employed depended on wiki links. However, these

are meant for human readers, and are used accordingly. In cases where some of the

correct answers were overlooked, this was usually due to ‘missing links’. As argued at

the beginning of the chapter, the available entity linking tools are focused on prominent

named entities. This motivated the research into better linking algorithms, which are able

to boost recall. This section focuses on the evaluation of the impact that densiVcation

brings to the semantic QA approach employed by EQUAL.

The evaluation is performed on the GikiCLEF 2009 dataset with exactly the same question

interpretations generated by the system. This process can provide answers to two

questions: a) does the Wikipedia link graph enhanced by densiVcation improve recall?

b) how does it aUect precision? Results are compared to those achieved by the original

system.

EQUAL primarily uses two graph-exploration steps: a) visiting out-links (the entities

mentioned in an article) and b) visiting in-links (the articles mentioning an entity). Too

much computational eUort is necessary to densify the entire Wikipedia beforehand,

therefore only those articles which are relevant to each question were processed. It is

straightforward to densify an article before collecting its out-links. To augment the set of
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in-links for a given entity e, the inverted index built by EQUAL using Lucene11 (Hatcher

and Gospodnetic, 2004) is used to retrieve candidate documents as follows: for each

known anchor a all articles that contain a and do not contain a link to e are retrieved.

To further reduce redundant computations, the documents which have a link to known

targets ta of anchor a are Vltered out because densiVcation would use this target as a

seed.

In its original GikiCLEF submission, EQUAL returned 69 correct, 10 unjustiVed and 59

incorrect answers on the English dataset (see Table 4.6) out of an answer pool containing

118 validated answers. This achieves a micro-averaged precision of 57.24% and a micro-

averaged recall of 66.94% relative to the oXcial answers. After running densiVcation,

the system retrieves 78 novel results, containing 23 valid answers, more than half of the

missing answers. Not all of the additional 55 results retrieved are necessarily incorrect

because GikiCLEF used open ended questions. Overall, recall is increased to 86.44%

(+19.5%) and precision falls to 47.22% (-10.02%). This suggests that densiVcation does

indeed help Vnd additional answers, but the semantic constraints need to become more

precise. For example, for the GC09-09 topic Name places where Goethe fell in love, the

system does not Vnd additional correct answers, but instead retrieves more incorrect ones

because the constraint veriVer is too generic: it validates all cities that are mentioned in

the same paragraph as the trigger word “love”.

DensiVcation is more computationally intensive than WikipediaMiner which achieves

the state-of-the-art performance for wikiVcation. The same evaluation was emplyed to

determine how many answers can be found if using WM to recover additional links in

Wikipedia articles. In this case, EQUAL Vnds only 34 additional results, containing 12

valid answers. WikiVcation also helps Vnd additional answers, but to a lesser extent, as it

it usually created less links per document than densiVcation (see results in Table 5.12).

Based on these results, densiVcation does help increase recall, but, in the case of EQUAL,

it does so at the cost of precision. To fully beneVt from the extra information, the QA

11http://lucene.apache.org/core/

140

http://lucene.apache.org/core/


Table 5.12: DensiVcation: performance impact on EQUAL(micro-averaged)

System Corr. Incorr. Total P R F0.5 F1 F2

EQUAL 79 59 138 0.5725 0.6695 0.5896 0.6172 0.6475
+DensiVcation 102 114 216 0.4722 0.8644 0.5193 0.6108 0.7413
+WikipediaMiner 91 81 172 0.5291 0.7712 0.5645 0.6276 0.7065

system needs to use more advanced constraints and to Vlter candidate answers using

improved information extraction techniques. It was decided not to implement additional

constraints in EQUAL as it would have made the results not directly comparable. The set

of answers which are not reachable by the current system suggests that, in addition to

exploring Wikipedia based on links, the system should also use information extraction

methods to search for supporting information in any article’s text. This enables the use

of multi-argument constraints which require all arguments to be present in the same

context, and not just in the same article/paragraph.

5.6 Conclusions

This chapter proposed a new method for identifying and ranking Wikipedia entities

mentioned in a text. Experiments show that this method can improve the recall of the

semantic QA system EQUAL, by enriching the link graph with additional links that

are not present in the original markup of Wikipedia articles. The method uses a set of

given seed topics to produce a robust ranking of relevant topics. It consists of two steps:

pruning – which creates a high-recall set of candidates, and selection – which Vlters this

set and computes relevance scores.

The Vrst step, pruning, is a fuzzy disambiguation approach based on point-wise ranking

models trained on data extracted from Wikipedia. It uses a semantic relatedness measure

between two articles (Milne and Witten, 2008a) to identify and discard candidate topics

that have little relevance to the initial set of seeds. In the second step, selection, the

relevance of a topic is estimated using both the seeds and the remaining candidate topics

which are mentioned nearby. Overlapping mentions are also dealt with. As there is no
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gold standard dataset, an extrinsic validation approach is used. The method is able to

produce robust results, even if only a tenth of data is used for training.

A small-scale experiment was carried out to determine whether or not human agreement

was high enough to warrant the annotation of a gold standard for densiVcation. The

results demonstrated moderate agreement and suggested that acceptable agreement levels

could be possible, provided adequate guidelines are give to the raters and that training is

Vrst carried out. The experiment showed that assessing relatedness is a rather subjective

task, therefore, instead of a costly annotation eUort, a more eUective way to measure

performance is via extrinsic evaluation. The rating methodology developed can be used

to estimate the precision of densiVcation models using crowd-sourcing.

Another experiment was carried out to measure the performance of the densiVcation

method using Wikipedia. For each article, a random set of links were considered as

seeds while the remainder were used to estimate recall. This setting resembles that of

wikiVcation, so the performance was compared against several other wikiVcation systems.

On average, the method proposed achieves the best results. The advantage of this method

is that it can be run on a large scale with no annotation required, but its disadvantage is

that it cannot be used to estimate precision for densiVcation.

Finally, the densiVcation method was applied to the subset of pages used by EQUAL to

answer GikiCLEF questions. The micro-averaged recall has increased from 66.94% to

86.44%, suggesting that densiVcation enables the semantic QA system to Vnd correct

answers which it had previously missed. The decrease in micro-averaged precision from

57.24% to 47.22% suggest that the semantic components of the system need to be improved

to take full advantage of the additional links. To check if a relationship between two

entities holds, EQUAL uses either facts from sources such as DBpedia or checks for wiki

links between the two corresponding Wikipedia articles. DensiVcation allows the system

to recover additional links which were omitted in the original markup, increasing the

recall of the QA system. To Vnd the remainder of missing answers, future work will apply

densiVcation on entire document collections (including Wikipedia) enabling EQUAL to
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use paragraphs were both entities are mentioned as possible evidence for the relationship.

This approach could also be employed as a pre-processing step to populate linked open

data sets. By disambiguating entity mentions it can increase the precision of existing

relation extraction tools.
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Chapter 6

Concluding Remarks

The main aim of this thesis was to advance open-domain question answering to

enable more complex questions to be addressed than currently possible by proposing a

paradigm shift from textual to semantic QA systems and by providing a proof-of-concept

implementation. This chapter considers the extent to which this has been achieved, by

reviewing the thesis and summarising the primary results. Section 6.1 revisits the goals

set out in Chapter 1 and Section 6.2 presents the main contributions of the thesis resulting

from the achievement of these goals. Section 6.3 provides an overview by summarising

each chapter, and Section 6.4 discusses possible future directions for the research.

6.1 Research goals revisited

This section revisits the goals presented in Chapter 1 which were necessary steps to

fulVl the overall aim of the thesis: the advancement of open-domain QA in dealing with

more complex question types than currently possible. Each goal is stated along with a

description of how it was achieved.

Goal 1 was to advance a paradigm shift in designing open-domain QA systems which

can address more complex questions. This was achieved in Chapter 3 which revealed that

standard textual QA systems are too focused on exploiting information redundancy for

answering factoid questions, and argued that these systems are diXcult to extend to cover

more complex question types. Encyclopaedic questions were suggested as a QA challenge

to foster new approaches, because these questions avoid the limitations of textual QA
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which were identiVed in this thesis. A novel semantic architecture using concepts and

knowledge representation as its core technology was then proposed. This architecture

constitutes a paradigm shift in open-domain QA system design (which typically employs

simple surface patterns and information retrieval engines). The architecture allows a QA

system to combine information from diUerent sources using simple forms of inference

and aUords a greater variety of question types, many of which are considered too diXcult

for current open-domain QA technologies. This approach is also motivated by Chapter 2

which illustrated the potential of Wikipedia for QA research, Vrstly as a repository of

human knowledge and secondly as a central resource for a wide variety of NLP tools in

the Velds such as information retrieval, information extraction, knowledge representation,

and semantic relatedness.

Goal 2 was to test the viability of the novel approach through its implementation in

a proof-of-concept QA system. Chapter 4 described EQUAL, the semantic QA system

developed as part of this thesis, and presented its participation in two competitions which

employed encyclopaedic questions: GikiP (Santos et al., 2008) and GikiCLEF (Santos

and Cabral, 2009a). The system detects diUerent types of ambiguity to decompose the

question into constituents which are then assigned to coarse-grained semantic constraints

involving entities, types, relations and properties. Instead of retrieving paragraphs,

EQUAL explores the semantic graph induced by Wikipedia articles to determine correct

answers by enforcing semantic constraints. In both competitions, EQUAL achieved the

top results, signiVcantly outperforming standard textual QA systems, proving that the

QA architecture proposed in this thesis is able to deal with complex questions.

Goal 3 was to develop a method which enables QA systems to add new arbitrary texts to

its knowledge base by linking named entity mentions to relevant Wikipedia articles. This

semantic analysis step is necessary because semantic QA systems cannot otherwise make

use of text documents to expand their information coverage. The goal was achieved in

Chapter 5 in which a new semantic analysis method was proposed, densiVcation, which

aims to produce a more complete set of links to relevant articles than existing approaches
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which exhibit a strong bias towards precision rather than completeness. This method

was evaluated by applying it to a subset of Wikipedia articles relevant for the GikiCLEF

dataset. The new links identiVed via densiVcation enabled EQUAL to Vnd additional

correct answers.

6.2 Original contributions

The achievement of the goals described above allowed this thesis to make three key

original contributions to research in the Veld of question answering.

The Vrst original contribution of this work is the proposal of a paradigm shift in

open-domain QA research. This thesis argued that the standard textual approach is

inherently limited to questions whose answers are explicitly present in the reference

document collection used. To foster the development of more advanced approaches,

the thesis proposed to change the focus of QA research from textual, factoid questions

to more complex question types, such as encyclopaedic questions: open-list questions

usually composed of several constraints that require a system to aggregate evidence from

more than one document or data source and to validate each of the possible answers

individually. The thesis then advocated a paradigm shift in the design of open-domain QA

systems by moving away from the textual approach which uses words and information

retrieval at the core of the QA architecture, towards a semantic approach which uses

atomic facts and semi-structured knowledge bases. This aUords simple forms of inference,

enabling the system to combine information from diUerent sources and to answer more

complex questions. To achieve this, a novel architecture for semantic QA systems was

proposed, which can address encyclopaedic questions. The architecture contains two

main processing phases: analysis, responsible for interpreting questions, identifying

ambiguities and Vnding answers, and feedback, responsible for facilitating eUective

interaction with the user.

The second original contribution of this work is the development of EQUAL, a new

semantic QA system implementing the analysis phase of the novel architecture. It uses
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Wikipedia as source of world knowledge and employs simple forms of open-domain

inference to answer encyclopaedic questions. EQUAL decomposes a question into a

sequence of semantic constraints by combining the output of a syntactic parser with

information from Wikipedia. To address natural language ambiguity, the system builds

several formal interpretations which contain the constraints identiVed in the question,

and addresses each interpretation separately. To Vnd answers, the system then tests

these constraints individually for each candidate answer, considering information from

diUerent documents and/or sources. The correctness of an answer is not proved using a

logical formalism, instead a conVdence-based measure is employed. This measure reWects

the validation of constraints from raw natural language, automatically extracted entities,

relations and available structured and semi-structured knowledge fromWikipedia and the

Semantic Web. When searching for answers, EQUAL uses Wikipedia as an entity-relation

semantic graph to Vnd relevant pieces of information. This method aUords good

precision and allows only pages of a certain type to be considered, but is aUected

by the incompleteness of the existing markup which is targeted towards human readers.

The viability of the proposed approach was demonstrated by EQUAL’s participation

in two competitions, GikiP at CLEF 2008 and GikiCLEF at CLEF 2009. The system

outperformed both standard textual QA systems and semi-automatic approaches.

The third original contribution of the thesis is the development of a new semantic

analysis method, densiVcation, which transforms raw text into semi-structured

information by linking mentions of entities or terms to relevant Wikipedia articles. To

answer questions using new document collections, the semantic QA approach employed

in this thesis requires that texts are Vrst connected to the entity-relationship graph

extracted from Wikipedia, which constitutes the core knowledge base used by the system.

The GikiCLEF results showed that the existing markup of wiki links in Wikipedia

is incomplete, to avoid redundant information and clutter, and as a result a system

needs to automatically recover additional links which were omitted due to stylistic

considerations. A review of existing wikiVcation tools revealed their bias towards a

few precise links rather than a more complete set of links as needed by QA systems.
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In order to address this, a semantic analysis method which disambiguates entities is

developed to enrich Wikipedia articles with additional links to other pages. The module

increases recall, enabling the system to rely more on the link structure of Wikipedia than

on word-based similarity between pages. It also allows new document collections to be

linked to the encyclopaedia, further enhancing the coverage of the system. Applying the

densiVcation method to the GikiCLEF dataset allowed EQUAL to Vnd additional answers

which it had previously missed, proving that the task is useful. However, the number

of incorrect answers also increased suggesting that the system needs more accurate

semantic constraint veriVers to better Vlter the additional answer candidates.

6.3 Directions for future work

The paradigm shift proposed in this thesis opens up an entirely new array of research

avenues, either to improve the semantic QA architecture, e.g., further enhance the types

of inference possible and increase the complexity of questions addressed, or to extend an

actual QA system such as EQUAL by incorporating new tools, resources and technologies.

In terms of the novel QA architecture proposed in Chapter 3, one of the most obvious

directions for future investigation is the second phase: feedback. This research falls

mainly in the areas of human-computer interfaces, interactive question answering

and dialogue systems. As envisioned in Section 3.5, a system needs to be able to

synthesise, in very short amounts of time, informative responses which limit the impact

of misunderstandings. The interface should explain the interpretation of the question,

allow the user to quickly check the facts or rules that were used by the system to validate

individual answers, and enable the user to easily change/adjust their question. To achieve

these objectives, novel inference engines need to be employed that can deal with uncertain

facts, multiple-source data provenance and probabilistic reasoning. This is currently an

active research area, but no ready-made solutions yet exist. Presentation of the results also

warrants exploration, for example how to combine visual elements with natural language

generation algorithms to present the information eXciently. An important feature that
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the interface should accommodate is that of automatically collecting evaluation of the

system’s performance by analysing user actions, without asking for explicit validation

assessments. This data is instrumental for improving performance.

Determining how to map semantic constraints to corresponding veriVers poses several

problems and deserves further investigation. Very similar constraints might require

diUerent veriVers, for example, Romanian architects can be matched to the homonym

category in Wikipedia, but Romanian volcanoes might need to be decomposed into two

atomic constrains, e.g., ?x isA volcano and ?x locatedIn Romania. This mapping aUects

consistency, when diUerent veriVers yield contradictory results, but more importantly it

also aUects latency, the processing time required to apply veriVers and generate an initial

response (Nielsen, 2007). Some veriVers are costly in terms of the necessary processing

time, such as generic veriVers, which need to examine text in search for facts at query

time, or nested veriVers, which need to simultaneously check several facts. In the case

of complex questions, the system should plan the order in which veriVers are checked

so that the more restrictive Vlters are applied Vrst. In addition, the system could use

pre-veriVers, necessary but insuXcient conditions that can be tested eXciently, to narrow

down the list of candidate answers which require further processing. Another approach

for reducing latency is to rank the likelihood of each question interpretation. This requires

the system to combine conVdence scores for the diUerent disambiguations it performs

when interpreting a question. The resulting likelihood score can be particularly useful to

prepare the response to the user: the most likely interpretations should be prioritised and

their results displayed Vrst, while less likely interpretations can be processed either while

the user examines the initial response, or only after the user explicitly indicates it.

More speciVcally for enhancing systems such as EQUAL, one challenge is the mining

of large amounts of semi-structured information from a densiVed version of Wikipedia.

This would allow the creation of virtual, synthetic categories that simplify the expected

answer type resolution, for example creating the virtual category German Renaissance

composers as the intersection of the categories German people and Renaissance composers
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can beneVt both interpreting the question and validating candidate answers. The vast

amounts of semantically annotated data that can be obtained via densiVcation of the

entire Wikipedia would also allow the system to autonomously determine which are the

most frequent relations connecting entities of a given type, e.g., footballers and clubs,

how these are expressed in text and how to link them to Linked Open Data datasets,

extending the coverage of its semantic knowledge base as well as enhancing question

interpretation capabilities.

One of main challenges facing the novel approach proposed in Chapter 3 is correctly

interpreting the constraints present in questions, which requires the combination of

several research areas: syntactic parsing, semantic parsing and automatic reasoning.

EQUAL has been successfully applied to encyclopaedic questions, which are a conjunction

of atomic constraints. Future research should enhance the capability to interpret and

answer questions which use quantiVers and aggregates, in questions such asWhich rivers

Wow through more than 3 national capitals?

GikiCLEF demonstrated that diUerent language versions of Wikipedia have diUerent

information coverage (Santos and Cabral, 2009a), for example, there is more factual

information about Brazil-related topics in the Portuguese version of Wikipedia than in

the English version. Another challenge for EQUAL is to further exploit the multilingual

nature of Wikipedia. In a Vrst stage, the semantic graphs of diUerent language versions

can be merged, to add more links between entities or to collect additional categories. In

a second stage, multilingual constraint veriVers can be developed which employ facts

originating from data sources written in a language diUerent than that of the question.

A promising research avenue is to further develop densiVcation as a general purpose

tool for semantic document analysis and employ it in diUerent NLP applications.

One direction previously mentioned is that of incrementally applying densiVcation

to Wikipedia itself, further enriching its semantic structure. Such a resource could have

signiVcant impact in several Velds, being especially well suited for semi-supervised
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methods. Another direction is to tailor the behaviour of the algorithm for use in speciVc

NLP applications which can take advantage of the semantic information available.
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Appendix A:

Previously Published Work

Some of the work described in this thesis has been previously published in proceedings

of peer-reviewed conferences. This appendix provides a short description of these papers

and explains their contribution to this thesis:

Santos, D., Cardoso, N., Carvalho, P., Dornescu, I., Hartrumpf, S., Leveling, J. and

Skalban, Y. (2008), Getting geographical answers from Wikipedia: the GikiP pilot at CLEF,

in F. Borri, A. Nardi and C. Peters, eds, ‘Working Notes for the CLEF 2008 Workshop’,

CLEF 2008 Organizing Committee, Aarhus, Denmark.

This paper describes the GikiP pilot that took place at GeoCLEF 2008. The article gives

an overview of the GikiP competition, deVning the task, presenting evaluation measures,

describing the results achieved by participants and discussing challenges encountered.

My contribution to this paper was a description of the approach employed by the Vrst

version of the QA system EQUAL. The results reported in this paper are presented in

Chapter 4, Section 4.5.

Santos, D., Cardoso, N., Carvalho, P., Dornescu, I., Hartrumpf, S., Leveling, J. and

Skalban, Y. (2009), GikiP at GeoCLEF 2008: Joining GIR and QA Forces for Querying

Wikipedia, in ‘Proceedings of the 9th Cross-language evaluation forum conference on

Evaluating systems for multilingual and multimodal information access’, Vol. 5706 of

LNCS, Springer-Verlag, Berlin Heidelberg, pp. 894–905.

This is a revised version of the previous paper, published in 2009, where my contribution

to this paper was also a description of EQUAL. This description was Vrther expanded in

Section 4.3.
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Dornescu, I. (2009), EQUAL: Encyclopaedic QUestion Answering for Lists, in F. Borri, A.

Nardi and C. Peters, eds, ‘Working Notes for CLEF’, Corfu, Greece.

This paper presents the second version of EQUAL, and its participation in the GikiCLEF

2009 task. The system is described in the context of a more general architecture

for semantic QA which formed the basis of the architecture proposed in Chapter 3,

Section 3.5.

Dornescu, I. (2010), Semantic QA for Encyclopaedic Question: EQUAL in GikiCLEF, in

C. Peters et al., eds, ‘Proceedings of the 10th cross-language evaluation forum conference

on Multilingual information access evaluation: text retrieval experiments’, Vol. 6241 of

LNCS, Springer-Verlag, Berlin Heidelberg, pp. 326–333.

This is a revised version of the previous paper published in 2010 describing the

participation of EQUAL in GikiCLEF. It also includes the results of an error analysis that

was carried out. these results were used in Chapter 4, Section 4.5 and Section 4.6, which

elaborate on the error analysis presented in the paper. The description of the semantic

constraints was expanded in Section 4.4 and the challenges reported in the paper were

further developed in Section 4.6.

Cardoso, N., Dornescu, I., Hartrumpf, S. and Leveling, J. (2010), Revamping question

answering with a semantic approach over world knowledge, in ‘CLEF Labs 2010, Multiple

Language Question Answering 2010 (MLQA10), Padua, Italy’. This is a position paper

presented at CLEF Labs 2010 which presents a brief summary of the main ideas behind

the top 3 semantic approaches employed in GikiCLEF. Some of these ideas are echoed in

Chapter 3.
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Appendix B:

GikiP Topics

Table 1: GikiP 2008 topics (English)

ID English topic

GP1 Which waterfalls are used in the Vlm “The Last of the Mohicans”?
GP2 Which Vienna circle members or visitors were born outside the Austria-

Hungarian empire or Germany?
GP3 Portuguese rivers that Wow through cities with more than 150,000

inhabitants
GP4 Which Swiss cantons border Germany?
GP5 Name all wars that occurred on Greek soil.
GP6 Which Australian mountains are higher than 2000 m?
GP7 African capitals with a population of two million inhabitants or more
GP8 Suspension bridges in Brazil
GP9 Composers of Renaissance music born in Germany
GP10 Polynesian islands with more than 5,000 inhabitants
GP11 Which plays of Shakespeare take place in an Italian setting?
GP12 Places where Goethe lived
GP13 Which navigable rivers in Afghanistan are longer than 1000 km?
GP14 Brazilian architects who designed buildings in Europe
GP15 French bridges which were in construction between 1980 and 1990
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Appendix C:

GikiCLEF Topics

Table 2: GikiCLEF 2009 topics (English)

ID Topic (English)

GC09-01 List the Italian places where Ernest Hemingway visited during his life.
GC09-02 Which countries have the white, green and red colors in their national Wag?
GC09-03 In which countries outside Bulgaria are there published opinions on Petar

Dunov’s (Beinsa Duno’s) ideas?
GC09-04 Name Romanian poets who published volumes with ballads until 1941.
GC09-05 Which written Vctional works of non-Romanian authors have as subject

the Carpathians mountains?
GC09-06 Which Dutch violinists held the post of concertmaster at the Royal

Concertgebouw Orchestra in the twentieth century?
GC09-07 What capitals of Dutch provinces received their town privileges before the

fourteenth century?
GC09-08 Which authors were born in and write about the Bohemian Forest?
GC09-09 Name places where Goethe fell in love.
GC09-10 Which Flemish towns hosted a restaurant with two or three Michelin stars

in 2008?
GC09-11 What Belgians won the Ronde van Vlaanderen exactly twice?
GC09-12 Present monarchies in Europe headed by a woman.
GC09-13 Romantic and realist European novelists of the XIXth century who died of

tuberculosis.
GC09-14 Name rare diseases with dedicated research centers in Europe.
GC09-15 List the basic elements of the cassata.
GC09-16 In which European countries is the bidet commonly used?
GC09-17 List the 5 Italian regions with a special statute.
GC09-18 In which Tuscan provinces is Chianti produced?
GC09-19 Name mountains in Chile with permanent snow.
GC09-20 List the name of the sections of the North-Western Alps.
GC09-21 List the left side tributaries of the Po river.
GC09-22 Which South American national football teams use the yellow color?
GC09-23 Name American museums which have any Picasso painting.
GC09-24 Which countries have won a futsal European championship played in Spain?

continued on the next page
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continued from previous page

ID Topic (English)

GC09-25 Name Spanish drivers who have driven in Minardi.
GC09-26 Which Bulgarian Vghters were awarded the "Diamond belt"?
GC09-27 Which Dutch bands are named after a Bulgarian footballer?
GC09-28 Find coastal states with Petrobras reVneries.
GC09-29 Places above the Arctic circle with a population larger than 100,000 people
GC09-30 Which Japanese automakers companies have manufacturing or assembling

factories in Europe?
GC09-31 Which countries have Italian as an oXcial language?
GC09-32 Name Romanian writers who were living in USA in 2003.
GC09-33 What European Union countries have national parks in the Alps?
GC09-34 What eight-thousanders are at least partially in Nepal?
GC09-35 Which Romanian mountains are declared biosphere reserves?
GC09-36 Name Romanian caves where Paleolithic human fossil remains were found.
GC09-37 Which Norwegian musicians were convicted for burning churches?
GC09-38 Which Norwegian waterfalls are higher than 200m?
GC09-39 National team football players from Scandinavia with sons who have played

for English clubs.
GC09-40 Which rivers in North Rhine Westphalia are approximately 10km long?
GC09-41 Chefs born in Austria who have received a Michelin Star.
GC09-42 Political parties in the National Council of Austria which were founded

after the end of World War II
GC09-43 Austrian ski resorts with a total ski trail length of at least 100 km
GC09-44 Find Austrian grape varieties with a vineyard area below 100 ha.
GC09-45 Find Swiss casting show winners.
GC09-46 German writers who are Honorary Citizens in Switzerland.
GC09-47 Which cities in Germany have more than one university?
GC09-48 Which German-speaking movies have been nominated for an Oscar?
GC09-49 Formula One drivers who moved to Switzerland.
GC09-50 Which Swiss people were Olympic medalists in snowboarding at the Winter

Olympic Games in 2006?
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