1,546 research outputs found

    A comprehensive meta-analysis of cryptographic security mechanisms for cloud computing

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.The concept of cloud computing offers measurable computational or information resources as a service over the Internet. The major motivation behind the cloud setup is economic benefits, because it assures the reduction in expenditure for operational and infrastructural purposes. To transform it into a reality there are some impediments and hurdles which are required to be tackled, most profound of which are security, privacy and reliability issues. As the user data is revealed to the cloud, it departs the protection-sphere of the data owner. However, this brings partly new security and privacy concerns. This work focuses on these issues related to various cloud services and deployment models by spotlighting their major challenges. While the classical cryptography is an ancient discipline, modern cryptography, which has been mostly developed in the last few decades, is the subject of study which needs to be implemented so as to ensure strong security and privacy mechanisms in today’s real-world scenarios. The technological solutions, short and long term research goals of the cloud security will be described and addressed using various classical cryptographic mechanisms as well as modern ones. This work explores the new directions in cloud computing security, while highlighting the correct selection of these fundamental technologies from cryptographic point of view

    Improved Cauchy Reed-Solomon Codes for Cloud Data Retrieval and Secured Data Storage using Role-Based Cryptographic Access and forensic investigation

    Get PDF
    Doling out client consent strategies to PC frameworks presents a huge test in guaranteeing legitimate approval, especially with the development of open frameworks and scattered stages like the cloud.  RBAC  has turned into a broadly involved strategy in cloud server applications because of its versatility. Granting access to cloud-stored data for investigating potential wrongdoings is crucial in computer forensic investigations. In cases where the cloud service provider's reliability is questionable, maintaining data confidentiality and establishing an efficient procedure for revoking access upon credential expiration is essential. As storage systems expand across vast networks, frequent component failures require stronger fault tolerance measures. Our work secure data-sharing system combines role (Authorized) based access control and AES encryption technology to provide safe key distribution and data sharing for dynamic groups. Data recovery entails protecting data dispersed over distributed systems by storing duplicate data and applying the erasure code technique. Erasure coding strategies, like Reed-Solomon codes, guarantee disc failure robustness while cutting down on data storage expenses dramatically. They do, however, also result in longer access times and more expensive repairs. Consequently, there has been a great deal of interest in academic and business circles for the investigation of novel coding strategies for cloud storage systems. The objective of this study is to present a novel coding method that utilizes the intricate Cauchy matrix in order to improve Reed-Solomon coding efficiency and strengthen fault tolerance

    A Review on Cloud Data Security Challenges and existing Countermeasures in Cloud Computing

    Get PDF
    Cloud computing (CC) is among the most rapidly evolving computer technologies. That is the required accessibility of network assets, mainly information storage with processing authority without the requirement for particular and direct user administration. CC is a collection of public and private data centers that provide a single platform for clients throughout the Internet. The growing volume of personal and sensitive information acquired through supervisory authorities demands the usage of the cloud not just for information storage and for data processing at cloud assets. Nevertheless, due to safety issues raised by recent data leaks, it is recommended that unprotected sensitive data not be sent to public clouds. This document provides a detailed appraisal of the research regarding data protection and privacy problems, data encrypting, and data obfuscation, including remedies for cloud data storage. The most up-to-date technologies and approaches for cloud data security are examined. This research also examines several current strategies for addressing cloud security concerns. The performance of each approach is then compared based on its characteristics, benefits, and shortcomings. Finally, go at a few active cloud storage data security study fields

    PRTA: a Proxy Re-encryption based Trusted Authorization Scheme for Nodes on CloudIoT

    Get PDF
    In CloudIoT platform, the data is collected and shared by different nodes of Internet of Things(IoT), and data is processed and stored based on cloud servers. It has increased the abilities of IoT on information computation. Meanwhile, it also has enriched the resource in cloud and improved integration of the Internet and human world. All of this offer advantages as well as the new challenges of information security and privacy protection. As the energy limitation of the nodes in IoT, they are particularly vulnerable. It is much easier to hijack the nodes than to attack the data center for hackers. Thus, it is a crucial and urgent issue to realize the trusted update of authorization of nodes. When some nodes are hijacked, both of the behaviors to upload data to servers and to download information from servers should be forbidden. Otherwise, it might cause the serious damage to the sensitive data and privacy of servers. In order to solve this problem, we proposed a Proxy Re-encryption based Trusted Authorization scheme for nodes on CloudIoT(PRTA). PRTA is based on the proxy re-encryption (PRE), and the cloud server will play the roles of data storing and re-encrypting, which would reach the full potential of cloud computing and reduce the cost of nodes. The node’s status is taken as one of the parameters for data re-encryption and it is under the authorization servers’ control, which could ensure the security and reliability of the data and be beneficial for the privacy protection in CloudIoT. Also, the authorization servers are divided into the downloading and uploading kinds, which will make the application range much wider

    Data Service Outsourcing and Privacy Protection in Mobile Internet

    Get PDF
    Mobile Internet data have the characteristics of large scale, variety of patterns, and complex association. On the one hand, it needs efficient data processing model to provide support for data services, and on the other hand, it needs certain computing resources to provide data security services. Due to the limited resources of mobile terminals, it is impossible to complete large-scale data computation and storage. However, outsourcing to third parties may cause some risks in user privacy protection. This monography focuses on key technologies of data service outsourcing and privacy protection, including the existing methods of data analysis and processing, the fine-grained data access control through effective user privacy protection mechanism, and the data sharing in the mobile Internet

    Data Confidentiality and Risk Management in Cloud Computing

    Get PDF
    Cloud computing can enable an organisation to outsource computing resources to gain economic benefits. Cloud computing is transparent to both the programmers and the users; as a result, it introduces new challenges when compared with previous forms of distributed computing. Cloud computing enables its users to abstract away from low level configuration (configuring IP addresses and routers). It creates an illusion that this entire configuration is automated. This illusion is also true for security services, for instance automating security policies and access control in the Cloud, so that companies using the Cloud perform only very high- level (business oriented) configuration. This thesis identifies research challenges related to security, posed by the transparency of distribution, abstraction of configuration and automation of services that entails Cloud computing. It provides solutions to some of these research challenges. As mentioned, Cloud computing provides outsourcing of resources; the outsourcing does not enable a data owner to outsource the responsibility of confidentiality, integrity and access control as it remains the responsibility of the data owner. The challenge of providing confidentiality, integrity and access control of data hosted on Cloud platforms is not catered for by traditional access control models. These models were developed over the course of many decades to fulfil the requirements of organisations which assumed full control over the physical infrastructure of the resources they control access to. The assumption is that the data owner, data controller and administrator are present in the same trusted domain. This assumption does not hold for the Cloud computing paradigm. Risk management of data present on the Cloud is another challenge. There is a requirement to identify the risks an organisation would be taking while hosting data and services on the Cloud. Furthermore, the identification of risk would be the first step, the next step would be to develop the mitigation strategies. As part of the thesis, two main areas of research are targeted: distributed access control and security risk management
    • …
    corecore