13,978 research outputs found

    Neural networks in geophysical applications

    Get PDF
    Neural networks are increasingly popular in geophysics. Because they are universal approximators, these tools can approximate any continuous function with an arbitrary precision. Hence, they may yield important contributions to finding solutions to a variety of geophysical applications. However, knowledge of many methods and techniques recently developed to increase the performance and to facilitate the use of neural networks does not seem to be widespread in the geophysical community. Therefore, the power of these tools has not yet been explored to their full extent. In this paper, techniques are described for faster training, better overall performance, i.e., generalization,and the automatic estimation of network size and architecture

    Post-training discriminative pruning for RBMs

    Get PDF
    One of the major challenges in the area of artificial neural networks is the identification of a suitable architecture for a specific problem. Choosing an unsuitable topology can exponentially increase the training cost, and even hinder network convergence. On the other hand, recent research indicates that larger or deeper nets can map the problem features into a more appropriate space, and thereby improve the classification process, thus leading to an apparent dichotomy. In this regard, it is interesting to inquire whether independent measures, such as mutual information, could provide a clue to finding the most discriminative neurons in a network. In the present work we explore this question in the context of Restricted Boltzmann Machines, by employing different measures to realize post-training pruning. The neurons which are determined by each measure to be the most discriminative, are combined and a classifier is applied to the ensuing network to determine its usefulness. We find that two measures in particular seem to be good indicators of the most discriminative neurons, producing savings of generally more than 50% of the neurons, while maintaining an acceptable error rate. Further, it is borne out that starting with a larger network architecture and then pruning is more advantageous than using a smaller network to begin with. Finally, a quantitative index is introduced which can provide information on choosing a suitable pruned network.Fil: Sánchez Gutiérrez, Máximo. Universidad Autónoma Metropolitana; MéxicoFil: Albornoz, Enrique Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; ArgentinaFil: Rufiner, Hugo Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina. Universidad Nacional de Entre Ríos; ArgentinaFil: Close, John Goddard. Universidad Autónoma Metropolitana; Méxic

    Non-Vacuous Generalization Bounds at the ImageNet Scale: A PAC-Bayesian Compression Approach

    Full text link
    Modern neural networks are highly overparameterized, with capacity to substantially overfit to training data. Nevertheless, these networks often generalize well in practice. It has also been observed that trained networks can often be "compressed" to much smaller representations. The purpose of this paper is to connect these two empirical observations. Our main technical result is a generalization bound for compressed networks based on the compressed size. Combined with off-the-shelf compression algorithms, the bound leads to state of the art generalization guarantees; in particular, we provide the first non-vacuous generalization guarantees for realistic architectures applied to the ImageNet classification problem. As additional evidence connecting compression and generalization, we show that compressibility of models that tend to overfit is limited: We establish an absolute limit on expected compressibility as a function of expected generalization error, where the expectations are over the random choice of training examples. The bounds are complemented by empirical results that show an increase in overfitting implies an increase in the number of bits required to describe a trained network.Comment: 16 pages, 1 figure. Accepted at ICLR 201

    Building Combined Classifiers

    Get PDF
    This chapter covers different approaches that may be taken when building an ensemble method, through studying specific examples of each approach from research conducted by the authors. A method called Negative Correlation Learning illustrates a decision level combination approach with individual classifiers trained co-operatively. The Model level combination paradigm is illustrated via a tree combination method. Finally, another variant of the decision level paradigm, with individuals trained independently instead of co-operatively, is discussed as applied to churn prediction in the telecommunications industry

    Fine-grained Search Space Classification for Hard Enumeration Variants of Subset Problems

    Full text link
    We propose a simple, powerful, and flexible machine learning framework for (i) reducing the search space of computationally difficult enumeration variants of subset problems and (ii) augmenting existing state-of-the-art solvers with informative cues arising from the input distribution. We instantiate our framework for the problem of listing all maximum cliques in a graph, a central problem in network analysis, data mining, and computational biology. We demonstrate the practicality of our approach on real-world networks with millions of vertices and edges by not only retaining all optimal solutions, but also aggressively pruning the input instance size resulting in several fold speedups of state-of-the-art algorithms. Finally, we explore the limits of scalability and robustness of our proposed framework, suggesting that supervised learning is viable for tackling NP-hard problems in practice.Comment: AAAI 201
    • …
    corecore