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Abstract

The search for universal laws that help establish a relationship between dy-
namics and computation is driven by recent expansionist initiatives in biologi-
cally inspired computing. A general setting to understand both such dynamics
and computation is a driven dynamical system that responds to a temporal
input. Surprisingly, we find memory-loss a feature of driven systems to for-
get their internal states helps provide unambiguous answers to the following
fundamental stability questions that have been unanswered for decades: what
is necessary and sufficient so that slightly different inputs still lead to mostly
similar responses? How does changing the driven system’s parameters affect
stability? What is the mathematical definition of the edge-of-criticality? We
anticipate our results to be timely in understanding and designing biologically
inspired computers that are entering an era of dedicated hardware implemen-
tations for neuromorphic computing and state-of-the-art reservoir computing
applications.

Keywords: Dynamics, Complex Systems, Stability, Edge-of-Criticality,
Bio-Inspired Computing, Reservoir Computing.

1 Introduction

The ability of nearly all living systems to process and act on external stimuli indicates
life’s capabilities of computing (e.g., [1]). In the human-made world, we are in the
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era of having millions of artificial neurons on silicon chips, and building biological
computational devices using engineered biological units like yeast cells (e.g., [2]).
The intriguing question is what exactly is required by these computing paradigms,
be it from the simplest to the most complex to respond distinctly and yet have
input-related stability, i.e., slightly different versions of the input should lead only
to slightly different responses. The criterion of criticality employed in computation
(e.g., [3, 4, 5]), often deemed a governing principle of certain brain dynamics seems
to be one of the successful paradigms in forgetting internal states while responding
to the external stimuli or input. However, the question remains as to whether such
computation always exhibits input-related stability? Moreover, next, is there any
other computing paradigm that provides input-related stability? This article aims
to provide conclusive answers to these questions.

In analogy with how a substance like water that raises its temperature by excitation
due to external heat and also can only dissipate heat if its temperature is above a
threshold (see [6] for a thought experiment), a driven dynamical system can exhibit
two competing dynamical responses, one that allows the temporal input to excite
the system in the sense the system states are made to scatter apart at certain times
and the other to quench the input by bringing states together at some other times.
Mathematically speaking, such contrasting dynamics requires nonlinearity, and the
quenching would result in the dynamics be bounded. Systems that are nonlinear
and that have bounded dynamics are abundantly found in many models. They
include ecosystems responding to external signals ranging from predator-prey models
to tumor growth (e.g., [7]), many classes of artificial systems ranging from open-loop
control systems (e.g., [8]) to neural network models used in machine learning and
artificial intelligence encompassing the field of reservoir computing (e.g., [9]), in all
of which the external input could also be by design.

Memory-loss in such driven systems appears when the net effect of the bringing
states together and scattering the states of the system results in the diameter of the
state asymptotically decreasing to zero so that all trajectories tend to coalesce into
a single trajectory (see [6] for examples). In that spirit, we call a system to have a
memory-loss if a single trajectory emerges as a proxy of the input, or in other words,
echoes the temporal input in the state space. Memory-loss is a property of both the
temporal input and the system, a fact unfairly neglected mostly in the literature.
The idea of relating memory-loss to the presence of a single proxy corresponding to
an input is illustrated for both continuous-time (see [6, Section 1]) and discrete-time
dynamical systems as the echo-state property with respect to an input (representative
work is in [10]). Much of the literature considers the notion of memory loss to all
possible input sequences. Although these ideas date back to the works in [11, 12],
they were formalised as different notions such as the fading memory property in [13],
the input forgetting property in [14], the echo state property, the state contraction,
the state forgetting property in [15]. A rigorous treatment of several of these notions
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is available in [16, 17]. The idea of exploiting memory-loss for applications dates back
to work in [18], however, realizing it for computation and information processing was
conceived independently by two research groups – Jaeger et al. in [15, 19] as the
Echo State Property (ESP) and Maass et al. in [20] as the Liquid State Machine.
Collectively the methodologies are referred to as reservoir computing (RC), and
some class of these systems can approximate any input-output function to arbitrary
precision [16]. Today, RC has touched upon the era of hardware implementations
(e.g., [21, 22, 23]) with photonic chips, memristors, spintronic nanodevices with
even applications such as in prosthetic control and epileptic seizure detection besides
classical application of prediction, filtering and information processing of temporal
data (e.g., [9] and references therein).

A fundamental question in computing or modeling by driven dynamical systems is to
find if temporal inputs are mapped continuously onto the state space of the dynamical
system – input-related stability – failing which, certain temporal patterns in the input
could drive the system into an unstable regime where it would behave wildly in the
sense that small changes in the input render a drastically different system response.
Input-related stability being a function of both the system and the input, in practice,
a problem is either to examine if an input given a system, or if a design parameter of
the system given an input, renders input-related stability. Another problem would
be to understand the change in the design parameter – parameter-related stability
for a given input – failing which, change in the parameter could give a drastically
different response. For a representation in the state space to capture the information
content of the input, better separability of inputs in the state space is needed (see
example in [6, Section 1]). In examples such as in RC, one would be interested in
maximizing the freedom of the driven system, i.e., maximize the separability of the
inputs to distinguish close-by-variants of an input in the state space of the system,
but yet not tipping the system into what authors following [4] have called it the
“chaotic” behavior. While RC is used in a task of classifying inputs, such tipping
reflects on a trade-off between input separability and input-related stability. This is
also the hallmark of criticality, and such close to criticality operation has been found
to be self-organized, like in biological neural systems (e.g., [24]), or can be tuned into,
in artificial systems like RC. The criticality hypothesis drives the need to operate
these systems under high-efficiency and thus to choose the design parameters more
optimally and yet avoid instabilities. The challenge of doing so is overwhelming since
there is no clear understanding of how the entire temporal input is mapped onto a
different space, which is usually higher-dimensional.

A design parameter (not necessarily a scalar and includes the case of a vector or a
matrix) α, an input value u, a state-variable x in a compact state space X and a
continuous function g(α, u, x) that takes values in X would constitute a parametric
driven system (we denote this system by g throughout, and other entities silently
understood). The dynamics of a parametric driven system g is rendered through a
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temporal input ū = (. . . , u−1, u0, u1, . . .) via the equation xn+1 = g(α, un, xn). Given
an ū and α, a sequence x̄ = (. . . , x−1, x0, x1, . . .) contained in X that satisfies the
equation xn+1 = g(α, un, xn) for all integers n is an image of ū in the space X (and
also called a solution of g for a given ū). Having fixed α, suppose we collect the

nth component of all images x̄ of an ū, and denote it by Xn(α, ū), then we have
a collection of sets {Xn(α, ū)} which we call it the representation of ū. Following
the intuitive idea of memory-loss as in [10], we say that the driven system g has
echo-state property (ESP) with respect to ( w.r.t. ) an input ū at α if it has exactly
one solution or one image x̄ in the space X or (equivalently) if for each n, Xn(α, ū)
is single-valued, i.e., it is a singleton subset of X, i.e., there is no possibility of two
or more reachable states at any given point in time n if the entire past values of the
input have been fed into the driven system.

We observe that X0(α, ū) can be determined only by the left-infinite segment of the
input "u := (. . . , u−2, u−1). Hence, we define E(α, "u) := X0(α, ū) as the encoding
of (α, "u). The set E(α, "u) turns out (see Eq. (1)) to be the countable intersection
of the sets E1(α, "u) := g(α, u−1, X), E2(α, "u) := g(α, u−1, g(α, u−2, X)) and so on
(see Fig. 1 for a schematic description). Further, E(α, "u) happens to be also the
limit of the sequence of sets E1(α, "u), E2(α, "u), . . . (see Eq.(2)). Given the input
segment (u−n, · · · , u−2, u−1) of an "u and a subset of Y0 ⊂ X, consider the set Yn

recursively obtained by Y1 = g(α, u−n, Y0), Y2 = g(α, u−n+1, Y1), and so on. From
the viewpoint of computer simulations, if the cardinality of Y0 is sufficiently large,
the set Yn is an approximation of En(α, "u), and due to the aforementioned limit, Yn

is an approximation of E(α, "u) as well.

Figure 1: Schematic figure to explain the sets En(α, "u): When X is a square
(boundary in black), E1(α, "u) = g(α, u−1, X) is the square-like object (boundary
in red), and when g(α, u−2, X) is the triangle (boundary in blue) then E2(α, "u) =
g(α, u−1, g(α, u−2, X) is the oval (boundary in green).

Our approach is to understand the influence of "u and α separately on the encoding
E(α, "u). To do this, we vary "u keeping α constant, i.e., study the set-valued function
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"u "→ E(α, "u), which we call it the input-encoding map (given α). Next, we vary α
keeping "u a constant, i.e., study α "→ E(α, "u), which we call it the parameter-encoding
map (given "u). While we study the entire representations in these two cases, i.e.,
when we study ū "→ {Xn(α, ū)} for a given α and α "→ {Xn(α, ū)} for a given ū,
we call these functions the input-representation and parameter-representation maps
respectively.

Both these encoding maps are set-valued functions, and in general, a set-valued
map S(x) is continuous at x when it is both lower semicontinuous (l.s.c) and upper
semicontinuous (u.s.c) that respectively precludes explosions and implosions at x (see
[6, Fig. S3] for a schematic picture and definition). We remark that the continuity
of a set-valued map S(x) can be equivalently defined by employing the Hausdorff
metric (see Section 3).

We make two natural assumptions on driven systems that ensure the existence of
a subdomain where states do not “collapse” to a single point but can contract the
state space volume. We say a parametric driven system g to be an open-parametric
driven system if X is connected and the mapping g(u,α, ·) does not map any set
with uncountably many points contained in X to a single element in X. This fur-
ther ensures that any non-zero state space volume does not “suddenly collapse”. If
g(α, u, .) is invertible for all parameter-values α and input values u under consider-
ation, then g is obviously an open-parametric driven system. Also, one can easily
show that an open-parametric driven system g has the ESP w.r.t. ū (or to "u) if
and only if E(α, "u) is a singleton subset of X (see Section 3 for details). Further,
if a driven dynamical system has a “contracting subdomain” in its state space for
each α, we characterize it by the terminology of contractibility. Precisely, given an
open-parametric driven system g, and an α, if there exists an input v̄ such that g has
the ESP w.r.t. v̄ at α, then we say that g is contractible at α. Contractibility does
not mean a contraction mapping but is a condition that ensures the existence of an
input v̄ so that for every parameter α, v̄ can push the dynamics into a subset of X
so that we have a net contraction in the sense g has the ESP w.r.t. v̄. The example
of a recurrent neural network (see Section 2) is an example of a driven system that
satisfies these two hypotheses for our numerical simulations.

The paper is organized as follows. In Section 2, we state three results concerning
stability and criticality of driven systems with less formalism and illustrate them
using numerical results obtained from recurrent neural networks. In Section 3, we
restate our results formally and prove them – the mathematically inclined reader may
choose to peruse Section 3 prior to reading Section 2. In Section 4, we summarise
the results and mention their broader implications. The supplementary material [6]
available online contains a discussion on the intuitive meaning of the memory loss
property, a slightly more elaborate version of Section 3 and additional numerical
results.
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2 Three Stability Results

Mathematically, the continuity of the input-encoding map at "u means input-related
stability at "u and the continuity of the parameter-encoding map at αmeans parameter-
related stability at α. The mathematical results are in Section 3, and here we state
the results with less formalism and illustrate them with numerical results. Addi-
tional details used in obtaining the numerical results presented here are available in
[6, Section 6].

To illustrate our results, we consider the example of a recurrent neural network
(RNN). RNNs are employed for processing temporal data and are inspired by how
the brain maps a stimulus onto its enormously higher-dimensional space by affecting
the states of a vast number of neurons. An advantage observed in projecting data
onto a higher-dimensional space is that it exaggerates certain data features to render
better separability of inputs. In the RC framework employing RNNs, the temporal
input signal is mapped on to a higher dimensional space (reservoir) without training.
And then, a simple regression technique is used to obtain linear observables of the
higher-dimensional entity that aims at an approximation of the desired function of
the temporal signal (e.g., [15]). We consider RNNs that are driven systems of the
form g(α, u, x) = tanh(Au+ αBx), where tanh(∗) is (the nonlinear activation) tanh
performed component-wise on ∗, α, a real-valued parameter would correspond to
the scaling of the reservoir (invertible) matrix B of dimension N and A is a matrix
with input connections and X = [−1, 1]N (the cartesian product of N copies of
[−1, 1]). To maintain uniformity across numerical experiments, we set B to have a
unit spectral radius. The driven dynamics through the equation xn+1 = gα(un, xn) =
σ(Aun + αBxn) is interpreted to be representing the evolution of an ensemble of
neurons (coordinates of X). The function tanh is an example of a saturation or
an activation function σ that is nonlinear enough to“squash” the system state to a
smaller subspace.

Before, we state our results, we observe that whenever α ∕= 0 and B is invertible,
g(α, u, ·) is always invertible since tanh is invertible on (−1, 1)N , and hence the RNN
is an open-parametric driven system when α = 0 is not in the parameter space Λ.
Also, the RNNs that we consider are always contractible except in the case of the
input weight matrix A having a row with all zeroes. It is a result in [10, (ii) of
Theorem 4.1] that for a RNN with an input-weight matrix A having non-zero rows
and any norm of the reservoir matrix B, there always exists an input "v so that it
has the ESP w.r.t. "v, and hence such systems are contractible. The idea behind
contractibility is that if the input "v is such that if the entity (Avn+αBxn) is thrown
into the saturation region of the activation function σ sufficiently often, one can
always witness ESP w.r.t. "v. Given any "u, an "v is readily obtained by scaling "u to
have a sufficiently large amplitude.

6



For an open-parametric dynamical system g we present the following three results
(R1), (R2) and (R3) that are proved as Theorem 1, Theorem 2 and Theorem 3
respectively in Section 3: (R1). If g is contractible at α, then the input-encoding
map. i.e., E(α, ·) and the input-representation map {Xn(α, ·)} are both continuous
at "u if and only if g has the ESP w.r.t. "u. (R2). If g has the ESP w.r.t. "u then both
the parameter-encoding map. i.e., E(·, "u) and the parameter-representation map
{Xn(·, ū)} are both continuous at "u. (R3). The parameter-encoding map E(·, "u) is
continuous at β if and only if {En(·, "u)} is equicontinuous at β.

The result (R1) states that ESP is fundamental to avoid instabilities (discontinuous
changes) due to small changes in the input in a wide-class of driven systems. The
contractibility condition produces dissipative dynamics that resets the dynamics in
every coordinate of the state space (a neuron in the case of a RNN), thereby inducing
memory-loss. This is illustrated intuitively in a thought experiment in [6]. Further to
(R1), we observe in Corollary 3.1 that the ESP always implies input-related stability
in systems that are not necessarily contractible. However, without the contractibility
hypothesis, (R1) would not hold, for example, the driven system g(α, u, x) = x has
E(α, "u) = X for all "u and hence the input-encoding map is continuous.

The scenarios when the system has ESP, and when it does not have the ESP w.r.t.
an "u is shown schematically in (a) and (b) of Fig. 2. At a point of discontinuity "u of
the input-encoding map, the map is u.s.c but not l.s.c at ū which means that there is
an explosion in the set E(α, "u) at ū (see Lemma 3.2). Thus the input-encoding map
becomes very sensitive to a small change in input and behaves wildly as schematically
indicated in (b) of Fig. 2 (see [6, Fig. S4] for another illustration). It is not feasible to
simulate the input-representation map (or the input-encoding map) by fixing α and
varying the inputs since each input lies in an infinite-dimensional space. However,
we demonstrate in (c) of Fig. 2 that a sinusoidal input (in black) solely guides the
dynamics of a driven system by plotting (in red) a coordinate of points when there is
the ESP w.r.t. the input, and that the system response (a coordinate in blue) shows
rapid fluctuations incommensurate with the input when it does not have the ESP
w.r.t. the same sinusoidal input. During the training of RNNs in the RC framework,
a linear observable of the solution that is designed is called a read-out. The read-
out map is a linear transformation of the state xn, and hence a continuous map of
the state xn. Whenever the input-encoding map is discontinuous, the collection of
all possible read-outs as a function of the parameter α or the input ū, i.e., any such
resultant read-out encoding map would then be a composition of a discontinuous map
(the input-encoding or the parameter-encoding map) and a continuous map (coming
from the linear read-out) map. We know that the composition of a discontinuous
map and a continuous map is not continuous unless in very specific cases (like the
read-out is a constant value). The read-out is plotted against time in (d) of Fig. 2.
We observe that when the ESP fails, the read-out also shows rapid fluctuations that
are incommensurate with the input. Hence the chance of mitigating the effect of
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discontinuity of the input-encoding map or counter-balancing the distorted system
response to input with a read-out is remote.

Figure 2: Illustration of (R1): (a) & (b). Schematic of the graph of the input-
encoding map when a system has the ESP in (a), and when it does not have the
ESP in (b). The lighter grey values indicate the interior, while the darker values
indicate the boundaries of the set-valued function’s graph, and the comb-like outward
projections refer to the explosions due to the absence of l.s.c. (c). A coordinate of a
simulated solution (x0, x1, . . . , x5000) plotted in red and blue against time n (for an
RNN with a sinusoidal input shown in black) respectively when α = 1.02 (while it
has ESP) and when α = 1.05 (while it does not have ESP); (d). A linear read-out
yn of the states xn in (c) plotted against time n in red and blue when α = 1.02 and
when α = 1.05 respectively.

We now illustrate (R1) from the viewpoint of the sensitivity to input noise to indicate
the importance of the ESP, and also to show that some networks may strangely
exhibit some robustness to noise even without the ESP. We consider the matrix in
[25, Equation 6] and scale it to have a unit spectral radius to use it as the matrix B
in a RNN (B is as in [6, Section 6]). It is known that there exist values of α < 1 so
that the RNN with such a B does not have the ESP w.r.t. an input that is identically
zero owing to a Neimark-Sacker bifurcation [25]. For the illustration considered, we
remark that the system is found to have the ESP w.r.t. a sinusoidal input for α = 0.7
and not while α = 0.8, such an inference is drawn using a parameter-stability plot
(discussed later). We show the response of the system for the sinusoidal input un

and an input vn = un + εn where εn is a realization of uncorrelated noise uniformly
distributed in the interval [−10−3, 10−3]. The responses (solutions) obtained from the
same initial condition x0 are shown in the top panel of Fig. 3 along with the differences
in the linear read-outs of the solutions in the bottom panel. It is remarkable that
even with the noise of a magnitude not greater than 10−3, the differences in the
solutions and hence the read-out is disproportionately large when the ESP fails at
α = 0.8. When α = 0.9, the solutions do not have the sinusoidal shape; however, they
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Figure 3: Figure to illustrate nuances with input-related stability: (Top Panel) A
coordinate of a simulated solution xn of a RNN with a sinusoidal input un (in blue)
and a solution with the noisy input vn = un + εn where εn is a realization of zero-
mean uniformly distributed noise with maximum amplitude 10−3 while (a) α = 0.7,
α = 0.8 and α = 0.9. (Bottom Panel) Difference between a linear read-out out of
the solutions obtained from the inputs un and vn.

are close to each other, and so are the read-outs. This quasi input-related stability
depends on the network architecture and is observed to be exhibited only when the
initial conditions x0 (chosen to simulate the solutions) are from a proper subset of
X. We believe that RNNs trained without the reservoir computing framework may
exhibit such stability. Such stability is not generic and dependent on the matrix B
and investigating into it is part of the author’s ongoing research.

It may be noted that the continuity of the input-encoding map (or the input-
representation map) is local because it is defined for every single input, and further,
it can be defined regardless of whether the ESP w.r.t. the input is defined or not.
The notion of the fading memory property [13] is more of a global stability notion
in the sense that it is defined on a subspace of input sequences for which the ESP
w.r.t. all such inputs is a pre-requisite (see [16, 17]). Fading memory property and
the input-related stability introduced here cannot be directly compared unless one
extends the input-related stability to a global version, i.e., g is said to have the global
input-related stability at parameter α if the input-encoding map E(α, ·) is continuous
for all "u. In that case, it is possible to show [26] that the fading memory property
and the global input-related stability are equivalent for an open-parametric driven
system that is contractible. The same equivalence can also be extended to the input
forgetting property.

Result (R2) concerns parameter-related stability. It is clear from (R2) that when
parameter-related stability fails, i.e., when the parameter encoding map is discon-
tinuous, then the driven system does not have the ESP w.r.t. the concerned input.
Hence input-related stability fails as well by (R1), and the discussion presented in
Fig. 2 and Fig. 3 holds when parameter-related stability fails. A difference between
parameter-related stability and input-related stability is that parameter-related sta-
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bility is not necessarily equivalent to ESP as observed from (R2). In fact the converse
statement of (R2) is not true (see examples in [6, Section 4]). It can be observed
that we have not used the contractibility hypothesis to conclude the result in (R2).

It is possible to simulate the parameter-encoding map when α is a scalar at discrete
steps αk to observe the scattering of system states while the ESP is not satisfied.
When the ESP is satisfied w.r.t. "u, i.e., when E(·, "u) is a singleton subset of X for
some α, a numerical estimate of E(·, "u) is En(α, "u), and it would contain a single
highly clustered set of points, and not so when E(·, "u) is multi-valued i.e, when it is a
subset of X with multiple elements. The result of identifying such a distinction can
be made even with a small number of initial conditions. Fig. 4 shows two coordinates
of the parameter-encoding map E(·, "u) simulated at discrete set of points αk for two
different RNNs. We consider g(α, u, x) = tanh(Au + αBx) with 2 neurons and
with 250 neurons for the two RNNs, a randomly generated input of length 500, a
input matrix A and a reservoir matrix B (chosen randomly, but with unit spectral
radius). For the plot on the left in Fig. 4, we use 1000 initial conditions chosen on
the boundary of X = [−1, 1]2 (to exploit the fact that g(α, u, ·) : X → X is an
open mapping [27] and hence preserves the boundary). For the plot on the right,
there were only 50 chosen samples in X = [−1, 1]250. Clearly, in both plots of Fig. 4,
the clustering towards a single-point for smaller values of α is obvious. One does
not need to be worried about simulating the parameter-encoding map accurately if
one’s task is only to identify if E(·, "u) has a single point-cluster. Conversely, it is
not possible to ascertain the parameter value at which the parameter-encoding map
turns discontinuous or the parameter-related stability fails by using (R2). However,
as we find in (R3), the continuity or discontinuity of the parameter-encoding map
can be ascertained by the equicontinuous property of its finite time-approximations
{En(·, "u)}.

In the particular case, when α is a scalar parameter in an interval [a, b], given an
open-parametric driven system g and an input "u, we define αt ∈ [a, b] to be the ESP
threshold if g has the ESP w.r.t. "u for all α < αt (or α > αt) and does not have the
ESP w.r.t. "u for all α > αt (or α < αt). Further, suppose αt is the ESP threshold
in an interval [a, b], and the parameter-encoding map is also continuous at αt, we
would call αt to be a soft-ESP threshold, and call αt a hard-ESP threshold when
parameter-encoding map is discontinuous at αt (examples are in [6, Section 5]). If
αt is a soft-ESP threshold, there would be a seamless transition of the parameter-
encoding map from being single-valued to being multi-valued (as in (a) of [6, Fig.
S3]) while α crosses the soft-ESP threshold and hence there would be no instabilities
(discontinuous changes) in the system response due to fluctuations in α.
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Figure 4: A simulation of the parameter-encoding map: Given a RNN with multiple
nodes and an input, we employ several initial conditions (samples) in X to simu-
late elements in the set E(·, "u). Two coordinates the E(·, "u) are plotted against an
increasing sequence αk. For the figure on the left, a reservoir with 2 neurons with
1000 samples in X was used, and on the right a reservoir with 250 neurons and 50
samples in X was used.

The collective states of many interacting particles (elements) of a system show dis-
continuous behaviors when they undergo a “phase transition” due to the variation
of a parameter (e.g. [28]). The parameters at which this happens are called critical
points, and they mark a phase transition. For the lack of a general mathematical
description of a phase transition, a critical transition is often identified or defined
by the accompanying changes during a physical transition. These changes could be
such as the emergence of a power-law distribution of some entities involved or ob-
serving a long-range correlation between the particles or by observing a transition
from “order” to “disorder”. The issue with defining a critical transition based on the
accompanying changes is that some of these changes can also be observed even while
there is no criticality observed (e.g., [29]). Here, within a mathematical framework,
we are in a position to describe the collective states of a driven system at a parameter
α, especially if it also represents a network with many nodes, as the set Xn(α, ū). If
we have an open-parametric driven system, then it is enough to understand a critical
transition at α0 to be a sudden or discontinuous change in the set E(α, "u) = X0(α, ū)
as α crosses α0.

Based on experiments focused on living systems, Kauffman [3, 28] and on physical
systems, Packard [30], Langton et al. [4] and Crutchfield et al. [31] conjectured that
a dynamical regime between order and disorder optimally balances adaptiveness
and robustness to input or stimuli. Based on these works, we here make the edge-of-
criticality to refect on a transition that shows a change in the robustness to the input
noise. By (R1), such a transition takes place exactly when the ESP is lost. Hence,
we define the input-specific edge-of-criticality as the hard-ESP threshold, when both
the parameter-encoding map (reflecting a change in the collective states) and the
input-encoding map suddenly turn discontinuous. Note that in addition to having
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made the notion of edge-of-criticality precise, we have made this notion input-specific
as it should be since the parameter-encoding map is input-specific. Thus applying
(R3) to the case when α is a real-parameter in the interval [a, b] with αt as the ESP
threshold, then αt is a soft-ESP threshold when {En(·, "u)} is equicontinuous at β and
a hard- ESP threshold or the edge-of-criticality otherwise.

There are heuristic methods in the literature to approximate the edge-of-criticality
owing to the lack of a clear definition of the edge-of-criticality. Result (R3) or
Theorem 3 distinguishes the two ESP thresholds defined above and, more generally,
the continuous or discontinuous points of the parameter-encoding map through the
notion of equicontinuity. Intuitively, equicontinuity is meant to deal with continuity
of the entire set of functions at once. Formally, a family of functions {fi}i∈I defined
between two metric spaces X and Y is equicontinuous at x ∈ X if for every ε > 0,
there exists a δ > 0 such that dX(x, y) < δ would imply dY (fi(x), fi(y)) < ε for
all i ∈ I. The family {fi}i∈I is said to be equicontinuous on a set A ⊂ X if
it is equicontinuous at every point x ∈ A. A very simple example, is family of
functions defined by fn(x) = xn, n = 1, 2, . . . on [0, 1] is not equicontinuous at 1
since for instance when ε = 1/2, for every δ > 0, there is an n large enough so
that |fn(y) − fn(y)| = |1 − yn| > ε while y ∈ (1 − δ, 1). The family of functions is
equicontinuous for x ∈ [0, 1) though. If the parametric-encoding family {En(·, "u)}
has a similar behavior, then we witness a discontinuity in the parameter-encoding
map as Theorem 3 asserts. Owing to the property of non-equicontinuity associated
with the hard-ESP threshold or the edge-of-criticality we can identify the threshold
in a numerical simulation.

To illustrate this simulation, we simulate the parameter-encoding map at a discrete
set of parameter values (α1,α2, . . . ,αl) when α is a scalar in an interval [a, b]. We
employ the definition of the Hausdorff metric dH (see Section 3). Given an input "u,
an integer n, we consider a plot of γn(αk) = dH(En(αk, "u), En(αk−1, "u)) against αk,
which we call the parameter-stability plot and the procedure to obtain it is described
next.

Procedure to obtain the parameter-stability plot. A step-wise procedure to
numerically identify the discontinuous points of the parameter-encoding map and
the edge-of-criticality or hard-ESP threshold αt for a given "u (when the parameter
is a scalar) is presented next (we employ this procedure to determine αt in Fig. 5):

1. Fix equally distant points a = α1 < α2 < · · · < αl = b in an interval [a, b];

2. With M initial conditions of the reservoir and considering n successive values
of the input, simulate the set En(αk, "u).

3. Find γn(αk) = dH(En(αk, "u), En(αk−1, "u)); the Hausdorff distance dH(S1, S2)
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between two finite sets S1 and S2 with identical cardinality M is computed
practically by max(max(min(D)),max(min(DT )), where: (i) min(C) denotes
the minimum of each row in a matrix C (ii) the (i, j) element of D is the
norm between the ith element of S1 and jth element of S2, i.e., D(i, j) :=
||S1(i)−S2(j)||p (any p-norm could be employed in finite dimensions) (iii). DT

is the transpose of D.

4. Obtain the parameter-stability plot, i.e., γn(αk) against αk and identify the
smallest αj where the plot of γn(αj) turns conspicuously positive as the edge-
of-criticality or the hard-ESP threshold in the interval [a, b], and other αj

where the plot is conspicuously positive as the points of discontinuities of the
parameter-encoding map. If the plot has only constant behavior close to 0,
then the parameter-encoding map is continuous everywhere.

While the parameter-encoding map is continuous at an αk, γn(αk) can be made
arbitrarily close to 0 by setting |αk − αk−1| appropriately, and while it is discontin-
uous at αk, γn(α(k)) would turn positive despite |αk − αk−1| being small since the
parameter-encoding family is not equicontinuous (by (R3)) and due to the fact that
En+1(α, "u) ⊂ En(α, "u). Hence, we can identify the smallest value of αk at which the
parameter-stability plot turns distinctly positive as an estimate of the input-specific
edge-of-criticality or the hard-ESP threshold.

The parameter-stability plot of an RNN is presented in Fig. 5 (a). In Fig. 5 (b),
we plot the data of nine parameter-stability plots that are obtained by n successive
values of the input, and different shifts of the input j, where the input and the RNN
employed is the same as in (a) of Fig. 5. By the definition of an open-parametric
driven system, we know that αt is an ESP threshold for a driven system with input
"u if and only if it is also the ESP threshold with the input σj( "u), where the function

σj(·) shifts each left-infinite sequence in its argument to the right by j units. We
observe that αt determined with the plot in Fig 5 (b) is robust to both the different
shifts and even shorter input lengths n and corroborates with the estimate of αt

determined in Fig 5. Further simulation results that show the robustness of the
results due to variation in |αk − αk−1| and the effect of input scaling are presented
in [6, Section 7].
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Figure 5: Parameter-Stability plot(s) of an RNN: γn(αk) = dH(En(αk, "u), En(αk−1, "u))
plotted against αk with |αk − αk−1| = 0.005. (a) With a randomly generated "u and
n = 500 (b) data sets of nine parameter-stability plots (each set with a different
colour) obtained by the input σj( "u) where j is varied from 0 to 80 in steps of 10,
and with respective input lengths being varied as n = 500− j. The smallest value of
αk where the plot turns distinctly positive is the estimate of the edge-of-criticality
or the hard-ESP threshold αt in the interval [0.7, 1.5].

3 Mathematical Details and Proofs

We present the rigorous versions of the results (R1), (R2) and (R3) and prove them.
The content here is also reproduced as three separate sections, along with additional
examples in [6, Sections 2,3,4]. In our analysis, wherever a cartesian product of
spaces is considered, the cartesian products are endowed with the most commonly
used topology called product topology (e.g., [27]). We recall that a function taking
values in a cartesian product equipped with product topology is continuous if and
only if its coordinate functions are all continuous [27].

While we refer to a parametric driven system here, we bear in mind that it would
comprise a parameter space Λ, an input space U , both topological spaces and a
compact metric space X along with a continuous map g : Λ × U ×X → X. When
X is a metric space with metric d, we denote by HX the collection of all nonempty
closed subsets of X. On the space HX we equip the Hausdorff metric defined by
dH(A,B) := inf{ε : A ⊂ Bε(B) &B ⊂ Bε(A)} where Bε(A) := {x ∈ X : d(x,A) < ε}
is the open ε-neighborhood of the set A. It is well known that HX is compact when
X is compact.

The set Xn(α, ū) defined previously through a solution of g can be defined equiva-
lently in forms that are more convenient to be employed in a proof. Towards that
end, we would adopt a composition-operator (called a process in [10, 32]). Given
a parametric driven system g, we denote gα,u(x) := g(α, u, x) and {un} ⊂ U by ū.
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Suppose a parametric driven system g has been fed input values um, um+1, . . . , un−1

starting at time m. Then the map g transports a state-value x ∈ X at time m to
give a state-value gα,un−1 ◦ · · · ◦ gα,um(x) at time n. Formally, for every choice of α,
ū and g, we define for all m ≤ n, the function that ‘transports’ a system state at x
at time m through the inputs um, um+1, . . . , un−1 to the state at time n given by an
composition-operator φα,ū : Z2

≥ ×X → X, where Z2
≥ := {(n,m) : n ≥ m,n,m ∈ Z}

and

φα,ū(n,m, x) :=

!
x if n = m,

gα,un−1 ◦ · · · ◦ gα,um(x) if m < n.

Thus, if the inputs um, um+1, . . . , un−1 are fed in that order to every x ∈ X, the
system would have evolved at time n to one of the states in φα,ū(n,m,X). A simple
observation is that the set inclusion φα,ū(m+2,m,X) ⊂ φα,ū(m+2,m+1, X) holds for
all m ∈ Z since gα,um+1 ◦gα,um(X) ⊂ gα,um+1(X). Based on this observation, it follows
that if the entire left-infinite input {um}m<n would have been fed to every x ∈ X, then
φα,ū(n,m,X) is a decreasing sequence of sets, i.e., φα,ū(n,m− 1, X) ⊂ φα,ū(n,m,X)
for any m ≤ n. Hence, if the entire left-infinite input {um}m<n had influenced the
dynamics of the parametric driven system g, the system would have evolved at time
n to an intersection of a decreasing sequence of sets:

Xn(α, ū) :=
"

m<n

φα,ū(n,m,X). (1)

WhenX is compact, each set φα,ū(n,m,X) is a closed subset ofX and henceXn(α, ū)
is a nonempty closed subset of X (a proof is available in [10, Lemma 2.1]). Note that
Xn(α, ū) is an element of the space HX . Since HX is a compact metric space, every
sequence of sets has a convergent subsequence. Whenever a sequence {An} converges
in HX , it means that dH(An, A) → 0 and we denote it by dH - limn→∞ An = A. It
may be verified that (see for e.g., [33]) when {An} is a sequence of decreasing sets,
i.e., An+1 ⊂ An, then A =

#∞
n=1 An if and only if dH - limn→∞ An = A, i.e., the limit

in the compact space HX always exists for a decreasing sequence of sets and is equal
to the nested intersection of the sequence of sets. Hence an alternate definition of
(1) would be

Xn(α, ū) := dH - lim
m→∞

φα,ū(n,−m,X). (2)

One can easily show that “a sequence {xn} is a solution of g obtained through an
input ū if and only if xk belongs to Xk(α, ū) for all k ∈ Z” (see [10, Lemma 2.1] for a
proof). Hence the definitions of Xn(α, ū) that we have considered are all equivalent.

The continuity of the function (α, ū) "→ Xn(α, ū) can be defined by considering the
topology induced on HX by the Hausdorff metric dH . Such continuity defined using
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the Hausdorff metric is equivalent [33] to the continuity of Xn(α, ū) when Xn(α, ū) is
treated as a set-valued function of the variable (α, ū). We make use of this equivalence
without further remarks. To define the continuity of a set-valued map, let X be a
topological space and YX be a subspace of the power set of X, and let Z be another
topological space. A set-valued function S : Z → YX is continuous [33] at a point x
if it is both upper-semicontinuous and lower-semi-continuous at x. A function S is
upper-semicontinuous (u.s.c) at x if for every open set V containing S(x) there is a
neighborhood U of x so that S(U) is contained in V ; S is lower-semicontinuous at x
(l.s.c) if for every open set V that intersects S(x) there is a neighborhood U of x so
that S(x) also has non-empty intersection with V for all x ∈ U . (see [6, Fig. S3] for
a schematic picture). If S is u.s.c but not l.s.c at x then it has an “explosion” at x,
and if S is l.s.c but not u.s.c at x then it has an “implosion” at x. The function S
is called continuous or u.s.c or l.s.c if it is respectively continuous, u.s.c and l.s.c at
all points x in its domain.

We use the fact that if S is both u.s.c at x and is single-valued, it is continuous
at x [33]. An example of a map that is u.s.c but not l.s.c is the input-encoding
map of a driven system when it does not have the ESP (see Theorem 1 and (ii) of
Lemma 3.2). We point out that the “graphs” of such set-valued maps could behave
wildly. It is not possible to explicitly describe such maps where the arguments are
infinite-dimensional. An accessible example with a scalar argument is the set-valued
function f defined by

f(x) :=

!
{x} if x is irrational or x = 0,

[− 1
n
, 1

n
] if x = m/n,m ∈ Z, n ∈ N are coprime.

(3)

The function f is u.s.c for all x but l.s.c only when x is irrational and at x = 0.

Given a parametric dynamical system g, for every given α ∈ Λ, we call the set-valued
mapping ū "→ {Xn(α, ū)}n∈Z to be the input-representation map. The following
theorem concerns input-related stability (version of (R1)).

Theorem 1. (Continuity of the input-representation map and the input-
encoding map) An open-parametric driven system g that is contractible at α
has the ESP w.r.t. ū at α ⇐⇒ the input-representation map ū "→ {Xn(α, ū)} is
continuous at ū ⇐⇒ the input-encoding map ū "→ E(α, "u) is continuous at ū.

The proof of Theorem 1 would be presented after establishing the relationship of the
ESP w.r.t. ū and the input-encoding map as stated in Lemma 3.1. The pedantic
reader may note that Theorem 1 would not be true without the contractiblility
condition. For instance, we recall an example from Section 2 that if X = [0, 1] and
g(α, u, x) = x, for all n, Xn(α, ū) = X regardless of the input ū and hence the
input-representation map ū "→ {Xn(α, ū)} is continuous (i.e., both u.s.c and l.s.c),
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but there is no ESP to all inputs since Xn(α, ū) is not a singleton subset of X for
every n.

Lemma 3.1. (Continuity of the input-encoding map) An open-parametric-
driven system g that is contractible at α has the ESP w.r.t. "u at α if and only if the
input-encoding map E(α, ·) is continuous at "u.

Proof. (=⇒) The open-parametric driven system g has the ESP w.r.t. "u at α is
equivalent to saying that E(α, "u) is a singleton subset of X. By (ii) of Lemma 3.2,
E(α, ·) is u.s.c at "u. We use the fact that a map that is u.s.c and is a singleton subset
of the space X is continuous to conclude E(α, ·) is a continuous at "u.

(⇐=) Let E(α, ·) be continuous at "u and suppose that g does not have the ESP w.r.t.
"u at α. This means E(α, "u) contains a subset of X that has at least two elements of

X. Hence the encoding map evaluated at (α, "u) is bounded away from all singleton
subsets of X, i.e., r := inf{x}∈X dH(E(α, "u), {x}) > 0.

Since g is contractible at α, let "v be an input for which E(α, "v) is a singleton
subset of X. We define the sequence of left-infinite sequences { "wn}n>1 by "wn :=
(. . . , v−2, v−1, u−n, . . . , u−2, u−1). Since, the first n elements of "wn are identical to
that of "u, it follows that the sequence "wn → "u in the product topology on U (−∞,−1),
where U (−∞,−1) is the infinite cartesian product space

$∞
i=−1 Ui with Ui = U .

Since E(α, "v) is a singleton subset of X, we find that E(α, "wn) is a singleton subset
of X since

E(α, "wn) =
"

j>0

φα,∗n(0,−j,X) =
"

j>0

φα,†(0,−j,X) = E(α, "v),

where ∗n = "wn and † = "v (notations to avoid obscurity in the subscripts). Since
E(α, "wn) is a singleton subset of X, it follows that dH(E(α, "u), E(α, "wn)) ≥ r > 0 for
all n. This implies En(α, "wn) does not converge to E(α, "u) although we had "wn → "u.
This contradicts our assumption that E(α, "u) is continuous at "u. !.

Corollary 3.1. If an open-parametric-driven system g that is not necessarily con-
tractible at α has the ESP w.r.t. "u at α then the input-encoding map E(α, ·) is con-
tinuous at "u.

Proof of Corollary 3.1. The first paragraph of the proof of Lemma 3.1.

Proof of Theorem 1. From Lemma 3.1, we have: an open-parametric driven
system g that is contractible at α has the ESP w.r.t. ū at α if and only if the
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input-encoding map ū "→ E(α, "u) is continuous at ū. It remains to be proven that
the input-encoding map ū "→ E(α, "u) is continuous at ū if and only if the input-
representation map ū "→ {Xn(α, ū)} is continuous at ū. Equip the representation
space R :=

$∞
i=−∞ Yi, where Yi = HX for all i ∈ Z with the product topology. Let

"vn := (. . . , un−2, un−1). Clearly, Xn(α, ū) = E(α, "vn) and the mapping ū "→ Xn(α, ū)
is identical to "vn → E(α, "vn). The following equivalent statements (i)–(vi) lead
to the proof: (i) ū "→ {Xn(α, ū)} is continuous if and only if (iff) the coordinate
mappings ū "→ Xn(α, ū) is continuous for all n ∈ Z (by definition of convergence in
product topology) (ii). ū "→ Xn(α, ū) is continuous for all n ∈ Z iff "vn "→ E(α, "vn) is
continuous for all n ∈ Z (by definition of "vn). (iii). "vn "→ E(α, "vn) is continuous for
all n ∈ Z iff g has the ESP w.r.t. "vn for all n ∈ Z (by Lemma 3.1). (iv). g has the
ESP w.r.t. "vn for all n ∈ Z iff g has the ESP w.r.t. "v0 (since g is open-parametric
driven system) (v). g has the ESP w.r.t. "v0 iff g has the ESP w.r.t. "u (by definition
of "vn). (vi.) g has the ESP w.r.t. "u iff the encoding map "u "→ E(α, "u) is continuous
(by Lemma 1). !

We remark that the topology on representation space R can be obtained through a
metric dR [27]. An example is dR(A,B) :=

%∞
i=−∞ dH(A,B)/2|i|. An analogously

defined metric dU can be used as a metric for the input sequence space U (−∞,+∞).
We make use of Lemma that follows from the assumption that g is continuous and
X is compact. Lemma is proved in [6, Lemma 2].

Lemma 3.2. Let g be a driven dynamical system. Then

(i). The parameter-encoding map E(·, "u) is u.s.c for a given input "u.

(ii). The input-encoding map E(α, ·) is u.s.c for a given α.

(iii). Every function in the input-encoding family {En(·, "u)} or in the parameter-
encoding family {En(·, "u)} is continuous.

The following theorem establishes that the ESP ensures the continuity of the parameter-
encoding map and is a rigorous version of (R2).Theorem 2. (Continuity of the parameter-encoding and the parameter-
representation map) Fix an ū and hence "u. If an open-parametric driven
system g has the ESP w.r.t. "u at α then the parameter-encoding map E(·, "u)
is continuous at α. More generally, if g has the ESP w.r.t. ū at α then the
parameter-representation map α "→ {Xn(α, ū)} is continuous at α.

Proof. Fix an ū and hence the corresponding "u. We note that from (i) of
Lemma 3.2, a parameter-encoding map is u.s.c. Further, whenever it is single-valued
it is continuous. Hence E(·, "u) is continuous at α.
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Note that {Xn(α, ū)} ∈ R :=
$∞

i=−∞ Yi, where Yi = HX for all i and (the representa-
tion space) R is equipped with the product topology. We know that α "→ {Xn(α, ū)}
is continuous if and only if the coordinate mappings α "→ Xn(α, ū) is continuous
for all n ∈ Z. Let "vn := (. . . , un−2, un−1). Clearly, Xn(α, ū) = E(α, "vn) and the
mapping α "→ Xn(α, ū) is identical to the parameter-encoding map α → E(α, "vn).
From Lemma 3.2, a parameter-encoding map is always u.s.c, and when it is single-
valued it is continuous. Since, g is an open-parametric dynamical system, E(α, "vn)
is a singleton subset of X for all n if and only if E(α, "u) is a singleton subset of X.
When g has the ESP w.r.t. "u at α it follows that α "→ {Xn(α, ū)} is continuous. !

We recall from Section 2 that when we restrict the parameter space to be an interval
[a, b] the input-specific soft-ESP threshold and hard-ESP threshold as a parameter
value β ∈ [a, b] for which the parameter-encoding map is continuous and discontinu-
ous respectively in the scenario where g has the ESP w.r.t. "u for all parameter values
either to the left or right of β (examples are in [6, Section 4]). The following theorem
establishes conditions on {En(·, "u)} and is a rigorous version of the result (R3) .
Theorem 3. Consider an open-parametric-driven system g and an input "u. The
parameter-encoding map E(·, "u) is continuous at β if and only if {En(·, "u)} is
equicontinuous at β. In particular, when α is a real-parameter in the interval
[a, b] and αt is the ESP threshold, then αt is a soft-ESP threshold when {En(·, "u)}
is equicontinuous at β and a hard-threshold otherwise.

Proof. We first show that {En(·, "u)} is equicontinuous at β implies E(·, "u) is
continuous at β. To prove this it is sufficient to show that given a sequence, αk → β
we have E(αk, "u) → E(β, "u). Fix a sequence αk → β. We know by definition of the
sets En(α, "u), En(α, "u) → E(α, "u) for every α. Hence for a given ε > 0, we can define
N(α) to be an integer such that dH(E(α, "u), En(α, "u)) < ε/3 for all n > N(α). Thus
for every k ∈ N, we deduce

dH(E(αk, "u), E(β, "u)) ≤ dH(E(αk, "u), En(αk, "u)) + dH(En(αk, "u), En(β, "u)) +

dH(En(β, "u), E(β, "u))

≤ ε/3 + dH(En(αk, "u), En(β, "u)) + ε/3,

whenever n > max(N(αk), N(β)). Since {En(·, "u)} is equicontinuous at β, there
exists an integer K such that for k > K, dH(En(αk, "u), En(β, "u)) ≤ ε/3. Hence,
E(αk, "u) → E(β, "u).

Next, to show E(·, "u) is continuous at β implies {En(·, "u)} is equicontinuous at β, we
prove its contrapositive. Let {En(·, "u)} be not equicontinuous at some fixed β. Then,
there exists an ε > 0, a sequence αk → β and a sequence of integers nk → ∞ such
that dH(Enk

(αk, "u), Enk
(β, "u)) > 3ε0 > 0. Hence, by triangle inequality,

3ε0 < dH(Enk
(αk, "u), Enk

(β, "u)) ≤ dH(Enk
(αk, "u), E(αk, "u)) + (4)

dH(E(αk, "u), E(β, "u)) + dH(E(β, "u), Enk
(β, "u)).
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Since En(β, "u) → E(β, "u), given ε0 > 0, we can find an integer M such that the
inequality dH(EM(β, "u), E(β, "u)) < ε0 holds. Note EM(·, "u) is continuous for any finite
M by (iii) of Lemma 3.2. Assume E(·, "u)) is continuous at β. Hence, by continuity
the set Vβ := {α ∈ Λ : dH(EM(α, "u), E(α, "u)) < ε0} contains a neighborhood of β in
the space Λ. Since En(β, "u) is monotonically decreasing, dH(En(β, "u), E(β, "u)) → 0
monotonically. Hence Vβ := {α ∈ Λ : dH(En(α, "u), E(α, "u)) < ε0 ∀ n ≥ M}. There
exists an integer K1 so that for all k ≥ K, we have αk ∈ Vβ and nk ≥ M . Hence
the term dH(Enk

(αk, "u), E(αk, "u)) in (4) can be made less than ε0 whenever k ≥ K1.
Thus, for k ≥ K1 we can rewrite (4) as

3ε0 < dH(Enk
(αk, "u), Enk

(β, "u)) ≤ ε0 +

dH(E(αk, "u), E(β, "u)) + dH(E(β, "u), Enk
(β, "u)).

Now, by the assumption of continuity of E(·, "u) at β, there exists an integer K2 so
that dH(E(αk, "u), E(β, "u)) < ε0. Also since Enk

(β, "u)) → E(β, "u), there exists an
integer K3 so that dH(E(β, "u), Enk

(β, "u)) < ε0. For k ≥ max(K1, K2, K3), we have
3ε0 < ε0 + ε0 + ε0 which is absurd. Hence our assumption E(·, "u)) is continuous at
β is incorrect. When Λ = [a, b] and αt is the ESP threshold, setting β = αt in the
above proof, we obtain αt to be the soft-ESP threshold and the hard-ESP threshold
when {En(·, "u)} is equicontinuous and not-equicontinuous respectively at αt. !

4 Applications, Significance and Discussion

With computation, dynamics, and information being intermingled concepts, we find
some interconnections between them. The manifold hypothesis (e.g., [34]) is based
on the view that phenomena in the physical world more often lie in or around a
lower-dimensional manifold that can be embedded in a higher-dimensional manifold.
This has been observed in several fields, and in particular, well-explored in machine
learning [34]. When it comes to driven dynamics as considered in this article, the
input ū renders the system compute a representation {Xn(α, ū)} that is usually a
low-dimensional manifold, attracting (see pullback attractors in [32]) and lies in the
higher-dimensional manifold X. In a broad class of driven systems, we establish
in (R1) that a continuous deformation of such a low-dimensional manifold (such
manifolds exist, e.g., [35]) is feasible by feeding close-by variants of the input if
and only if the system has the ESP w.r.t. to the input that aided the computation
of the low-dimensional manifold. Such continuous deformations are necessary for
stable computations in all systems that compute through driven dynamics. From
the perspective of systems that are controlled or driven, result (R1) explains why
memory-loss is needed to avoid unexpected behavior due to small changes in the
temporal input.
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Further, if parameters are a part of the design of driven systems, the representations
are continuously deformed by a change in the parameter when the ESP is satisfied
(result (R2)). Thus in a neurocomputing scheme, if the interconnections of the
network are set as a design-parameter, then the ESP ensures stability due to small
changes in interconnection strengths in the network. This result explains the empir-
ically observed robustness of echo state networks with regard to the random choice
of reservoir or input matrices in applications. We remark that such stability was
explained in the context of a class of standard feedforward neural networks [36], but
no such result is currently available for RNNs – an anonymous referee has pointed
out interesting error estimates recently obtained for RNNs in [37]. ESP ensuring
parameter-stability helps also design or explain stability in fully trained RNNs [38],
and newer adaptations like deep recurrent neural networks [39], conceptors [40], data-
based evolving network models [41] and in nonlinear open-loop control with a wide
range of applications [8].

In the context, where parameters need to be pushed to the limit to have better
separability of inputs in the state space, it is important to identify this limit as
the edge-of-criticality or the hard-ESP threshold. Unlike all earlier literature that
describes the edge-of-criticality with phrases such as the boundary between order and
chaos, or the midpoint between death and epilepsy, we define the input-specific edge-
of-criticality mathematically owing to which we employ a procedure for numerically
determining it using (R3). In the RC literature on RNNs, upper bounds on the
attributes of the reservoir matrix (like spectral radius) to ensure the ESP for all
possible inputs, i.e., the ESP w.r.t. to the entire space are available (e.g., [25]). More
commonly, the criterion of the unit spectral radius of the matrix αB is currently
being used to have the ESP w.r.t. all possible inputs. The disadvantage of these
bounds or criteria is that they are not dependent on the input and particularly on
the input’s temporal properties. In a practical application, often, only a class of
inputs with specific templates are employed for a given task for the network. Hence
the bounds are suboptimal on two accounts: (i) temporal relation in the input is
ignored (ii) the gap between say the actual edge-of-criticality and the bound (like
the unity of spectral radius of the reservoir) is unknown and we overcome this by
using the parameter-stability plot. We anticipate that our procedure to determine
the edge-of-criticality can be extended to a vector parameter in which case we could
get a curve, surface, or a hypersurface as the hard-ESP threshold boundary. From
the viewpoint of stochastic inputs, we remark that when inputs are drawn from a
stationary ergodic process, the edge-of-criticality inferred from a single typical input
is valid for all other generic inputs since the ESP holds with only either probability 0
or 1 [10]. This would mean when the hard-ESP threshold is obtained from a typical
realization of an ergodic process as the input, the same threshold holds for other
realizations with probability 1.
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