251 research outputs found

    A Framework for Sensor Networks with Multiple Owners

    Get PDF
    A framework for sensor networks with multiple owners develops a mechanism for assured and controlled access to sensor assets owned and maintained by disparate organizations. The framework addresses the limitations in an existing system and proposes extensions to it. It also provides new mechanisms for cross-domain authentication and authorization by implementing a prototype as a proof of concept

    Toward a centralized data management center for integrated landslide monitoring in Emilia Romagna Region (Italy)

    Get PDF
    In Emilia Romagna Region, slope monitoring systems have become more widely used for hazard and risk management. However, they are generally non-interoperable. Moreover dispersion of monitoring data in several local databases have made data sharing among the involved institutional actors quite laborious and often untimely. A centralized database and a web-based portal that integrate infor- mation derived by different types of slope monitoring systems has been developed. The paper illustrates the specific features of the developed “SensorNet” and provides examples of its use for visualizing and analyzing in an integrated manner data from different monitoring systems. In perspective it could serve as an every-day operational tool for a timely reporting of landslide monitoring data for surveillance and warning purposes

    JAG: Reliable and Predictable Wireless Agreement under External Radio Interference

    Get PDF
    Wireless low-power transceivers used in sensor networks typically operate in unlicensed frequency bands that are subject to external radio interference caused by devices transmitting at much higher power.communication protocols should therefore be designed to be robust against such interference. A critical building block of many protocols at all layers is agreement on a piece of information among a set of nodes. At the MAC layer, nodes may need to agree on a new time slot or frequency channel, at the application layer nodes may need to agree on handing over a leader role from one node to another. Message loss caused by interference may break agreement in two different ways: none of the nodes uses the new information (time slot, channel, leader) and sticks with the previous assignment, or-even worse-some nodes use the new information and some do not. This may lead to reduced performance or failures. In this paper, we investigate the problem of agreement under external radio interference and point out the limitations of traditional message-based approaches. We propose JAG, a novel protocol that uses jamming instead of message transmissions to make sure that two neighbouring nodes agree, and show that it outperforms message-based approaches in terms of agreement probability, energy consumption, and time-to-completion. We further show that JAG can be used to obtain performance guarantees and meet the requirements of applications with real-time constraints.CONETReSens

    A Sensor Network System for Monitoring Short-Term Construction Work Zones

    Get PDF
    Safety hazards encountered near construction work zones are high, both in number and in the kind. There is a need to monitor traffic in such construction zones in order to improve driver and vehicle safetyIn the past traffic monitoring systems were built with high cost equipment such as inductive plates, video cameras etc. These solutions are too cost{prohibitive and invasive to be used in the large. Wireless sensor networks provide an opportunity space that can be used to address this problem. This thesis specifically targets temporary or short-term construction work zones. We present the design and implementation of a sensor network system targeted at monitoring the flow of traffic through these temporary construction work zones. As opposed to long-term work zones which are common on highways, short-term or temporary work zones remain active for a few hours or a few days at most. As such, instrumenting temporary work zones with monitoring equipment similar to those used in long-term work zones is not practical. Yet, these temporary work zones present an important problem in terms of crashes occurring in and around them. The design for this sensornet-based system for monitoring traffic is (a) inexpensive, (b) rapidly deployable, (c) requires minimal maintenance and (d) non-invasive. In this thesis we present our experiences in building this system, and testing this system in live work zones in the Greater Cleveland are

    A Sensor Network System for Monitoring Short-Term Construction Work Zones

    Get PDF
    Safety hazards encountered near construction work zones are high, both in number and in the kind. There is a need to monitor traffic in such construction zones in order to improve driver and vehicle safetyIn the past traffic monitoring systems were built with high cost equipment such as inductive plates, video cameras etc. These solutions are too cost{prohibitive and invasive to be used in the large. Wireless sensor networks provide an opportunity space that can be used to address this problem. This thesis specifically targets temporary or short-term construction work zones. We present the design and implementation of a sensor network system targeted at monitoring the flow of traffic through these temporary construction work zones. As opposed to long-term work zones which are common on highways, short-term or temporary work zones remain active for a few hours or a few days at most. As such, instrumenting temporary work zones with monitoring equipment similar to those used in long-term work zones is not practical. Yet, these temporary work zones present an important problem in terms of crashes occurring in and around them. The design for this sensornet-based system for monitoring traffic is (a) inexpensive, (b) rapidly deployable, (c) requires minimal maintenance and (d) non-invasive. In this thesis we present our experiences in building this system, and testing this system in live work zones in the Greater Cleveland are

    A Sensor Network System for Monitoring Short-Term Construction Work Zones

    Get PDF
    Safety hazards encountered near construction work zones are high, both in number and in the kind. There is a need to monitor traffic in such construction zones in order to improve driver and vehicle safetyIn the past traffic monitoring systems were built with high cost equipment such as inductive plates, video cameras etc. These solutions are too cost{prohibitive and invasive to be used in the large. Wireless sensor networks provide an opportunity space that can be used to address this problem. This thesis specifically targets temporary or short-term construction work zones. We present the design and implementation of a sensor network system targeted at monitoring the flow of traffic through these temporary construction work zones. As opposed to long-term work zones which are common on highways, short-term or temporary work zones remain active for a few hours or a few days at most. As such, instrumenting temporary work zones with monitoring equipment similar to those used in long-term work zones is not practical. Yet, these temporary work zones present an important problem in terms of crashes occurring in and around them. The design for this sensornet-based system for monitoring traffic is (a) inexpensive, (b) rapidly deployable, (c) requires minimal maintenance and (d) non-invasive. In this thesis we present our experiences in building this system, and testing this system in live work zones in the Greater Cleveland are

    Soil Moisture Estimation for landslide monitoring: A new approach using multi-temporal Synthetic Aperture RADAR data

    Get PDF
    This study explores the utility of the Spotlight2 X-band Synthetic Aperture Radar product developed by the Italian Space Agency for use in multi-temporal estimation of soil moisture in a landslide monitoring context, using a time series of monthly images of the Hollin Hill Landslide Observatory – North Yorkshire, UK. The study shows the complexity of surface soil moisture at an active landslide, using high resolution in situ soil moisture data. This in situ data is also used for ground truthing the soil moisture estimations from the SAR data. The study shows the limitations of inter-and intra-sensor calibration within the Cosmo-SkyMed array and contextualises this problem within the current research climate where SAR imagery is increasingly being created using multi-satellite constellation, while being used, increasingly, by environmental scientists rather than remote sensing specialists

    Dynamic Routing Framework for Wireless Sensor Networks

    Get PDF
    Numerous routing protocols have been proposed for wireless sensor networks. Each such protocol carries with it a set of assumptions about the trafï¬c type that it caters to, and hence has limited interoperability. Also, most protocols are validated over workloads which only form a fraction of an actual deployment’s requirement. Most real world and commercial deployments, however, would generate multiple trafï¬c types simultaneously throughout the lifetime of the network. For example, most deployments would want all of the following to happen concurrently from the network: periodic reliable sense and disseminate, real time streams, patched updates, network reprogramming, query-response dialogs, mission critical alerts and so on. Naturally, no one routing protocol can completely cater to all of a deployments requirements. This chapter presents a routing framework that captures the communication intent of an application by using just three bits. The traditional routing layer is replaced with a collection of routing components that can cater to various communication patterns. The framework dynamically switches routing component for every packet in question. Data structure requirements of component protocols are regularized, and core protocol features are distilled to build a highly composable collection of routing modules. This creates a framework for developing, testing, integrating, and validating protocols that are highly portable from one deployment to another. Communication patterns can be easily described to lower layer protocols using this framework. One such real world application scenario is also investigated: that of predictive maintenance (PdM). The requirements of a large scale PdM are used to generate a fairly complete and realistic trafï¬c workload to drive an evaluation of such a framework

    A Survey on Facilities for Experimental Internet of Things Research

    Get PDF
    International audienceThe initial vision of the Internet of Things (IoT) was of a world in which all physical objects are tagged and uniquelly identified by RFID transponders. However, the concept has grown into multiple dimensions, encompassing sensor networks able to provide real-world intelligence and goal-oriented collaboration of distributed smart objects via local networks or global interconnections such as the Internet. Despite significant technological advances, difficulties associated with the evaluation of IoT solutions under realistic conditions, in real world experimental deployments still hamper their maturation and significant roll out. In this article we identify requirements for the next generation of the IoT experimental facilities. While providing a taxonomy, we also survey currently available research testbeds, identify existing gaps and suggest new directions based on experience from recent efforts in this field
    • …
    corecore