17 research outputs found

    Balanced Sparsity for Efficient DNN Inference on GPU

    Full text link
    In trained deep neural networks, unstructured pruning can reduce redundant weights to lower storage cost. However, it requires the customization of hardwares to speed up practical inference. Another trend accelerates sparse model inference on general-purpose hardwares by adopting coarse-grained sparsity to prune or regularize consecutive weights for efficient computation. But this method often sacrifices model accuracy. In this paper, we propose a novel fine-grained sparsity approach, balanced sparsity, to achieve high model accuracy with commercial hardwares efficiently. Our approach adapts to high parallelism property of GPU, showing incredible potential for sparsity in the widely deployment of deep learning services. Experiment results show that balanced sparsity achieves up to 3.1x practical speedup for model inference on GPU, while retains the same high model accuracy as fine-grained sparsity

    A genetic algorithm to obtain the optimal recurrent neural network

    Get PDF
    AbstractSelecting the optimal topology of a neural network for a particular application is a difficult task. In the case of recurrent neural networks, most methods only induce topologies in which their neurons are fully connected. In this paper, we present a genetic algorithm capable of obtaining not only the optimal topology of a recurrent neural network but also the least number of connections necessary. Finally, this genetic algorithm is applied to a problem of grammatical inference using neural networks, with very good results

    Stability and Memory-loss go Hand-in-Hand: Three Results in Dynamics & Computation

    Get PDF
    The search for universal laws that help establish a relationship between dynamics and computation is driven by recent expansionist initiatives in biologically inspired computing. A general setting to understand both such dynamics and computation is a driven dynamical system that responds to a temporal input. Surprisingly, we find memory-loss a feature of driven systems to forget their internal states helps provide unambiguous answers to the following fundamental stability questions that have been unanswered for decades: what is necessary and sufficient so that slightly different inputs still lead to mostly similar responses? How does changing the driven system's parameters affect stability? What is the mathematical definition of the edge-of-criticality? We anticipate our results to be timely in understanding and designing biologically inspired computers that are entering an era of dedicated hardware implementations for neuromorphic computing and state-of-the-art reservoir computing applications.Comment: To appear in the Proceedings of the Royal Society of London, Series

    Meta-Learning Evolutionary Artificial Neural Networks

    Full text link
    In this paper, we present MLEANN (Meta-Learning Evolutionary Artificial Neural Network), an automatic computational framework for the adaptive optimization of artificial neural networks wherein the neural network architecture, activation function, connection weights; learning algorithm and its parameters are adapted according to the problem. We explored the performance of MLEANN and conventionally designed artificial neural networks for function approximation problems. To evaluate the comparative performance, we used three different well-known chaotic time series. We also present the state of the art popular neural network learning algorithms and some experimentation results related to convergence speed and generalization performance. We explored the performance of backpropagation algorithm; conjugate gradient algorithm, quasi-Newton algorithm and Levenberg-Marquardt algorithm for the three chaotic time series. Performances of the different learning algorithms were evaluated when the activation functions and architecture were changed. We further present the theoretical background, algorithm, design strategy and further demonstrate how effective and inevitable is the proposed MLEANN framework to design a neural network, which is smaller, faster and with a better generalization performance
    corecore