11,962 research outputs found

    All-optical pulse reshaping and retiming systems incorporating pulse shaping fiber Bragg grating

    No full text
    This paper demonstrates two optical pulse retiming and reshaping systems incorporating superstructured fiber Bragg gratings (SSFBGs) as pulse shaping elements. A rectangular switching window is implemented to avoid conversion of the timing jitter on the original data pulses into pulse amplitude noise at the output of a nonlinear optical switch. In a first configuration, the rectangular pulse generator is used at the (low power) data input to a nonlinear optical loop mirror (NOLM) to perform retiming of an incident noisy data signal using a clean local clock signal to control the switch. In a second configuration, the authors further amplify the data signal and use it to switch a (low power) clean local clock signal. The S-shaped nonlinear characteristic of the NOLM results in this instance in a reduction of both timing and amplitude jitter on the data signal. The underlying technologies required for the implementation of this technique are such that an upgrade of the scheme for the regeneration of ultrahigh bit rate signals at data rates in excess of 320 Gb/s should be achievable

    A Communication Monitor for Wireless Sensor Networks Based on Software Defined Radio

    Get PDF
    Link quality estimation of reliability-crucial wireless sensor networks (WSNs) is often limited by the observability and testability of single-chip radio transceivers. The estimation is often based on collection of packer-level statistics, including packet reception rate, or vendor-specific registers, such as CC2420's Received Signal Strength Indicator (RSSI) and Link Quality Indicator (LQI). The speed or accuracy of such metrics limits the performance of reliability mechanisms built in wireless sensor networks. To improve link quality estimation in WSNs, we designed a powerful wireless communication monitor based on Software Defined Radio (SDR). We studied the relations between three implemented link quality metrics and packet reception rate under different channel conditions. Based on a comparison of the metrics' relative advantages, we proposed using a combination of them for fast and accurate estimation of a sensor network link

    Calibration and Irradiation Study of the BGO Background Monitor for the BEAST II Experiment

    Full text link
    Beam commissioning of the SuperKEKB collider began in 2016. The Beam Exorcism for A STable experiment II (BEAST II) project is particularly designed to measure the beam backgrounds around the interaction point of the SuperKEKB collider for the Belle II experiment. We develop a system using bismuth germanium oxide (BGO) crystals with optical fibers connecting to a multianode photomultiplier tube (MAPMT) and a field-programmable gate array (FPGA) embedded readout board for monitoring the real-time beam backgrounds in BEAST II. The overall radiation sensitivity of this system is estimated to be (2.20±0.26)×1012(2.20\pm0.26)\times10^{-12} Gy/ADU (analog-to-digital unit) with the standard 10 m fibers for transmission and the MAPMT operating at 700 V. Our γ\gamma-ray irradiation study of the BGO system shows that the exposure of BGO crystals to 60^{60}Co γ\gamma-ray doses of 1 krad has led to immediate light output reductions of 25--40%, and the light outputs further drop by 30--45% after the crystals receive doses of 2--4 krad. Our findings agree with those of the previous studies on the radiation hard (RH) BGO crystals grown by the low thermal gradient Czochralski (LTG Cz) technology. The absolute dose from the BGO system is also consistent with the simulation, and is estimated to be about 1.18 times the equivalent dose. These results prove that the BGO system is able to monitor the background dose rate in real time under extreme high radiation conditions. This study concludes that the BGO system is reliable for the beam background study in BEAST II

    Calibration and Irradiation Study of the BGO Background Monitor for the BEAST II Experiment

    Full text link
    Beam commissioning of the SuperKEKB collider began in 2016. The Beam Exorcism for A STable experiment II (BEAST II) project is particularly designed to measure the beam backgrounds around the interaction point of the SuperKEKB collider for the Belle II experiment. We develop a system using bismuth germanium oxide (BGO) crystals with optical fibers connecting to a multianode photomultiplier tube (MAPMT) and a field-programmable gate array (FPGA) embedded readout board for monitoring the real-time beam backgrounds in BEAST II. The overall radiation sensitivity of this system is estimated to be (2.20±0.26)×1012(2.20\pm0.26)\times10^{-12} Gy/ADU (analog-to-digital unit) with the standard 10 m fibers for transmission and the MAPMT operating at 700 V. Our γ\gamma-ray irradiation study of the BGO system shows that the exposure of BGO crystals to 60^{60}Co γ\gamma-ray doses of 1 krad has led to immediate light output reductions of 25--40%, and the light outputs further drop by 30--45% after the crystals receive doses of 2--4 krad. Our findings agree with those of the previous studies on the radiation hard (RH) BGO crystals grown by the low thermal gradient Czochralski (LTG Cz) technology. The absolute dose from the BGO system is also consistent with the simulation, and is estimated to be about 1.18 times the equivalent dose. These results prove that the BGO system is able to monitor the background dose rate in real time under extreme high radiation conditions. This study concludes that the BGO system is reliable for the beam background study in BEAST II

    An IR-UWB photonic distribution system

    Get PDF
    Experimental results are presented for a novel distribution system for an impulse radio ultra-wideband (UWB) radio signals employing a gain-switched laser. The pulse position modulated short optical pulses with a bit rate of 1.25 Gb/s are transmitted over fiber to a remote antenna unit, where the signal is converted to the electrical domain and undergoes spectral shaping to remove unwanted components according to UWB requirements. An experimental radio terminal has also been constructed to enable bit-error-rate measurements to be carried out. These experiments show that the optical distribution system will be capable of supporting the radio part of the system
    corecore