
	

	

	

	

	

Data	 Confidentiality	 and	 Risk	

Management	 in	 Cloud	 Computing	

	

Afnan	 Ullah	 Khan	

	

Engineering	 Doctorate	 	

	

University	 of	 York	

Computer	 Science	

	

April	 2014	

2

ABSTRACT

Cloud computing can enable an organisation to outsource computing resources to gain economic

benefits. Cloud computing is transparent to both the programmers and the users; as a result, it

introduces new challenges when compared with previous forms of distributed computing. Cloud

computing enables its users to abstract away from low level configuration (configuring IP addresses

and routers). It creates an illusion that this entire configuration is automated. This illusion is also true

for security services, for instance automating security policies and access control in the Cloud, so that

companies using the Cloud perform only very high- level (business oriented) configuration. This thesis

identifies research challenges related to security, posed by the transparency of distribution,

abstraction of configuration and automation of services that entails Cloud computing. It provides

solutions to some of these research challenges. As mentioned, Cloud computing provides

outsourcing of resources; the outsourcing does not enable a data owner to outsource the

responsibility of confidentiality, integrity and access control as it remains the responsibility of the

data owner. The challenge of providing confidentiality, integrity and access control of data hosted on

Cloud platforms is not catered for by traditional access control models. These models were

developed over the course of many decades to fulfil the requirements of organisations which

assumed full control over the physical infrastructure of the resources they control access to. The

assumption is that the data owner, data controller and administrator are present in the same trusted

domain. This assumption does not hold for the Cloud computing paradigm. Risk management of data

present on the Cloud is another challenge. There is a requirement to identify the risks an organisation

would be taking while hosting data and services on the Cloud. Furthermore, the identification of risk

would be the first step, the next step would be to develop the mitigation strategies. As part of the

thesis, two main areas of research are targeted: distributed access control and security risk

management.

3

LIST OF CONTENTS

ABSTRACT 2

LIST OF CONTENTS 3

LIST OF TABLES 8

LIST OF FIGURES 9

ACKNOWLEDGEMENT 11

AUTHOR DECLARATION 12

1. INTRODUCTION 14

1.1 CLOUD COMPUTING 14

1.2 RELEVANCE OF CLOUD COMPUTING TO BT 15

1.3 RESEARCH CONTRIBUTIONS 16

1.4 THESIS STRUCTURE 17

 2. CLOUD COMPUTING BACKGROUND 19

2.1 INTRODUCTION 19

 2.2 CLOUD DEFINITION 20

 2.3 UNIQUE CHARACTERISTICS OF CLOUD COMPUTING 22

 2.4 CLOUD ECOSYSTEM 24

 2.5 CLOUD SCENARIO 27

 2.5.1 USE CASE 1: AN ENTERPRISE USING MULTIPLE CLOUD SERVICE

PROVIDERS

28

 2.5.2 USE CASE 2: ENTERPRISE CLOUD BROKER 30

3. STATE OF THE ART CLOUD COMPUTING IMPLEMENTATIONS 32

 3.1 CURRENT CLOUD SOLUTIONS AND THEIR SECURITY MODELS 32

 3.1.1 IAAS 33

4

 3.1.2 PAAS 37

 3.1.3 SAAS 41

 3.1.4 SECURITY AS A SERVICE (XAAS) 43

 3.1.5 SECURITY FEATURES AND VENDORS 45

4. SECURITY CHALLENGES IN CLOUD COMPUTING 47

 4.1 ACCESS CONTROL IN CLOUD COMPUTING 47

 4.1.1 RESEARCH CATEGORISATION 50

 4.1.2 TRADITIONAL ACCESS CONTROL 51

 4.1.3 DISTRIBUTED ACCESS CONTROL 53

 4.1.4 RESEARCH GAPS 58

 4.2 DATA LEAKAGE PREVENTION (DLP) 63

 4.3HYPERVISOR LEVEL SECURITY 67

 4.4 HYPERVISOR BASED INTRUSION DETECTION SYSTEM (IDS) 69

 4.5 RISK MANAGEMENT 73

 4.5.1 RESEARCH GAP 74

 4.6 RESEARCH AGENDA 75

 4.6.1 RESEARCH OUTCOMES 76

5. SECURITY RISK FRAMEWORK FOR CLOUD COMPUTING 77

 5.1 INTRODUCTION 78

 5.2 PROBLEM STATEMENT AND MOTIVATION 79

 5.3 METHODOLOGY 81

 5.3.1 HIGH LEVEL ANALYSIS OF THE SYSTEM 83

 5.3.2 IDENTIFYING THE ASSETS INVOLVED 83

 5.4 THREAT ASSESSMENT 84

 5.4.1 METHODOLOGY 84

 5.4.2 EXTERNAL ATTACKS 85

5

 5.4.3 THEFT 86

 5.4.4 SYSTEM MALFUNCTION 87

 5.4.5 SERVICE INTERRUPTION 88

 5.4.6 HUMAN ERROR 88

 5.4.7 SYSTEM SPECIFIC THREAT TYPES 89

 5.4.8 VULNERABILITY ASSESSMENT 90

 5.4.9 RESULTS OF THREAT ASSESSMENT 91

 5.5 HIGH-LEVEL ANALYSIS OF EACH THREAT 98

 5.6 RISK EVALUATION 98

 5.7 RISK TREATMENT 100

 5.8 IMPLEMENTATION 101

 5.9 CONCLUSION 107

6. SECURING SCALABLE VIDEO IN THE CLOUD 108

 6.1 Introduction 108

 6.2 BACKGROUND AND RELATED WORK 110

 6.3 TESLA 111

 6.4 SCALABLE VIDEO 112

 6.5 SECURITY ISSUES ON THE CLOUD IN GENERAL 113

 6.6 THREATS AND ASSETS THAT NEED TO BE PROTECTED 113

 6.7 AUTHENTICATION METHODOLOGY 118

 6.8 SOURCE AUTHENTICATION AND ENCRYPTION 120

 6.8.1 AUTHENTICATION OF VIDEO PACKETS 120

 6.8.2 INITIAL AUTHENTICATION SETUP 121

 6.8.3 SUBSEQUENT AUTHENTICATION STEPS 122

 6.9 CASE STUDY: GENERATING KEYS FOR USER ACCESS 123

 6.9.1 INITIAL SETUP 123

6

 6.9.2 UPDATING ENCRYPTION KEYS 126

 6.9.3 GROUPING OF SUBSCRIBERS 128

 6.9.4 SECURITY OF VIDEO ENCRYPTION 129

 6.9.5 MATHEMATICAL FORMALISATION 130

 6.9.6 ‘TABLE 11’ DESCRIPTION 134

 6.10 CONCLUSION 135

7. ACCESS CONTROL AND DATA CONFIDENTIALITY IN CLOUD COMPUTING (ACDC3) 140

 7.1 THE SCHEME 140

 7.2 BACKGROUND 141

 7.3 SCENARIO 144

 7.4 EMBODIMENTS OF THE SCHEME 147

 7.5 ASSUMPTIONS AND SECURITY REQUIREMENTS 150

 7.6 SCHEME DESCRIPTION (EMBODIMENT 1) 152

 7.6.1 ACCESS MATRIX 155

 7.7 SCHEME DESCRIPTION (EMBODIMENT 2) 158

 7.7.1 MATHEMATICAL FORMALISATION 163

 7.7.2 ACCESS MATRIX 167

 7.8 DIFFERENCE FROM THE STATE OF THE ART 170

 7.9 PSEUDO CODE 171

 7.10 FINE GRAINED ACCESS CONTROL 175

 7.11 SECURITY ANALYSIS 176

8. EXPERIMENTAL VALIDATION 178

 8.1 RESEARCH GAPS 178

 8.2 ORIGINAL CONTRIBUTONS 180

 8.3 SECURITY RISK FRAMEWORK 181

 8.3.1 THREAT ASSESSMENT 181

7

 8.3.2 PRIORITISATION OF CHALLENGES 182

 8.4 ACDC3 SCHEME 183

 8.4.1 NICS CRYPTO LIBRARY 184

 8.4.2 ACDC3 JAVA MODULE 184

 8.4.3 DESIGNING THE EXPERIMENTS 186

 8.4.4 TESTING 188

 8.4.5 RESULTS OF THE EXPERIMENTS 192

 8.5 CONCLUSION 195

9. CONCLUSIONS 196

 9.1 SUMMARY 196

 9.2 LIMITATIONS 198

 9.3 FUTURE WORK 199

APPENDICES 201

 SECURITY RISK FRAMEWORK CODE AND LOGS 201

 PROXY ENCRYPTION LIBRARY 218

 CODE FOR THE ACDC3 SCHEME 240

 RESEARCH PLAN TIMELINE AND MILESTONES 244

 CLAIMS AND ABSTRACT OF THE PATENT (ACDC3) 245

REFERENCES 249

8

LIST OF TABLES

Table 1: IaaS comparison 34

Table 2: PaaS comparison 37

Table 3: SaaS comparison 41

Table 4: XaaS Comparison 44

Table 5: Threats Identified in the Various Use Cases and their Details 94

Table 6: Risk Evaluation Matrix 99

Table 7: Range of Threats for Confidentiality, Availability and Integrity 99

Table 8: Threats Categories 114

Table 9: Risk Evaluation Matrix 116

Table 10: Range of Threats for Confidentiality, Availability and Integrity 116

Table 11: Threats Identified in the Various Use Cases and their Details for Video

Distributions

135

Table 12: Access Matrix (Embodiment 1) 155

Table 13: Symbol, Meaning and Values 168

Table 14: Access Matrix (Embodiment 2) 169

Table 15: 3.2 KB size, showing time for Without Encryption and with Symmetric

Encryption

190

Table 16: 3.2 KB size, showing time for ACDC3 scheme 191

9

LIST OF FIGURES

Figure 1: Anticipated Cloud Market Evolution 26

Figure 2: Virtual Cloud Scenario 27

Figure 3: Enterprise using multiple Infrastructure providers 30

Figure 4: Cloud Brokerage 31

Figure 5: Research Categorisation 51

Figure 6: Process for Security Threat Analysis 80

Figure 7: Cloud Scenarios. 81

Figure 8: Risk Assessment Lifecycle during Service

Deployment/Operation[138]

82

Figure 9: Analysing the Threat Hacking 98

Figure 10: Security Risk Assessment at the Deployment Stage of the Cloud 101

Figure 11: Security Risk Assessment at the Operation Stage of the Cloud 104

Figure 12: Calculating Relative Risk using Samples and Event Rates. An

Action is taken when Relative Risk is more than 1

106

Figure 13: Security Triangle 113

Figure 14: Service Lifecycle for Scalable Video 114

Figure: 15 System Architecture Application Scenario 119

Figure: 16 Use case diagram for the video encryption using secret sharing 124

Figure 17: Sequence diagram for the subscriber registration 125

Figure 18: System Setup 127

Figure 19: Sequence diagram for user revocation and new key generation 128

Figure 20: Flowchart Scenario 139

10

Figure 21: Prior Art 144

Figure 22: Scenario of ACDC3 147

Figure 23: Device Level Architecture of the Scheme 150

Figure 24: Environment Setup (Embodiment 1) 153

Figure 25: Data Access (Embodiment 1) 154

Figure 26: Access Matrix (Embodiment 1) 157

Figure 27: Environment Setup (Embodiment 2) 161

Figure 28: Data Access (Embodiment 2) 162

Figure 29: Data life cycle (Embodiment 2) 167

Figure 30: Results of Threat Analysis
182

Figure 31: Output of the Experimentation 188

Figure 32: Graph for different times recorded for the three scenarios. X-axis

showing data size in kilobytes, Y-axis showing time in milliseconds for

encryption

192

Figure 33: Graph of data size against Re-Encryption time. X-axis showing data

size in kilobytes, Y-axis showing time in milliseconds for re-encryption

193

Figure 34: Comparing the decryption times against data size X-axis showing

data size in kilobytes, Y-axis showing time in milliseconds for the performance

overhead

194

Figure 35: Gantt chart of the project 244

11

ACKNOWLEDGEMENT

First and foremost, I would like to thank God for giving me the will and the patience to complete this

doctorate.

To my family:

I would like to thank my Father (Mushahid Ullah Khan), it was his idea that I should go on this path

and become a doctor. I would like to thank my mother (Maliha Khan) for her prayers for me and for

her love. My sisters (Rida Khan and Lamia Khan) and my brother (Farzan Ullah Khan) for their constant

support throughout. My gratitude to my beloved wife (Hira Afnan) for keeping up with me for all the

time that I have not been there for her. Finally, I would like to thank my daughter and my little angel

Rania Khan for being a source of love and happiness for me.

To University of York, University of Oxford and BT:

This research project is carried out as part of the Engineering Doctorate in Large Scale Complex IT

Systems (LSCITS) scheme at the University of York. Engineering Doctorates aim to solve research

problems of clear commercial or industrial relevance and are co-supervised by both a sponsoring

company and academia. In this case the industrial supervision was provided by Dr. Ben Azvine and

Dr. Theo Dimitrakos of BT Plc. and academic supervision was provided by Dr Manuel Oriol of the

University of York. I wish to express my thanks to all of them. I also wish to thank the Engineering

and Physical Science Research Council (EPSRC) who sponsored the whole programme of LSCITS

Engineering Doctorates.” I also undertook 60 credits of postgraduate module at University of Oxford

as part of the doctorate. I would also like to thank the admin staff and the teaching staff at the

Department of Computer Science, Oxford University.

To my friends:

I would like to thank Usman Piracha, Saleem Butt and Ali Khan for their encouragement and

support.

12

AUTHOR DECLARATION

The work in this thesis is done by the author. This work has not been submitted to any other

university or this university for another award.

The following papers and patents have been published as part of the research work conducted for

the EngD.

Poster Paper:

A. Khan, J. Jacob, M. Oriol, and T. Dimitrakos, “Architecture for Secure Colloborative Services,”

LSCITS, Annu. Board Meet. ISAB NSB members, 2010.

Industrial Paper:

S. K. Nair, S. Porwal, T. Dimitrakos, A. J. Ferrer, J. Tordsson, T. Sharif, C. Sheridan, M. Rajarajan, and

A. U. Khan, “Towards Secure Cloud Bursting, Brokerage and Aggregation,” 2010 Eighth IEEE Eur.

Conf. Web Serv., pp. 189–196, 2010.

Workshop Paper:

M. Kiran, A. U. Khan, M. Jiang, K. Djeame, M. Oriol, and M. Corrales, “Managing Security Threats in

Clouds,” Digit. Res., 2012.

Research Papers:

A. U. Khan, M. Oriol, M. Kiran, M. Jiang, and K. Djemame, “Security risks and their management in

Cloud computing,” in 4th IEEE International Conference on Cloud Computing Technology and

Science (Cloudcom) Proceedings, 2012, pp. 121–128.

A. U. Khan, M. Oriol and M. Kiran, “Threat Methodology for Securing Scalable Video in the Cloud,”

in 8th IEEE International Conference for Internet Technology and Secured Transactions (ICITST)

Proceedings, 2013.

13

Patents:

A. U. Khan, F. La Torre and M. Oriol, “Access Control and Data Confidentiality in the Cloud,” EU

Patent, BT IPD Application Number: A32311, Filed March 2012

A. U. Khan, F. La Torre and M. Oriol, “Network and Access Security System,” BT IPD, EPO Patent

Application Number: 13715392.0, Filed June 2013

BT’s Internal Paper:

Cloud Strategy Roadmap, Theo Dimitrakos, Srijith K. Nair, Fadi El Mousa, Afnan Ullah Khan,

published internally to BT, 2011

14

CHAPTER 1

INTRODUCTION

1.1 CLOUD COMPUTING

Cloud computing is a new paradigm for computing infrastructure[1][2]. While Cloud

computing can be thought of as just one more way of implementing distributed systems, it

is different from traditional distributed systems, as well as grid computing, as its

infrastructure is transparent to users and programmers alike. This allows for new ways of

selling and sharing resources altogether.

Cloud computing offers a new economic model which enables enterprises to shift from the

conventional way of developing their own IT departments to outsourcing their needs for

software, platform and infrastructure. Cloud computing has been promoted as a new

paradigm and also as the 5th utility service after water, electricity, gas and telephony [3].

A paradigm shift is taking place in the IT industry [4]. In the past enterprises used to support

their business by procuring IT infrastructure and then developed their software on top of

that infrastructure. Cloud computing presents a model in which IT infrastructure is leased

and used according to the need of the enterprise. The fundamental benefit of this model is

15

that it converts capital expenditure (CAPEX) of an enterprise into operational expenditure

(OPEX)[5].

We envision that this shift would enable hybrid Clouds (a combination of private and public

Cloud) to become commonplace, realized by private Clouds interacting with a rich ecosystem

of various different types of Cloud. We are already witnessing research being conducted to

enable organisations to automatically externalise services and applications to trustworthy

and auditable Cloud providers in the hybrid model[6].

1.2 RELEVANCE OF CLOUD COMPUTING TO BT

The paradigm shift that is taking place in the IT sector has opened up new avenues of growth.

BT[7] being one of the largest technology company in the UK had to develop its own strategy

to leverage the benefits of this shift. BT already has an extensive offering for customers

requiring data centres but with the evolution of cloud computing further technological

development was required.

The support for this research and development work was undertaken as part of BT’s strategy

to develop its Cloud offering. More specifically to develop the security offerings related to

Cloud computing. BT has developed large number of patents in the different areas of IT

which it uses to generate revenue. It invests a large part of this revenue to enhance growth

and to add to its offerings relating to Cloud computing.

From BT’s perspective the aim of the thesis is twofold. The first goal is to develop a novel

scheme that would enforce access control policies on Cloud computing scenarios. The

scheme will also ensure scalability to cater for large number of Cloud consumers and

confidentiality of data hosted on the Cloud. We use the EU OPTIMIS[6] [8] project to perform

evaluation of the scheme developed. The second goal is the development of the security risk

framework for the Cloud computing platforms. This framework would provide a mechanism

16

through which risk analysis can be performed for Cloud computing scenarios. Details about

the research plan and outcomes are given in Chapter 4.

1.3 RESEARCH CONTRIBUTIONS

The Engineering Doctorate programme envisages a ‘portfolio’ of research contributions

within a domain that are of relevance in an industrial/commercial context i.e. that will have

or may have real-world impact. The industrial sponsor for the Engineering Doctorate was

British Telecom and the research presented in this thesis has been guided by current and

anticipated problems faced in cloud security by BT.

Initial work reviewed both the academic state of the art in cloud computing security and the

industrial state of practice. This allowed various research gaps to be identified. Background

and literature review is presented in Chapters 2 (Cloud Computing Background), 3 (State of

the art implementations Cloud computing implementations), and 4 (Security challenges in

Cloud computing).

The specific research objectives addressed by the technical work of this thesis are as follows.

1) The production of a Risk Assessment Framework with tool support for application to

Cloud computing scenarios. This is presented in Chapter 5

2) The provision of an effective and secure architecture and algorithms for secure video

streaming. This is presented in Chapter 6

3) The provision of a scalable access control framework based on an existing cryptographic

scheme. This is presented in Chapter 7

4) Experimental validation of the scheme developed in Chapter 7 is put forward in Chapter

8.

17

1.4 THESIS STRUCTURE

In this section the structure of the thesis is presented.

Chapter 2 puts forward the explanation of differences between Cloud computing and other

forms of computing. The Cloud computing background and evolution chapter came from a

joint paper written in BT titled as “Cloud Strategy Roadmap”.

For Chapter 3, the state of the art implementations and the comparative analysis of the

security landscape of Cloud delivery models are presented. The main objective of the

comparative analysis was to develop a strong understanding of the Cloud computing field.

This led to the identification of security challenges for Cloud computing.

For Chapter 4, the review of the security challenges and the development of research gaps

was undertaken. The identification of the research gaps setup the research direction of the

thesis.

For Chapter 5, the development of the Security Risk Framework was done in collaboration

with University of Leeds where Mariam Kiran was leading the risk framework as part of the

OPTIMIS project. Mariam’s contribution were in the form of developing the algorithm for

risk calculation. The author’s contributions came in the form of performing the threat

analysis and then relating those threats with the Cloud computing scenarios of the OPTIMIS

project.

For Chapter 6, Securing Scalable Video idea is presented. Part of this research work was

undertaken by the researcher during his MSc at University College London. In the MSc the

focus was on developing the authentication and confidentiality schemes for scalable video

scenarios. In the EngD the focus remained of extending this work in Cloud computing

scenarios and performing a risk assessment for secure scalable video. In this Chapter the

risks were identified relating to secure scalable video in the Cloud context. The novelty in

Chapter 6 is the development of a new risk model for the scalable video scenario.

18

For Chapter 7, the development of the scheme ACDC3 scheme from the conception to the

design and implantation is presented. The ACDC3 scheme was verified by Francesco La Torre

in form of undertaking via a mathematical formalisation and design review of the scheme.

The ACDC3 is a novel scheme which fulfils the requirements of scalability while providing

confidentiality for the Cloud computing scenarios.

For Chapter 8, the experimental validation results of ACDC3 and Security Risk Framework are

presented. The development of code for ACDC3 prototype, the test cases to verify the

scheme and the comparison of the results of test cases with the standard encryption practice

is presented in this Chapter.

19

CHAPTER 2

CLOUD COMPUTING BACKGROUND

2.1 INTRODUCTION

In this Chapter the aim is to formally define Cloud computing and then explain the subtle

differences between it and previous forms of distributed computing. From an academic point

of view it is important to take a step back and analyse the idea of Cloud computing critically

and judge whether it is any different from other forms of computing. The subtlety that exists

between Cloud computing and other forms of computing would then set the stage for

further research and development in this area.

To understand the industrial perspective, the Chapter then further leads into a discussion of

BT’s vision for Cloud computing and how BT sees it emerging. Finally at the end of the

Chapter we present the EU OPTIMIS project use cases. The research work in this thesis is

based on these use cases.

20

2.2 CLOUD DEFINITIONS

There is no consensus on how to define Cloud computing [14] but some common

characteristics exist among many of the definitions. In this section we present the definition

of Cloud computing that is used throughout this report.

The most comprehensive definition of cloud computing, and the one used throughout this

thesis, is given by the US National Institute of Standards and Technology (NIST):

“Cloud computing is a model for enabling convenient, on-demand network access to a

shared pool of configurable computing resources (e.g., networks, servers, storage,

applications, and services) that can be rapidly provisioned and released with minimal

management effort or service provider interaction. This Cloud model promotes

availability and is composed of five essential characteristics, three service models, and

four deployment models”[15], [16].

With respect to the NIST definition the characteristics, service models and deployment

models of Cloud computing is discussed and explained.

The five essential characteristics of NIST’s cloud model are:

 On-demand self-service, which means that a user can get computing resources

provisioned automatically without human intervention.

 Network access, by which services should be provided over a network using a

standard mechanism that supports multiple platforms like mobile phones and PDAs.

 Resource pooling, which enables pooling of Cloud provider resources among multiple

tenants.

 Rapid elasticity, by which a consumer of Cloud services can provision resources

rapidly and can scale in or scale out on demand.

21

 Measured service enables the monitoring, controlling and reporting of services to

both Cloud provider and the consumer in order to ensure transparency.

There are three service models as per NIST’s cloud definition, which are Software as a service

(SaaS), Platform as a service (PaaS) and Infrastructure as a Service (IaaS):

 SaaS provides consumers with the capability to use applications hosted by the Cloud

provider.

 PaaS provides consumers the ability to develop or deploy their own applications on

the platform. The consumer however does not control the underlying Cloud

infrastructure like network, servers and operating system.

 IaaS enables the consumer to provision processing, storage, network and other

resources. Virtualisation is the key enabler technology for this service model which

provide unprecedented flexibility to configure resources while at the same time

enabling the provider to protect its underlying physical infrastructure [17].

There are four fundamental deployment models for Cloud computing as per NIST’s cloud

definition:

 Private Cloud is solely operated for an organization by either a third party or the

organization itself.

 Public Cloud is available for the general public and is owned by an organization selling

Cloud services.

 Community Cloud provides infrastructure which is shared by several organizations.

Hybrid Cloud is a composition of two or more Clouds (community, private, public).

For this research we have chosen the NIST definition of Cloud computing as we found it the

most comprehensive definition and also it is also widely used in the other research

literature[18][19][20].

22

Other definitions for Cloud computing includes Gartner’s: “A style of computing where

scalable and elastic IT capabilities are provided as a service to multiple customers using

internet technologies” [21]. The definition from Gartner covers parts of the characteristics

of Cloud computing but it does not contain references to on-demand services as well as any

pay-as-you go usage model. This implies that the definition does not consider these

characteristics fundamental to the Cloud computing model.

Forrester defines Cloud computing as, “A standardized IT capability (services, software, or

infrastructure) delivered via Internet technologies in a pay-per-use, self-service way”[22].

This definition does not cover the platform part of Cloud computing paradigm. This implies

that it does not make a distinction between the PaaS and the IaaS. Furthermore, It is also

not clear what they mean by “self service way”.

The 451 Group defines Cloud computing as, “a service model that combines a general

organizing principle for IT delivery, infrastructure components, an architectural approach

and an economic model – basically, a confluence of grid computing, virtualization, utility

computing, hosting and software as a service (SaaS)”[23]. An important distinction this

definition makes is that of confluence of Grid computing with virtualization and other Cloud

computing related technologies. This distinction is very insightful as it sheds light on the

influence of Grid computing over Cloud computing.

The definitions mentioned above cover many technologies and various models. We can

clearly see that there is no consensus among them [14].

2.3 UNIQUE CHARACTERISTICS OF CLOUD COMPUTING

We have provided numerous definitions of Cloud computing in section 2.2, now in this

section an effort is made to identify the subtle differences of Cloud computing with Grid

computing.

23

Cloud computing came forward as the natural evolution of Grid computing, although it has

been questioned whether it offers anything new or it is just rebranding of the old

ideas[14][1]. The vision of Cloud computing is the same as that of Grid computing, that is to

reduce cost of computing, increase reliability and increase the flexibility by transforming

computers into something that we buy from a third party and then pay per use[14].

One of the major differences between the business model of Cloud computing and Grid

computing is that the Cloud is transparent to the users and programmers whereas Grid

follows a project oriented approach. In Cloud computing anyone can go online and get access

to immense computing resources and pay only for the resources that they consume. In Grid

computing the focus is project oriented. Users or a community subscribe to a Grid project to

offer resources or consume resources depending upon their need. There is an effort to

develop a Grid economy using Grids all over the world. The Grid infrastructure would offer

services such as trading, negotiation and allocation of resources[24].

For resource management most Grids use a batch model where users submit batch jobs.

These batch jobs are placed in queue. The jobs are executed with respect to the requirement

specified by the user for example the job would run on 100 processors for 1 hour. The Cloud

computing batch model is different as the jobs are run concurrently and the resources are

shared by the users. This introduces security issues relating to data confidentiality and access

control such as data leakage to unauthorised users.

Cloud computing uses virtualization to achieve abstraction and encapsulation. Virtualisation

creates the illusion that many users jobs are running at the same time by creating a fabric of

compute, storage and network resources. In Grids each participating organization maintains

full control over its resources (i.e by not virtualising them), therefore there is less reliance on

virtualization compared to Cloud computing [14]. As in Grid computing an organization

maintains full control over their resources, the security requirements that are developed to

cater for the needs of the Grid computing differ from those of Cloud computing. In Cloud

24

computing the control is lost by the data owner, as no physical control is available when it

hosts data on the Cloud server. This change induces security issues relating to regulatory

compliance, loss of privileged access, data confidentiality, access control etc.

Cloud computing differs from Grid computing in many ways. The business model of the two

forms of computing is completely different. Cloud computing is offered on a pay per use

model whereas Grid is offered in the form of a project. Moreover, the delivery models of

Cloud computing (SaaS, PaaS, IaaS) differ from Grid computing delivery model which is

focused towards computing power. These differences have their impact on security of Cloud

computing and we discuss in more detail the threats relating to Cloud computing in Chapter

3.

Having explored the nature of Cloud computing and how it differs from Grid computing, we

now explore Cloud computing from a technical perspective.

2.4 CLOUD ECOSYSTEM

There is no long-term qualitative market differentiation for Cloud providers. For example,

Amazon EC2 [25] was the first to propose solutions for the Infrastructure as a Service (IaaS)

but it was soon followed by major competitors like Google and IBM offering IaaS platforms

like Google Compute[26] and IBM IaaS[27] at almost the same price. In order for a vendor

to make a difference, it is necessary to constantly innovate and develop its offering.

Most of the Cloud services until now are provided by infrastructure providers (Cloud islands)

such as Amazon EC2[25], Google App Engine[28] etc. Recently, new technologies such as

Vsphere[29] lead a transition from incompatible solutions provided by Cloud vendors (Cloud

Islands) to solutions that can run on several Clouds (Virtual Clouds). The assumption here is

that different hypervisors (Vsphere, HyperV, Xen) will provide functionality to interconnect.

The idea is that the Virtual Cloud consumes the services of the Cloud islands by developing

25

a virtualization layer on top of them and frees their customers from being locked into a

particular IaaS vendor.

Cloud computing is also witnessing a transition towards open source platforms such as

Openstack[30]. Openstack offers open source software for creating private and public

Clouds. HP has consumed Openstack to build its Cloud platform called HP Cloud[31]. More

vendors are now focusing on Openstack offerings (Paypal, Wellsfargo) therefore starting

new era where Cloud islands can now communicate horizontally using open source software.

Vsphere is a product of VMWare. Although it provided API level access to a hypervisor it

failed to gain traction from other companies, possibly for reasons of competition and lack of

trust. Openstack seem well on course to achieve the transition from Cloud Islands to Cloud

Horizontal Federations.

In figure 1, we show what we can anticipate for the evolution of Cloud computing. The first

phase was the development of ‘Data Centres’ [82] for the purpose of storage and computing.

In the second phase we have seen the development of ‘Virtual Data Centre’ [7] that provides

full functionality of a Virtual LAN for an organisation. A VLAN can be defined as a logical

network that maps workstations and servers on some other basis than geography. It is a

logical segmentation of network rather than physical one. Now we anticipate that the next

step will be the emergence of ‘High-end Cloud Environment’ where many Virtual Data

Centres will be federated to provide services. This will enable the creation of a market place

for Cloud platforms and the brokers will be able to resell services to clients depending upon

their specific requirements.

26

Figure 1: Anticipated Cloud Market Evolution

Currently we are in the evolution process where virtual data centres are being offered by

various vendors such as BT [7].

The emergence of Cloud-aware application design patterns is making the development of

Cloud based applications more convenient. Rather than focusing on programming, the

concept is to now to focus on the idea. Furthermore the improvement of the

instrumentation offered by the standardised interfaces of both Cloud infrastructure and

Cloud platforms make application development and deployment more convenient.

In the next sections we expand the Cloud scenario that we will be using for this thesis. We

detail two use cases to further explain the cloud computing scenario. The first use case is

that of an “Enterprise using multi Clouds”[8] and the second use case is of “Enterprise Cloud

broker”[32].

27

Figure 2: Virtual Cloud Scenario

2.5 CLOUD SCENARIO

The purpose of this section is to describe the Cloud computing scenarios and use cases that

will be followed throughout this thesis. The explanation of use cases and scenarios now

(instead of, for example, before the assessment of the commercial state of the art) will give

some context to the research work, and to indicate some typical uses for cloud computing

technology.

In Figure 2, a Cloud scenario is put forward where the Virtual Cloud federates the

infrastructure providers (IP1, IP2, IP3) by deploying a virtualization layer on top of the

infrastructure providers. This virtualisation would be able to offer IaaS services to the

consumer.

The actors of the scenario are described below.

Service Provider (Federator): The federator is responsible for creating the abstraction layer

that would combine the resources provided by different infrastructure providers. The design

28

of the federator is such that the infrastructure provider should not be aware that its services

are resold to the customers. To achieve this, the federator creates virtual LAN or an overlay

network that would connect the resources of these infrastructure providers. A virtual LAN

creates a logical network which is not based on geography. Rather in this case it would be

based on compute or storage services put together for a consumer. This creates the

horizontal federation of infrastructure which would enable the federator to introduce

interdependencies between the virtual machines that exist on different infrastructure

providers.

Consumer: The consumer can either be the enterprise customer who can be a company or

an individual user trying to access the federator in order to utilize Cloud services.

Broker: The Broker sits between the infrastructure provider and the service provider or

between the federator and the customer. The Broker offers value-added services between

the infrastructure provider and the federator, such as performance prediction (based on

monitoring of historical data), security and SLA negotiation. A broker creates a governed and

secure Cloud management platform to simplify the delivery of complex Cloud services[32].

The broker is explained further in the use case 2 explanation in the section 2.5.2.

Infrastructure provider: The infrastructure provider provides services to the federator like

storage, computing and other computing resources.

We further extend the scenario by explaining two use cases. These use cases will then be

used to perform the threat analysis on the scenario. The threat analysis will therefore lead

us to identify security related issues and challenges.

2.5.1 USE CASE 1: AN ENTERPRISE USING MULTIPLE CLOUD SERVICE PROVIDERS

In this use case, an enterprise combines infrastructure services provided by multiple

infrastructure providers to implement and realize an internal process. For example, the

29

process could be a one-off simulation of a complex data set that uses multiple infrastructure

providers, e.g., Amazon EC2 for the compute-intensive tasks, NVIDIA Reality Server[33]

Cloud service for graphics-intensive tasks and Amazon S3[34] for data storage intensive tasks

and then the enterprise has to perform the necessary merging on the result set to generate

the desired results. Amazon does provide services where a complete Cloud can be created

using multiple tools through which Amazon EC2 and other Amazon services can be

combined. However, there is absence of an interoperability layer between different vendors.

Therefore the above description can only become a reality if NVIDIA provides an API level

access to Amazon services. Even if that API level is present, it would still be required to

orchestrate the whole process. This is where the service integration layer comes in as

explained in the Figure 3.

In figure 3, we use a virtualized services integration layer that uses well-defined interfaces

and standardized calls between different web-service enabled applications and data sources

to provide the loosely-coupled integration required for the completion of the enterprise’s

process.

The service integration layer would require an interface for services such as authentication

of the consumers, access control to ensure access is granted appropriately and finally

federation of multiple Clouds. This federation would require the communication interface

through which different services from different vendors can be orchestrated.

The multi Cloud use case is designed to realise the benefit of using different Cloud platforms

at the same time as an integrated service. The challenge that this use case addresses is that

of integrating different platforms.

30

NVIDIA Amazon

Services Integration Layer

Enterprise

Authentication Federation Access Control

Communication Interface

Figure 3: Enterprise using multiple Infrastructure providers

2.5.2 USE CASE 2: AN ENTERPRISE CLOUD BROKER

In the previous use case the focus was on integrating the multiple different platforms. In this

use case the focus is on developing a broker service that can negotiate price, SLA etc. on

behalf of different customers.

In figure 4, an enterprise approaches a Cloud broker with a given set of functional

requirements and constraints. Depending upon these functional requirements and

constraints the broker then picks up the best available match of infrastructure providers.

These requirements and constraints can be cost, SLA parameters and other non-functional

requirements like audit, compliance and security capabilities. In addition to helping in

choosing the most suitable Cloud service for the enterprise’s needs, the Cloud broker should

also help in integration of the enterprise’s processes and their deployment on the target

platforms of the infrastructure provider.

31

Now the Cloud broker could in principle be doing a comparative analysis of services provided

as in the case of use case 1. The technical challenge in use case 2 is that of performing

comparative analysis between different IaaS providers or doing comparative analysis

between different service providers as in the case of use case 1.

Amazon Flexiant

Enterprise

RHEV-M

BT

 Identity
 Access
 Optimization
 Policy
 Monitoring

Figure 4: Cloud Brokerage

The process of sorting through the services provided by different IaaS providers is a complex

process and the Cloud broker provides additional value-added and middleware-oriented

services to achieve its functional requirements.

In the next Chapter we analyse the state of the art implementations of Cloud computing. A

comparative analysis of the state of the art is also presented. The purpose is to undertake a

thorough review of the implementations in order to develop a comprehensive

understanding of the state of the art from an industrial perspective. This understanding

would later enable the development of further research in the area of Cloud computing

security.

32

CHAPTER 3

STATE OF THE ART CLOUD

COMPUTING IMPLEMENTATIONS

3.1 CURRENT CLOUD SOLUTIONS AND THEIR SECURITY MODELS

This section presents current Cloud solutions and their security model. We categorise the

solutions into: Infrastructure as a Service (IaaS), Platform as a Service (PaaS) and Software as

a Service (SaaS). These categories are based on the Cloud service models presented in

Chapter 2 which are based on the NIST definition of Cloud computing[35]. Furthermore, we

also analyse the security of vendors which provide Cloud based security services, these

services generally described as Security as a Service (XaaS).

The reason we use this classification is because the focus of the security controls would be

different for each service model. For instance SaaS would focus more on the web-security

33

controls whereas the IaaS would be more tuned towards protecting hypervisor and VM

isolation. However, numerous security controls would overlap, as every provider would have

to deploy security controls to protect customer data.

For reviewing the state of the art implementations of Cloud computing, we use publically

available data such research articles, security data sheets and white papers provided by

companies that provide Cloud services. The survey may not be able to capture a full

understanding of the architecture of the products, as the companies do not publish all data.

The companies that we have selected for our survey would cover the full spectrum of Cloud

delivery models such as IaaS, PaaS and SaaS. Moreover, we have also reviewed the security

standards (ISO, PCI etc.) that these companies conform to in order to understand the

maturity of security controls that they have employed.

3.1.1 IAAS

There are currently five major companies who provide IaaS: Amazon[25][34][36], Rackspace

[37][38], Joyent [97], GoGrid [39] and Terremark[40]. The security features that we have

considered for our analysis are provided by these companies and are documented via

publically available information. The companies which have been selected for this survey are

broadly considered market leaders in the cloud computing domain. Moreover, those we are

analysing for this survey tackle prominent challenges in Cloud computing relating to security.

We also use some benchmark standards of IT Security to develop our analysis, these are

Payment card industry data security standard (PCI-DSS), ISO standards, SAS standards etc.

34

Security

Features /IaaS

providers

Amazon Rackspace GoGrid Joyent Terremark

Security

Model

Shared

responsibility

model

Shared

responsibilit

y model

Not

mentione

d

Shared

responsibilit

y model

Not

mentione

d

Confidentiality

of Data

Allow

customers to

encrypt their

own data using

their own keys

Encrypting

data before

it leaves

customer

premises

using up to

256 bit AES

keys[41]

Not

mentione

d

Allow

customers

to encrypt

[42]

Not

mentione

d

Hypervisor

level security

Using

customised

version of Xen

[43] to perform

separation of

hypervisor with

the guest OS

Not

mentioned

Not

mentione

d

Yes Not

mentione

d

Access Control Not mentioned Access

control

mechanism

RBAC[41] Yes Not

mentione

d

35

implemente

d

Network level

security

SSL/TLS VPN[37] VPN Yes Not

mentione

d

Accreditations

/ Compliance

SAS70 type 2

audit [44]

SAS type 2

audit, ISO

17799, PCI-

DSS

SAS type 2

audit ,

HIPPA,

PCI- DSS

Not

mentioned

PCI DSS

Multi factor

authentication

Yes Not

mentioned

Not

mentione

d

Not

mentioned

Not

mentione

d

Data leakage Amazon claims

that customer

instances have

no access to

raw disk. Data

Leakage

Prevention

(DLP) is not

mentioned in

the

documentation

.

Not

mentioned

Not

mentione

d

Not

mentioned

Not

mentione

d

36

Intrusion

detection

systems

Yes Yes Yes Not

mentioned

Yes

Table 1: IaaS Comparison

Table 1 [25][34][36][37][38][97][39][40], shows that most of the infrastructure providers use

the same security model: ‘shared responsibility’. In the shared responsibility model the

security responsibility is shared by both the infrastructure provider and the user of the

service. The reason is that infrastructure providers have control over the layers on and below

the hypervisor. They can only provide limited level of control when it comes to the VM itself.

Therefore the infrastructure providers take responsibility for the hypervisor and the layers

below whereas the responsibility of the VM remains with the customer. The customer has

generally have admin level control over the VMs therefore enabling him to access core

services of the operating system. In some cases the IaaS allows the customer to upload its

own template of operating system.

Another common feature among the vendors is that they provide controls to ensure the

confidentiality of data when stored or on the move. In order to ensure compliance, there are

a number of accreditations that the infrastructure providers comply with. These

accreditation provide limited security controls and none of them are tuned for the Cloud

computing scenario. Like PCI DSS is a standard used by the payment industry, it defines the

controls that should be in place in order to make the payment systems secure. Another

feature that is almost common among the infrastructure providers is the inclusion of an

intrusion detection system.

Joyent provides special tools that can be used to provide an extra layer of security at the VM.

Amazon is the only vendor that offers key rotation service. Key rotation enables a customer

to change encryption keys. Customers provide a certain number of keys to perform

37

encryption; these keys are then used by Amazon to perform encryption on their data. The

keys are revolved with respect to the time setting, for instance the first key would be revoked

after one week.

For the IaaS, we have analysed most of the major vendors in the market. Amazon provides

by far the most detailed documentation with respect to security controls whereas Terremark

only identify a few security controls for their IaaS offering. Almost all of the vendors provide

controls relating to network level security and intrusion detection systems. On the contrary,

no vendor mentions controls relating to data leakage prevention.

3.1.2 PAAS

In this section we review the solutions relating to Platform as a Service (PaaS) from the

security perspective. The companies that provide PaaS are Windows Azure[45],

Force.com[46][47], Google Apps Engine [28] and Heroku [48]. The security features that we

have picked for the analysis are the ones mentioned in the documentation of the companies.

PaaS providers

/Security

features

Windows Azure Force.com Google Apps

Engine

Heroku

Security Model Responsibility

on the vendor

Responsibility

on the vendor

Responsibility

on the vendor

Not mentioned

Confidentiality

of Data

Data encryption

is provided as

an optional

feature.

Internally the

Data encryption

using 128 bit

keys for

symmetric and

1024 bits for

Data is not

stored in clear

text

Not mentioned

38

Azure platform

encrypts data.

asymmetric

encryption.

Compliance Safe harbour Safe Harbor

agreement,

Sarbanes-Oxley,

HIPPA

Safe Harbor

agreement,

Sarbanes-Oxley,

HIPPA

Uses Amazon

AWS [49] at

IaaS level so

similar

compliance

VM security Least privilege

policy is in

place.

Customers not

provided admin

access to VM.

VM and VLAN

isolation is

done using

packet filtering

Not mentioned Not mentioned Not mentioned

Network level

security

SSL/TLS SSL/TLS SSL/TLS Not mentioned

Accreditations ISO 27001 SAS70 type 2

audit, ISO/IEC

27001

SAS70 type 2

audit, NIST SP-

800-61

Uses Amazon

AWS at IaaS

level so similar

compliance

39

Redundancy Multiple

backups are

created

Multiple

backups using

RAID disks and

redundant

configuration of

servers. Third

party services

are acquired for

disaster

recovery

Multiple

backups on

geographically

distributed

locations

Not mentioned

Data deletion References are

deleted

References are

deleted, No

formatting is

done

References are

deleted and

other customer

data is

overridden

Not mentioned

Access control Two models for

access control

are provided

Access control

mechanisms

are in place

Not mentioned Not mentioned

Table 2: PaaS Comparison

Table 2 shows that most of the vendors provide features for addressing security

requirements. For confidentiality most of the vendors are using the Advanced Encryption

Standard [50]. The key length range is 128-256 bits. SSL/TLS is the commonly used tool for

the confidentiality of network level traffic.

For compliance most of the vendors are also complying with bills of the parliament, acts ad

rules like Sarbanes-Oxley[51], Data Protection Act[52] and HIPPA[53], [54]. Apart from

40

compliance there are other accreditations that the industry uses to ensure adequate security

controls are in place such as ISO 27001 and SAS type 2 audit.

For redundancy multiple backups are created by all the vendors and third party controls are

put in place for disaster recovery. For data deletion, all the vendors only delete the

references and do not perform any formatting on the data. The data is then normally

overridden by other customer data. The references to the data are deleted but not the data

itself, there is a risk that customers can potentially recover deleted data from other users

using advance data recovery tools.

Access control is also provided by most of the vendors but the level of control varies.

Windows Azure is the only platform that explicitly mentions in the documentation that they

deploy security controls to ensure the VLANS and VM remains isolated. Controls which they

use are packet filtering and access control. The isolation of VLANS and VM ensures that a

customer having control over his VM cannot penetrate into the VM or VLAN of another

customer using the same Cloud infrastructure.

Windows Azure also only provides confidentiality to the customer as an additional feature

although all internal traffic is kept confidential. Windows Azure security provide adequate

security controls to tackle the threats of identity, access management, confidentiality and

network level security[55]. Security features relating to data leakage prevention and usage

control threats are not mentioned.

All data hosted by the Google Apps Engine is stored in encrypted format. Therefore

confidentiality of data is ensured by Google. The issue of access control is tackled by applying

access control policies such as access is given on a need to know basis. Logs are maintained

and all activities are monitored to ensure access control policies are adhered by the Google

staff. The access to the production environment is further controlled by a centralised access

control mechanism.

41

Force.com provides security features similar to the ones provided by its SaaS offering which

is Salesforce [56].

Heroku uses Amazon AWS [48] as the underlying IaaS offering. This implies that it has the

similar level of security controls that Amazon AWS provides. We discussed in section 3.1.1

the Amazon EC2 related security controls which also uses AWS.

For PaaS, we have reviewed all the major vendors in the market. Most of the vendors provide

similar levels of security controls for data confidentiality, redundancy and network level

confidentiality. Microsoft provides an extra level of security controls which are VM isolation

and access control. On the contrary, Heroku do not specify security controls for its PaaS

offering and it relies completely on the IaaS provider for security.

3.1.3 SAAS

We review all the solutions relating to Software as a Service (SaaS) from the security

perspective in this section. The major companies that provide SaaS are Salesforce [57],

Rackspace email & Apps[37], Marketo [58][59] and Zuora [60]. Marketo specialises in

marketing automation software. Zuora provides a subscription business model to its

customers and its services ranges from finance, commerce and billing. The companies

selected for SaaS delivery model are leaders (ranked by Inc. 500 and Fortune 100) in their

specific SaaS domain, this gives the analysis a thorough mix of what is available in the market

and what kind of security services are provided by the SaaS providers. The security features

that we mention in the analysis come from the documentation of the vendors that we are

using.

SaaS providers/

Security

features

Salesforce Rackspace

email & Apps

Marketo Zuora

42

Security model Responsibility

on the vendor

Responsibility

on the vendor

Responsibility

on the vendor

Responsibility

on the vendor

Single Sign on Supported Supported Not mentioned Supported

Network level

confidentiality

SSL/TLS VPN SSL/TLS [129] SSL/TLS

Confidentiality

of data

Data

encryption

using 128 bit

keys for

symmetric and

1024 bits for

asymmetric

encryption

Encrypting data

before it leaves

customer

premises using

upto 256 bit

AES keys [61]

AES encryption,

customer data

stored in

separate

databases

Not mentioned

Multi factor

authentication

Not mentioned Not mentioned Yes Not mentioned

Accreditations SAS70 type 2

audit, ISO/IEC

27001

SAS type 2

audit, ISO

17799, PCI-DSS

SAS type 2

audit

Not mentioned

Compliance Safe Harbor

agreement,

Sarbanes-

Oxley, HIPPA

Not mentioned Safe Harbor

agreement

Not mentioned

Table 3: SaaS Comparison

43

Table 3 shows that most of the vendors take care of the security responsibility. At the

network level most of the vendors use SSL/TLS whereas for encryption of data the most

common algorithm is that of AES.

Single Sign On (SSO) is supported by most of the vendors whereas multifactor authentication

(multiple criteria’s are used for authentication) is only supported by Salesforce. In [62],

Armando using formal models has revealed a severe security flaw in the SAML (industry

standard for SSO) based protocol used by Google Apps Engine that allows a dishonest service

provider to impersonate a user at another service provider.

For accreditations and compliance the industry standards are used by most of the

companies, standards include Safe harbour agreement and SAS type 2 audit. Safe Harbour

agreement enables the movement of personal data between the EU and the US. The

companies which want to move personal data from the US into the EU region or vice versa

need to comply with criteria set out in this standard to gain eligibility for moving personal

data of US and EU citizens.

Salesforce and Rackspace email and apps use the IaaS offerings from Force.com and

Rackspace respectively who are the IaaS offerings of their sister company. For the SaaS they

further hardened the security by providing layer of authentication and SSO. The rest of the

security controls are the same as provided by Rackspace which we have mentioned in 4.2.1

For SaaS, most of the security features (SSO, Multi-factor authentication, SSL,VPN) provided

are from the perspective of web-security as most of the services are provided over the web.

3.1.4 SECURITY AS A SERVICE (XAAS)

In this section we analyse the security of services provided by Cloud based service providers.

For this analysis we take into account companies which are less known and are smaller in

44

size. Moreover, we also look at the level of security provided by the market leaders in this

area.

The market for Cloud based security services include Remote vulnerability assessment,

Identity & access management (IAM), Web gateways, Email gateways etc. This market is

growing at a very fast pace and is expected to go from being $2.13 billion in 2013 market to

$4.13 billion by 2017[63].

For the analysis we have selected Qualys[64] which is a market leader in providing Cloud

based vulnerability assessment and penetration testing. CipherCloud[65] is another

company that specialises in providing security services for Cloud and has distinguished itself

by providing services such as searchable encryption, Cloud data loss prevention, encrypting

emails etc. Radar Services is company that specialises in providing Cloud based Security

incident and management solution (SIEM). The company is small in size but has been growing

steadily. The reason we selected Radar Services was because Cloud based SIEM is an

emerging domain for XaaS and there are not many large enterprises providing this service.

XaaS providers/

Security features

Qualys Radar Services CipherCloud

Security model Shared Shared Shared

Single Sign on Supported (SAML

2.0)

Not mentioned Yes with Salesforce

Network level

confidentiality

SSL/TLS SSL/TLS SSL/TLS

45

Encryption N/A Not mentioned AES 256 bit

encryption[66]

Key Management Supported (Keys to

be provided by the

consumer)

Not mentioned Yes

Malware Detection Yes Yes Yes

Data Leakage

Prevention

Yes[67] Not mentioned Yes

Table 4: XaaS Comparison

For all the companies providing XaaS, it is expected that the security model is shared

between the XaaS and consumer. The primary role of the XaaS is provide a security service

which is specific to a domain like DLP. Therefore, the consumer would be responsible for

ensuring that it provides appropriate access to XaaS to its systems. Moreover, if there are

breaches at levels not scanned by the XaaS then the responsibility will be with the consumer.

3.1.5 SECURITY FEATURES AND VENDORS

For all three service models (IaaS, PaaS, SaaS), the documentation of companies do not

provide detail information on the security features that are provided. Normally large

companies like Microsoft and Google have detailed documentation available but even they

do not provide the full spectrum of the security features applied. This is because it can reveal

security vulnerabilities of their system which may in turn be exploited by the attackers.

46

As for the other smaller companies like Heroku, Zuora, Radar Services etc. they do not

mention even the basic security features like data confidentiality, access control, hypervisor

security and VM security.

The focus of Cloud providers is shifting towards providing more advanced services for

securing Cloud infrastructure. These services include Security incident & response (SIEM),

Identity and access management (IAM), Cloud based SSO, Encryption as a service etc. This

trend of providing security through a Cloud service is usually termed Security as a Service

(XaaS). We have made an effort to cover this domain and comparative analysis of three

companies are provided.

The next Chapter focuses on research challenges that arise within the domain of Cloud

computing security from an academic perspective. A thorough literature review is conducted

which leads to identification of research gaps.

47

CHAPTER 4

SECURITY CHALLENGES IN CLOUD

COMPUTING

The purpose of this Chapter is to identify the research gaps within the area of Cloud

computing security by analysing the state of the art and by categorising the research area.

The approach that is taken to identify the research gaps is by conducting systematic analysis

of the literature. Furthermore, the Chapter also puts forward a research agenda that is to be

followed to fill the research gaps.

4.1 ACCESS CONTROL IN CLOUD COMPUTING

Cloud computing has been widely adopted by the industry (Telecoms, Banks, Government

etc.) and according to IDC its market was worth $16 billion in 2008 and by 2018 the market

will rise to $127.5 billion (SaaS ($82.7 billion), PaaS ($20.3 billion), IaaS ($24.6 billion))[68].

48

From the technological point of view even with such a large market size, Cloud computing is

still in its infancy[69].

Security is however a priority concern for many Cloud computing customers who make

buying choices on the basis of the reputation for confidentiality, integrity and resilience, and

the security services offered by a provider. This then is a strong driver for Cloud providers to

improve their security practices and compete on security services[70]. In the previous

chapter we showed that many vendors do not publicise their information security measures.

The reasons for this are not clear. They might wish to keep these measures secret but it is

also possible that they do not have a mature security model implemented within an

organisation. However, for Cloud consumers, security remains a top concern.

Data security for Cloud computing has been identified as one of the major research challenge

by Zhang[71], Kandukuri [72], Shen[73], Popović[74] and Catteddu [70]. One reason why

Cloud computing is considered such as major adoption challenge is because data security

can be a show stopper.

Customers do not have physical access to data that is stored on the infrastructure provider

premises. They have to trust the infrastructure provider with respect to the confidentiality

of the data. The infrastructure provider has to build in security controls that would ensure

that data remains confidential when it is stored and when it is on the move.

Cloud computing follows a multi-tenant architecture where data from different customers

are stored on the same server. Though this model is very economical, it entails many security

risks. Segregating data stored from different customers is very important: if not properly

implemented, this can lead to one customer accessing the data of another customer.

Most of the commercial offerings only delete the references associated with the data rather

than deleting the data itself. This means that if data recovery tools are used, one customer

can potentially recover the data of another customer. This sort of problem has been known

49

for a long time. Indeed the earliest major security standard of the 1990’s [75] identifies

“object reuse” as a specific area of security functionality.

Infrastructure providers should build in security controls that would ensure that even though

the infrastructure is shared at the physical level and the software level, the data is

segregated. Security can be a show stopper for infrastructure providers, if a data breach

occurs this would lead to loss of confidence, therefore leading to Cloud consumers moving

services out of that particular Cloud provider infrastructure. Sharing of hardware is a

necessity that is required for Cloud computing however, segregation of data is a software

requirement that would enhance Cloud consumer confidence in the infrastructure provider.

At the IaaS level the segregation of data is even more important as customers have control

over the virtual machine and they can install and run software. This gives them the freedom

to attack the system; we have witnessed an attack on the EC2 platform in[76].

Another attack on Amazon S3 happened on June 2008 when customers using the storage

facility said that data has been corrupted and the checksum of the data was failing[77].

Furthermore Amazon clearly states that it delegates the risk associated with data to the data

owner who should take precautionary measures.

From the customer's point of view it is important that Cloud providers have mechanisms in

place that gives them the confidence that the data stored on the Cloud is not tampered with.

Failing to do so means that customers cannot trust that the data is securely hosted.

One of the most important security controls that is used to ensure data security is access

control. Access control in an enterprise is performed by using specialised software that grant

access on the basis of roles or attributes and the security policy they hold corresponding to

these roles. The data on Cloud platforms are stored in many different locations of which the

customer may not be even aware.

50

The main challenge is to prove legally or technically that unauthorised access has taken place

in the Cloud. As the infrastructure provider controls the Cloud, we need to investigate how

a Cloud consumer can use technology to ensure that unauthorised access does not take place

at the infrastructure provider level. This mechanism if provided to Cloud consumers can lead

to further augmentation of confidence in the infrastructure provider. Moreover, from a legal

perspective it would useful to register if a breach has taken place or not. This is necessary to

comply with standards such as that of HIPPA, Data Protection Act etc.

4.1.1 RESEARCH CATEGORISATION

For clarity we have categorised the research papers that we have analysed as the state of

the art with respect to access control, scalability and user revocation. This categorisation has

been made after reviewing clusters of research activity while analysing the literature. The

degrees of scalability and access control provided give two axes of categorisation. The

following chart shows the categorisation,

51

Figure 5: Research Categorisation

Figure 5, puts forward the requirement for a scheme that solves the problem of scalability and

access control with user revocation for Cloud computing scenarios.

4.1.2 TRADITIONAL ACCESS CONTROL

In Discretionary access control (DAC) an individual subject can control the decision of an

access control mechanism so that it allows or denies access to an object[78][79]. The

approach is also known as the identity based access control, as the identity has control over

the access control decision. DAC is widely supported by operating systems such as UNIX and

Microsoft Windows. In Mandatory access control (MAC) the system mechanism (normally

the operating system) controls access to an object and individual identity or subject cannot

alter that access [79][80]. MAC depends on the correct classification of subjects and objects.

MAC uses the Bell-LaPadula confidentiality model which has two security properties. Firstly,

the simple security property ensures that no process may access resource labelled with

higher classification. Secondly, the military classification property prevents processes from

Scalability

No Scalability

No Access Control
Access Control with

User Revocation

[63]

[65] [64]

[66] [67]

[68] [69]

[70] [71]

[72]

[73]

[74]
[75]

[76]

[77]

[78]

[79]

[80] [81]

[82]

[117]

[116]

[119] [120]

52

writing to a lower classification. These two properties makes the MAC inflexible. In a system

where there are large number of subscribers who are accessing numerous resources, to

maintain the MAC properties require significant computing resources therefore making MAC

difficult to scale.

Both MAC and DAC are heavily used in operating systems. Using these models for applying

access control for VMs via the hypervisor has already been achieved. In fact an example of

application of MAC can be witnessed in the hypervisor sHype[81][82] [14] [15].

Access control lists[83] are a simplified access control mechanism by which a table is created

where an access rights list is maintained. Normally there are two columns in the table one

containing the subject and the other containing the access rights. An ACL is linked with

resources such as files or folders and decision with regards to access control is performed

using these lists. ACL are usually used in centralised environments where users control their

own file security. ACL’s are less suited in environments where the user population is large

and constantly changing. Furthermore, ACLs are not an optimal choice when it comes to

performing security check at runtime. Typical operating systems keep track of which user is

running which program, rather than which files has been authorised to access[84]. The

problems of scalability and trusted domain (owner and controller of data to be in the same

trust domain) are shortfalls of ACL when it comes to Cloud computing.

The basic concept of Role Based Access Control (RBAC)[85] [16] [86] is that users are assigned

roles and permissions are associated with the roles. The users acquire access by becoming

members of the roles. The relationship that exists between roles and permissions can be

many to many. Similarly the relationship between users and roles can be many to many.

Therefore the same user can have many roles and a role can be assigned to many users.

RBAC requires the identification of roles within a system, as a role represents the authority

and responsibility of the system users.

53

The traditional access control models implementation has focused on the assumption that

data controller and data owner is in the same trust domain, the assumption does not hold

for Cloud computing. The Data controller in this scenario is an organisation having

administrative and physical control over the infrastructure hosting the data.

In the Cloud computing environment, the main challenges faced by RBAC scheme are

scalability, authentication, delegation of authority and trust. There are some RBAC schemes

that have been developed for Cloud computing environments. Younis et al. [87] put forward

a scheme which caters for some of the requirements relating to the Cloud computing

environment. It does not, however, convincing tackle the problem of scalability. The scheme

AC3 that they present in the paper is based around RBAC. RBAC relies on roles, as the number

of Cloud users increases, the number of roles augments exponentially. The inherent problem

of scalability for RBAC is still present in the scheme which is that it becomes extremely

difficult to manage for large number of users.

Singh et al.[88] presents an upgraded form of RBAC for Cloud computing scenario. The

scheme focuses on tackling issues relating unauthorised access by putting restriction on

number of roles assigned per user. Moreover, it keeps a backup of all authorisation data on

local stores to have redundancy.

These approaches still do not fundamentally addresses the issue of scalability of RBAC within

Cloud computing scenario. The issue remains that in the number of Cloud consumers rises,

the number of roles rises significantly. Managing the roles and permissions becomes

increasingly difficult and expensive. Moreover, this scheme relies on making backups of

authorisation data which further makes it difficult to scale.

4.1.3 DISTRIBUTED ACCESS CONTROL

Breach of an access control policy may lead to the loss of confidentiality of data. As shown

in the threat analysis in Chapter 3, loss of confidentiality of data and enforcement of access

54

control is rated as one of the most high level risks(most serious) associated with Cloud

computing.

A general solution to providing access control in a distributed scenario is to encrypt the data

that is outsourced to a server or Cloud platform. The users who have the right credentials

will then be able to access that data. This approach has been adopted by many systems [89]

[90] [91] [92]. The problem with this approach is that it adds to the complexity because of

management of keys and encryption of data. As Cloud computing is both transparent to

users and programmers, it would be used in a highly decentralised environment with huge

numbers of users. The goal is to achieve scalability and fine grained access control without

introducing a very high level of complexity. For instance, if a system is dependent on PKI then

it would have issues of scalability, as PKI does not scale due to technical and social issues.

Furthermore, keeping the security policies concurrent (and ensuring consistency) when data

is residing on many distributed platforms is also required.

In the rest of this section, the description of the state of the art and shortcomings are

explained.

Kallahalla et al. [89] propose a cryptographic system PLUTUS. The system encrypts files

stored on un-trusted servers. PLUTUS associates a symmetric key (lock-box key) with groups

of files, which have similar sharing attributes. Each file is encrypted using a file-block key and

then afterwards with a lock box key of the file group to which the file belongs. The lock box

key is also used to encrypt the file block keys. When sharing a file a user only needs to reveal

the lock-box key and then the file can be read by other users. The drawback of the scheme

is that it does not ensure fine grained access control, as access is given on the basis of

revealing a key.

Another problem with the approach is that performing multiple encryptions at different

levels makes this system extremely complicated due to necessity of the management of keys.

The scalability of the system is proportional to the total number of file-groups. The

55

assumption is that the number of users is more compared to number of file groups which

makes the scheme relatively efficient. In file-groups, as the number of files grows within a

group, the easier it would become to manage the keys from a providers perspective.

However, the bigger the group the more coarse grained the access control will become.

Therefore for this system the problem of key management is inversely proportional to the

granularity of access control.

Ateniese et al. [91], presents an extension of the atomic proxy re-encryption scheme

developed by Blaze et al [93]. The fundamental concept of proxy re-encryption is that it

allows transforming a cipher text computed by Alice’s public key into one that can be

decrypted by Bob’s private key. Ateniese presents a system in which data owner encrypts

the data contents using symmetric keys. These symmetric keys are all encrypted with a

master public key. The data owner has the private key that can decrypt these symmetric

keys. This private key combined with user’s public key is used to generate proxy re-

encryption keys. Now the semi-trusted server can convert the cipher text into a form that

can be decrypted by a specific user, hence allowing that user access to data. The

fundamental problem with this scheme is that a malicious server and one user colluding

together can reveal the keys of all the users.

Goh et al. [90] presents a system SiRiUS, which provides end to end security over existing

network file systems such as CIFS, NFS or OceanStore. To ensure access control it uses access

control list (ACL) and assigns to each file a meta-data file containing the ACL. The meta-data

file in SiRiUS incorporates entries that encrypt the file encryption key with corresponding

user public key. This enables only the legitimate users to decrypt the file encryption keys and

therefore access the file. Users who have the signing keys (private keys) are given access to

write as well. The system is heavily reliant on PKI from the scalability perspective for Cloud

scenarios the system therefore is not suitable. Furthermore the linking of ACL with the files

means that the complexity of the system is proportional to number of revoked users. Every

56

time user revocation takes place, the meta-data file has to be updated by re-encrypting each

entry in the ACL with the new file encryption key. In Cloud computing scenarios files with

multiple copies would be stored at different infrastructure providers; if SiRiUS is used then

ensuring synchronisation of access control policies would incur immense overhead therefore

making the system infeasible. The system does not achieve fine granularity, as decisions

about access is made on the basis of provisioning of keys only. For clarity the provider is only

responsible for hosting and distributing the data. No processing is performed on the data

itself by the provider.

Vimercati et al. [92] presents a solution based on a key derivation method[94]. The

fundamental concept is that every user is assigned a secret key and each file is encrypted

using a symmetric key. In order to grant access to a user the data owner creates public tokens

using the key derivation method. Using the token alongside with the user’s secret key, the

user is then able to decrypt the file. The benefit of the scheme is that it is not dependent on

public key infrastructure (PKI), therefore it should be highly scalable. However, due to the

complexity of file creation and user grant revocation makes this scheme un-scalable [95].

Sahai and Waters [96] presented the original idea of attribute based encryption. In this

scheme a user’s private key is constructed as a set of private key components. Each

component represents an attribute of the user’s identity. A user trying to read an encrypted

file can only decrypt the file if its private key has the correct access control attributes

embedded in it. The fundamental problem with the scheme was that it cannot be used in

large systems due to lack of expressibility[97]. This scheme however, formed the basis for

considerable further research work in attribute based encryption[95][97] [98].

Goyal et al. [97] presented an enhanced version of the Attribute based Encryption (ABE)

called as Key Policy Attribute Based Encryption (KP-ABE). The scheme enhanced the

expressibility of the ABE scheme by expressing the user’s private key as the access formula

by using AND, OR, or threshold gates. Data is associated with attributes for which a private

57

key is derived. The private key is granted to users who have correct attributes. The scheme

achieves expressibility to a certain extent but the complexity due to access attributes relating

to that of public keys of users still make the scheme extremely complex. Furthermore, there

is a considerable computational overhead that is associated with the scheme which makes

it unfeasible in the Cloud computing scenario.

With regards to distributed access control the state of the art research is based on the Key

Policy Attribute Based Encryption (KP-ABE) scheme[97]. We therefore give some detail on

relevant KP-ABE schemes that relate to that scheme.

There are three major operations performed by the scheme, which are encryption, key

generation and decryption. To understand how the scheme achieves fine granularity and

data confidentiality simultaneously we explain below the functions of encryption, decryption

and key generation.

Encryption: To perform encryption the following components are required,

 A set of attributes I which are associated with secrets

 An access tree T to which the attributes are mapped. A tree is a Boolean expression

which has attributes as its leaf nodes.

 A public key PK that is used for encryption, this key is known to everyone in the

scenario

 Finally a message M that will be encrypted using the above sub-components

Key Generation: To perform key generation the following components are required,

 The access tree T, that corresponds to the set of attributes I

 The master key MK, this key is extremely critical to the security of the scheme. If

this key gets compromised, an attacker can easily impersonate the data owner

 The public key PK that is known to everyone in the scenario

58

 Finally the key generation algorithm takes as input the above components and

outputs the data consumer’s secret key SK

Decryption: To perform decryption the following components are required,

 A Data consumer who performs the decryption needs the SK

 The public key PK is required

 Finally the algorithm takes cipher text E, using the SK, the process of decryption will

be performed. The decryption is successful only when SK relates to the set of

attributes I in the access structure T

Now the above scheme achieves two very important functionalities. First, by associating the

attributes with the secret key of the user mapped over access structure T, it has achieved

fine granularity. The second function is that of confidentiality that is achieved by performing

encryption of that data. The scheme works well in a scenario where there is an un-trusted

server and all the data hosted on it has to be encrypted and also fine granularity has to be

achieved. But due to the complexities relating to computational overhead, key distribution

and user revocation the scheme does not scale.

4.1.4 RESEARCH GAPS

Research Gap 1 (RG1): In Cloud computing the data is hosted on un-trusted servers; this

feature introduces a requirement for confidentiality because the assumption is that the data

is hosted outside the control of the data owner. Therefore, a mechanism should be in place

that ensures confidentiality and integrity. As the data that is to be hosted on Cloud could be

immense, there is also a requirement for fine grained access control, otherwise managing

access to the data would not be possible.

In Cloud computing scenario, the requirement is to have a scheme that would provide fine

granular access control and data confidentiality. For enterprise to use Cloud computing, they

59

would need assurance that their data remains confidential and only transparent to

authorised users. In case this condition of data confidentiality is not satisfied, it would erode

the financial benefit that Cloud computing brings, as it would be risky (loss of customer’s

trust, fines from regulator, monetary losses) for enterprise to use Cloud computing to host

their data.

From the literature review in section 5.2.2, it can be concluded that the schemes of ABE[96]

and KP-ABE[97] do achieve fine granularity and data confidentiality. As Cloud computing is

going to be used for a huge numbers of users, it would require that the scheme providing

confidentiality and fine granularity of access control scale to that required level. The schemes

of ABE and KP-ABE do achieve fine granularity but due to the lack scalability, lack of

expressibility or computational overhead they are infeasible to be directly used in Cloud

computing scenarios. Therefore the requirement is to have fine granularity, data

confidentiality and scalability simultaneously.

The problem in the state of the art is linking of fine granularity to the provisioning of

confidentiality. In KP-ABE fine granularity is achieved using the access tree structure and as

the attributes are linked to a certain identity, only that identity can decrypt data. This makes

the scheme very complicated due to the management of keys, development of access tree

structures, re-encryption and key generation. Therefore it cannot cater for the scalability

requirements of the Cloud computing scenario.

An important research aim is to de-link fine granularity of access control from the data

confidentiality and to come up with a scheme that scales to a level required in the Cloud

computing scenario. This would require development of a new scheme that takes into

account specific access control, confidentiality and scalability requirements of Cloud

computing. Scalable fine grained access control would be relatively simple to achieve as the

delinking would mean that the mechanism does not have to cater for the confidentiality

requirements also.

60

Research Gap 2 (RG2): Cloud computing should create the illusion that the configuration

relating to encryption, decryption, management of security policies and management of keys

is done seamlessly. This illusion forms the basis of Cloud computing and it differentiates

Cloud computing from other forms of distributed computing.

The challenge is to ensure that security services such as confidentiality, access control and

integrity is provided on Cloud just as it would be provided in an enterprise with minimum

possible user involvement (both owner and consumer).

None of the systems that we have analysed above provide a solution that performs

automation of configuration by which all the security related configuration remains seamless

to the users.

Cloud computing has the capacity to scale up and down as per the requirement of the

business. This scaling capability is built on top of multiple domains for instance, an enterprise

conventionally uses a single domain for its operations. But in Cloud computing it would have

the capacity to burst to multiple domains (using broker or directly using infrastructure

providers). This capacity has to be built in a way that it remains completely seamless to the

enterprise users. The focus of the research gap is to deal with the issues that arise due to

bursting. This bursting would include network level, VM level and hypervisor level security

configurations in accordance to the security policy of the enterprise. Furthermore, this

configuration would include security configuration negotiation (example, negotiation about

which algorithms to use and length of the keys), management of keys, encryption, decryption

and user revocation.

The systems analysed provide solutions that cater for fine granularity and confidentiality.

They do not provide a mechanism to seamlessly perform the security configurations.

Consider the example, when a service provider wants to burst to multiple infrastructure

providers, at the network level it would be a requirement to ensure confidentiality of data.

A potential solution to this problem may be the use of either the Secure Socket Layer (SSL)

61

or creation of Virtual Private Network between the service provider and infrastructure

providers. The usage for instance of the VPN technology would require configuration relating

to keys, setting up of VPN servers at the infrastructure providers, setting up of VPN clients

and enforcement of network level security policy of the service provider (for instance, if the

infrastructure provider is outside of the EU, the bursting should not take place). All of this

configuration would require the development of a component that would oversee network

level security. This is only one requirement that relates to the security configuration relating

to bursting. The goal here is to ensure that all of the security related requirements are

fulfilled by a component with minimum possible involvement of the service provider.

For Cloud computing to grow and realize the vision that we have provided in Chapter 2, it is

imperative that this research gap is fulfilled. In case this research gap is not fulfilled the risk

(time required for configuration, right configuration ensuring all security requirements have

been fulfilled) that an enterprise has to take to use Cloud computing may erode its economic

benefits. Moreover, the challenge is not only to achieve the goal of automation of

configuration but also to achieve it at a cost that enables Cloud computing to remain a

lucrative option.

Research Gap 3 (RG3): None of the analysed systems proposes a mechanism by which access

control policies that are distributed over multiple infrastructure providers are kept

synchronised. In Cloud computing scenarios, the data may reside and pass from numerous

platforms like Broker, Service provider and Infrastructure provider (IP). The challenge is to

ensure synchronisation of access control policies across these multiple domains. Consider

the following example:

Data owner hosts its data on IP1 and IP2, where IP1 provide services to data consumer from

Collaboration A and IP2 provide services to data consumer from Collaboration B. Data owner

has different access control policies for both Collaboration A and Collaboration B. However,

the data owner wants to ensure that if the access control rights of Bob who is a member of

62

Collaboration A gets revoked, he should not be able to use collaboration B to get access to

data. This would mean that both the access control enforcements at Collaboration A and

Collaboration B need to be synchronised.

A typical usage of the above example is when Collaboration A and Collaboration B are

competing with each other. The data owner does not want to reveal the data that it is giving

to Collaboration A, to Collaboration B and vice versa.

Luokai Hu et al.[99] presents a novel approach towards solving the problem of

communicating policies between different players within the Cloud computing scenario. The

scheme proposed works in a decentralised environment using semantic web based

technologies such as XACML. Some elements like the subject, object, action and attribute

variables from XACML is used. This approach potentially solves the problem of semantic

interoperability and mutual understanding on distributed access control policies when

collaboration work is done between organisations. The problem with the scheme is that it

does not have an automatic mechanism for resolving conflicts. Furthermore, the level of

granularity provided by the scheme is limited as well.

Research Gap 4 (RG4): All the systems that are analysed, user revocation is one of the most

cumbersome processes. Every time users get revoked, new keys have to be generated and

files have to be re-encrypted. Due to this complexity, all of the systems do not scale to a level

that is desirable for Cloud computing scenarios.

Yu et al[95] presented a novel approach in which the problem of user revocation was

outsourced to Cloud servers. This was achieved by using PRE [93], which enables the

transformation (re-encryption) of cipher text without the Cloud servers knowing anything

about the plain text. The problem with this approach is that it introduces a huge amount of

computational overhead. This computation overhead itself is outsourced to Cloud servers

but this would increase the costs (time, money) of hosting data on the Cloud. Therefore

63

taking out the economic benefit that Cloud computing brings and making the approach

infeasible.

An important research aim is to come up with a scheme that minimises the impact of user

revocation on data re-encryption. In the KP-ABE scheme that we have analysed in RG1,

attributes are linked with keys in order to achieve fine granularity. The problem with this

approach is that every time a user gets his access revoked all the files that he has access

need to be re-encrypted. Furthermore, this introduces the issue of computational overhead

also making the scheme infeasible.

Consider a scenario where multiple users are having their access revoked in a very short span

of time. This would require numerous re-encryption processes starting over the span of a

short time. It would mean that if the time taken to re-encrypt data is longer than the time a

user gets his access revoked than the scheme is infeasible, as if there are multiple re-

encryption processes running then there should be a mechanism to identify which data is

encrypted with which key. As KP-ABE does not handle this complexity, it therefore is not

feasible for the Cloud computing scenarios.

4.2 DATA LEAKAGE PREVENTION (DLP)

Companies pay a lot of attention to protecting the perimeter of their network by using

firewalls and intrusion detection and prevention systems. Though the significance of external

security is very important, it is also critical to ensure that data is not lost from inside the

enterprise intentionally or unintentionally.

There are products in the market which cater for data leakage prevention in an enterprise

like GFI endpoint security [100], Symantec Data loss prevention[101] etc. There are no

products which cater specifically for data leakage prevention in the Cloud.

64

The reason why the problem is different in the Cloud is because leakage within an

organization can be controlled by using the above mentioned software. Such software would

scan through end points or network points looking for violations of enterprise security policy.

Such software cannot be used directly by customers in the context of Cloud computing, as

the Infrastructure provider is hosting data from various different customers. The

infrastructure provider should control the infrastructure and it should apply uniform security

policies across many different customers’ data.

From the perspective of the Infrastructure provider the problem is even more complicated

as, firstly, it would want to prevent the leakage of data from happening. In case it happens,

it is first very important to identify where and when did the leakage happened. Secondly,

providers want to identify steps or processes by which the violation of the security policy can

be traced. Understanding the exact requirements for data leakage prevention in the Cloud

is still an open question.

Intrusion detection systems (IDS) monitor an agent’s activity and determine whether it is

acting as expected or not[102]. IDS can potentially be used to check the behaviour of a user

accessing the data. IDS can solve problems relating to the Data leakage by analysing user

behaviours and then reporting unusual activity in the system.

The IDS assumes that an adversary has successfully been able to bypass the initial security

of the system. For instance the username and password has been compromised by the

adversary. For the IDS, the challenge is to figure out how to detect unexpected behaviour

using previous patterns of users of the systems. The problem can be further divided into two

categories. The first is to find out data that would show expected behaviour. The second one

is to develop the software that would detect unexpected behaviour.

There are two categories of IDS, network based or host based. In network based IDS[103],

techniques are used to analyse network traffic to figure out anomalies with respect to

expected behaviour. This is the new form of IDS compared with the host based intrusion

65

detection system. Host based IDS[104] consist of four methods for detection: the monitoring

of logs, kernel based detection, file system monitoring and connection analysis.

With respect to Data leakage the host based system makes more sense as the main concern

here is to protect the data that is stored. The network based IDS can play a complementary

role by checking for anomalies in the network. When envisioning the data leakage scenario,

one has to consider all the potential output channels (USB drive, CD/DVD burner) associated

with a computer. These channels can be exploited by an adversary to move information out

of the Cloud. To counter them techniques like profiling of programs on basis of system calls

presented in[105] can be used for intrusion detection. Two approaches are generally

adapted when dealing with intrusion detection system.

The first approach is that of Misuse detection[106] [107] in which systems are systematically

scanned in order to detect previous known behaviours and actions which are deemed

malicious or intrusive. These behaviours or patterns are usually recorded over a long period

of time relating to a specific system. The second approach is that of Anomaly detection

[108][109] in which the assumption is made that any unusual behaviour of the user would

be deemed as intrusive. The advantage of Anomaly detection over Misuse detection is that

it could even detect novel attacks as it looks for anomalies rather matching previously known

patterns.

From the perspective of the Misuse detection technique in DLP, the research question is to

determine the behaviour and patterns of users not only from within the organisation but

also from customers who are accessing that data from outside. Due to the nature of Cloud

computing, data of many different customers would be hosted on the Cloud. The data would

be accessed simultaneously by users and customers at the same time. In case the system

specific intrusive behaviours are determined then it would enable the application of

traditional host based intrusion detection systems on the Cloud platforms.

66

The approach of Anomaly detection is more novel compared to Misuse detection but its

reliance on unusual behaviour is not enough in order to detect intrusion in Cloud. For

example a user within an organisation can be performing legitimate tasks while moving data

on USB or burning it on DVD/CD. In Anomaly detection, it would not be flagged as intrusive

behaviour and therefore the attack would not be detected. This approach performs very well

when it comes to attacks that are coming from the network by analysing abnormal behaviour

in the network traffic for example running of a port scanner by a machine not in the LAN.

An example of Data leakage not on the Cloud but still relevant is that of Bradley Manning, a

US army soldier who was able to move classified data to his personal computer. He then

later provided that data to the Wikileaks website[110]. This is an example of how easy it is

for employees of an organisation to leak sensitive or classified data. On the Cloud the

problem is even bigger as now the employees have access to data of not one but many

companies or even at times competitors.

The research question from the perspective of Cloud computing is that there are no known

behaviours from the perspective of host based IDS specifically for infrastructure providers.

The current state of the art is not specifically tuned to understand the behaviour of internal

(employees of the IaaS) or external users (customers) of IaaS. Conducting research in this

areas and coming up with user behaviours associated with the scenario would enable the

application of traditional host based IDS on Cloud platforms.

Providing the customers with a legal or technical guarantee that the data would not leak is

extremely important. Unable to achieve this task would hamper the growth of Cloud

platforms and also would enable the bigger names to create their monopoly in the market.

This would serve as a barrier for new entrants in market place, as the customers would trust

the large providers (Amazon and Google). Furthermore even for large providers, the trust

would be limited and the customers would not be able to store with confidence their

confidential information on the Cloud platforms.

67

4.3 HYPERVISOR LEVEL SECURITY

Hypervisor creates the abstraction layer between the guest OS (virtual machines) and the

hardware. One can also describe it as a slim version of an operating system with a focus on

performance. The Hypervisor is responsible for managing the network level traffic. It

redirects the traffic to appropriate virtual machines.

A hypervisor, if compromised, can potentially lead to the compromise of all the virtual

machines running on it, therefore inducing a very high risk. Recently some of the

vulnerabilities of the hypervisor have been exploited by attackers. An example is the attack

on the hypervisor of the Xbox 360 online system by exploiting a buffer overflow to gain

hypervisor mode[111]. There are numerous other attacks recorded that have exploited the

vulnerabilities of hypervisors[112] [113] [114]. Furthermore, there are numerous rootkit

attacks in which slim version of hypervisors infect a virtual machine and then gain control

over it. These systems include rootkit Bluepill[115] and VMBR [116].

In [117], Khalid identifies that due to a smaller code base and relatively low complexity the

VMs were considered less vulnerable in the past. In fact they were recommended for use to

add further security. However, advances in rootkits and other malware have raised the levels of

risk associated with VMs. There are two broad categories of security when it comes to VMs.

The first one is the security of the VM. In this category research work is conducted to ensure

that the VM remains secure. In the second category (VM for security), the research work is

conducted to find out how VM can be used to secure systems. The first category is the focus of

the work in this thesis.

The integrity of VMs is considered extremely important, as this ensures the security state of

the VM. In case the integrity cannot be ensured this would raise a huge question mark on

overall security of the VM. VMs in Cloud settings are used by various consumers and it also

holds software that is being constantly updated, therefore ensuring the integrity of the VMs

is not straight forward. Furthermore, existing security measures relating to VMs focus

68

primarily on securing the data present within the VMs. There is a huge security requirement

to develop controls to ensure confidentiality and integrity of the VMs itself.

Jinpeng Wei et al. [118] presents a framework for managing VMs, this framework provides

two benefits, first it reduces the risk relating to unauthorised access by employing access

control mechanisms. Secondly, it applies filters to remove unwanted information within the

VM. The filters mitigates the risks relating to publishing of unwanted information.

Karger [119] and Sailer[81] presents various security architectures that can be used to secure

the hypervisor. These techniques include usage of access control mechanism that allows for

the compartmentalisation of the hypervisor. These techniques are focused towards coming

up with an architecture that makes the hypervisor secure, whereas none of the architectures

identify the security vulnerabilities that would come up when providing API level access to

the introspective layer of the hypervisor.

In [119] Karger, explains that there are two approaches to ensure the security of the

hypervisor: complete partitioning and isolation of resources of the VMs at the hypervisor

level; and sharing of hypervisors, where I/O, memory and other resources are shared

between the VMs.

The approach of complete isolation is not useful, as the reason for using Cloud infrastructure

is to provide cheap access to computing resources. In this approach only a small number of

VMs can be provisioned for a single machine as resources cannot be shared between the

VMs. This approach may only be useful for cases where there are large mainframes and the

users want complete isolation of VMs. Relatively the security of the hypervisors would be

high in this approach because of complete segregation of resources. Giving access to the

introspective layer of the hypervisors in this case would be less risky. An adversary who gains

control over one partition of the hypervisor would not be able to infect the other partitions due to

the segregation.

69

 The second approach (sharing hypervisors) suits the Cloud scenario presented in section 2.4.

Securing this approach is a much bigger challenge. Sailer[81][8] presents an architecture

(sHype) which secures a Xen hypervisor using mandatory access control. The approach has

little performance overhead. The hypervisor sHype is advancement of Xen hypervisor; it

controls all VM communication and secures the communication by using formal security

policies. The sHype is designed to support security requirements like access control between

VMs, isolation of virtual resources and resource control.

sHype does not provide an API by which a programmer can update the security

functionalities that are provided. The reason most probably is that, an adversary may exploit

the API to infect with malware. As for VMware, the company provides API level access to its

hypervisors. This enables developers to deploy customised software to tackle malware,

Trojans and viruses. This functionality provided by VMware would enable the development

of innovative security products for Cloud platforms.

Another interesting challenge would be to apply the usage control model [13] to secure the

access to data by VMs in the hypervisor. In sHype, a mandatory access control (MAC)

mechanism is used. The MAC uses a security policy to ensure that the system security goals

are accomplished regardless of system user. This is primarily because MAC is designed to be

used by operating systems.

MAC depends on objects and subjects to identify access. The control of access remains with

the operating system, therefore this setting would not work with Cloud computing as in

Cloud there are multiple VMs and multiple hypervisors.

4.4 HYPERVISOR BASED INTRUSION DETECTION SYSTEM (IDS)

Our analysis in the previous sections has identified the introduction of malicious code as one

of the most serious security threats. There are numerous techniques for anomaly detection.

70

Three techniques are widely used for detection of malicious code,namely static analysis,

dynamic analysis and manual analysis.

Static analysis[120] [121] [122] analyses the program code without executing the code.

Though this technique is exhaustive, a benefit of this technique is that it consumes less time

and covers all of the code compared to the dynamic technique. Static analysis primarily

depends on tools that provide information about control flow and data flow. This

information is primarily obtained from source code. There are products like Checkmarx Code

Analysis [123] which provide this functionality to analyst to find vulnerabilities. In static

testing there are no runtime request send to web applications and therefore runtime

information is not analysed.

Dynamic analysis analyses the code at runtime and only that part of the code is analysed that

executes during runtime. Dynamic analysis is normally performed on virtual machines, as

using standalone machines would mean having to reinstall the operating system after every

test. The advantage of this technique is that it is non-exhaustive and only the code executed

is analysed[124]. There are products such as Acunetix Web Vulnerability Scanner [125] which

enables an analyst to perform vulnerability assessment on web portals. Major vulnerabilities

that are identified by this technique are cross site scripting, SQL injection etc.

The two techniques though are completely different but can be used in conjunction to

complement each other [126]. Moreover, manual testing is another technique that is used

by analyst to identify vulnerabilities. Manual testing is done by experts to compliment the

automated tools that are used for penetration testing. Kali Linux[127] provide tools that are

used by experts to perform manual testing.

The static and the dynamic analysis are both performed on code that is either running or

present on a machine or VM that the analyst has control on. The analyst performs the

analysis using the widely available tools and techniques relating to the static or dynamic

analysis. This approach and tools cannot be used directly in Cloud computing scenario where

71

it would be desirable from the hypervisor level which is owned by the IaaS to run analysis on

VM which is owned by the customer. Although the security responsibility of the VM remains

with the customer, from the IaaS perspective it would be highly desirable to ensure and

provide extra level of security to the VM. For instance a VM infected with malware may not

be able to recover to its un-infected state. The hypervisor should in this case perform an

analysis to first identify a malware and then counter it.

A research challenge is to come up with an analysis technique by which the malware patterns

in the virtual machines can be analysed from the hypervisor level. In case a malware infects

a virtual machine, then the malware has the same level of access rights as the guest OS. In

case of the hypervisor, if the VM gets infected than the hypervisor can potentially detect and

delete the malware without infecting itself.

This research can lead to a novice technique where patterns on the VM can be analysed from

the hypervisor level. The major benefit of the technique would be that when performing the

analysis the hypervisor will not get infected itself. Furthermore, it would enable IaaS

providers to provide the customers with an added layer of security for their VMs.

A virtual machine monitor (VMM) [128][92] is a light software that runs directly on the

hardware of a machine. The VMM virtualises all hardware enabling the virtual machines to

transparently consume the resources of the physical machine. Hypervisors are closely linked

with VMM [129] and often the term is interchangeably used.

In [130] Garfinkel describes a system (Livewire) by which the monitoring of VMs can be done

by using VMM. Furthermore it also enables the limited detection of malware at VM. The

system is based on the technique Virtual machine introspection (VMI). VMI is used to inspect

the activities performed by a VM, by using the knowledge of OS level semantics. This

knowledge enables the interpretation of events on the VM from the VMM level. Livewire is

developed on top of the closed source hypervisor VMware[131].

72

Intrusion sensing and introspection system (ISIS) [132] uses a different approach compare to

Livewire, as it is developed as a component that can be added to a hypervisor system. In

Livewire the hypervisor itself was extended. ISIS is built on a User mode Linux system in

separate kernel address space mode (SKAS). ISIS use a system call Ptrace that enables one

process to monitor and control another process. Ptrace also provides the ISIS the capability

to modify kernel code at runtime.

Livewire puts hooks on the VMM. ISIS puts hooks on the guest operating system kernel.

However an attacker who has access to the kernel code can remove the hooks placed by ISIS.

Both ISIS and Livewire are susceptible to attacks where an attacker modifies the code of the

kernel without triggering an intrusion sensor [132].

Both these approaches focus on monitoring and detection of intrusive patterns. They do not

provide the capabilities of intrusion prevention, spreading and deletion of malware. A

Prevention capability would require the identification of malware at the network level

before it infects the VM. Spreading of the malware is a complicated problem, as it requires

a mechanism by which the hypervisor stops the spreading of malware from one VM to the

other, by blocking the network traffic.

From our use cases (explained in Chapter 2), we deduce that the outsourcing of IT

infrastructure to Cloud platforms would mean that different customers would be using VM

running on the same hypervisor. From the perspective of the infrastructure provider it is very

important to ensure that malware is detected well in time and that if one VM gets infected

the malware does not spread to other VMs.

We know that an attacker can modify the kernel code of the guest operating system which

would disable systems such as ISIS and Livewire before they detect the attacker. The

research challenge is to ensure that an attacker who has access to one VM does not spread

malware to the other VMs on the hypervisor. Another challenge would be the understanding

73

of attack patterns. Knowledge of the attack patterns would increase the accuracy of the

detection, therefore decreasing the number of infections.

4.5 RISK MANAGEMENT

The hosting of data on Cloud platforms and using computing services from the Cloud brings

new challenges. The risks that a Cloud consumer is exposing itself to is different than

scenarios where data and processing requirements are consumed locally.

Furthermore, for the Cloud provider the requirement of provisioning appropriate resources

at a certain point in time is also very important. The risk of not having enough resources at

the disposal of the Cloud provider can potentially cause major disruptions for its customers.

This would mean loss of reputation and potential loss of business as well. In [133] a

mechanism is developed using Bernouli’s theorem which is primarily used in the financial

sector to predict liquidity (resource bank) risk. For Cloud computing the prediction about the

resource bank becomes very important. The model proposed is quite interesting from the

perspective that a Cloud provider can potentially predict the resource related risk that it is

getting into and then can plan appropriately.

In [134] a risk analysis is done for the hybrid Cloud model. The use of public Cloud is cheap

but it comes with its security risks whereas the use of private Cloud is expensive, however,

the security risks are much less. Therefore, a lot of the companies are opting for hybrid

Cloud. In a hybrid Cloud setting, the companies would normally opt for private Cloud for

critical data or services. At the same time they have the option to burst to public Cloud if the

requirement exceeds the available supply. The paper analyses 21 different risks for the

hybrid setting and then propose countermeasures. The paper however does not

quantitatively measure the effectiveness of proposed countermeasures.

From the analysis of the state of the art we deduce that there are open questions to be

addressed on business driven risk associated with Cloud computing. There is requirement to

74

develop a framework that would take into account the security risk associated with Cloud

computing platforms. This framework can enable a consumer to trust the Cloud provider

more and therefore can lead to better adoption of Cloud services.

4.5.1 RESEARCH GAP

Research Gap 5 (RG5): The challenge of mitigating risk associated with hosting data on the

Cloud or using Cloud services in general is a major cause of concern for enterprises moving

to Cloud. To mitigate such risks there is a need to undertake research for the development

of a risk framework for Cloud computing from a security perspective. This framework would

enable the mitigation of risks associated with Cloud platforms.

The requirement is there to develop mechanism through which the risk framework can

gather information about different security controls such as firewall configuration, intrusion

preventions system logs, traffic analysis etc. and then relate them with different risks such

as hacking, data theft, denial of service etc.

Furthermore, the requirement is also there to classify different threat categories. In order to

raise the correct level of alert it is pertinent to first rate different threats and classify them

appropriately. For the classification of risks, one needs to either develop a new threat

analysis mechanism for Cloud computing or use the existing ones and tune them with respect

to Cloud scenarios.

Research also needs to be conducted in the area of mathematically calculating a risk, this

calculation would then lead to raising the alert or not. For instance, if the firewall logs show

that there might be a contamination, should this be treated as an alert, has the threshold for

raising the alert breached or not. In a lot of other security software, so many alerts are raised

that it is not humanly possible for the system administrator to study each of them and then

act appropriately.

75

Therefore the next challenge would be to take actions based on the level of alerts that have

been raised. In case the threat level has been raised and a risk is about to mitigate like denial

of service. The risk framework could potentially switch part of the traffic to backup server to

maintain quality of service at a decent level.

The researcher has contributed to the ENISA paper on Cloud Security titled as ‘Cloud

Computing: Benefits, Risks and Recommendations for Information Security’[70]. Moreover

he has also participated in developing security controls for different certification of Cloud

Security Alliance[135]. This research work has enabled the researcher to develop the ‘Cloud

Security Framework’ which is detailed in Chapter 5.

4.6 RESEARCH AGENDA

In this section tools, technologies and models are discussed that will be used to fill the gaps

introduced previously.

To fill the gap introduced in RG1, we survey secret sharing schemes such as Shamir’s secret

sharing [136] and decide which ones are suitable. The fundamental requirement is that the

scheme should be able to scale and offer fine granularity.

In order to achieve the aim of automation of security services in Cloud computing scenarios

as mentioned in RG2, there is a need for the development of a prototype that would simulate

this automation. In order to achieve this task, work has started on understanding the current

state of the art solutions relating to access control. One of the suitable solutions would be

selected and it would be extended. In case none of the solutions is deemed useful to achieve

our task then the development of a new tool that would simulate the automation would take

place.

For RG3, the challenge of synchronisation of access control policies is a new one and there

is hardly any research work that has been conducted in this area. We therefore propose to

76

extend the scheme that we develop for achieving fine granularity and scalability in order to

achieve concurrency.

For RG4 all the systems that are analysed in section 5.2.2 that achieve fine granularity in

distributed access control scenarios are built upon attribute based encryption (ABE). The

problem is that the ABE inherently induces cumbersome problems of user revocation and

key management. Therefore it is proposed to take a step backwards and to approach the

problem of fine granularity and user revocation for Cloud computing scenarios with a

completely new approach.

For RG5, the requirement is to first undertake a detailed threat analysis for Cloud platforms

based on different Cloud scenarios such as the ones presented in Chapter 2. Once the threats

relating to Cloud computing have been identified, it is then pertinent to develop a framework

than can accurately raise alerts for threats that are going to or are materialising.

4.6.1 RESEARCH OUTCOMES

What follows are the proposed research outcomes for this thesis:

1. Development of a scheme that would enable the enforcement of access control

security policies on Cloud platforms ensuring scalability and confidentiality. This task

is relevant to the research gaps RG1 and RG4.

2. To deploy the tool for a project (OPTIMIS or Internal BT project) to perform security

evaluation of the scheme with respect to the relevant case study. This task is relevant

to the research gaps RG1 and RG4.

3. Design and development of a security risk framework to analyse the risks associated

with the Cloud computing platform. This task relates to RG5.

4. Development of a security risk framework tool that would ensure the risk analysis

could be performed for Cloud platforms. This task relates to RG5.

77

CHAPTER 5

A SECURITY RISK FRAMEWORK FOR

CLOUD COMPUTING

This Chapter puts forwards a Security Risk Framework relating to the security challenges

posed by the management of risk for Cloud computing environments. Furthermore, for the

Security Risk Framework a detailed threat analysis of Cloud computing across its different

deployment scenarios (private, bursting, federation or multi-Clouds) was undertaken. This

Chapter fills the research gap 5 presented in Chapter 4.

We also present a risk inventory which documents the security threats identified in terms of

availability, integrity and confidentiality for Cloud infrastructures in detail for future security

78

risks. We also propose a methodology for performing security risk assessment for Cloud

computing architectures presenting some of the results.

5.1 INTRODUCTION

In Chapter 4, we have identified a research gap relating to the development of a Cloud

specific risk framework. In this Chapter we are addressing this research gap by proposing a

Cloud based risk framework.

Section 5.2 explains the motivation and presents the background for the security issues that

need to be addressed in Clouds from the perspective of risk management. Section 5.3 puts

forward the methodology adopted for developing the risk framework. Section 5.4 provides

a systematic approach to threat analysis based on standard threats for distributed systems,

adapted for Cloud computing. Initially the Threat and Vulnerability Assessment tool (T&VA)

was used to identify threats and vulnerabilities in different Cloud scenarios. The data used

to perform this analysis came from the Information Security Forum (ISF) and public data

specific to Cloud computing security. Secondly the CORAS risk modelling methodology [9]–

[11] coupled with Information Risk Analysis Methodology (IRAM) to complete the risk

assessment. Section 5.5 puts forward the high level analysis of each threat for the risk

framework, and sections 5.6 and 5.7 explain the part of the risk framework where risk is

evaluated and treated respectively.

This research is exploited into a risk model for security and presented in Section 5.8 with an

evaluation of the suggested methodology. The results have been based on the

implementation work carried out in an EU-project OPTIMIS presenting analyses across

different deployment scenarios.

Finally Section 5.9 presents the conclusions of the risk modelling methodology and future

research directions to adopt using it.

79

5.2 PROBLEM STATEMENT AND MOTIVATION

Computer and information security are concerned with ensuring the availability, integrity

and confidentiality of information. Availability is concerned with the information being

accessible when needed, whereas integrity refers to not allowing data to be modified

without being undetected. Confidentiality is concerned with the disclosure of data to

unauthorized personnel. Each of these aspects covers an integral part of security aspects of

the infrastructure. In Cloud computing, security is one of the highest concerns as it can make

or break deals by either convincing organizations to use or deferring its use on security

concerns. Others [137] have identified policies and control, knowledge and performance

management by using risk, audits, SLA monitoring and protection policies for Clouds. Threat

analysis is a preliminary investigation to identify threats relating to cloud computing

scenarios. Figure 6 depicts an example of the process relating to threat identification and

protection. The protection techniques could be the deployment of a Firewall or IDS/IPS

implementation etc.

80

Identify the threat
(like data leakage)

Analyse the threat
and vulnerabilities

Risk Assessment

Take corrective
actions. Apply

security mechanism
(IDS/IPS, Firewalls

etc)

Figure 6: Process for Security Threat Analysis

The different Cloud deployment scenarios raise different kinds of threats depending on how

the service executes on the infrastructures. These have been depicted in Figure 7.

81

Figure 7: Cloud Scenarios. (Private involves one deploying and one operating provider,

Bursting - the operation provider can burst to another provider, Federation - a team of

providers work together, Multi - the service can be deployed on a number of providers,

acts as a broker)

In the Cloud scenarios we present, there are two primary providers: operating provider and

deploying provider. The deploying provider is responsible for deploying the Cloud services

like deploying the hypervisor, operating systems, virtualisation and physical server

deployment.

The operating providers have their Cloud implementations deployed in the operational

phase. The deploying provider would normally consume the operational providers in

different scenarios like multi Cloud, federation, bursting and broker.

5.3 METHODOLOGY

This section presents the stages of risk relating to the operational and deployment phases of

Cloud scenarios. The risks relating to security from operational and deployment perspective

are different.

82

In the operational stage, the risks largely relate to security vulnerabilities present within the

toolkit API’s and other portals which are exposed to the external parties. To mitigate this

risk, dynamic and manual testing on the API’s and end points which are vulnerable should

be undertaken.

Risk analysis can be considered at various phases of interactions in Clouds (Figure 8). Each

provider involved in the Cloud will have security concerns from their own point of view

towards the others in terms of trust, service risks or legal issues. They might consider the risk

of working with other providers or may have specific security demands that need to be

honoured. These assessments also depend on the Cloud deployment scenarios - private,

public or hybrid.

Figure 8: Risk Assessment Lifecycle during Service Deployment/Operation[138]

These concerns can also be refined depending on the stage of the Cloud lifecycle –

deployment or operation. Risk needs to be assessed at service deployment stage for initial

placement of services on Cloud providers, and the service operation, where Cloud resources

and data are managed by the Cloud provider to fulfil the Service Level Objectives. During

83

deployment and operation stages, risk needs to be constantly monitored in order to prevent

any additional costs to be incurred to the end-users and Cloud providers.

The risk analysis methodology was developed as part of the OPTIMIS project, it was then

used by different researchers to identify risks and mitigate them. However, the focus of this

work remains primarily on information security. The reason why the methodology is

mentioned here is to explain the process that was adopted to identify, assess, manage, plan,

resolve and monitor risks.

The monitoring part primarily includes running vulnerability assessment exercises on

deployed and operational infrastructure at regular intervals to ensure that threats are

mitigated.

A number of stages have been identified for performing a complete risk assessment on

Clouds by considering core risk assessment approaches as explained below:

5.3.1 HIGH LEVEL ANALYSIS OF THE SYSTEM

An initial high-level analysis of the deployment scenarios helps identify the actions and assets

involved at the different stages in the Cloud. Generally security needs to be assessed before

deployment of the service to check for security concerns of the other provider or if service

level agreements (SLAs) demand certain security aspects to be met. During the operation,

security concerns are monitored while the service is executing.

5.3.2 IDENTIFYING THE ASSETS INVOLVED

There are various assets involved either at the deployment or operation stage such as the

SLA or customer data. These can be monitored in relation to the specific threats in the

environment. To identify the relevant threats with respect to the scenarios of Cloud

computing, we must undertake a comprehensive threat assessment.

84

5.4 THREAT ASSESSMENT

In this section a detailed threat assessment is performed for the Cloud computing

scenarios.

5.4.1 METHODOLOGY

Threat modelling is a systemic approach by which threats for and vulnerabilities of a system

are identified [139]. We have chosen the Information risk analysis methodology (IRAM)

coupled to the Threat and vulnerability assessment tool (T&VA)[12] to carry out threat

modelling, because these already contains a threat model for distributed systems and

software in general. We refined this model to adapt it to Cloud applications.

In this approach we start with a classification of threats. We are using two sources of

information for gathering information on attacks on IT systems. The first one is the

information security forum which provides data about attacks on IT systems. They also

provide the frequency of attacks and the year when the attacks took place. The second

source is public data on attacks on the Cloud platforms Amazon EC2 and Google Apps Engine

[28]. This contains articles, white papers and research articles.

We combine these threat lists with additional threats identified within the scenario and the

use cases that we presented in the previous section.

For vulnerability assessment our approach is the same as for threat assessment. The only

difference is that, because the use cases are not currently deployed, some information may

be imprecise. This forces us to make a few assumptions about the vulnerabilities. We indicate

those in the text.

The T&VA tool provides a standard list of threats relating to IT systems, we have taken the

threats from this list relevant to the use cases that we are working on. We have further added

threats which are introduced due to the differences between Cloud computing and other

85

forms of distributed computing. The threats are Data Leakage, Usage Control and Hypervisor

level attacks. We classify the threats into the following six categories: External attacks, Theft,

System specific threats and abuse, Service interruption, Human error and System

malfunction. These threats have been shortlisted from the threat list provided by the

Information Security Forum.

5.4.2 EXTERNAL ATTACKS

We have identified twelve threats in this category starting from the ‘Carrying out of Dos

(Denial of Service) attack’. Amazon’s public Cloud offering EC2 came under DoS attack[140]

that left part of its infrastructure unavailable for almost 16 hours. For the scenario that we

are using the deployment of Cloud would be either publically available or use public

infrastructure. This threat is clearly of high relevance to the cases that we have presented.

The second threat that we have identified is that of ‘Hacking’. Using audits such as that of

SAS type 2 audit [44] and ISO 27001 [141] most of the current deployments introduce

security features in the system that makes them harder to hack. Similarly we were not able

to find any Cloud specific attacks with respect to hacking. But due to the nature of Cloud

computing as a distributed system it remains susceptible to hack attacks.

The third threat that we have identified is that of ‘Undertaking malicious probes or scans’.

An attacker can use the publically available deployments of Cloud platforms to run scans and

exploit network level vulnerabilities. The ISF database shows a three-fold increase in this

kind of attack between 2005 and 2009.

‘Cracking password’, ‘Cracking keys’ and ‘Spoofing user identities’ threats remain relevant to

the use cases as these threats can lead to the loss of confidentiality and integrity. Though

the likelihood of these threats becoming vulnerabilities remain low according to the ISF

provided data. Spoofing user identities can potentially be a challenge in the use cases that

we have described especially the Cloud broker one (use case2); as multiple enterprises using

86

the broker to access infrastructure provider services requires the development of technical

and legal safe guard for the protection of identities. The extension of an enterprise’s identity

management system to a broker and to the infrastructure provider can open up a lot of

security related issues. We have already witnessed an identification of a severe security flaw

in the Google Apps Engine which can be potentially exploited by a dishonest service provider

(broker) to impersonate a user [62].

‘Modifying network traffic’ and ‘Eavesdropping’ threats are classified by the ISF as very low

level. We believe that due to the distributed nature of Cloud computing and multi layered

deployment model, it would be easier for an adversary to exploit these threats.

‘Distributing computer viruses’, ‘Introducing Trojan horses’ and ‘Introducing malicious code’

threats lead to the infection of Cloud platforms. In [142] attack services are defined in which

Cloud platforms can be infected with malicious code. In [115] a malware is developed by

which a very thin level hypervisor infects a virtual machine. This hypervisor is called Blue Pill

and it can then be used to control the VM. The attackers claim that the malicious code

remains 100% invisible to the VM and it does not exploit any vulnerability of the operating

system it infects.

In [76], we have witnessed that Amazon EC2 Cloud is used by an adversary to distribute spam

which led to the banning of EC2 related IP addresses by anti-spam groups. We have identified

‘Distributing Spam’ as one threat and according to the ISF database the SPAM related attacks

are on the rise. In both the Cloud broker and Cloud burst use cases, an enterprise acting as

an adversary can use the infrastructure provider’s resources to launch SPAM attacks.

5.4.3 THEFT

Cloud computing supports a notion of multi-tenant architecture, in which multiple users

consumes the same computing resources. This can lead to the theft of data by an adversary.

The threat ‘Theft of business information’ by either an internal employee or by a competitor

87

is very relevant to the Cloud brokerage use case as multiple enterprises will be using the

broker and infrastructure provider to host their enterprise related data. Google in its

security data sheet[143] mentions that only references to the data are deleted rather than

data itself. A potential adversary can use advance data recovery tool to recover data owned

by other customers.

The next threat that we have identified is the ‘Theft of computer equipment’. The likely hood

of this threat being exploited is low from the data provided by ISF database. Companies like

Salesforce [57][56] employ high end physical security measures to secure their data [57]. For

our use cases is extremely useful to understand the physical security measure deployed by

the large vendors and therefore lowering the risk.

5.4.4 SYSTEM MALFUNCTION

The ISF database classifies the threat of ‘Malfunction of software’ as high. Most of the Cloud

software like CRM for Salesforce or Cloud APIs for EC2 are extensively used. Therefore a bug

in anyone of them can have a very adverse consequence. In our use cases we will consume

APIs provided by these infrastructure providers therefore we should take into account

necessary control to mitigate this risk.

Malfunction is a mechanism, the threat that we are identifying in this section is the leakage

of information due to system malfunction.

The next threat in this category is that of ‘Malfunction of computer network equipment’. The

likelihood of this threat materialising is high but as our use cases will deploy multiple backups

of computing resources the impact will be low. ISF classifies this threat as one of most

frequent.

88

5.4.5 SERVICE INTERRUPTION

One of the Amazon data centre was hit by lighting that led to suspension of part of their

service [90]. ‘Natural disaster’ meaning earthquake, fires, extreme weather and flooding that

can lead to the interruption of service. In both our use cases the dependence on

infrastructure providers is high and therefore the interruption of service can take place.

‘System overload’ means excessive system activity leading to the degradation of

performance or failure. We have witnessed in[140] that the website Bitbucket that was

hosted on the EC2 become unavailable due to a DoS attack. Although Cloud computing offers

theoretically unlimited amount of computing resources but it still depends upon how you

have configured your website and which availability zone the website resides in. On the

contrary Wikileaks [144] used EC2 platform to host their website to protect against DoS

attacks, as they were willing to pay for a high end package which means that even if their

website is attacked it will still not become unavailable. In use case1 interruption in service

can be picked up quickly as the enterprise is interacting directly with the infrastructure

providers. Use case2 would be difficult as an interruption in service can be either at the

infrastructure provider or at the broker end. The problem becomes more complicated, as it

is difficult for an infrastructure provider to determine whether there is genuine peak in

demand or a Dos attack as they both may create similar patterns.

5.4.6 HUMAN ERROR

‘User error’ threat means mistakes made by users of the system. Infrastructure providers

like EC2 have designed their system to be automated and there is hardly any human

intervention, however they have no control over how users from enterprise or broker may

use the system. ISF classifies this threat as high, although in the past few years the frequency

of errors have come down but it still remains a high level threat. Google Apps Engine in its

89

SLA promises 99.9 percent for data availability but does not take responsibility for data loss,

as most of it is because of human error [145]. Furthermore, the IT policy compliance group

suggests that 75 percent of all data lost is due to user error [146]. ‘IT network staff errors’

means mistakes made by users who are responsible for maintaining and operating the

system. ISF classifies this threat as very high.

5.4.7 SYSTEM SPECIFIC THREAT TYPES

‘Data Leakage’ is defined as the unauthorised transmission of data (or information) from

within an organisation to an external destination or recipient. This may be in electronic form

or by means of a physical method [147]. This threat becomes more critical in Cloud

environment as now enterprises who are hosting their data on a Cloud have no control over

the infrastructure provider‘s infrastructure. Therefore previously the threat was that it could

be stolen by an internal employee but now it could be an internal employee or staff of the

infrastructure provider. Even worse it could potentially be a competitor using the same

infrastructure provider who is able to steal the data by using advance data recovery tools.

For both our use cases this threat is high but it is more critical in the use case2 as data or

identities can potentially be stolen at the broker level also.

‘Usage control’ is a generalization of access control to cover obligation (requirements that

have to fulfilled by the subject for allowing access) and conditions (subject and object

independent environmental requirements) [13]. In Cloud specific environment where data

from multiple enterprises may reside in the same Data centre, it is pertinent to build controls

that would ensure that not only access to data is controlled but also that environmental

factors are taken into account before allowing that access. Data will also be accessed by

applications and regulating that access may require fulfilment of requirements from the side

of the subject. A requirement from the enterprise can be that they want complete isolation

of their data from any access from roles or applications that are being used by other

enterprises. We classify this threat as medium as we have witnessed an attack in which

90

Google Docs marked as collaborative data from some users which led to disclosure and

amendment of that data[148].

‘Hypervisor level attacks’ enable an adversary to exploit vulnerability at the virtualisation

layer that is running underneath the virtual machines. There are numerous attacks that have

been recorded at the hypervisor level ranging from the injection of malware to the hijacking

of a VM by a thin undetectable hypervisor [149][115][150][151]. Therefore we have

classified this threat as high.

5.4.8 VULNERABILITY ASSESSMENT

The vulnerability assessment is based on four methods of analysis which are; the control

analysis, environmental analysis, system analysis and technical analysis. For the technical

analysis, we didn’t have the data available to conduct such an analysis, as our system is not

currently deployed. The tool is organised in a manner that asks the user questions with

regards to the deployment of the system, since our system is not deployed therefore we

have answered the questions by using publically available data about similar deployments

and by also making assumptions.

For control analysis, we have covered a wide range of questions ranging from the creation

of comprehensive security policy to the security related training of staff. There is a specific

set of questions that relate to each vulnerability. Refer to Appendix B for the threat and

vulnerability assessment report.

Environmental factors affect the vulnerabilities of a system, these external factors includes

economic growth, legislation, regulation and political stability etc. Compliance with

regulation is one of the major environmental factors that we have identified. To prevent

fraudulent activities, most of the developed nations have passed their own laws and

regulations to protect data and ensure privacy. These laws are not specific to Cloud

computing but they influence Cloud computing in many different ways. These laws vary from

91

country to country. For example in the United States the ‘sectoral’ approach to data

protection legislation is preferred while EU follows the overarching government

regulation[152][153]. We have also taken into account economic factor, such as the growth

of sales of the Cloud related products. We have classified the vulnerability of the Cloud

systems to be low if these systems are present in countries which have strict compliance

laws in place.

Vulnerabilities are not only affected by the weakness of controls but also ISF information

security status survey suggest that characters such as complexity, number of users accessing

the system and connectivity to the internet can increase the likelihood of a system

experiencing an incident[12]. Most of the Cloud computing infrastructure use the internet

to provide services to its customers and infrastructure providers such as Amazon experience

high level of connectivity to their systems therefore increasing the chances of vulnerability

being exploited. The complexity depends upon use case, for instance the level of complexity

will be high in usecase 2 involves more actors and several levels of interaction. As for use

case1 the interaction would mainly be between the enterprise and the infrastructure

providers.

For the overall ratings we have taken where possible the average of the results that came

out from the analyses.

5.4.9 RESULTS OF THREAT ASSESSMENT

The final stage in the threat assessment process is to undertake an information risk rating.

The information risk rating requires input from the analyst about the priorities that should

be set for the assessment. For instance, threats relating to confidentiality would be higher

than threats related with integrity. This information risk rating would then give scores to

threats depending upon this input.

92

To create the information risk rating, we classify the threats of confidentiality as high,

availability as medium and integrity as low. We classified confidentiality as high because loss

of confidentiality can have a severe effect on trust and image of the provider. Moreover loss

of confidentiality, can convert low threats like theft of business information is to very high

because loss of unencrypted data is a more severe risk than loss of encrypted data.

Loss of availability is relatively classified as medium compared to loss of confidentiality. The

reason being that the impact was not as severe, for instance the Bitbucket website

experienced a DoS attack on EC2 infrastructure [85] that led to suspension of their service.

But they kept using EC2 after that, they have also reported further attacks on their website

but are still using EC2[154].

One of the reasons could be that, the kind of computation power provided by infrastructure

providers like Amazon requires a lot of investment. Enterprises are better off using

infrastructure provider’s resources rather than deploy their own. For instance, Wikileaks

recently used the Amazon EC2 Cloud to host their website, when it was constantly attacked

using DoS [155]. Later under USA government pressure the EC2 platform stopped hosting

the website. This shows that if properly configured and enough resources are provisioned by

an infrastructure provider then it is difficult to bring down a website using DoS attacks.

We classified integrity as low because relative to confidentiality and availability the impact

is much lower. Loss of integrity can be because of many reasons like software error, user

error, and equipment failure and also due to an adversary changing the data. From the

recorded attacks on Cloud platforms, we have only witnessed a reported incident relating to

integrity. It was not very clear, what the actual reason of the integrity checksum failures was

in the attack[156]. Furthermore, the VM uses in the Cloud scenario are started, restarted

and redeployed on different infrastructures. Therefore, it further enhances the chances of

them losing integrity due to errors.

93

Table 5 lists the various threats identified along with the stage of the Cloud lifecycle these

threats may be active. The table also includes the classification of the threats in

confidentiality, availability and integrity using the information risk rating.

Table 5 has 5 columns, Column 1 provides an indication of the category of threat under

consideration. These threat categories are obtained from the IRAM tool. Column 2 indicates

the specific threat under consideration. This column also mentions the words AIC where A

stands for availability, I for Integrity and C for confidentiality. Wherever the abbreviations A

is mentioned it means that the threat only relates to availability. Same is true for integrity

and confidentiality. The column 3 indicates the stage of the Cloud deployment whether it is

operation or deployment stage. The column 4 mentions the asset involved like ‘customer

data’.

The Cloud deployment scenario is column 5 relates to different scenarios like bursting,

federation, multi Cloud etc. Column 6 mentions the priority that is linked with the asset. Now

this priority has been declared in section 5.4.9. The assets relating to confidentiality are high

priority (4 or 5), assets relating to availability are medium priority (3 or 4) and assets relating

to integrity would have low priority (1 or 2). Column 5 is relating to likelihood which is the

possibility of risk materialising. The likelihood rating has been added by the researcher

himself using his own knowledge of the domain. No metrics exist that provide likelihood

ratings of Cloud computing scenarios.

There maybe cases were the priority of an asset would be high because it impacts

confidentiality but the likelihood of a threat actually materialising would be low. The risks

which have high priority and high likelihood are the one which have the highest impact.

The threat numbers (T1, T2, T3,…) in the table are those used by the IRAM tool. Some of

the threats recognised by the IRAM tool are not relevant to Cloud computing scenarios and

have been omitted from our considerations. However, IRAM’s numbering convention has

been maintained.

94

Threat

Categor

y

Threats (threat id)

{Threat classification –

Availability (A)

Confidentiality (C)

Integrity (I)}

Stage of

Cloud

(Deployme

nt/Operati

on)

Assets

involved

Cloud

Deploy

ment

Scenari

o

Priority

(1 is

low, 5

is high)

Likeli

hood

(1 is

low, 5

is

high)

External

attacks

Carrying out of Dos

(Denial of Service) attack

(T1) {A}

Operation Customer

data,

infrastructure

of the provider

All 4 3

Hacking (T2) {I,C} Operation Customer data

or service

All 3 1

Undertaking malicious

probes or scans (T3) {I,C}

Operation Hypervisor

code

All 4 2

Cracking password (T4)

{A,I,C}

Operation Customer data

or service

All 3 1

Cracking keys (T5) {A,I,C} Operation Customer data

or service

All 3 1

Spoofing user identities

(T8) (A,C) {A,C}

Operation Customer data

or service, all

services

All 3 1

Modifying network

traffic (T9) {I}

Operation Software,

connections,

service

(runtime)

All 2 2

95

Eavesdropping (T10)

{I,C}

Operation Software,

connections,

service

(runtime)

All 2 1

Distributing computer

viruses (T11) {I}

Operation Software,

connections,

service

All 3 1

Introducing Trojan

horses (T12) {I}

Operation Software,

connections,

service

All 3 1

Introducing malicious

code (T13) {C}

Deploymen

t and

Operation

Software,

connections,

service

All 3 3

Distributing Spam (T15)

{A}

Deploymen

t and

Operation

Mailing lists All 1 4

Theft Gaining unauthorized

access to systems or

networks (T16) {A,I,C}

Operation Customer data

or service

All 5 4

Theft of business

information (T27) {A,C}

Operation Customer data All 4 2

Theft of computer

equipment (T29)

{A,C}

Operation Customer data All 1 2

96

System

malfunct

ion

Malfunction of software

(T34) {I}

Operation Toolkit, all

services

All 1 4

Malfunction of computer

network equipment

(T35) {I}

Operation Toolkit, all

services

All 1 5

Service

interrupt

ion

Natural disaster (T40) {I} Deploymen

t/Operation

Customer data All 1 3

System overload (T41)

{A,C}

Operation Customer

data,

All 4 3

Human

error

User error (T42) {C} Deploymen

t/Operation

Data All 5 3

System

specific

threats

and

abuse

Data Leakage (T50) {I,C} Operation Data All 5 3

Usage control (T51) Operation All

Hypervisor level

attacks(T52) {A}

Operation Data All 3 2

 Data ownership (T53) {I} Deploymen

t

Data All 2

Data exit rights (T54)

{I,C}

Deploymen

t

Data, SLA All 4 3

Isolation of tenant

application (T55) {I,C}

Deploymen

t and

Operation

Data All 5 2

data encryptions (T56)

{A,I,C}

Operation Data All 5 3

97

Table 5: Threats Identified in the Various Use Cases and their Details

Data segregation (T57)

{A,I}

Operation Data,

programs

All 4 2

Tracking and reporting

service effectiveness

(T58) {A,I}

Operation Data, Hosted

VMs

All 5 3

Compliance with laws

and regulations (T59)

{A,I}

Deploymen

t and

Operation

Data All 3 2

Use of validated

products meeting

standards (T60) {A,I}

Operation Data All 3 3

Guest virtual machines

(T61) {A,I}

Operation Data All 1 3

98

5.5 HIGH-LEVEL ANALYSIS OF EACH THREAT

Each of the threats can be further analysed in terms of who causes them and the incidents

leading up to them, which can then be prioritized depending on this information. This

also helps measure the impact of the security risk on the service and the providers. Figure

9 depicts an example of the hacking threat and its related asset and vulnerabilities.

Figure 9: Analysing the Threat Hacking

5.6 RISK EVALUATION

Depending on the priority of the assets and likelihoods of the threats occurring, the

threat items can be plotted into an evaluation matrix to document their occurrences.

Table 6 depicts this in relation to the threats identified in Table 5.

Table 6 puts forward the consequences of a threat materialising and the impact that it

would have consequently (Insignificant, Minor, Moderate, Major and Catastrophic). For

instance take the example of T16, this threat has a very high likelihood and if it

materialises the impact would be catastrophic. The reason for this is that it impacts

confidentiality, integrity and availability of the system. Similarly if we analyse the threat

T15, the likelihood of it materialising is high but the impact is insignificant. This threat

relates to the distribution of spam therefore the impact on confidentiality, integrity and

availability is low.

The likelihood and impact rating is set using the data collected. The impact also denotes

the affect the threat will have on the business such as loss of confidentiality can cause

loss in trust having the highest impact (Table 7).

99

 Consequence

Insignificant Minor Moderate Major Catastrophic

Likelih

ood

Rare T40 T10 T2,T4,T5,T8,

T11, T12

Unlikely T29 T9 T3,T27

Possible T41 T13 T1,T50 T51,

T52

Likely T15,T34 T16

Certain T35

Table 6: Risk Evaluation Matrix

 Likelihood rating

B

u

s

i

n

e

s

s

i

m

p

a

c

 Very Low Low Medium High Very High

Very

High

High Confidentiality

Mediu

m

Availability

Low Integrity

Very

Low

100

t

r

a

t

i

n

g

Table 7: Range of Threats for Confidentiality, Availability and Integrity

Threats belonging to confidentiality are classed as high because these have severe effect

on trust and the provider's image. Loss of confidentiality can also convert low threats like

theft of information to very high. For instance losing unencrypted data is a more severe

risk compared to loss of encrypted data.

Loss of availability is relatively classified as medium compared to loss of confidentiality.

This is because enterprises are better off using infrastructure provider’s resources rather

than deploying their own because of the investment involved. Examples include

Bitbucket website continuing the use of EC2 even when further attacks are recorded.

Integrity is classed as low because relative to confidentiality and availability the impact is

much lower. Loss of integrity can be because of software error, user error, equipment

failure and also due to an adversary changing data. From the recorded attacks on Cloud

platforms [28], it is difficult to find the reasons for the threats, additionally the VMs can

also be restarted and redeployed on different infrastructures to counteract these threats.

5.7 RISK TREATMENT

Once evaluated, the risk mitigation strategies can be generated in terms of the actions

taken to resolve them. These can be to accept, treat or outsource the risk. For instance,

in a situation of multiple log-ins, the system logs can be scanned to detect this. Once

101

observed the system administrator can be made aware to take appropriate action on the

user account.

5.8 IMPLEMENTATION

Security risk assessment needs to be done at the service deployment and operation

stages of the infrastructure provider's (IP) Cloud lifecycle. Figure 10 and 11 describe the

architectural details of the risk components involved at deployment and operation stages

of the Cloud lifecycle.

Figure 10: Security Risk Assessment at the Deployment Stage of the Cloud

At the deployment stage, the risk assessment tool will read inputs from the risk inventory

which documents all the threats, the vulnerabilities, assets affected and their likelihoods.

The risk inventory is based on the threats collected in Table 4. Our risk calculations will

use the priority and likelihood values from Table 5.

We now briefly explain the risk calculation algorithm used by the assessment tool.

Suppose that both A and B are events; (B|A) is the likelihood of event B given event A has

102

occurred. For example, suppose that event B represents ‘data leakage’ and event A

represents ‘network intrusion’. If we know that ‘network intrusion’ has taken place, (B|A)

is the likelihood that data leakage will occur. These dependencies are defined by the

Bayesian theorem.

The risk calculation algorithm is given below:

Security_risk_deployment (usecase)

1. Calculate the total number of threats recorded at deployment stage = N

2. For each threat:

 a. Calculate likelihood of event B when event A has occurred = L= (B|A) / 5.0

 b. Calculate relative priority of asset under threat =RP = Asset Priority / 5.0

 c. Calculate likelihood of event B regardless of asset under threat and event A = (B)

 d. Calculate risk index of threat = R = L * RP / (B)

3. Calculate security risk = SR = Sum (R) / N = Sum of risk indices of all threats divided by

number of threats found

Based on rules of Bayesian dependencies, the probability of each threat affecting the

particular assets can be calculated. For each threat the risk index is calculated by firstly

finding out the likelihood of an asset affected 2(a). We already know that the likelihood

stays between 1 and 5.

2(b) is relating to the asset priority of the asset under threat. As explained before the

priority is dependent on confidentiality, availability and integrity where confidentiality is

high, availability is medium and integrity is low. We already have data for priority which

is coming from Table 5.

103

Step 2(c) of the above equation is the likelihood of event B without taking into account

the asset. The assets could be customer data or hypervisor code etc. This likelihood is

independent to other events for instance from Table 5 we can deduce that the likelihood

of “Carrying out a denial of service attack” is 3.

2(d) puts forward the risk associated with this threat. This is done by multiplying the

likelihood of event B given event A along with the priority of the asset under threat, to

get the impact. We now divide the impact with the likelihood rating of the threat.

To give an example, the likelihood of customer data being compromised could be 4 as

per Table 5. Then ‘L’ = 4/5 = 0.8. Similarly, we then take out priority of the asset which

for instance in this case would be RP = 4/5 = 0.8. Multiplying this number with ‘L’ and

dividing it with likelihood of event (B) gives us the risk index of the threat.

Once we have calculated the risk indices of all the threats occurring, we can then sum all

of these threats together to come to a number. For instance, we come to the number 5.

In case our system finds 4 threats at the time of deployment then security risk for the

system would be 5/4 would be 1.25. Risk in this scenario is calculated as a threshold

factor rather than a probability. This threshold factor enables us to take decision on

taking a mitigation action or not.

As long as the security risk remains more than 1 take no action. The action is taken by

admin of the Cloud who is alerted in case a threat is going to be materialised. If it becomes

less that one, it means that an alert should be raised, mitigation action needs to be taken

place. This is the deployment stage so if the risk is less than 1 then we should address the

threats before we move on to the operational stage.

We developed this mechanism using our experience as at times there are threats which

are false alarms. In case the number of threats found is too high, the Security Risk would

become less than 1 and an alarm would be raised.

104

Figure 11: Security Risk Assessment at the Operation Stage of the Cloud

However, at the operation stage, along with the calculated security risk for this stage, the

risk assessment tool will be interacting with the monitoring database and additional tools

like the network and historical database to monitor if certain threats are becoming live.

The historical database can contain details of previously recorded threats that have

occurred in the past. The network can include intrusion detection systems and logs which

can be parsed to find out if certain events have been recorded [103].

We now continue with the description of the algorithm with the focus on the operations

stage. We have taken the value of security risk (SR) from the deployment stage algorithm

and will consume it in the operations stage algorithm to deduce relative risk (RR).

Security_risk_operation(usecase)

3. Security risk = SR (Calculated at deployment time)

4. For each threat to be monitored:

105

 4a. Read monitoring inputs

 4b. If (event found == true) Event count ++

5. Calculate Event Rate = ER = Event Count / Time Monitored

6. Calculate relative risk = RR = ER / SR

7. If RR <= 1 do nothing, If RR > 1 apply mitigation strategy

In the operational stage presented above, the security risk (Step 3) was calculated during

the deployment stage and now we are using is in the operational stage. In step 4, the

monitoring inputs like the dynamic analysis being run on operational end points will point

to potential threats evolving. Step 4b is a counter which increments every time a

potential threat is being found. Step 5 calculates the total event rate, which is the total

number of threats found divided by time monitored (time is in minutes). For instance, if

5 threats were found in 2 min this will give us the value 2.5. For relative risk we already

have the value of security risk which was 1.25. Now if we calculate relative risk, RR comes

out to be 2, therefore a mitigation action is required.

Depending on the value of relative risk (RR), the components can make a decision

whether to accept or apply a mitigation strategy stored in the risk inventory to

compensate for the risk. The risk is mitigated during the same time period.

Figure 12 shows the output of 20 simulated samples collected while executing the risk

model during the operation phase. Depending on the event rate per sample the relative

risk can be calculated according to the algorithm step 6. If the relative risk is less than 1,

the software can choose to accept the risk but if higher, the mitigation strategy will get

activated which may ask for human intervention as the risk is going high. It is pertinent

to mention here that relative risk is not calculated as a probability but rather a threshold.

It is a relation that exists between security risk calculated at the deployment stage and

event rate found at the operational stage.

106

Figure 12: Calculating Relative Risk using Samples and Event Rates. An Action is

taken when Relative Risk is more than 1

The figure above shows the relative risk where the value goes over 2. As we have

explained before the risk is not calculated in the traditional manner. We calculate RR to

understand the co-relation between potential threats occurring compare with a specific

threat. For this we set the threshold of 1 whenever the value 1 is breached there is

requirement to take action. These calculations should not be taken in the traditional

sense that risk cannot be more than 1. The data for the above calculation originates from

a simulator which was run for the OPTIMIS project. The simulator calculated the values

using the formulas explained above.

The simulator was implemented using Java code, it was part of the ‘Security Risk

Framework’ for OPTIMIS project. The simulator has four main parts, the first one is the

monitoring database. The monitoring database is used to hold information relating to

potential risk coming up in the assets relating to the OPTIMIS toolkit. These assets are

networks, computers, servers etc.

The second part of the simulator is the risk inventory where all the vulnerabilities, threats

and assets are registered. This part of the simulator provides the risk framework the

ability to find out which are threats are related to which assets.

107

The third part is the historical database which provides information about threats and

their severity from a historical perspective. For instance, the threat of ‘data leakage’ is

high and the likelihood is high as well. This information will be used to calculate the

impact.

The fourth part of the framework is the code which runs a Linux server. It orchestrates

the whole process that has been explained before. The details of the code refer to the

index for code of the ‘Security Risk Framework’.

5.9 CONCLUSION

From the threat analysis performed, we have shown that the information security

principles of integrity, confidentiality and availability are most relevant to the Cloud

related scenarios. The information risk ratings performed shows the loss of

confidentiality is rated as the highest level of risk followed by availability and integrity.

The risk model presented here allows monitoring threats based on the events being

logged by the detectors leading to a calculation of the relative risk. However, a fine

grained analysis needs to be performed on threats which are difficult to detect via certain

events or have a cause and effect relationship to other threats. These may be more

specific to confidentiality or integrity classifications of the threats. Further future work

includes testing this system on a Cloud platform with monitoring agents installed which

will log certain threats when they occur. This will then be extended to work on determine

threats which may be eventually seen based on the data being collected and difficult to

determine directly from the events. Finally, the results from the testing and evaluation,

advocate that the risk model does correctly assess and prioritize the risk.

108

CHAPTER 6

SECURING SCALABLE VIDEO IN THE

CLOUD

6.1 INTRODUCTION

Scalable video using Cloud computing is a potential solution for the distribution of media

content to a large number of users. This may occur over a heterogeneous network

connected to devices with different capabilities and diverse set of users. Although some

of the problems are well known and understood in information and network security,

there is still a need to improve the existing solutions to produce a solution that is both

adequately secure and efficient in highly distributed and scalable environments. In this

Chapter, we describe such improvements using a Cloud computing scenario where video

content is made available through a Cloud platform.

The author has published a patent [157] which explains in detail the authentication and

encryption of scalable video in the past. The patent came out of MSc thesis submitted by

109

the author at the University College London. This work is an extension of the prior

research work.

When put on an Infrastructure as a Service (IaaS) Cloud video content should then be

viewable by different consumers using different levels of bandwidth and security

requirements depending on their identity. This requires a mechanism through which a

Cloud service could be authenticated and encrypted by end users. This Chapter describes

the novel solution of securing scalable video in the Cloud discussing the various threats

for video distribution and how these can be made more secure in terms of confidentiality,

availability and integrity, particularly through source authentication and encryption.

Scalable video is a form of distributing media, as Cloud computing paradigm is built

around large number of users accessing a centralized service, the scalable video scenario

fits very well within the Cloud computing paradigm. In this case, where the broadcast

medium is a video, it is imperative that the data owner ensures the authenticity, integrity

and the confidentiality of the broadcasted video. This requirement does not only conform

to the basic compliance requirements but is also necessary to get any economic return

on the video that is broadcasted to prevent any copyright violations.

Presently, it is increasingly popular to broadcast media such as pay-per-view or

subscription video over the Internet but this lead to various security problems. One main

practice to secure the video is broadcasting it as encrypted files. This allows only the

paying subscribers to access the video, and the non-paying parties not being able to view

the content. Conventional encryption techniques, such as those used for satellite

broadcast TV, are often based on the premise that each subscriber is likely to be a long

term subscriber and may invest in new hardware such as a set top box to subscribe to

encrypted channels. In such circumstances it may simply be possible to provide a shared

encryption key to each subscriber, changing the key at regular intervals.

However, there are new problems arising with models of Internet video distribution

where subscribers may wish to subscribe quickly to watch a single video and then

unsubscribe immediately thereafter. For considering subscription services, it is desirable

110

for the provider of the encrypted video system to prevent any former subscribers from

being able to decrypt the video with any past distributed keys provided during their

subscription periods. It is also imperative that non-subscribers do not have access to the

broadcasted video.

Key chains can be used as security tokens for accessing data. Various methods can be

used to process key chains such as TESLA[158] that can interlink keys in a manner where

the last element authenticates the first element of the next key chain. Digital signatures

are only used at the start of the first key chain, with all subsequent chains interlinked in

such a way that using digital signatures at the start of the each key chain is not required.

This Chapter discusses the various threats involved for video distribution from the

perspective of using Clouds to distribute scalable video. It focuses on the three aspects

of security- confidentiality, availability and integrity – showing how these can be

influenced in these scenarios discussing each in detail.

This research work in this chapter is focused around the research gaps of RG1 and RG4.

The RG1 research gap is to do with providing scalability and confidentiality in Cloud

computing scenarios. Also this work links up with the research gap RG4 which identifies

the problem of user revocation in Cloud computing scenarios.

6.2 BACKGROUND AND RELATED WORK

To cater for the needs and capabilities of end users over various heterogeneous

networks, scalable video is a potential solution for the distribution of media content.

Scalable Video packets are divided into two parts. The first part is called the base and

contains video information that is of low resolution and quality. The second part is called

the trail. This part has video packets which are used to enhance the resolution and quality

of the video.

Broadcasting of video is carried out by a video server with scalability servers appearing

between the video server and the end-users. The job of the scalability servers is to

truncate the trial part of the video packet with respect to the bandwidth requirements

111

and the capabilities of end-users. Trial truncation decreases the quality of video received

by end-users.

Previous work for scalable video has looked at encryption, key distribution protocols and

authentication in video scenarios. Apostolopoulos et al. [159] have discussed a

mechanism which encrypts scalable video packets. In [160], the focus of their work was

to find the most efficient symmetric encryption algorithm with which video packets could

be encrypted. The authors analyzed AES (Advanced Encryption Standard) and Triple DES

(Data Encryption Standard) showing that for Triple DES, the overhead is between 2-2.5%

and for AES it is 7%. [161] presents an idea of progressive encryption also using scalable

video. Even if intermediary servers truncate scalable video packets, decryption will still

be possible. The BIBA signature scheme [157] works by using self-authenticating values

that are linked with a public key. So given a public key, it is not possible for an adversary

to compute the self-authenticating values also known as seals.

However, in all of the prior work no explanation is given on how the keys will be

distributed in a scalable video scenario for encryption. Additionally various assumptions

are made such as assuming the sender and receiver will already have the keys for

encryption. Blakely[162] has discussed the concept of secret sharing among various

users. An example explains the m-out-of-n threshold secret sharing scheme which allows

for a secret message M to be distributed as a selection of n shares {s1,…,sn}. This allows

two properties to be achieved (i) any collection of m shares is able to reconstruct the

secret message M; and (ii) Any subset of (m - 1) or less shares reveal no information about

M.

6.3 TESLA

TESLA (Timed Efficient Stream Loss-tolerant Authentication) is the protocol used for

authentication having low communication and computational overhead, scaling to large

number of receivers. Its main advantage is the use of key chains. TESLA [158] uses the

112

initial part of the authentication key by securely sending it and then subsequently the

rest of the keys are authenticated.

The main idea of TESLA is that one uses a symmetric key to compute a MAC value at a

time when they alone only know the key. In the next time slot the key is made public to

all other parties who carry out the authentication. In this way, parties carrying out the

authentication know for sure the true identity of the user which computed the MAC.

Without this time delay, everybody would have the symmetric key and could have

computed the MAC.

In TESLA, the users who receive a message at time i and the key at time i+1, need to be

able to verify that the key they received at time i+1 is a valid key that belongs to the user

that has sent it. For this they use key chains. The sender starts by generating a random

key km. From this a chain of keys is computed by applying a hash function h.

The end of the chain (k0) is distributed to all the receivers in a secure manner, such as by

using digital signatures. The security of the protocol depends upon the last part of the

key chain which is k0. At time t=1, the sender sends k1 (which was used to compute a

MAC in time slot 0) to all the receivers, they verify that it is the correct key by verifying

that h(k1) = k0.

In this case, they are assured that k1 is indeed the correct key. This continues for all the

keys, until the root (km) is used, and a new key has to be generated and distributed.

Using one way chains is advantageous for authenticating a packet without much

overhead in terms of computation and bandwidth usage.

6.4 SCALABLE VIDEO

As seen from [163] scalable video enables the recipient of the video to reconstruct lower

quality video from lower bits. The packet of the scalable video has got two parts, base

and trail. The more the trail part is truncated the lower the quality of the video is. If only

113

base part is received then the quality of the video is lowest. This enables recipient of the

video with different network limits to receive the same video but of different quality.

6.5 SECURITY ISSUES ON THE CLOUD IN GENERAL

To overcome the hurdles of security, the UK government has proposed to promote the

use of open source software as part of its G-Cloud program for delivering ICT to emerging

suppliers [164]. The National Institute of Standards and Technology (NIST) group has

proposed a list of security risk and mitigation for a lifecycle to be followed for performing

risk assessment[165] discussing the certification and accreditation for threats in

accordance with the government laws analysed per stage with a detailed analysis [166].

For a scenario of subscription services, it is important that the broadcast video will only

be transmitted in an encrypted manner. This work only considers the base component of

scalable video packets as being encrypted. This allows for a simpler system with less

information being encrypted whilst still providing the system with the security

requirements. This is because without the decrypted form of the base layers no video

could be obtained from the trail layers alone.

6.6 THREATS AND ASSETS THAT NEED TO BE PROTECTED

Figure 13: Security Triangle

Security can be broken into three main aspects (figure 13) which cover it, namely –

availability, which means data is available when needed, integrity, which means the data

is not modified without being detected and confidentiality for the disclosure of data to

unauthorised parties. Unlike normal grid computing, using Clouds presents additional

114

threats to be considered for security reasons. For instance, data access is not a huge

threat on grids, but in Clouds, because the data is hosted geographically at different

locations, this is an important factor. This is particularly relevant in terms of video

broadcasting as videos can be delivered as similar files on the Cloud. Therefore the main

hub holding the video data needs to consider the geographical location and the access

rights to it, for safety of the data. Various authentication models can be introduced to

make each threat more secure as a mechanism to overcome them. Khan et al. [138] have

discussed the six main categories of threats that can summarise all the kinds of threats

that Cloud Computing faces summarized in Table 8 [167].

Clouds involve a three stage process namely – pre-deployment, deployment and

operation.

Figure 14: Service Lifecycle for Scalable Video

Distributing video over the Cloud involves a number of stages (figure 14). During the pre-

deployment stage, the video is set up on the video server and encryption keys are

generated with user subscription being set up. During deployment, the keys are

encrypted and sent across.

Threat Category Specific to Cloud scenario

External attacks

Threats to Confidentiality, Integrity and

Availability. Includes all kinds of threats for public

use. Examples include hacking attacks.

115

Threat Category Specific to Cloud scenario

Theft

Threats to Confidentiality, Integrity and

availability. Cloud computing supports multi-

tenancy using same resources which causes threat

to data hosted on the infrastructure.

System

malfunction

Threats to integrity. Some software used

extensively on Clouds has bugs or malfunctions.

Service

interruption

Threats to availability, integrity and

confidentiality. Unavailability of service or data

due to DoS attacks. Natural disasters can cause

this as well.

Human error Threats to confidentiality. No control on how

vendors use the system. This is difficult to control

and may not directly apply to video distributing.

System specific Specific to user. May not apply directly to video

broadcasting.

Table 8: Threats Categories

Table 11 discusses in detail a full list of threats that should be monitored in terms of video

distribution. The values for likelihood and priority of the assets were taken from the IRAM

tool which has been used previously for Cloud computing scenarios. Learning from the

past experience of undertaking risk assessment of Cloud scenarios priorities were set.

Depending on the priority of the assets, the likelihood (Table 9) and the priority of the

threats can be assessed. This can produce a likelihood and impact rating. The impact

116

shows how this threat may also affect the business of video distributions (Table 10). More

information on this analysis is provided in section 6.10.

 Consequence

Insignifi

cant

Minor Moderat

e

Major Catastr

ophic

Li
ke

lih
o

o
d

Rare V5, V12,

V9, V11

V2,V4,

V10, V6

V18

Unlikely V15,

V19

V7 V14, V21,

V22

Possible V17 V20 V8,

V13,V23

Likely V16 V1

Certain

Table 9: Risk Evaluation Matrix

 Likelihood rating

117

B
u

si
n

es
s

im
p

ac
t

ra
ti

n
g

 Very

Low

Low Medium High Very

High

Very High

High Availability

Medium Confidentiality

Low Integrity

Very Low

Table 10: Range of Threats for Confidentiality, Availability and Integrity

Some of the threats which do not apply to the video broadcasting scenario, from the

general Cloud Computing scenarios are as follows:

 Isolation of tenant application. Affects integrity, confidentiality and does not

apply to video broadcasting.

 Data encryptions. Applies to all three availability, confidentiality and integrity

and is already covered in the key authentication process during the pre-

deployment process.

 Data segregation. Affects the availability and integrity also does not affect

broadcasting issues.

 Tracking and reporting service effectiveness can be given by customer review

and end-user experience affecting the credibility of the server.

 Compliance with laws and regulations of copyright issues, contract breach.

Affects the confidentiality and integrity of the business during the pre-

deployment stage.

118

In the scalable video scenario, threats belonging to availability are high priorities that

need to be protected, because they affect the business integrity of the video servers. DOS

attacks to the hypervisor are the most common threat. The next highest threats would

be the confidentiality for the user data paying for the service. Integrity of the service is

classed below the above two which relate more to the business impact of the video

server because of the software errors and equipment failure.

6.7 AUTHENTICATION METHODOLOGY

The solution is divided into two parts source authentication and source encryption. In

source authentication, the video is authenticated by the subscribers. The source

encryption, the video is decrypted. Furthermore, the process of key management will be

explained for the scenario.

Figure 15 shows the system architecture with all the entities and their communication

interactions.

The system is composed of four different entities – the Video Server, Scalability Servers,

Subscribers and a Key Distribution Centre (KDC).

The Video Server is hosted on the IaaS Cloud where the source of the video gets

encrypted and then broadcasted. A MAC is also appended to encrypted video packets, so

that they can be authenticated by Subscribers. TESLA will be used to provide

authentication in the system. The video is then broadcast to the Scalability Servers. The

Video Server also generates keys that will be used for video encryption. These keys will

be given to the KDC through a secure channel such as TLS or IPSec.

119

Figure 15: System Architecture Application Scenario

Scalability Servers role can be taken up the Service Provider from the Cloud computing

perspective. The Service Provider would use IaaS Cloud infrastructure to host the video.

The Scalability Server hosted on the Service Provider would receive video from the Video

Server on the IaaS Cloud. Scalability servers truncate video packets relative to the

bandwidth requirement of Subscribers to which they will forward the video.

The Key Distribution Centre plays a pivotal role in the whole system. The KDC can be

hosted on the Broker, where the Broker ensures that it distributes keys related to

authentication and decryption keys to all subscribers. It interacts with the Video Server

to get the keys and also authenticates new incoming subscribers to the network.

The Subscribers are the end users of the system who receive the video. They also

authenticate the source of the video using the extended TESLA authentication protocol.

120

6.8 SOURCE AUTHENTICATION AND ENCRYPTION

Figure 15 describes the process of authentication of broadcast video being carried out.

Authentication is needed so that end users can verify the identity of the video

source[157].

Different steps are required in the overall authentication process carried out by the video

servers. These include the generation of a first authentication key, generation and

storage of a key chain using one or more one way functions and use of these keys for the

authentication of broadcast video data. Key chains are created by following the TESLA

protocol using suitable time intervals and appropriate one way hash functions.

6.8.1 AUTHENTICATION OF VIDEO PACKETS

The process of authenticating video packets originating from a video server is the

following.

A first key Ki is generated by the video server. This may be generated randomly and can

be of a predetermined length. Next, a one way hash function F is used to generate the

next key Ki-1 where Ki-1=F(Ki). As F is a one way hash function, it is very difficult to

determine Ki from Ki-1 but it is easy to generate Ki-1 from Ki provided F is known.

The remainder of the key chain is then generated by further applying the one way hash

function F until a final key K0 is generated. The function F is applied i times to generate

K0, so K0=F(K1)=Fi(Ki). Each key can thus be generated from previous keys through

application of function F an appropriate number of times.

Consequently, all the keys in a key chain K can be generated from Ki, but Ki cannot be

calculated from any other key. This is because one-way functions are used. As a result Ki

will remain secret and unshared until it is revealed.

Using the properties of key chains it is easy to verify that different keys belong to the

same key chain e.g. checking that a key Ki -x is indeed the xth key in a key chain can be

done by checking that Fx(Kx)= K0.

121

6.8.2 INITIAL AUTHENTICATION SETUP

All the keys in the key chain K, their order and the hash function F are stored in memory

on the Video Server. The final key K0 is then sent to the Key Distribution Centre using a

secure path which can be achieved using TLS, IPSec. The video server also determines a

time scale for using key chain K and determines the time intervals with which it will move

from using the final key K0 to each further key along the chain.

The KDC then calculates the maximum time intervals at which recipients should receive

a video packet from the video source with a given key based on the time periods

calculated by the video source and adding the expected time delay to reach the recipient.

The recipient can be scalability servers and/or subscribers depending on the

implementation.

Where both scalability servers and subscribers authenticate, different maximum times

will typically be calculated for each based on any assumed or determined knowledge of

communication paths. The maximum times for different subscribers can also vary

depending on network paths with which subscribers are connected.

The video server also generates a message authentication code (MAC) using symmetric

encryption and final key K0 to authenticate video packets. This MAC is attached to a base

video packet and transmitted to scalability servers. A counter is also started for the

number of keys sent and is set at “n=1”. The final key K0 is sent by or requested from the

KDC using a secure asymmetric system such as IPSec. The recipient of video packets can

then check that the KDC and the video server correspond by decrypting the MAC using

the final key K0 and using the secure asymmetric protocol or authentic channel prevents

a third party from transmitting this information. The hash function F is also provided to

the recipient and/or is stored at KDC and requested when needed. The hash function F

can be provided to the subscriber by saving it or hard coding it into the subscriber end

devise rather than transmitting it remotely. This option reduces the likelihood of a third

party gaining access to the hash function.

122

6.8.3 SUBSEQUENT AUTHENTICATION STEPS

After a period of time, the video server generates a second MAC using the next key along

the key chain in the “revealing” order which on first application is key K1. This is then

attached to a scalable video packet and transmitted to recipients. After the

predetermined length of time which may be time delay d, no video packets from the

video source will use the first MAC calculated from key K0. The latest key used for

creating a MAC, in this case K1, is also sent to the recipients by the video server or KDC.

The recipient then decrypts the MAC using the key - in this case K1, and checks that the

message is correct. The recipient then applies the hash function F to the latest key K0,

the appropriate number of times (which in the first case is once) and checks that this

results in the final key K0. The recipient also checks that the time at which the video

packet was received was done so within a time from receiving the base packet that is less

than or equal to the maximum time allowed for that particular recipient calculated and

stored by the KDC.

On subsequent times the importance of checking the time delay becomes clear. Once a

key Kn is revealed to recipients, any third party posing as a recipient, that knows the one

way hash function can generate all keys below Kn on chain K. In practice a recipient may

temporary loose contact with the video server by intention or through missed data

packets. A third party which may have received these packets can then use the keys to

fool the recipient that packets from the third party using these keys are authentic. This is

prevented by the time delay check since after a period of time the video source will no

longer use a key Kn and the KDC will inform the recipient that a given key Kn was received

outside the maximum time delay and is therefore not to be trusted. Accordingly this

TESLA chain uses time to produce asymmetry and therefore security, even though the

keys and encryptions are symmetric. It also has the advantage that when intermediate

values in the chain are not received, all keys can be authenticated from the final key K0

and the correct number of applications of function F.

123

6.9 CASE STUDY: GENERATING KEYS FOR USER ACCESS

In this section we describe a method for generating and updating keys for the encryption

of video broadcast from a video source in our scalable video scenario. Our method uses

secret sharing as this prevents a single user or a group of users to know the value of

encryption keys. This allows the system to be more secure, preventing non-users or

former users from learning new values of encryption keys when these are updated.

The process of updating keys will use the method of secret sharing [136]. This will allow

for the encryption key to be split into a number of shares each of which will be distributed

over the different subscribers. This is done to ensure the secrecy of the encryption key.

In the case, the encryption key of the video broadcast needs to be changed, the KDC will

communicate with each of the subscriber devices about this. The corresponding

information will also be sent to each of the devices. The new encryption key can then be

reconstructed by groups of participants interacting between them.

6.9.1 INITIAL SETUP

Upon initial setup, the KDC will carry out a grouping of all the subscribers. For each of the

new subscribers the KDC stores details of the group to which they belong along with a

hash function specific to the hardware of the subscriber service hardware. The KDC will

also store the share and hash function each subscriber hardware stores in memory.

The KDC will then carry out a secret sharing of the encryption key which will be used for

the encryption of the video to be broadcast. For each of the subscriber groups a different

secret sharing of the encryption key will be carried out using an n-out-of-n secret sharing

scheme – with n denoting the number of subscribers in a subscriber group.

124

Subscriber1

KDC

Registration

Address

Phone

Bank Details

Subscriber2

Subscriber3

Subscriber4

Group1Group2

Key Split

Key 1Key 2

Hash Function

Group Membership Assignment

Figure 16: Use case diagram for the video encryption using secret sharing

The Figure 16 explains that various process using the UML format that takes place relating

to subscriber registration to distribution of hash functions and group membership

assignment.

The KDC proceeds to send the following to the broadcast server and each of the

subscriber hardware in an authenticated manner using digital signatures.

The KDC informs the broadcast server in an authenticated and encrypted manner the

value of the encryption key to be used for encrypting the video to be broadcast.

In parallel, for each subscriber group the KDC sends a single share of the encryption key

to each of the subscriber hardware (from the corresponding secret sharing of the

125

encryption key) sending each share only once. The KDC also informs each of the

subscriber hardware the other subscribers which belong in the same subscriber group.

After this, the subscribers can interact between them (outlined in the next section) in

their appropriate subscriber groups in order to reconstruct the encryption key which will

allow for the encrypted video to be decrypted (figure 17).

The minimum number of subscriber associated with each group should not be less than

10. We came up with this number because it will be hard (financial perspective) for an

adversary to find out the keys of each of the subscriber. An adversary would have to

spend substantial amount of resources in finding the key parts which is not financially

feasible as it would be better for him to just pay for the service. Moreover, the encryption

key will be updated every 24 hours even if no subscriber leaves the system. Therefore, it

would be useless for an adversary to find out the decryption key as it would be useless in

24 hours when it would be updated.

Figure 17 demonstrate the process of user registration and assigning of key shares to

each subscriber.

Subscriber KDC

Registration details send to KDC (Address, Phone, Bank Details)

Broadcast Video
Server

Generate Key

Assign Hash Function and Group

Select Hash Function from a group of hash functions for the Subscriber

Assign group to the subscriber

For each new subscriber

User authentication pass

Send encryption key to broadcast server

Broadcast video using the new key

Figure 17: Sequence diagram for the subscriber registration

126

6.9.2 UPDATING ENCRYPTION KEYS

Updating of encryption keys occurs when a subscriber leaves the service or when a new

subscriber enters the service. The encryption key may also change whenever the KDC

deems that an alteration of the encryption key is necessary, for example when a period

of time has passed without the encryption key being altered. As explained before, we

recommend that key should be updated every 24 hour at least.

When a key needs to be updated, the KDC sends a digitally signed signal to each of the

subscribers that a key update will be carried out. Each of the subscriber hardware then

proceeds to carry out a hash of the share (of the previous key) stored in memory. As the

KDC knows the hash function and share stored on each of the subscriber hardware, the

KDC can do the same and thus be aware of the result of this hash operation.

For group sizes where the total number of subscriber are not large (50 or above), it would

be required to generate hash functions that can be associated with subscribers. We

understand that dozens of hash functions are readily available like SHA0, SHA1, SHA2,

MD5, Skein, Keccak, Radiogatun and their extended flavours. For cases where the

requirement is to have 50 or more hash functions, it would be required to develop a

function that can produce hash functions. Moreover, for this scheme where scalable

video is broadcasted, we envision that the group sizes would be limited to geography

therefore group sizes would be between 10 to 20 subscribers each. Therefore the

requirement is not there for our current scheme to develop a function that generates

hash functions.

The KDC will proceed to select a new encryption key and carry out a n-out-of-n secret

sharing of the key for each of the subscriber groups (where n denotes the number of

subscribers in a subscriber group). The KDC also sends in a secure manner the new

encryption key to the video broadcast server. Figure 18 presents the system setup.

127

Figure 18: System Setup

For each subscriber the KDC calculates the difference between a share si of the new key

(using each share only once from the corresponding subscriber groups and secret

sharing) and the result of the hash operation rh corresponding to the subscriber. The KDC

thus calculates di = si - rh which is authentically sent to the corresponding subscriber. The

KDC also stores the new share which corresponds to each of the subscriber hardware.

Upon receiving this value, the subscriber hardware calculates the new share value (si =

di + rh over a finite field).

If there have been any changes to the original subscriber groups, the KDC also informs

the appropriate groups of the alterations. If the key update occurs because a new

128

subscriber enters the system, the new subscriber hardware is primarily sent a random

value – a hash function will originally be present in the subscriber hardware.

After the hardware of all subscribers have calculate the new share values, the subscriber

groups can interact between them so that the new encryption key can be calculated. The

figure 19 demonstrate the process that is used when a user revocation takes place.

Old
Subscriber KDC

Existing
Subscribers

Send encryption key to broadcast server

Update key shares using hash functions

Subscription no longer valid

Update key shares using hash function assigned to each subscribers

Generate new key based on the hash functions

Broadcast
Video

Broadcast video using the new key

Figure 19: Sequence diagram for user revocation and new key generation

6.9.3 GROUPING OF SUBSCRIBERS

A group of subscribers can be anything appropriate to the application setting. A group of

subscribers could be all the subscribers within a town or neighbourhood for example. As

the secret sharing of the key is done using an n-out-of-n protocol. This means that the

shares of all subscribers in a group need to be pooled together to reconstruct the

encryption key. We thus assume that the set top boxes of all subscribers are always

available to carry out the appropriate actions for the reconstruction of any new

encryption keys.

129

As explained before the total number of subscriber for this setup should be no less than

ten. However, the size of the group is dependent on other issues such as the total number

of subscribers and total number of subscriber in that geographic location etc. A group

with only one subscriber cannot exist as this would fail at the registration phase.

Moreover, groupings are done by the KDC, therefore it has control over who gets in which

group.

6.9.4 SECURITY OF VIDEO ENCRYPTION

The method of updating encryption keys is secure against any non-paying subscribers to

view content for free. Security here refers to a level of security which to be broken

requires non-paying subscribers to carry out enough effort (to learn encryption keys)

equivalent in value to the subscription fee of the service. In this sense, the cost of learning

the secret encryption key and paying the subscription fee are equivalent.

There are two different types of non-paying subscribers – the non-subscribers of the

service and the former subscribers of the service, and prove the security of the system

for each.

For the security of the system against non-subscribers, the non-subscribers were never

part of the service and are not aware of any of the encryption keys or share values. The

non-subscribers can listen to the communication of subscribers. Due to the key update

scheme that is used, they only thing that will be learned are corrections sent by the KDC

upon old shares held by each subscriber. As the secret sharing used is a n-out-of-n

scheme, this means that such an attacker to the system would have to listen in on the

traffic of all the subscribers of a particular group.

Additionally, even if the attacker was able to listen to the traffic of all the subscribers in

the group this would not permit them to learn the encryption key. This is because the

attacker is not aware of any of the original share values that are present in the memory

of subscriber’s set top boxes. Because of this, no matter what information the attacker

may listen to and as the secret sharing of the key is carried out using a n-out-of-n secret

130

sharing scheme, this stills allows for all the encryption keys to be possible. The encryption

key is thus kept secret against such kind of attackers.

For the security of the system against former subscribers of the service, the security is

guaranteed because of the n-out-of-n secret sharing scheme of the encryption key. Using

t as the number of former subscribers, that are attacking the system and assuming in the

worst case that they are working together, the encryption keys when all these former

subscribers were part of the service were secret shared using a (n+t)-out-of-(n+t).

Because of this and assuming that these t former subscribers learned the value of the

encryption key, this means that the set of t attackers know t+1 points (or shares) of the

polynomials used in the secret sharing of an encryption key. Using this information, the t

attackers (assuming they have infinite computing power) can find the q(n-1) possible

polynomials that could have been used in the secret sharing of the encryption key –

where q denotes the size of the finite field used in the secret sharing schemes.

For each of these polynomials, the attackers can learn the shares of all the non-attacking

subscribers. Assuming that the value of q(n-1) is very large and even if the attackers of

the system were able to listen to all the incoming traffic of the n paying subscribers, this

would still leave all the possible encryption keys as potential keys when a key update

occurs. As a result of this, the attackers do not learn the encryption key used and thus

the system is secure.

6.9.5 MATHEMATICAL FORMALISATION

In this section an example is provided of how mathematically a key will be calculated

using the protocol explained above. The example is for three key shares between three

subscribers.

In order to keep the example simple the KDC will make a group key and divide it into

three parts. The generalized equation for the secret sharing is as follows:

D(x)=a0+a1x+ a2x2+…+ak-1 x k-1+ akxk---------(1)

131

The KDC will make an equation by which it will calculate the shares, for example the

equation can be:

D(x)=a0+a1x+ a2x2 --(2)

The equation will be set by the video server initially. But afterwards it will be calculated

on the basis of the shares values that come out after applying the hash functions:

Now using equation 2:

D(x)=1+2x+ 3x2 ---(3)

The above equation is of the second order and it will be made by the KDC. We are taking

3 here as an example only.

Now the KDC will calculate the three shares which will be:

D(0)=1

D(1)=1+2(1)+ 3(1)2 = 6

D(2)=1+2(2)+ 3(2)2 = 17

D(3)=1+2(3)+ 3(3)2 = 34

Now the secret shares will be:

(1, 6) plus Hash function F1

(2, 17) plus Hash function F2

(3, 34) plus Hash function F3

Whereas D(0)=1 is the group key and if we put all the three shares together, only then

we will be able to get the group key. The three shares will then be sent to the KDC along

with the group key. Now the KDC will assign each subscriber with one share of the secret.

In this case there will be only three subscribers. In order for them to get the secret key

out they will have to collude together. So two of the subscribers will send their secret to

the third subscriber who will now know of all the secrets. What it will not know are the

132

hash functions of the other two subscribers which will stop it from generating future keys.

The following equations will be used by the third subscriber to get the key out,

a0+a1+ a2 = 6 ---(3)

a0+2a1+ 4a2 = 17 --(4)

a0+3a1+ 9a2 = 34 --(5)

In order to get the group key out the subscriber S3 will 3,4,5 simultaneously

a0 = 6 - a1+ a2 --(6)

substituting 6 in 4 ad 5

we get a2= 3 and a1= 2

we put the above values back in 6 we get the group key which is

a0 = 6 – 2 – 3= 1

So 1 is the group key.

The third subscriber S3 will then send the group key to all others in the network which in

this scenario are S1 and S2.

Now let say that the subscriber S3 leaves the network and a new subscriber comes in the

network S3` taking its place. But since S3 knew the group key, so it is now needed to

update the group key. The S3` will get all the information from the KDC. It will be given

the secret shares which S3 used to have-that were (3, 34) and hash function F3. The KDC

will send a signal to all the subscribers that the group key needs to be changed so each

subscriber using its own share of the key and hash function will generate a new share

secret or part of the key. All the new shares will then be sent to S1, so that it would be

able to compute the group key.

We will choose the subscribers sequentially so second in term will be S2 and then S3 so

on and so forth.

133

The same procedure will be applied at the broadcast server end as well, but since it knows

all the secret and corresponding hash functions. It has the option of doing all of this in

advance and then storing them rather than calculating the keys on the fly.

Now let say that the subscribers passed the old values that were assigned to them to

their respective hash functions and they get new values, we assume that they will get the

following values:

Subscriber S1---------- F1(6)=10

Subscriber S2---------- F2(17)=18

Subscriber S3---------- F3(34)=28

Where ‘F’ is the respective hash functions assigned to subscribers by the KDC. Hash

function can MD5, SHA1, SHA2 etc.

Now using the above shares subscriber S1 will calculate the new group key as follows:

a0+a1+ a2 = 10 --(7)

a0+2a1+ 4a2 = 18 --(8)

a0+3a1+ 9a2 = 28 --(9)

From 7 we get

a0 = 10– a1– a2 ---(10)

substituting 10 in 8 and 9 we get

a1 = 5

a2 = 1

putting a1 and a2 in 10

we get the group key which is

134

 a0 = 10– 5– 1=4

Therefore, 4 is the group key that will be used by the video server to encrypt and the

subscriber will use to decrypt. The thing to notice here is that without any communication

between the video server and the subscribers, the key has been changed successfully.

6.9.6 ‘TABLE 11’ DESCRIPTION

Table 11 lists the various threats identified along with the stage of the Cloud lifecycle

these threats may be active. The table also includes the classification of the threats in

confidentiality, availability and integrity using the information risk rating.

Table 4 has 5 columns, the threat category column mentions the threat category that is

being analysed. The threat categories are coming from the IRAM tool that was used to

do the threat and vulnerability assessments. Columns 2 of the table mentions the threat

itself like ‘Hacking’. This column also mentions the words AIC where A stands for

availability, I for Integrity and C for confidentiality. Wherever the abbreviations A is

mentioned it means that the threat only relates to availability and same is true for

integrity and confidentiality. The column 3 mentions the stage of the Cloud deployment

whether it is operation or deployment stage. The column 4 mentions the asset involved

like ‘customer data’.

The Cloud deployment scenario is column 5 relates to different scenarios like bursting,

federation, multi Cloud etc. Column 6 mentions the priority that is linked with the asset.

Now this priority has been declared in section 5.4.9. The assets relating to confidentiality

are high priority (4 or 5), assets relating to availability are medium priority (3 or 4) and

assets relating to integrity would have low priority (1 or 2). Column 5 is relating to

likelihood which is the possibility of risk materialising. The likelihood rating has been

added by the researcher himself using his own knowledge of the domain. No metrics exist

that provide likelihood ratings of Cloud computing scenarios.

135

There would be cases were the priority of an asset would be high because it impacts

confidentiality but the likelihood of it actually materialising would be low. The risk which

have high priority and high likelihood are the one which have the highest impact.

The threat numbers that are mentioned in the table are coming from the IRAM tool and

therefore would be inconsistent as the researcher has omitted numerous threats which

are not relevant to the Cloud computing scenarios.

6.10 CONCLUSION

This work presents how one can secure a video broadcast subscription service in the

Cloud computing setup. The scalable video scenario is built on top of an IaaS Cloud and

shown how the video can be encrypted and authenticated efficiently. We have also

presented a secure key management protocol for the updating of encryption keys used

for the encryption of the broadcast video. The key management protocol is efficient and

secure - preventing a large number of attackers from breaking the security of the system.

Some of these results were also presented in [157]. A number of threats that need to be

monitored are identified and the assets they affect to give a risk assessment methodology

of these threats. Future work will focus on calculating the time delay and efficiency

affecting the setup of the video broadcasting and predicting how this will affect the

performance of the video distributions process.

The above research work has been published in the IEEE International Conference for

Internet Technology and Secured Transactions (ICITST-2013) [168].

Threat

Catego

ry

Threats (video threat

id) {Threat

classification -

Availability (A)

Stage of

Cloud

(Pre

/Deploymen

Assets involved Priority

(1 is low, 5

is high)

Likeli

hood

(1 is

low, 5

136

Confidentiality (C)

Integrity (I)}

t/

Operation)

is

high)

Extern

al

attack

s

(V1.) Carrying out of

Dos (Denial of

Service) attack {A}

Operation Broadcasting server 5

4

(V2.) Hacking {I,C} Operation Customer data,

comprising service,

company reputation

3 1

(V3.) Undertaking

malicious probes or

scans {I,C}

Operation Hypervisor code, virtual

machine, video server

4 4

(V4.) Cracking

password {A,I,C}

Operation Customer data or

service

3 1

(V5.) Cracking keys

{A,I,C}

Pre-

deployment,

Operation

Customer data or

service

2 1

(V6.) Spoofing user

identities {A,C}

Pre-

deployment,

Operation

Customer data or

service data, all services

3 1

 (V7.) Modifying

network traffic{I}

Operation Software, connections,

service, video streaming

(runtime)

2 2

(V8.) Eavesdropping

{I,C}

Operation Software, connections,

service (runtime), video

streaming

4 3

137

(V9.) Distributing

computer viruses {I}

Operation Software, connections,

service, broadcast is

usually patched with

security modes

2 1

(V10.) Introducing

Trojan horses {I}

Operation Software, connections,

service

3 1

(V11.) Introducing

malicious code {C}

Deployment

and

Operation

Software, connections,

service, not through

video easy to, broadcast

is controlled

2 1

(V12.) Distributing

Spam{A}

Deployment

, Operation

Mailing lists, server lists 2 1

Theft (V13.) Gaining

unauthorized access

to systems or

networks {A,I,C}

Operation Customer data or

service, extract data

from the video

4 3

(V14.) Theft of

business information

{A,C}

Operation Customer data 4 2

(V15.) Theft of

computer equipment

{A,C}

Pre-

deployment,

Operation

Customer data 1 2

Syste

m

(V16.) Malfunction of

software {I}

Pre-

deployment,

Operation

Toolkit, all services 1 4

138

malfu

nction

video server, end-user,

because of the key

generation

(V17.) Malfunction of

computer network

equipment {I}

Pre-

deployment,

Deployment

,

Operation

Toolkit, all services,

video server,

malfunction during the

key generation will

affect the broadcasting

of the video and the

server

1

3

Servic

e

interru

ption

(V18.) Natural

disaster {I}

Pre-

deployment,

Deployment

, Operation

Customer data, video

server

4

1

(V19.) System

overload {A,C}

Operation Customer data, video

server

1 2

Huma

n error

(V20.) User error {C} Pre-

deployment,

Deployment

, /Operation

Data 3 3

Syste

m

specifi

c

threat

(V21.) Data Leakage

{I,C}

Operation Data, Video data 4 2

139

s and

abuse

 (V22.) Data

ownership {I}

Pre-

deployment,

Deployment

Data relates to video

rights

4 2

(V23.) Data exit rights

{I,C}

Pre-

deployment,

Deployment

Data, SLA relating to

copyrights

4 3

Table 11: Threats Identified in the Various Use Cases and their Details for Video

Distributions

Figure 20: Flowchart Scenario

140

CHAPTER 7

ACCESS CONTROL AND DATA

CONFIDENTIALITY IN CLOUD

COMPUTING (ACDC3)

7.1 THE SCHEME

We propose the scheme Access Control and Data Confidentiality in Cloud Computing

(ACDC3) which fills the research gaps 1 and 4, the details of the research gaps are present

in Chapter 4. ACDC3 is a scheme that guarantees confidentiality of data even when it is

stored on an un-trusted third-party network while being scalable at the same time.

The fundamental idea is that we decouple the fine grained access control with data

confidentiality in order to achieve scalability. These two mechanisms are thus considered

separate requirements.

141

The explanation of the scheme is divided into two parts: (1) how scalable data

confidentiality is achieved on the Cloud, (2) how we achieve scalable fine grained access

on the Cloud. Note in particular that the scheme ensures that no re-encryption is required

when users are revoked. The data confidentiality part is divided into two embodiments

of the proposed scheme.

This research work was filed by the BT IP Department in the form of two patents to the

EU Patent Office and US Patent Office. BT’s reference number for the patent is Europe

A32311 [169] [170].

7.2 BACKGROUND

With the advent of Cloud computing, issues of data access and data confidentiality are

becoming of more and more importance. In particular the provision of secure network

file storage and access control to ensure that the right users can access the right files is

critical to many organisations. Whilst historically “firewall” type solutions were

employed, where access control to the actual storage systems themselves was

implemented, in many Cloud computing scenarios the storage systems themselves are

untrusted, and it is therefore the ability to access data within such untrusted systems

that is now of importance.

As described by G. Ateniese, K. Fu, M. Green, and S. Hohenberger[91] in “Improved proxy

re-encryption schemes with applications to secure distributed storage,” in Proc. of

NDSS’05, 2005, proxy re-encryption allows a proxy to transform a ciphertext computed

under Alice’s public key into one that can be opened by Bob’s secret key. There are many

useful applications of this primitive. For instance, Alice might wish to temporarily forward

encrypted email to her colleague Bob, without giving him her secret key. In this case,

Alice the delegator could designate a proxy to re-encrypt her incoming mail into a format

that Bob the delegatee can decrypt using his own secret key. Alice could simply provide

her secret key to the proxy, but this requires an unrealistic level of trust in the proxy.

Instead, therefore, Alice computes a re-encryption key from Bob’s public key, the re-

142

encryption key being a function that converts incoming mail intended for Alice and

encrypted with her public key into a form that permits decryption by Bob’s private key.

Alice then provides the re-encryption key to the proxy, which re-encrypts the incoming

mail, and passes it to Bob. Bob can then decrypt the mail intended for Alice with his

private key.

Several proxy re-encryption schemes are described in the Ateniese paper, specifically

section 3 thereof, any details of which necessary for understanding the present invention

being incorporated herein by reference. Ateniese et al also comment that proxy re-

encryption has many exciting applications in addition to previous proposals for email

forwarding, law enforcement, and performing cryptographic operations on storage-

limited devices. In particular, according to Ateniese et al. proxy cryptography has

application to secure network file storage, and they describe a specific file system which

uses an untrusted access control server to manage access to encrypted files stored on

distributed, untrusted block stores, and that uses proxy re-encryption to allow for access

control without granting full decryption rights to the access control server.

In the Ateniese file system, end users on client machines wish to obtain access to

integrity-protected, confidential content. A content owner publishes encrypted content

in the form of a many-reader, single writer file system. The owner encrypts blocks of

content with unique, symmetric content keys. A content key is then encrypted with an

asymmetric master key to form a lockbox. The lockbox resides with the block it protects.

Untrusted block stores then make the encrypted content available to everyone. Users

download the encrypted content from a block store, then communicate with an access

control server to decrypt the lockboxes protecting the content. The content owner

selects which users should have access to the content and gives the appropriate

delegation rights to the access control server.

The content keys used to encrypt files are themselves securely encrypted under a master

public key, using a unidirectional proxy re-encryption scheme of the form described in

the Ateniese paper. Because the access control server does not possess the

143

corresponding secret key, it cannot be corrupted so as to gain access to the content keys

necessary to access encrypted files. The secret master secret key remains offline, in the

care of a content owner who uses it only to generate the re-encryption keys used by the

access control server. When an authorized user requests access to a file, the access

control server uses proxy re-encryption to directly re-encrypt the appropriate content

key(s) from the master public key to the user’s public key.

Operation of the proxy re-encryption file system of Ateniese is shown further in Figure

21. Here, the user’s client machine fetches encrypted blocks from the block store. Each

block includes a lockbox encrypted under the master public key. The client then transmits

lockboxes to the access control server for re-encryption under the user’s public key. If

the access control server possesses the necessary re-encryption key, it re-encrypts the

lockbox and returns the new ciphertext. The client can then decrypt the re-encrypted

block with the user’s secret key, to obtain the symmetric content key encrypted therein.

The symmetric content key is then used to decrypt the content of the data block.

Ateniese et al. therefore provide an access control server storage scheme where much

of the security relies on the strength of a provably-secure cryptosystem, rather than on

the trust of a server operator for mediating access control. Because the access control

server cannot successfully re-encrypt a file key to a user without possessing a valid

delegation key, the access control server cannot be made to divulge file keys to a user

who has not been specifically authorized by the content owner, unless this attacker has

previously stolen a legitimate user’s secret key.

However, Ateniese et al. take absolutely no account of the issue of revocation of user

access rights to the data. In their scheme, the symmetric content key that is used to

encrypt the data stored in the block store is passed to the end user, via the proxy re-

encrypted lock box. Once the end user has obtained the symmetric encryption key, it can

then continue to access the data in the block store encrypted with this key (because the

block store itself has no access control). In order to prevent this access it would be

necessary to re-encrypt the data in the block store. However, in this respect in typical

144

Cloud computing scenarios there would be numerous infrastructure providers all

providing services to millions of data consumers. It is simply not possible to re-encrypt

data every-time a user has his or her access revoked. This is because there would be many

data consumers who would be having their access revoked in a very short span of time,

and hence there would need to be more than one re-encryption operation taking place

at once. It would therefore be very hard if not impossible to keep track of which data was

encrypted with which key.

In view of the above, there is a still a clear need to provide data access control schemes

for network stored data which are able to effectively control data access whilst taking

into account the possibility for user access rights to be revoked.

Figure 21: Prior Art

7.3 SCENARIO

The scenario can be better understood by taking into account the example of medical

records being hosted on the infrastructure provider. In this example a medical centre

would be the data owner whereas the data consumers are the patients, nurses or doctors

accessing the data. The medical centre is using the infrastructure provider to host data

on the Cloud. According to the health insurance and portability act (HIPPA) [53] it is a

requirement for all medical centres to ensure the confidentiality of data when the data

is hosted on infrastructure provider. Furthermore commercial offerings such as the

Amazon S3 and the GoogleDocs cannot be trusted with data that is of commercial or of

145

confidential nature. In this scenario data can only be hosted on these infrastructure

providers when appropriate confidentiality and authorisation controls are there.

This section presents the parties involved in the protocol. The system is composed of the

following parties:

 Data Owner

 Data Consumers

 Infrastructure provider

 Trusted authority

The data owner owns the files stored at the infrastructure provider. The Data owner is

responsible for encrypting these files. The data owner resumes control over the VM or

the machine that is hosting the trusted authority by control we mean that the data owner

is the only one that has administrative level access over the operating system. The

physical infrastructure may be controlled by the provider but as long as the machine that

is hosting the trusted authority is not compromised then the scheme is secure. The data

owner has full read and write access on the files stored at the infrastructure provider.

The scenario has two main parts. The first part is when the data owner wants to transfer

data to the infrastructure provider. The second part is that of when data consumer wants

to access data hosted on the infrastructure provider.

In the first part, the following steps are taken by the data owner,

1. The data owner encrypts data using keys which are only known to him at that

time.

2. The data owner then transfers data to the infrastructure provider.

3. The encryption that is done by the data owner is one time encryption and there

is no need for the data owner to update data when keys or users get revoked.

4. The data owner is also responsible for the issuance of re-encryption keys to the

trusted authority.

5. The data owner also sends the final part of the key to the data consumer.

146

In the second part the data consumer takes the following steps,

1. The data consumer sends a request to the trusted authority that it wants to access

data on the infrastructure provider.

2. The infrastructure provider then performs access control checks.

3. If permission is granted to access the file stored on the infrastructure provider

then the trusted authority sends request to the infrastructure provider to fetch

the file. After receiving the encrypted file, the trusted authority then performs re-

encryption of the file using re-encryption keys given to it by the data owner. The

trusted authority uses a proxy re-encryption scheme (see Ateniese) to achieve the

objective of data confidentiality on the Cloud. The trusted authority could reside

at the infrastructure provider where the data is hosted or at another

infrastructure provider. It could also be an independent entity in the scenario. The

trusted authority requires substantial computing power as it would perform the

re-encryption of data.

4. The trusted authority then forwards the file to the data consumer.

5. The data consumer then sends request to the data owner to fetch the final part

of the key.

6. After receiving the key from the data owner the data consumer then performs

the decryption of the file.

147

In figure 18, the architecture of the scheme ACDC3 is shown.

Figure 22: Scenario of ACDC3

7.4 EMBODIMENTS OF THE SCHEME

Two embodiments of the invention will now be described. In both the embodiments’

data is stored in an encrypted form in a network storage facility, by a data owner. In order

to allow access to the data by a third party for instance the data consumer, it is stored at

the network storage facility (Infrastructure Provider). The proxy re-encryption of the data

stored in the network storage facility is done by a trusted authority. This operation

converts the data into a form where it can eventually be decrypted by the data consumer.

However, the protocols of each embodiment are such that without the proxy re-

encryption by the trusted authority it would not be possible for the data consumer to

decrypt data obtained directly from the network storage facility, even if having been

previously provided with a decryption key from a previous operation. This therefore

allows for access control to be administered by the trusted authority, and for user access

Data

Confidentiality

Access

Control

Access Control Data

Confidentiality

Trusted Authority

Infrastructure

Provider

Data Owner Domain 2

Data

Consumers

Domain 1

Data

Consumers

148

rights to thereby be revoked without the user still being able to access and decrypt to

plaintext data stored in the network storage facility.

In more detail, the data stored at the network storage facility is encrypted with one or

more layers of encryption, one of which is an asymmetric encryption layer using the

public key of the data owner. In order to allow this layer to be removed, the data owner

provides a trusted authority with a re-encryption key, to re-encrypt the data so that the

data owner public key encryption layer may be removed. The target of the re-encryption

may be the requesting data consumer (for example where the data owner public key

encryption layer is the only encryption applied to the data) in which case the re-

encrypted data may be passed to the data consumer, who then decrypts it with his

private key. Alternatively, where more than one encryption layer is used with the data

(for example, a symmetric encryption, followed by the data owner public key encryption),

then the target of the re-encryption may be the trusted authority itself, wherein the

asymmetric public key encryption layer may be removed by the trusted authority by re-

encrypting the data using a re-encryption key generated by the data owner for the

trusted authority, and then decrypting using the trusted authority’s private key. In both

cases the data consumer only gets access to the data via the trusted authority, which

must undertake the re-encryption, without which the data consumer is unable to access

plaintext data.

Both embodiments of the invention are based on the same system architecture, shown

in Figure 22.

Figure 23 illustrates a typical system configuration of one of the actors in the architecture

of the embodiments. In this respect, each “actor” will typically be provided with a

processor based communications device, such as a general purpose computer such as a

laptop or desktop, or other communications device such as a smartphone, tablet, set-top

box, games console, or the like. Within Figure 19 any such processor based

communications device is provided with a CPU, memory, one or more input/output

interfaces (such as video and audio output controllers, as well as user input device

149

controllers such as any one or more of a keyboard, touchscreen, or mouse controller, for

example) and one or more network interfaces (such as one or more wired or wireless

network adapters, for example). In addition it is provided a storage medium such as a

hard disk, flash drive, or other (usually non-volatile) data storage on which is stored the

system operating system, as well as a data access control program, that acts to control

the system to operate according to the communications and security protocols of the

embodiments of the invention, to be described. Also provided is a web browser program,

which when run allows the system user to browse the World Wide Web. In this regard,

the computer system communicates via the network interface with one or more remote

servers or other devices, via a network such as the Internet or an intranet. Other

programs and for other purposes may of course also reside on the same computer

readable medium.

As noted, the data access control program enables the device to operate according to its

role in the present architecture as one of the actors, and to implements the security and

communications protocols to be described in respect of each of the embodiments.

Therefore, where the device is acting as a data consumer then the program controls the

device to perform the actions of a data consumer, to be described. Likewise, when the

device is a data owner, or a trusted authority, the program controls the device to perform

the respective actions of each actor, as required. Of course, the program need not be a

single computer program, and may be a suite of programs that work together. Likewise,

any device which is participating as an actor need only have those programs or part of a

program that cause it to fulfil its necessary actions under the protocols of the

embodiments.

In addition to the above, in both embodiments to be described there are seven main

security requirements and assumptions involving the following issues: collusion

resistance, access control, data channels, data confidentiality, read/write requests,

trusted authority and management of keys.

150

Figure 23: Device Level Architecture of the Scheme

7.5 ASSUMPTIONS AND SECURITY REQUIREMENTS

In this section, we present the 7 main security requirements and assumptions about the

following points: collusion resistance, access control, data channels, data confidentiality,

Read/Write requests, trusted authority, and management of keys.

Collusion resistance: The scheme should ensure that data consumers should not be able

to decrypt the encrypted data even when colluding with the infrastructure provider.

Contrary to the assumption made in other schemes[171], [172] and [92], we do not

consider that the infrastructure provider is curious but honest because this assumption

does not hold in the Cloud computing scenario previously presented. In our scheme the

assumption is that the infrastructure provider does not restrict itself for decrypting data

or finding information about the access control policies.

Access Control: The scheme ensures that data consumers bearing the correct attributes

are able to access the data. Unauthorised data consumers who do not have the right

CPU NETWORK
INTERFACE

MEMORY I/O
INTERFACE

NETWORK

O/S WEB
BROWSER

DATA ACCESS
CONTROL
PROGRAM

I/O DEVICES

OTHER
PROGRAM

OTHER
PROGRAM

OTHER
ELEMENT

151

attributes should be prevented from accessing the data. Even if the infrastructure

provider colludes with the data consumers they should not be able to access data they

are not allowed to read.

Data Channel: We assume that all data channels that exist between the actors in the

scenario are secured. The network level security is outside the scope of this work.

Data Confidentiality: The scheme should ensure backward and forward secrecy. In

backward secrecy any data consumer who accesses files should not be able to decrypt

files exchanged in previous communications with another data consumer. In forward

secrecy a data consumer should not be able to decrypt files using old credentials to

decrypt files exchanged in subsequent communication.

Read/Write Request: In the scheme, we make the assumption that data consumers would

only make read requests. Any write request would only be made by the data owner or it

would come via the data owner.

Trusted Authority: The trusted authority has considerable computational power available

to process requests coming in. The assumption is that there should not be any bottleneck

created by the trusted authority by not being able to process incoming requests. We also

envision that the trusted authority could reside on the premises of the data owner, or on

the premises of the infrastructure provider. As long as the machines on which the trusted

authority is running is not compromised then the scheme is secure.

Management of Keys: The exchange of keys between the actors of the scenario is not

part of the scheme. We assume that there is a baseline level of trust that exists between

the actors and they are able to exchange the keys and update them appropriately.

Local content: We do understand that even a user that has its access revoked would be

able to access the local copy of the data that he has already downloaded.

152

7.6 SCHEME DESCRIPTION (EMBODIMENT 1)

The first embodiment comprises two phases, a data storage phase, and a data access

phase. The actors of the first embodiment are those described previously with respect to

Figure 23 i.e. a data owner, an infrastructure provider, a trusted authority and a data

consumer.

The data storage phase is shown in Figure 24. Here, a data owner first generates the

public private key pair required for asymmetric encryption. Then, the data owner

encrypts the data to be stored with his public key i.e. CT = E(DATA, DO-PubK), and uploads

the encrypted data CT to the infrastructure provider. The infrastructure provider task is

to store the encrypted data. This concludes the data storage phase, which may be

repeated as many times as necessary for different files, or different blocks of data. In this

respect, however, it is not necessary for the data owner to generate a new public-private

key pair per file or data block, and the same key pair may be used for several files or

blocks.

153

Figure 24: Environment Setup (Embodiment 1)

The data access phase is shown in Figure 25. Here, the data consumer (DC) transmits a

data access request to the trusted authority (TA), identifying himself and specifying which

data he wishes to access. In addition, in this embodiment the data consumer also passes

as part of the data access request a request token, comprising the data consumer’s

private key encrypted with the data owner’s public key. This is required in this

embodiment for the data owner (DO) to generate a re-encryption key with the target as

the requesting data consumer, as will become apparent below.

Data Owner : DO InfrastructureProvider : IP

1) DO-PrivK

2) DO-PubK

E(DATA, DO-PubK)

1 : Generate keys:

2 : Generate :

3 : upload CT

4 : Store_CT()

154

Figure 25: Data Access (Embodiment 1)

The trusted authority (TA) then undertakes an access control procedure, where it

determines whether the requesting data consumer (DC) is an authorised person to access

the data, for example by consulting a list or other database containing the identities of

authorised users. If the trusted authority determines that the data consumer is not

authorised then an “access denied” message is passed back to the requesting data

access-granted == FALSEalt

[access-granted == TRUE]

DataConsumer : DC TrustedAuthority : TA DataOwner : DO InfrastructureProvider : IP

1 : data access request

AccessControl

2 : access denied

3 : ReqTOKEN

(ReqTOKEN)

ReqTOKEN = E(DC-PrivK, DO-PubK)

Generate DC-PxyK

(RE-K DO->DC)

4 : E(DC-PxyK, TA-PubK)

5 : fetch CT()

6 : send CT

7 : CT RE-Encryption()

8 : RE-CT

9 : Decrypt RE-CT()

155

consumer, and the data access phase then ends. However, if the TA determines that the

DC has access rights then the request token received from the DC is passed to the data

owner (DO). The DO then decrypts the request token with his own private key to obtain

the DC’s private key, and then generates a proxy re-encryption key DC-PxyK for the data

consumer, which is a function which transforms data encrypted with the DO’s public key

into data that can be decrypted with the DC’s private key. The re-encryption key DC-PxyK

is then encrypted with the TA’s public key, and sent to the TA.

The TA therefore at this point in time has received a request to access a particular data

file or block from the DC, and has granted the request. It has also received from the DO

a proxy re-encryption key which will be able to re-encrypt data encrypted with the DO’s

public key into data that can be decrypted with the DC’s private key. Afterwards the TA

requested data CT from the infrastructure provider, which is done by a request-response

mechanism. The TA therefore receives CT from the infrastructure provider. Recall that CT

is encrypted with the DO’s public key.

In order to allow the encryption layer to be removed by the DC, the TA uses the proxy re-

encryption key it received from the DO to re-encrypt CT. After the re-encryption CT

remains encrypted, as Re-CT, and hence cannot be read by the TA, or any other actor

other than the DC the target of the re-encryption (including malicious eavesdroppers).

However, Re-CT can be decrypted by the DC using its private key. Re-CT is sent by the TA

to the DC, where it is then decrypted using the DC private key. The decryption of Re-CT

at the DC ends the data access phase.

7.6.1 ACCESS MATRIX

In order to analyse the above protocol, in the following Figure, we introduce a symbolic

3-way representation in order to easily summarize all the information in an access matrix

developed from the protocol. The table 12 below explains each block A, B, or C.

Symbol Meaning Values

156

A
Can the entity obtain directly this

information?

 “◊” : YES because

the entity generates

this data

 “Y” : YES

 “N” : NO

B

If the data is encrypted, what is

needed to decrypt it ?

One or more keys

C Which info can be decrypted ?

 Data, CT, CT’, CT’’

 “-“ : No one

because is not

possible to access

the info in the block

B

Table 12: Access Matrix (Embodiment 1)

Blocks B and C are optional and appear only if block A is “Y”. The access matrix can be

organized as follows: shown on the rows are the entities involved in the process, and

shown on the columns are each transactional state of the data. Each entry therefore

contains a 3-way block, or alternatively only its part A. Figure 26 shows the access matrix

thus derived for the first embodiment.

157

Figure 26: Access Matrix (Embodiment 1)

From Figure 22 we can see that in order to access CT then the private key of the data

owner is always required, whereas for Re-CT the private key of the data consumer is

required. Therefore, if a malicious eavesdropper intercepts communications between

the parties they will not be able to access any data, as they will have neither private key.

Likewise, the data consumer can only ever access re-encrypted data, that has been re-

encrypted so as to be decrypted with the data consumer’s private key. This allows for

user revocation by controlling access rights of users at the trusted authority, in that the

trusted authority will only re-encrypt for a user that is authorised. Once authorisation has

been lost for a user at the trusted authority, then no re-encryption will occur. Even if the

data consumer then colludes with the infrastructure provider to access the data, he will

158

not be able to decrypt the data because the data the infrastructure provider stores i.e.

CT requires decryption with the data owner’s private key only.

One drawback of the first embodiment as described above is that the data consumer

sends a token in which its private key is encrypted using the public key of the data owner.

This token is only forwarded to the data owner if the data consumer is given access

permission by the access control mechanism in the TA. However, sharing of the private

key is not feasible in many scenarios where the data consumer wants to keep full control

over its private keys. In order to get around this issue, therefore, we present the second

embodiment of the scheme. Moreover, the data encryption in this embodiment is done

using asymmetric encryption. When DO encrypts data and then transfers it to the IP,

although it is a one off operation but requires significant computational overhead.

Therefore the requirement is there to develop an embodiment which uses symmetric

encryption for data encryption rather than asymmetric encryption. Asymmetric

encryption is 1000 times slower than symmetric encryption[173][174].

In order to solve the above two issues we present to you the embodiment 2 of the

scheme. The embodiment 2 will be used as the standard embodiment for the rest of

the thesis.

7.7 SCHEME DESCRIPTION (EMBODIMENT 2)

In this section we provide the description of the embodiment 2 of the scheme. The

operations conducted by the embodiment 2 are the following ones:

Key generation: At the Data owner end it has to generate a symmetric key and

public/private key pair. Also it is responsible for generating the re-encryption keys for the

trusted authority.

At the Data Owner end following keys have to be generated:

 DOSK : Data Owner Symmetric key

 DOPK : Data Owner Public Key

159

 DOPR : Data Owner Private Key

At the Trusted authority end, the following keys have to be generated:

 TAPK: Trusted Authority Public Key

 TAPR: Trusted Authority Private Key

At the Data Consumer end, the following keys have to be generated:

 DCPK: Data Consumer Public Key

 DCPR: Data Consumer Private Key

Re-encryption key generation: The data owner also generates a re-encryption key per

trusted authority. The data owner uses the DOPR and the TAPK to generate the re-

encryption key for each specific trusted authority TA. We use the following symbol for

the key

 RKTA: Re-encryption key

Core Encryption: The core encryption is the process of transforming plain text into cipher

text by using the DOSK by the data owner. The cipher text is now called DOSK(Text).

Second level encryption: Second level encryption is done using the DOPK by the data

owner. This data can only be decrypted using the DOPR of the data owner or the delegates

re-encryption keys. Now the new cipher text is proxy ready and is also ready to be

delegated to the trusted authorities. The cipher text here is now called CT’.

First level encryption: First level encryption is the process of converting CT’ to CT. It

includes two sub-processes, firstly the trusted authority uses the re-encryption key RKTA

to convert the CT’ to CT’’. Secondly it uses the TAPR to convert the CT’’ to CT.

Decryption: Decryption is performed by the data consumer using the symmetric key DOSK

that the data owner has provided to it. The key is provided to the data consumer by using

its public key DCPK to decrypt the symmetric key DOSk.

160

a. Environment Setup

In figure 27, the environment setup of embodiment 2 is presented, following are the

steps,

1. The data owner performs the core encryption of data by using DOSK(Text) = CT.

2. In the second step, the CT is transformed into CT’ = DOPK (DOSK(Text)).

3. The data is now proxy ready and is now hosted on the infrastructure provider.

4. The data owner now generates re-encryption key per trusted authority.(TA-1 …

TA-N)

b. Data Access

In figure 28, the data access of embodiment 2 is presented, following are the steps,

1. In the first step the data consumer makes the request to the trusted authority to

access a file.

2. At the trusted authority the access control component performs fine grained

access control on the request.

3. If the access control component gives permit to the request then the trusted

authority sends request to the infrastructure provider to fetch the appropriate

file CT’.

4. Now the trusted authority data confidentiality component performs re-

encryption of the file using the re-encryption key given to it by the data owner.

This will transform the CT’ to CT’’. This is the first level encryption refer to section

5 for more detail.

5. Now the data confidentiality component performs proxy decryption that

transforms the CT’’ to CT.

6. Now the trusted authority forwards the CT to the data consumer.

7. The data consumer now requests the data owner to send the DOSK. The data

owner using DCPK encrypts the DOSK and sends it to the data consumer.

161

8. Using the DOSK the data consumer then decrypts CT to plain text.

DO : DataOwner TA : TrustedAuthority

Environment Setup with Trusted Authority

1) Keys Generation

2) Core Encription

2nd Level

Encryption

Proxy Key

Generation per TA

Fetch TA-PK

RK-TA

Data → CT

CT → CT’

loop
TA-1

Ta-N

...

Figure 27: Environment Setup (Embodiment 2)

162

DO : DataOwner TA : TrustedAuthority

Data Access

Fetch CT'

Key Req

DC : DataConsumer

Data Request

ACCESS

CONTROL

Component

alt

[PolicyResponse == OK]

a) 1st Level

 Encryption

b) Proxy

 Decryption

CT’ → CT’’

CT’’ → CT

Send CT

E (DOsk, DCpk)

[ELSE] Access Denied

Core

Decryption CT → Data

IP : InfrastructureProvider

Fetch CT'

Figure 28: Data Access (Embodiment 2)

163

7.7.1 MATHEMATICAL FORMALISATION

The fundamental concept used in developing the Ateniese proxy cryptography scheme is

that of bilinear maps. In this section the mathematical formalisation are based on the

Ateniese scheme [23].

 Let G1, G2, G3 be cyclic groups of the prime order q.

Function e: G1 × G2 → G3 is a bilinear map if for all g1 ∈ G1, g2 ∈ G2, a, b ∈ ℤq , that e(g1
a

,

g2
b) = e(g1, g2)ab

The algorithm uses bilinear maps of the form of e: G1 × G1 → G2 where G1 = <g>. e must

be efficiently computable. Also, e must be non degenerate; that is <e(g,g)> ∈ G2

The whole process is composed of a tuple of (possibly probabilistic) polynomial time

algorithms KG, RG, E⃗⃗ , R, D⃗⃗

Key generation (KG)

<g> = G1 of prime order q

SKa = a ∈ ℤq
* randomly selected.

SKb = b ∈ ℤq
* , randomly selected.

PKb = gb, PKa = ga, random r ∈ ℤq
*

Z = e(g,g)

That means on input of a generator g, the KG algorithm outputs a couple

of tuples (PKa, SKa) and (PKb, SKb).

Re-encryption Key generation (RG)

RKA->B = (gb)1/a = gb/a

On input of (PKa, PKb), the re-encryption key generation algorithm RG

outputs a key RKA->B for the proxy.

164

Encryption

 m ∈ G2

 Ca = (Zr . m, gra)

On input of PKa and a message m ∈ G2, for all Ei ∈ E⃗⃗ the output is a

ciphertext Ca

Re-encryption

 Ca = (Zr . m, gra)

Cb = (Zr . m, e(gra,RKA->B))

 = (Zr . m, e(gra, gb/a))

 = (Zr . m, Zrb)

On input of RKA->B and a ciphertext Ca, the re-encryption function R outputs

Cb.

Decryption

 (Alice)

 m =
𝒁𝒓. 𝒎

 e(gra,g
1

a⁄)
 =

𝒁𝒓 . 𝒎

𝒁𝒓

On input of SKa and a ciphertext Ca, then exists a Di ∈ D⃗⃗ that outputs the

message m ∈ G2

 (Bob)

 m =
𝒁𝒓 . 𝒎

(Zrb)
1

b⁄

165

On input of SKb and a ciphertext Cb, then exists a Di ∈ D⃗⃗ that outputs the

message m ∈ G2

More formally, let key pairs (PKa, SKa) and (PKb, SKb), be generated according to

KG, belong to parties A and B, respectively, and let RKA->B be generated according

to RG. Then, for all messages m in the space G2, the following equations hold with

probably one :

∀𝐸𝑖 ∈ �⃗� , ∃𝐷𝑗 ∈ �⃗⃗� , 𝐷𝑗(𝑆𝐾𝐴, 𝐸𝑖(𝑃𝐾𝐴, 𝑚)) = 𝑚 for Alice

∀𝐸𝑖 ∈ �⃗� , ∃𝐷𝑗 ∈ �⃗⃗� , 𝐷𝑗 (𝑆𝐾𝐵, 𝑅(RKA→B, Ei(𝑃𝐾𝐴, 𝑚))) = 𝑚 for Bob

 In our specific scenario, skipping the key generation process already shown in §4 :

Core encryption : 𝐶𝑇 = 𝐸 (𝐷𝑎𝑡𝑎, 𝐷𝑂𝑆𝐾)

2nd Level Encryption : 𝐶𝑇′ = 𝐸 (𝐶𝑇, 𝐷𝑂𝑃𝐾)

Re-encryption

 Ca = (Zr . m, gra)

Cb = (Zr . m, e(gra,RKA->B))

 = (Zr . m, e(gra, gb/a))

 = (Zr . m, Zrb)

On input of RKA->B and a ciphertext Ca, the re-encryption function R outputs

Cb.

Decryption

 (Alice)

166

 m =
𝒁𝒓. 𝒎

 e(gra,g
1

a⁄)
 =

𝒁𝒓 . 𝒎

𝒁𝒓

On input of SKa and a ciphertext Ca, then exists a Di ∈ D⃗⃗ that outputs the

message m ∈ G2

 (Bob)

 m =
𝒁𝒓 . 𝒎

(Zrb)
1

b⁄

On input of SKb and a ciphertext Cb, then exists a Di ∈ D⃗⃗ that outputs the

message m ∈ G2

More formally, let key pairs (PKa, SKa) and (PKb, SKb), be generated according to

KG, belong to parties A and B, respectively, and let RKA->B be generated according

to RG. Then, for all messages m in the space G2, the following equations hold with

probably one :

∀𝐸𝑖 ∈ �⃗� , ∃𝐷𝑗 ∈ �⃗⃗� , 𝐷𝑗(𝑆𝐾𝐴, 𝐸𝑖(𝑃𝐾𝐴, 𝑚)) = 𝑚 for Alice

∀𝐸𝑖 ∈ �⃗� , ∃𝐷𝑗 ∈ �⃗⃗� , 𝐷𝑗 (𝑆𝐾𝐵, 𝑅(RKA→B, Ei(𝑃𝐾𝐴, 𝑚))) = 𝑚 for Bob

 In our specific scenario, skipping the key generation process already shown in §4 :

Core encryption : 𝐶𝑇 = 𝐸 (𝐷𝑎𝑡𝑎, 𝐷𝑂𝑆𝐾)

2nd Level Encryption : 𝐶𝑇′ = 𝐸 (𝐶𝑇, 𝐷𝑂𝑃𝐾)

1st Level Encryption :

CT’’ = R (CT’, RKTA)

CT = D (CT’’, TAPR)

167

 Decryption: DATA =

D(CT,D(E(DOSK,DCPK),DCPR))

7.7.2 ACCESS MATRIX

In figure 29, the data lifecycle is shown, which is an iterative cascade model.

Figure 29: Data life cycle (Embodiment 2)

In each of these states, the data is represented by the formal statement described in the

previous section. In order to define the granularity of protection mechanisms, a so called

Access Matrix can be used as formalization for the static access permission in any step of

interaction between all the entities of our scenario (Data Owner, Infrastructure Provider,

Trusted Authority, Data Consumer and a Maliciuos user).

This simple formalization does not model the rules by which permission are setted in the

system, but the way each party can access the data, taking into consideration the

system’s access control security policies. We introduce a symbolic 3-way representation

in order to easily summarize all this information in each entry of the matrix.

Data
• Initial state

CT
• Core Encryption

CT'
• 2nd Level Encryption

CT''

CT

• 1st Level Encryption

Data
• Decryption

168

A B

C

Table 13 explains each coloured block.

Symbol Meaning Values

A Can the entity access the data ?

 “◊” : YES because

the entity generates

this data

 “Y” : YES

 “N” : NO

B

If the data is encrypted, what is

needed to decrypt it ?

One or more keys

C Which info can be decrypted ?

 Data, CT, CT’, CT’’

 “-“ : No one

because is not

possible to access

the info in the block

B

Table 13: Symbol, Meaning and Values

The access matrix is organized in Table 14. On the rows the entities involved in the

process, on the columns each transactional state of the data, each entry contains a 3-

way block or only its part A.

169

Entity Data CT CT’ CT’’

DO

(Data Owner)

◊ ◊ ◊ N

IP

(Infrastructure

Provider)

N N

Y

RKTA

SKTA

-

N

TA

(Trusted

Authority)

N

Y

DOSK

-

Y

CT’’

-

◊

RKTA

SKTA

-

DC

(Data

Consumer)

Y

Y

DOSK

Data

N N

MA

(Malicious)

Y DOSK

Y RKTA

Y RKTA

Y RKTA

170

-

SKTA

-

SKTA

-

DOSK

DOSK

-

Table 14: Access Matrix (Embodiment 2)

It’s important to note that each entity can access only a well-known state of the data:

 IP and TA, which act as semi-trusted entity, cannot access to any kind of data, but

they can only perform some crypto functionalities on it.

 DC can access only DATA if it owns the rights to do it.

 MA, that act as an attacker, even if it can access to all of state of data, is not able

to perform any operation that leads to obtaining of the original DATA.

7.8 DIFFERENCE FROM THE STATE OF THE ART

In Cloud computing there would be numerous infrastructure providers all providing

services to millions of data consumers. It is simply not possible to re-encrypt data every-

time a user has access revoked. As there would be many data consumers who would be

having their access revoked in a very short span of time which means that there would

be more than one re-encryption operation taking place. It is very hard if not impossible

to keep track of which data is encrypted with which key. Therefore this approach

presents a very practical and scalable solution to problem of hosting data on un-trusted

infrastructure provider. Our scheme would scale relative to the state of the art

schemes[96][97], as there are no lengthy complex re-encryption and key management

operations that needs to be performed.

One of the biggest advantages of the scheme is that it requires significantly fewer key

exchanges compared to the other schemes [171][172]. This feature is built into the

scheme as it only requires that the data owner and trusted authority initially have a

baseline level of trust so that their public keys can be shared. Afterwards each domain

171

that uses the trusted authority would provide the public keys of its data consumers itself.

There are no requirements for distributing session or private keys.

Caching of frequently accessed files at the domain level would be used to ensure that less

network level resources are used when a request comes in. If a request for the same file

comes in from a different user all the domain administrator has to do is to forward the

file to the user. It then notifies the data owner to release the key for the decryption of

the file to the data consumer.

Furthermore, the scheme can be used in a setting where decryption is performed not at

the data consumer level but at the domain level. For instance, Company A wants all the

data to be re-encrypted using its private key, and when the Company A receives a file on

behalf of a data consumer, it then performs decryption and forward it to the respective

data consumer. The benefit of this approach would be that caching of files would not

require provisioning of the keys by the data owner or decryption of the files, as if the

request for the same file comes in, then all the domain administrator has to do is to

forward that file to the appropriate data consumer without performing decryption.

7.9 PSEUDOCODE

What follows is the explanation of the processes of a new user joining and user

revocation in the scheme ACDC3.

New User Join: Every time a new data consumer wants to access files stored on the

infrastructure provider it has to first request the administrator of the domain. The

domain administrator then ensures that the trusted authority has access to appropriate

credentials of the data consumer. The domain administrator provides a web based query

service that provides appropriate credentials (Attributes and Public key relating to an

identity) of the data consumer to the trusted authority. Trusted authority uses this

service to check the credentials of data owners who want to access files. This service can

be an LDAP server or an active directory server. Following is the Pseudo code of the new

user join operation,

172

//Following function is called by the data consumer to initiate the process of user join

NewUserJoin(Name, EmployeeNumber)

{

If (Name is in LDAPDirectory() and EmployeeNumber is in the

EmployeeDirectory())

Then

{

getAttributes (Name, EmployeeNumber)

getPublicKey(Name, EmployeeNumber)

UpdateDirectoryService(Attributes,PublicKey)

//Updating Directory service that the trusted authority queries

}

Else {(Return (Wrong Name or Wrong Employee Number) }

}

//Following function is called by the trusted authority

/* Name represents the name of the entity that is calling the function like domain

administrator, data owner or trusted authority. Authentication is the process by which

the entity authenticates itself to the directory service and DCName is the name of the

data consumer to which the query is about.

*/

DirectoryService(TAName,Authentication,DCName)

173

{

If(Authentication Fails)

Then {Return (Authentication Failed)}

Else

{

If(DCName is in LDAPDirectory)

Return (Attributes,PublicKey)

Else {Return (WrongDCName)}

}

}

User Revocation: The process of user revocation is initiated by the administrator of the

domain. It notifies the trusted authority that the data consumer has no longer rights to

access files on the infrastructure provider. The trusted authority then deletes the

attributes and public key of the data consumer from its records.

The domain administrator also ensures that web based directory service no longer holds

the credentials of the data consumer. Once these operations are complete then the data

consumer access is revoked and he no longer can decrypt files stored at the infrastructure

provider. Following is the pseudo code for the user revocation process,

/* Following function is called by the domain administrator to delete credentials from

the web based directory service. */

DirectoryService(Name, Authentication,DCName)

{

174

If(Authentication Fails)

{Return (Authentication Failed)}

Else

{

//Following function deletes credentials of the data consumer from the directory

deleteCredential(DCName)

}

}

/* Following function is called by the trusted authority to delete the data consumer

attributes and public key from its records. */

UpdateRecords (DCName, Delete)

{

If (DCName is in Direcotory.Name())

Then

{

deleteAttributes (DCName)

deletePublicKey(DCName)

}

Else { Return (Incorrect DCName) }

}

175

7.10 FINE GRAINED ACCESS CONTROL

State of the art schemes use attributes to perform fine grained access control. These

schemes achieve fine granularity by encrypting files using a keys that have attributes

embedded in them. Only the data consumers who have the correct key with the

appropriate attributes are able to decrypt the files [171] [97].

This approach is cumbersome and it requires user specific encryption to be performed

per file. In our scheme we have delinked the fine granularity of access control with data

confidentiality. This approach has enabled the scheme to perform fine grained access

control at the trusted authority level. The biggest benefit of the approach is that it is less

complex (computational overhead, time).

In ACDC3, a centralised access control mechanism is used in which a fine grained access

control policy is defined with respect to a domain. This approach enables us to update

the access control policy, without having to re-encrypt all the files. Every domain

represents an enterprise or collaboration, this domain has specific requirements with

regards to the access control, using our mechanism it can define rich access control

policies.

The mechanism is based on eXtensible Access Control Mark-up Language (XACML) [175],

which is an access control policy framework based on three aspects.

Firstly it offers a policy language that can be used to express control rules and conditions.

Each policy constitutes multiple rules and policies itself can be combined into sets. It

offers a mechanism that represents the governance framework of an organisation

(domain).

Secondly it offers a protocol to represent the request and response. Real world access

control request can be constructed using the protocol. These request than go to an

XACML engine for evaluation and the result is then returned which is normally permit,

deny or in-applicable.

176

The third feature that XACML offers is reference architecture that proposes software

modules to be deployed to ensure efficient implementation of security policies. The

modules include, Policy Decision Point (PDP) that evaluates policies against access

request. Policy Enforcement Point (PEP) which is responsible for providing the access

requests. Finally the Policy Information Point (PIP) that is queried by PDP and PEP to

gather information about subjects and the objects.

The advantage of using XACML is manifold, it offers a standardised approach to

authorisation by which many different domains can be integrated without a lot of hassle

and the focus is on the security policies rather than technicalities of the environment.

Furthermore, XACML follows an attribute and policy based approach which makes it fine

grained.

ACDC3 achieves fine grained access control using XACML, but usage of meta-files in this

scheme has a major drawback. The meta-files are not encrypted and they can be

potentially read by the infrastructure provider. The infrastructure provider can learn

some information about which files are accessed but it cannot learn anything about the

encrypted files themselves. Furthermore, the kind of information that is revealed also

depends upon the scenario and on the data consumer. A potential solution to this

problem can be use of abbreviation rather than text in the meta-files. It would limit the

learning capacity of the infrastructure provider. An implication of this approach is that

the access control mechanism has to know which abbreviation means what in advance

in order to interpret them.

7.11 SECURITY ANALYSIS

User Revocation: The benefit of ACDC3 scheme is that user revocation is independent of

data re-encryption by using proxy re-encryption to perform on the fly re-encryption. This

reduces the computational overhead and simplifies the process of user revocation. The

process of user revocation ensures that the data consumer who has it’s access revoked

cannot decrypt any information hosted on the infrastructure provider even if both of

177

them collude. Furthermore, the scheme ensures forward and backward secrecy even

when a large number of revoked data consumers and infrastructure providers collude.

Single Point of Failure: The trusted authority represents a single point of failure for the

whole scheme. In case the trusted authority goes down the whole scheme would no

longer function. A potential solution to the problem is that the data owner ensures that

backup of the trusted authority is made so that in case the data relating to security

policies and keys on trusted authority is lost, it can be recovered. Furthermore, the data

owner should also ensure that back up servers come online in case the main server is not

working.

Fine-grained Access Control: ACDC3 enables a data owner to deploy fine grained access

control policies which are independent of data confidentiality. This ensures that rich

policies are developed with focus on corporate governance rather than on the

technicalities of cryptography and software. This setting is very suitable to the Cloud

computing scenarios as there would be many enterprises (domains) that would be using

the Cloud while acting as both data owner and data consumer.

Data Consumer Access Privilege Confidentiality: The major drawback of our scheme that

we have already mentioned is the use of meta-files. However if we compare our scheme

with other scheme (that use ABE) such as that of Yu et al [95], only the leaf nodes of the

access tree are disclosed to the infrastructure providers in this scheme. Therefore, this

scheme also reveals attribute information relating to data consumers to the

infrastructure provider. Our scheme achieves similar levels of access privilege

confidentiality as that of the previous schemes. However, it offers a less complex and

richer mechanism for fine grained access control.

178

CHAPTER 8

EXPERIMENTAL VALIDATION

In this Chapter we present the experimental results of the ACDC3 scheme and security

risk framework. The Risk Assessment Framework implementations were validated by

performing experiments within the OPTIMIS toolkit. The toolkit adopt use cases such as

multi Cloud and enterprise Cloud broker as explained in Chapter 2.

8.1 RESEARCH GAPS

There were five research gaps that were identified as part of this thesis. In this section,

the research gaps are revisited to link up the experimental validation chapter with the

research gaps identified earlier.

RG1 is the gap relating to the confidentiality of data hosted on Cloud platforms. Cloud

platforms where data is hosted are outside the physical control of the data owner.

Therefore, ensuring confidentiality of the data is very important. Conventional

mechanisms available for encryption can be applied to Cloud platforms but they cannot

scale as they are not developed to handle huge amount of subscribers. Therefore, the

requirement is to develop a scalable confidentiality scheme that can cater for the Cloud

179

computing scenario. Moreover, providing fine-grained access control and integrity of

data is also part of this research gap.

Research gap RG4 highlights the issue of user revocation in Cloud computing scenario.

When a user gets their access revoked, in conventional schemes, new keys are distributed

to existing subscribers. The broadcast server then uses the new key to encrypt. This task

is done to ensure that the revoked user can no longer access the system. The problem

with this approach is that it is not scalable as a large number of users leaving the system

regularly would require the scheme to follow the cumbersome process of generation,

revocation and issuance of new keys.

To address these two research gaps (RG1, RG4) the scheme of ACDC3 was developed. The

scheme provides a mechanism to ensure confidentiality of data hosted on Cloud

platforms whilst also providing user revocation. The results of the experiments with the

scheme are presented in this Chapter (ACDC3 Scheme).

Research gap RG5 highlights the problem of mitigating risk associated with Cloud

computing platforms. An organisation moving to the Cloud needs to understand what

sorts of risk they are taking. The Cloud-focussed risk framework presented in this thesis

attempts to address this challenge.

To address research gap RG5, a framework was developed for risk identification, threat

assessment and mitigation strategies for Cloud computing scenarios. For this, a risk

analysis was carried out for four different Cloud settings. In this Chapter we present the

results of the risk analysis performed using the IRAM toolkit. The results identify the

categories of risk and their corresponding impact in the form of very high, high, medium

and low. The prioritisation of identified risks is also performed.

To fulfil the research gap RG1 and RG4, the ACDC3 scheme was developed. We present

in this Chapter the results of evaluating the ACDC3 scheme via a set of experiments. For

the ACDC3 scheme we have developed an experimentation model in which we draw two

comparisons of the scheme. The first comparison is with symmetric encryption scheme

AES and the second is when there is no encryption applied.

180

Cloud computing should create the illusion that the configuration relating to encryption,

decryption, management of security policies and management of keys is done

seamlessly. This illusion forms the basis of Cloud computing and it differentiates Cloud

computing from other forms of distributed computing. The research gaps RG2 is to

address this challenge by coming up with tools and technologies that would enable this

automatic configuration. RG2 is not tackled as part of this thesis and remains part of the

future work.

None of the analysed systems proposes a mechanism by which access control policies

that are distributed over multiple infrastructure providers are kept synchronised. In

Cloud computing scenarios, the data may reside and pass from numerous platforms like

Broker, Service provider and Infrastructure provider (IP). The challenge is to ensure

synchronisation of access control policies across these multiple domains. This research

gap RG3 is also part of future work and is not tackled in this thesis.

8.2 ORIGINAL CONTRIBUTION

The Security Risk Framework was developed in collaboration with University of Leeds as

part of the OPTIMIS project. The main contribution of the researcher came in the form of

threat assessment, prioritisation of threats, designing the Security Risk Framework and

threat inventory development. The implementation and algorithm development was

done as joint work between the researcher and Mariam Kiran, the implementation was

primarily led by Mariam whereas the researcher was in a support role.

For the ACDC3 scheme, from the conception, design all the way to the implementation

and experimentation is the sole work of the researcher. Franchesco La Torree did

contribute in verifying the design of the scheme, but these results are not presented in

this thesis.

181

8.3 SECURITY RISK FRAMEWORK

The Security Risk Framework described in Chapter 5 was developed as part of the Risk

Assessment Framework of the OPTIMIS project. This section is presenting results of the

threat assessment work undertaken in Chapter 5. The threat assessment was done to

identify the threats relating to Cloud computing scenarios. This work was done using ISF

IRAM toolkit. This section also presents the prioritisation of the Challenges that were

identified as a result of the threat assessment and vulnerability assessment. This section

has two main parts where the results are put forward. Sections are as follows,

 Threat Assessment

 Prioritisation of Challenges

8.3.1 THREAT ASSESSMENT

The risk assessment framework first requires that the main threats to Cloud computing

scenarios be identified. For this the Information Security Forum IRAM tool was used. This

tool comes with standard set of threats along with data relating to historical trends.

To undertake the threat assessment, following steps were taken

 Identification of threats relating to the Cloud computing scenario. For this a

detailed threat assessment was performed for Cloud computing scenarios. As part

of the threat assessment, the Cloud specific threats were prioritised

 Following the threat assessment vulnerability assessment was also provided for

the Cloud use cases

In figure 30, we present the result of the analysis. Three threats have fallen in the

category of very high; these are ‘Malfunction of system software’, ‘Malfunction of

computer/ network equipment’ and ‘Gaining unauthorised access to systems or

network’. Six threats are classified as high which are ‘Introducing malicious code’,

‘Distributing SPAM’, ‘Data leakage’, ‘Usage Control’, ‘Hypervisor level attacks’ and ‘User

errors’. The rest of the threats fall in the categories of either medium or low.

182

These threats come directly from the threat assessment performed in Chapter 5 section

5.4.

Figure 30: Results of Threat Analysis

The identification and the categorisation of the above mentioned threats was

instrumental in undertaking the risk assessment and also developing the security risk

framework. This enabled the researcher to understand that main threats and

vulnerabilities associated with Security Risk Framework.

8.3.2 PRIORITISATION OF CHALLENGES

From the threat analysis performed in the Chapter 5, we have shown that the information

security principles of integrity, confidentiality and availability are most relevant to the

Cloud related scenarios. The information risk ratings assigned shows that loss of

confidentiality is rated as the highest level of risk followed by availability and integrity.

Using this analysis, the challenge of ‘Access control in Cloud Computing’ is linked with

both availability and confidentiality. For instance, failure to ensure access control would

mean the loss of availability in case a legitimate user is denied access, whereas

unauthorised access would lead to the loss of confidentiality. Furthermore, an

unauthorised user who has write access can update the data as well, therefore it could

lead the loss of integrity. We have rated the challenge of ‘Access control in Cloud

183

Computing’ as the most important one as it has a direct impact on all of the security

principles.

For the challenge ‘Data Leakage Prevention’ confidentiality is the main concern. An

attacker who is able to leak confidential data by moving it and disclosing it to an

unauthorised source would mean the loss of confidentiality. We have rated this challenge

as the second most important as millions of users’ data would be hosted on infrastructure

providers. Ensuring that data is not leaked (especially of commercial nature) is of utmost

importance. If this challenge is not addressed customers would lose confidence in

infrastructure providers and that could potentially make them move away from hosting

data on the Cloud.

‘Hypervisor based IDS’ and ‘Hypervisor level Security’ impacts confidentiality and

integrity of data. We have rated ‘Hypervisor based IDS’ as the third most important

challenge as it would be highly desirable to detect and delete worms and viruses from

hypervisor level. This functionality would act as an added on functionality to supplement

other security functionalities. ‘Hypervisor level Security’ is an added functionality; not

providing it may not have a similar impact as the first two challenges have.

The challenge ratings are summarised as follows.

1. Access control in Cloud Computing (Confidentiality, Availability, Integrity)

2. Data Leakage Prevention (Confidentiality, Integrity)

3. Hypervisor based IDS (Confidentiality, Integrity)

4. Hypervisor level Security (Confidentiality, Integrity)

8.4 ACDC3 SCHEME

The ACDC3 scheme design, architecture and the research problem that it is solving is

detailed in Chapter 7. In this section we provide the result relating to the experimentation

and implementation of the scheme using the NICS Crypto Library[176]. For the

184

experimentation the focus of this section remains on the confidentiality, user revocation

and efficiency perspectives. The experimentation conducted for the ACDC3 scheme are

designed to compare the scenarios where there is no encryption and there is encryption

using symmetric keys.

8.4.1 NICS CRYPTO LIBRARY

NICS Crypto Library was developed primarily for an OpenID solution. The main

characteristic of the solution was that it was privacy preserving. The solution enabled

an Identity Provider to give attributes to other parties without being able to read their

values[177].

The NICS Crypto Library has three main programming modules, which are as follows,

 Global Parameters

 Proxy Re-Encryption

 Main Java File

The Global Parameters module assumes that all the global parameters are known by all

the parties involved in the scenario. Effectively, the library hard-codes the parameters

such that it can present the results required for the OpenID solution. For the Proxy Re-

Encryption module an implementation of the proxy encryption scheme is done. The

main Java file is used to run the scheme and provide it with initialisation vectors.

As explained above the library was designed for the OpenID solution therefore, we had

to write our own Java module for it to work.

8.4.2 ACDC3 JAVA MODULE

The code developed for the ACDC3 follows the steps mentioned below,

1. The program starts by creating global parameters that will be used to create the

keys. The global parameters are then passed to the initialisation module of the

library to start the setup stage.

185

2. The second step is to generate keys relating to the data owner, data consumer,

trusted authority and infrastructure provider.

3. As the scheme is based on Ateniese Scheme (Embodiment 2) it requires trusted

authority private key and data owner’s public key for this for the generation of re-

encryption keys. Once this information is provided Re-encryption keys are

generated.

4. Encrypt the message m using the core encryption key.

5. Encrypt m with Data Owner’s public key, at the trusted authority level.

6. Re-encrypt the tuple with the re-Encryption key at the trusted authority, result

will be another Cipher text. This is the process of re-encryption through which one

cipher text transforms into another.

7. Send the Cipher text to infrastructure provider. This we simulate the serializing of

the cipher and storing it in a file.

8. Once the request for access comes in from data consumer, download the cipher

from the infrastructure provider.

9. Now using the trusted authority re-encryption key, transform the cipher text from

CT’’ to CT’.

10. In the final step, pass the CT’ to the data consumer.

11. Data consumer at this stage will decrypt the file using the core decryption key.

Refer to Chapter 7 for a detailed description of the scheme and its design. The code of

the scheme is present in the annex section of the thesis. For the implementation there

were numerous issues. For instance, since the NICS crypto library was used the

implementation scope was stuck with what the library has to offer. Moreover, we were

also bound to write a single Java application as the library was primarily used to be run

on single server. This limited our capacity to run experiments on different Cloud

platforms. The implementation is a simulation as we have all the players of the scenario

residing on the same platform.

186

8.4.3 DESIGNING THE EXPERIMENTS

The purpose of the experiments is to demonstrate the efficiency of the ACDC3 scheme

compared against standard encryption and no encryption. The experiments are designed

in such a way that the actor Data Owner, Data Consumer, Infrastructure Provider and

Trusted Authority reside on the same computer. For each of the actor time that is

recorded for uploading and downloading of the file. The detail of the scheme itself and

its mathematical formalisation is present in Chapter 7.

To calculate the efficiency of the scheme the comparison is done between two scenarios.

One scenario is that when there is no encryption, the other scenario is that when there

is symmetric encryption. Results are compiled against these two scenarios.

The experiment run as a simulation, the characteristics of the machine are as follows,

 Processor: Intel Core i5 1.7 GHZ

 RAM: 8GB

 System Type: 64 bit Operating System Windows Enterprise 8.1

The testing strategy of the scheme was divided into three parts,

 The first experiment is to do with the uploading and downloading of a file on the

Cloud. There is no encryption involved in this stage, therefore only the upload and

download times are recorded. Finally the total time of upload and download is

also calculated.

 The second experiment starts by encrypting a file through normal symmetric

encryption using 128 Bit Key. The algorithm used is AES, padding is PKCS5 and the

mode of encryption is CBC. CBC mode of encryption is used because its adds

randomness to the cipher text. The ECB mode of encryption always creates the

same cipher for the same plain text as it does not add padding. This makes the

encryption weak. Afterwards the file is uploaded on the Cloud. The upload takes

place from Data owner to Infrastructure provider. The third step is when a request

for accessing the file comes from Data Consumer. The file is downloaded from

187

Infrastructure provider to Data consumer. In the last step the file is decrypted by

the Data consumer.

 The third experiment encompass the processes of the ACDC3 scheme as explained

in the previous section. These steps would include initialisation, key generation,

re-encryption and decryption.

The three above test cases were developed to find out the performance overhead in

terms of encryption and decryption for the ACDC3 scheme.

The data size that is selected for encryption is 200 bytes, 400 bytes, 800 bytes, 1600 bytes

and 3200 bytes. The reason we went along with these sizes is because comparatively the

size difference between them is enough to show us the correlation that exist. Rather than

taking different sizes our focus was on running the experiment on the same sizes ten

times. This would enable us to gather the average time taken for each size. Moreover,

we have limitation from a resource perspective that would require numerous testbed

machines hosted on different platforms. Furthermore, from an implementation

perspective we have the limitation that increasing the size of the files was crashing the

program. The program require recoding and it would have to be deployed on a more

powerful system for it to work. The variance that existed when running the experiment

on the same size was significant, therefore it was imperative to run the test many times.

Figure 33 shows the output of the code as per the experiments,

188

Figure 31: Output of the Experimentation

Figure 31 presents the time taken by different stages of the simulator. For instance time

taken to perform core encryption, upload the file to the server, download the file from

the server, performing decryption. These stages are for symmetric encryption whereas

other stages are added for the ACDC3 scheme.

8.4.4 Testing

The results for the experimentation done is divided as the different file sizes, the tables

15 and 16 show the results of the experiment for 3.2 KB size only. Similar test were

conducted for the sizes of 1.6KB. 800 Bytes, 400 Bytes and 200 Bytes. A total of 50

experiments were conducted in order to determine the average time for encryption,

decryption and other stages of the ACDC3 scheme with respect to different data size.

The times are calculated in nanoseconds for all the values apart from total values which

are recorded in milliseconds. The experiments are conducted for three scenarios,

189

“Without Encryption”, “With Symmetric Encryption” and “With Re-Encryption

Embodiment 2”. The table 15 comprise of the scenarios of “With Encryption” and “With

Symmetric Encryption” whereas the table 16 comprise of the scenario of “With Re-

Encryption Embodiment 2”.

190

Table 15: 3.2 KB size, showing time for Without Encryption and with Symmetric

Encryption

191

Table 16: 3.2 KB size, showing time for ACDC3 scheme

192

Similar test were run for values of 1.6KB, 800 Bytes, 400 Bytes and 200 Bytes. After

running the test, average time was calculated for each size which is then stored in the

table 16.

There is variance in the time values of the different stages of the same operation. This is

due to the processor of the server performing other processing tasks at the time it is

undertaking encryption, decryption operations etc.

8.4.5 Results of the Experiments

For all the tests that were run, average time was calculated for encryption for each size

against the three different experiments mentioned in the previous section.

X-axis represents the size of the file in kilobytes whereas the Y-axis presents the time in

milliseconds. The results of the experiments are as follows:

Figure 32: Graph for different times recorded for the three scenarios. X-axis showing

data size in kilobytes, Y-axis showing time in milliseconds for encryption

The figure 32 show that the time recorded for symmetric encryption and for no

encryption is very similar. They both fall on the same line; this is because symmetric

encryption is highly efficient. The time for ACDC3 is changing with the size of the data as

0

200000

400000

600000

800000

1000000

1200000

5 (3.2
KB)

4 (1.6
KB)

3
(0.8KB)

2 (0.4
KB)

1 (0.2
KB)

Without Encryption

With Symmetric
Encryption

With Re-Encryption
(Embodiment 2)

193

shown above. It is pertinent to mention here that we do not include the complexities that

come with the usage of symmetric encryption. The deployment of PKI infrastructure and

distribution of keys. However for the ACDC3 these complexities are accounted for.

Moreover, the encryption process for the ACDC3 scheme is a one off operation.

Figure 33 below shows the total time taken for re-encryption stage in the ACDC3 scheme

against data size. The graph shows that the size of the data doesn’t have much impact,

as the re-encryption operation that is performed is pretty efficient. It depends more on

the processor time and the number of other jobs running when this experiment is

conducted. In this experiment the X-axis presents the size of the file in kilobytes whereas

the Y-axis presents the time in milliseconds.

The results presented in the figure 33 are very important from the perspective that the

size of the data has little or no impact on the re-encryption operations. Therefore, this

experiment validates that the re-encryption process is agnostic to the data size. Also

validates the claims with regards to the efficiency and scalability of the scheme. The re-

encryption process would be required for all the data that is being encrypted. Therefore,

it will be repeated every time file is accessed.

Figure 33: Graph of data size against Re-Encryption time. X-axis showing data size in

kilobytes, Y-axis showing time in milliseconds for re-encryption

5600000

5700000

5800000

5900000

6000000

6100000

6200000

6300000

6400000

6500000

5 (3.2 KB)4 (1.6 KB) 3 (0.8KB) 2 (0.4 KB)1 (0.2 KB)

TA ReEncryption

TA ReEncryption

194

Figure 34: Comparing the decryption times against data size X-axis showing data size

in kilobytes, Y-axis showing time in milliseconds for the performance overhead

As in the ACDC3 scheme, the encryption is a one off process, it is undertaken by the data

owner at the start of the scheme. Therefore, the actual performance overhead is

calculated by comparing the encryption plus decryption (E+D) time of symmetric

encryption against ACDC3 scheme decryption steps. The decryption steps include re-

encryption, first level decryption and core decryption. Figure 34 shows the performance

overhead of the ACDC3 scheme when compare against symmetric encryption. The figure

34 results show that the performance overhead is on average 1.6 times compare with

symmetric encryption. In this analysis we are not catering for the time that symmetric

encryption would take when there is going to be a user revocation.

As explained before, when a user revocation is done, data re-encryption is required in

the symmetric encryption setup. As the user leaving the trust domain still have the key

that it can use to decrypt data. Moreover, the process of re-encrypting the data gets more

complicated as the number of users go up in the symmetric encryption setup making the

symmetric encryption non-scalable.

In the ACDC3 scheme setup, there is no such complication relating to user revocation, the

data is encrypted once and no re-encryption is required when a user revocation takes

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

5 (3.2
KB)

4 (1.6
KB)

3 (0.8KB) 2 (0.4
KB)

1 (0.2
KB)

Performance overhead

Performance overhead

195

place. Therefore, arguably ACDC3 would scale in a Cloud computing environment

compared with symmetric or asymmetric encryption. The decryption process would be

required whenever there is a file access and it is not a one off process.

8.5 CONCLUSION

As part of this research work the Security Risk Framework was implemented and

integrated in the OPTIMIS project. Moreover, the threat analysis performed enable the

identification of risk and their prioritisation as per the OPTIMIS use cases. The Security

Risk Assessment model was implemented until the deployment phase only and

presented as part of the risk assessor at deployment stage. At operation stage its

implementation work is planned for future research issues, with monitoring

infrastructure providing real-time data for the risk assessor for continuous security risk

assessment.

As for the ACDC3 scheme, the implementation of the scheme was done using the NICS

Crypto library. After the implementation experiments were designed for three scenarios,

No Encryption, Encryption using Symmetric Cryptography and ACDC3 scheme. Results

show that ACDC3 is 1.6 times slower than the symmetric encryption in a setting where

we are not taking into account key management complexity relating to the symmetric

cryptography in a Cloud environment. The ACDC3 does however, resolve the issue of user

revocation and provides a scalable solution in the Cloud computing environment.

196

CHAPTER 9

CONCLUSIONS

9.1 SUMMARY

This thesis has presented research that takes forward the engineering of secure Cloud

systems. Our review work identified a variety of “research gaps” that drove the

direction of the actual research conducted. Three specific research contributions were

made (detailed in chapters 5, 6, and 7). Below we restate what the research gaps were,

summarise the success of the work carried out, summarise limitations of the work and

its evaluation, and provide pointers for future work.

 The aim of the thesis was to undertake research in the area of Cloud computing

security. From the start of the project, it had two tiers: an industrial one and an

academic one. The industrial one was focusing on the known challenges that the

industry was facing whereas from the academic point of view the whole idea of

Cloud computing was questioned.

 This thesis starts with highlighting Cloud definitions, differentiation between

Cloud computing and other forms of computing. From an industrial perspective

197

the evolution of Cloud computing was explained. This is followed by a state of the

art implementation review of Cloud computing delivery models and their security

specification. The idea was to develop a solid understanding of the Cloud

computing products and their limitations.

 The next logical step was to identify the state of the art from the academic

perspective. This would mean identifying research gaps. For this, a thorough

literature review was undertaken where the research gaps of scalability, user

revocation and security risk management for cloud computing scenarios were

identified.

 The research gap of risk management is filled by developing a Security Risk

Framework, which allows monitoring of threats based on the events being logged

by the detectors leading to a calculation of the relative risk. The relative risk is a

barometer that enables a computer administrator to mitigate the risk by taking

corrective actions or accepting the risk. For the Security Risk Framework a threat

analysis is performed that leads to the identification of major threats relating to

Cloud computing. The threats are prioritised and used in subsequent parts of the

framework.

 The thesis also presents how one can secure a video broadcast subscription

service in the Cloud computing setup. The scalable video scenario is built on top

of an IaaS Cloud and shown how a video can be encrypted and authenticated

efficiently.

 To solve the challenge of scalability, user revocation and data confidentiality in

Cloud computing. We have developed a novel scheme ACDC3, to the best of our

knowledge it is the only scheme that achieves efficient user revocation, data

confidentiality and scalability simultaneously for access control scenarios in Cloud

computing. We have achieved this objective by using Ateniese proxy re-

encryption (PRE) and by decoupling the operations of encryption and access

control.

 In the final part of this thesis, the experimental validation for the Security Risk

Framework and ACDC3 scheme is detailed. The Security Risk Framework was

198

implemented and integrated in the OPTIMIS project. Moreover, the threat

analysis performed enable the identification of risk and their prioritisation as per

the OPTIMIS use cases. As for the ACDC3 scheme, the testing showed there is a

performance overhead of 1.6 times on average in absolute terms. This is in

comparison with symmetric cryptography. However, the complexity of key

management and data re-encryption within the symmetric cryptography makes

it unviable for Cloud platforms due to scalability issue. This problem of scalability

and user revocation are resolved by the ACDC3 scheme. The ACDC3 scheme would

fare well in scenarios where the number of subscribers are in the millions and

there is frequent requirement for joining and leaving of the subscribers. The

scenarios where the subscribers are relatively small and the joining and leaving

operations are not frequent the symmetric encryption scheme would be more

efficient.

 The research undertaken in the EngD was published in four research papers. From

an industrial perspective two patents were developed from the research work.

Furthermore, the research work made direct contributions towards the Cloud

strategy of BT through numerous papers and deliverables.

9.2 LIMITATIONS

For the security risk framework the experiments were conducted using the OPTIMIS

testbed. The OPTIMIS project came to end two years ago. There is a major limitation as

far as testing is concerned for the security risk framework as there is no testbed where

further testing can be done.

The testing of the security risk framework was confined to the deployment stage and not

to the operational stage. The testing during the operational stage would have potentially

highlighted further issues with the scheme.

For ACDC3 a major limitation was that of testing the scheme on numerous cloud

platforms while it is providing a service widely consumed. The testing was carried out via

199

a simulation on a single machine of users accessing services via the scheme. In practice,

of course, the scheme would be implemented across platforms and clients and various

server agents would not be co-located. A more realistic deployment would likely raise

practical integration issues associated with the scheme. The testing was done on data

size which ranges from 200 bytes to 3200 bytes. The program was not able to handle

larger size of data sets as it crashed. This was due to hardware limitation and also the

implementation requires re-coding. We do believe that larger data sets should be tested

to better understand the robustness of the scheme.

The fine granularity part of the ACDC3 scheme was not developed. Therefore it would be

required to take an already existing implementation of XACML and integrate with ACDC3

or to implement a new module within the ACDC3 scheme. The testing was largely aimed

at evaluating the confidentiality and availability features of the scheme and not the fine

granularity ones.

User revocation for ACDC3 scheme was not experimentally validated. For this validation

it would be required to setup large number of users on Cloud infrastructure. These users

would consume the cloud services using the communication protocols laid out in the

ACDC3 scheme. A program monitoring the scheme would have to be developed which

can then record the metrics of efficiency and confidentiality. This program would also

validate that the user revocation functionality of the scheme is working as per the

mathematical formalisation mentioned in Chapter 7.

9.3 FUTURE WORK

The future work for Security Risk Framework includes testing the system on a Cloud

platform with monitoring agents installed which will log certain threats when they occur.

This will then be extended to work on determine threats which may be eventually seen

based on the data being collected and difficult to determine directly from the events.

Finally the results from the testing and evaluation, advocate that the risk model does

correctly assess and prioritize the risk.

200

The Security Risk Assessment model implementation needs to be extended to encompass

the Operational Phase, where run-time monitoring agents could be deployed to enable

continuous security risk assessment. It is envisioned that the security risk framework

should be an open source code that could be integrated with other Cloud adoption

toolkits. It would enable the decision makers to make sound decisions on Cloud adoption

from an information security perspective.

For the Scalable video scenario future work would be focused on calculating the time

delay and efficiency affecting the setup of the video broadcasting and predicting how this

will affect the performance of the distributions.

The future work for the ACDC3 scheme is around the development of prototype that sits

on different Cloud platforms (Amazon, Google) and ensures user revocation and

scalability while ensuring confidentiality of data. It would be desirable for the future work

to expand the experiments that we have done for the ACDC3 scheme by enhancing the

size of the files that were used and also by having a larger number of simultaneous users

of the scheme. Moreover, the implementation and integration of the fine granular part

of the scheme is required. This would enable the testing of not only the scalability part

of the scheme but also the fine granular part as well. Once this implementation and

integration is complete the scheme would be in a suitable state to release commercially.

201

APPENDICES

SECURITY RISK FRAMEWORK CODE AND LOGS

This sections details the code written for the Security Risk Framework. Furthermore the logs

section show a sample experimentation for the security risk framework.

RISK MODEL FOR THE SECURITY RISK FRAMEWORK

package securityriskjavamodel;

import java.util.ArrayList;

import java.util.Iterator;

import java.util.List;

import java.util.Random;

public class RiskModel {

 public RiskModel() {

 System.out.println("hello from security risk model");

 // EvaluationMatrix matrix=new EvaluationMatrix();

 }

 public double getsecurity_risk(int ausecase, List threatList) throws Exception //returns the

total number of threats identified

 {

 int t_count = 0;

202

 //connect to database and get the list of threats

 //Iterator collectedthreatListIterator = threatList.iterator();

 System.out.println("Total number of threats found"+threatList.size());

 //parse list

 double prob_likelihood, prob_priority;

 double prob_threat;

 double sum_prob_threat = 0.0;

 double prob_inverse;

 double prob_b;

 int i;

 //EvaluationMatrix matrix=new EvaluationMatrix();

 for (i = 0; i < threatList.size(); i++) {

 ThreatData tdz=new ThreatData();

 tdz=(ThreatData)threatList.get(i);

 if (((tdz.get_usecase() == ausecase) || (tdz.get_usecase() == 0)) && ((tdz.get_stage() ==

0) || (tdz.get_stage() == 2))) {

//matrix.setEvaluationMatrixValue(ts,reference[i].get_likelihood(),reference[i].get_priority());

 prob_likelihood = (double) tdz.get_likelihood() / 5.0;

 prob_priority = (double) tdz.get_priority() / 5.0;

 prob_inverse = 1.0 - prob_priority;

203

 prob_b = (prob_likelihood * prob_priority) + prob_inverse;

 prob_threat = (prob_likelihood * prob_priority) / prob_b;

 sum_prob_threat += prob_threat;

 t_count++;

 }

 }

 //printout the matrix

 System.out.println("Total number of threats found " + t_count);

 sum_prob_threat = sum_prob_threat / (double) t_count;

 System.out.println("prod=" + sum_prob_threat);

 return sum_prob_threat;

 }

 // function 6

 public double getsecurity_risk_operation(int ausecase, double total_prob, List threatList)

throws Exception {

 int t_count = 0;

 //connect to database and get the list of threats

 int i;

 for (i = 0; i < threatList.size(); i++) {

 ThreatData tdz=new ThreatData();

 tdz=(ThreatData)threatList.get(i);

 }

 Random var = new Random();

 double number = 0.0;

204

 //now traverse the list to form matrix

 double prob_likelihood, prob_priority;

 double prob_threat;

 double sum_prob_threat = 0.0;

 double prob_inverse;

 double prob_b;

 double relative_risk = 0.0, total_event_rate = 0.0;

 //EvaluationMatrix matrix=new EvaluationMatrix();

 for (i = 0; i < threatList.size(); i++) {

 ThreatData tdz=new ThreatData();

 tdz=(ThreatData)threatList.get(i);

 if (((tdz.get_usecase() == ausecase) || (tdz.get_usecase() == 0)) && ((tdz.get_stage() ==

1) || (tdz.get_stage() == 2))) {

 //Integer ti= reference[i].get_threat_id();

 //String ts=ti.toString();

//matrix.setEvaluationMatrixValue(ts,reference[i].get_likelihood(),reference[i].get_priority());

 prob_likelihood = (double) tdz.get_likelihood() / 5.0;

 prob_priority = (double) tdz.get_priority()/ 5.0;

 prob_inverse = 1.0 - prob_priority;

 prob_b = (prob_likelihood * prob_priority) + prob_inverse;

 prob_threat = (prob_likelihood * prob_priority) / prob_b;

 sum_prob_threat += prob_threat;

 t_count++;

 System.out.println("Total number of threats found threat: " + tdz.get_name());

 //check monitoring inputs

205

 }

 }

 System.out.println("Total number of threats found "+ t_count);

 sum_prob_threat = sum_prob_threat / (double) t_count;

 //System.out.println("Security risk monitored for usecase function 6 is " +

sum_prob_threat);

 // add monitoring loop

 int count = 0;

 for (i = 0; i < 10; i++) {

 number = var.nextDouble();

 if (number > 0.5) {

 count++;

 }

 }

 //System.out.println("Number of events recorded "+ count);

 total_event_rate = (double) count / 10.0; //assumption last 10 counts for service

 relative_risk = total_event_rate / sum_prob_threat;

 //System.out.println("Total event rate is in the last 10 counts "+ total_event_rate);

 //System.out.println("Relative risk calculated is "+ relative_risk);

 //System.out.println("If RR=1 do nothing, RR<1 accept risk, If RR>1 apply mitigation

strategy");

 return sum_prob_threat;

 }

}

206

JAVA SECURITY RISK PACKAGE

package securityriskjavamodel;

import java.io.File;

import java.util.ArrayList;

import java.util.List;

import org.w3c.dom.Document;

import org.w3c.dom.*;

import javax.xml.parsers.DocumentBuilderFactory;

import javax.xml.parsers.DocumentBuilder;

import org.xml.sax.SAXException;

import org.xml.sax.SAXParseException;

import securityriskjavamodel.ThreatData;

public class SecurityRiskJavaModel {

 /**

 * @param args the command line arguments

 */

 public static void main(String[] args) {

 // TODO code application logic here

 //read the xml and create a list

 List<ThreatData> threatList=new ArrayList<ThreatData>();

 try

 {

207

 DocumentBuilderFactory docBuilderFactory = DocumentBuilderFactory.newInstance();

 DocumentBuilder docBuilder = docBuilderFactory.newDocumentBuilder();

 Document doc = docBuilder.parse (new File("src/resources/threatdatabase.xml"));

 // normalize text representation

 doc.getDocumentElement ().normalize ();

 System.out.println ("Root element of the doc is " +

 doc.getDocumentElement().getNodeName());

 NodeList listOfThreats = doc.getElementsByTagName("threat");

 int totalThreats = listOfThreats.getLength();

 System.out.println("Total no of threats : " + totalThreats);

 int threat_id=0;

 String name=" ";

 int usecase=0 ;

 int stage= 0;

 String asset= " ";

 int priority=0;

 int likelihood=0;

 for(int s=0; s<listOfThreats.getLength() ; s++){

 Node firstThreatNode = listOfThreats.item(s);

 if(firstThreatNode.getNodeType() == Node.ELEMENT_NODE){

 String t=null;

 Element firstThreatElement = (Element)firstThreatNode;

 //-------

208

 NodeList firstthreadIDList =

firstThreatElement.getElementsByTagName("threat_id");

 Element firstthreadIDElement = (Element)firstthreadIDList.item(0);

 NodeList textthreadIDList = firstthreadIDElement.getChildNodes();

 System.out.println("ThreatID : " +

 ((Node)textthreadIDList.item(0)).getNodeValue().trim());

 t=((Node)textthreadIDList.item(0)).getNodeValue().trim();

 threat_id=Integer.valueOf(t);

 //-------

 NodeList tnameList = firstThreatElement.getElementsByTagName("name");

 Element tnameElement = (Element)tnameList.item(0);

 NodeList texttnameList = tnameElement.getChildNodes();

 System.out.println("Last Name : " +

 ((Node)texttnameList.item(0)).getNodeValue().trim());

 name=((Node)texttnameList.item(0)).getNodeValue().trim();

 //----

 NodeList usecaseList = firstThreatElement.getElementsByTagName("usecase");

 Element usecaseElement = (Element)usecaseList.item(0);

 NodeList textusecaseList = usecaseElement.getChildNodes();

 System.out.println("Age : " +

 ((Node)textusecaseList.item(0)).getNodeValue().trim());

 t=((Node)textusecaseList.item(0)).getNodeValue().trim();

 usecase=Integer.valueOf(t);

 //------

 NodeList stageList = firstThreatElement.getElementsByTagName("stage");

 Element stageElement = (Element)stageList.item(0);

209

 NodeList textstageList = stageElement.getChildNodes();

 System.out.println("stage : " +

 ((Node)textstageList.item(0)).getNodeValue().trim());

 t=((Node)textstageList.item(0)).getNodeValue().trim();

 stage=Integer.valueOf(t);

 //------

 NodeList assetList = firstThreatElement.getElementsByTagName("asset");

 Element assetElement = (Element)assetList.item(0);

 NodeList textassetList = assetElement.getChildNodes();

 System.out.println("asset: " +

 ((Node)textassetList.item(0)).getNodeValue().trim());

 asset=((Node)textassetList.item(0)).getNodeValue().trim();

 //------

 NodeList priorityList = firstThreatElement.getElementsByTagName("priority");

 Element priorityElement = (Element)priorityList.item(0);

 NodeList textpriorityList =priorityElement.getChildNodes();

 System.out.println("priority : " +

 ((Node)textpriorityList.item(0)).getNodeValue().trim());

 t=((Node)textpriorityList.item(0)).getNodeValue().trim();

 priority=Integer.valueOf(t);

 //------

 NodeList likelihoodList = firstThreatElement.getElementsByTagName("likelihood");

 Element likelihoodElement = (Element)likelihoodList.item(0);

210

 NodeList textlikelihoodList =likelihoodElement.getChildNodes();

 System.out.println("likelihood : " +

 ((Node)textlikelihoodList.item(0)).getNodeValue().trim());

 t=((Node)textlikelihoodList.item(0)).getNodeValue().trim();

 likelihood=Integer.valueOf(t);

 ThreatData ntd=new ThreatData(threat_id, name, usecase, stage, asset,

priority,likelihood);

 threatList.add(ntd);

 }//end of if clause

 }//end of for loop with s var

 }

 catch (SAXParseException err) {

 System.out.println ("** Parsing error" + ", line "

 + err.getLineNumber () + ", uri " + err.getSystemId ());

 System.out.println(" " + err.getMessage ());

 }

 catch (SAXException e) {

 Exception x = e.getException ();

 ((x == null) ? e : x).printStackTrace ();

 }

 catch (Throwable t) {

 t.printStackTrace ();

 }

 System.out.println("Size of threat list" + threatList.size());

211

 RiskModel rm=new RiskModel();

 //calculate security risk at deployment

 double dep=0.0;

 int u= 2;

 try

 {

 dep= rm.getsecurity_risk(u, threatList);

 System.out.println("Security risk for usecase Private is " + dep);

 }

 catch(Exception e)

 {

 }

 try{

 double stagesix=rm.getsecurity_risk_operation(u,dep, threatList);

 System.out.println("Security risk for usecase function 6 is " + stagesix);

 }

 catch(Exception e)

 {

 System.out.println("print "+ e);

 }

 }

}

212

THREAT DATA JAVA CODE

/*

 * To change this template, choose Tools | Templates

 * and open the template in the editor.

 */

package securityriskjavamodel;

public class ThreatData {

 int threat_id=0;

 String name=" ";

 int usecase=0 ;

 int stage= 0;

 String asset= " ";

 int priority=0;

 int likelihood=0;

 public ThreatData()

 {

 }

 public ThreatData(int athreat_id, String aname, int ausecase, int astage, String aasset, int

apriority, int alikelihood)

 {

 threat_id=athreat_id;

 name=aname;

 usecase=ausecase;

 stage= astage;

 asset= aasset;

 priority=apriority;

 likelihood=alikelihood;

213

 }

 public int get_threat_id()

 {

 return threat_id;

 }

 public String get_name()

 {

 return name;

 }

 public int get_usecase()

 {

 return usecase;

 }

 public int get_stage()

 {

 return stage;

 }

 public String get_asset()

 {

 return asset;

 }

 public int get_priority()

 {

 return priority;

214

 }

 public int get_likelihood()

 {

 return likelihood;

 }

 public void set_threat_id(int athreat_id)

 {

 threat_id=athreat_id;

 }

 public void set_name(String aname)

 {

 name=aname;

 }

 public void set_usecase(int ausecase)

 {

 usecase=ausecase;

 }

 public void set_stage(int astage)

 {

 stage=astage;

 }

 public void set_asset(String aasset)

 {

 asset=aasset;

215

 }

 public void set_priority(int apriority)

 {

 priority=apriority;

 }

 public void set_likelihood(int alikelihood)

 {

 likelihood=alikelihood;

 }

}

LOGS FOR SECURITY RISK FRAMEWORK EXPERIMENTATION

Monitoring logs used for experimentation are as follows,

Extract from log:

104 01/23/1998 16:59:09 00:00:02 http 1879 80 192.168.1.30 192.168.0.40 0 -

105 01/23/1998 16:59:12 00:00:02 http 1880 80 192.168.1.30 192.168.0.40 0 -

107 01/23/1998 16:59:15 00:00:01 http 1881 80 192.168.1.30 192.168.0.40 0 -

108 01/23/1998 16:59:18 00:00:01 http 1882 80 192.168.1.30 192.168.0.40 0 -

109 01/23/1998 16:59:21 00:00:01 http 1883 80 192.168.1.30 192.168.0.40 0 -

110 01/23/1998 16:59:23 00:00:24 telnet 1884 23 192.168.1.30 192.168.0.20 1 guess

111 01/23/1998 16:59:24 00:00:01 http 1885 80 192.168.1.30 192.168.0.40 0 -

112 01/23/1998 16:59:26 00:00:02 http 1886 80 192.168.1.30 192.168.0.40 0 -

113 01/23/1998 16:59:29 00:00:02 http 1887 80 192.168.1.30 192.168.0.40 0 -

115 01/23/1998 16:59:33 00:00:02 http 1889 80 192.168.1.30 192.168.0.40 0 -

216

116 01/23/1998 16:59:33 00:01:41 telnet 1890 23 192.168.1.30 192.168.0.20 0 -

117 01/23/1998 16:59:36 00:00:02 http 1891 80 192.168.1.30 192.168.0.40 0 -

118 01/23/1998 16:59:36 00:00:12 ftp 1892 21 192.168.1.30 192.168.0.20 0 -

119 01/23/1998 16:59:42 00:00:00 ftp-data 20 1893 192.168.0.20 192.168.1.30 0 -

120 01/23/1998 16:59:45 00:00:01 ftp-data 20 1894 192.168.0.20 192.168.1.30 0 -

121 01/23/1998 16:59:47 00:00:00 ftp-data 20 1895 192.168.0.20 192.168.1.30 0 -

122 01/23/1998 16:59:53 00:00:01 smtp 1900 25 192.168.1.30 192.168.0.20 0 -

123 01/23/1998 16:59:57 00:00:16 ftp 43546 21 192.168.0.40 192.168.1.30 0 -

124 01/23/1998 17:00:01 00:00:00 ftp-data 20 43548 192.168.1.30 192.168.0.40 0 -

125 01/23/1998 17:00:02 00:00:02 rsh 1023 514 192.168.1.30 192.168.0.20 1 rcp

126 01/23/1998 17:00:03 00:00:22 telnet 1906 23 192.168.1.30 192.168.0.20 1 guess

127 01/23/1998 17:00:04 00:00:01 ftp-data 20 43550 192.168.1.30 192.168.0.40 0 -

128 01/23/1998 17:00:05 00:00:14 rlogin 1022 513 192.168.1.30 192.168.0.20 1 rlogin

129 01/23/1998 17:00:07 00:00:00 ftp-data 20 43552 192.168.1.30 192.168.0.40 0 -

130 01/23/1998 17:00:09 00:00:00 ftp-data 20 43554 192.168.1.30 192.168.0.40 0 -

131 01/23/1998 17:00:10 00:00:11 ftp 43555 21 192.168.0.40 192.168.1.30 0 -

132 01/23/1998 17:00:12 00:00:00 ftp-data 20 43558 192.168.1.30 192.168.0.40 0 -

133 01/23/1998 17:00:16 00:00:00 ftp-data 20 43562 192.168.1.30 192.168.0.40 0 -

The logs have been collected from DARPA's test run for intrusion detection systems. The

sample contains simple attacks which are included to illustrate how intrusion detection

systems will be scored. A session is labelled as containing an attack if it contains any

component of an attack. Attacks include instances where a remote user illegally obtains

local user-level privileges or local root-level privileges on a target machine and also

217

instances where a remote user surveys a potential target for weaknesses or searches for

potential targets. Attacks in the sample data include the following:

Name Description

guess Remote user guesses many passwords to log into a target machine

ping-sweep Low level ICMP ping sweep to identify target machines

port-scan Determine which services on a target machine are active

phf Run Unix command line on a web server

rlogin Rlogin to target machine without a password

rsh Execute a command on the target machine without a password

rcp Remotely copy a file to/from target machine without a password

Another kind of parsing can be done to see if any changes to the database have been received. In that case,

the following keywords are parsed for "DPI Rule: 1000608 - Generic SQL Injection Prevention".

218

PROXY ENCRYPTION LIBRARY

The proxy encryption library called the Nics Crypto Library was developed by David Nunez. This

library was used by the ACDC3 scheme.

The library has three main parts

 AFGHGlobalParameters.java

 AFGHProxyReEncryption.java

 ProxyMain.java

AFGHGLOBALPARAMETERS.JAVA

/*

 * To change this template, choose Tools | Templates

 * and open the template in the editor.

 */

package nics.crypto.proxy.afgh;

import it.unisa.dia.gas.jpbc.CurveGenerator;

import it.unisa.dia.gas.jpbc.CurveParameters;

import it.unisa.dia.gas.jpbc.Element;

import it.unisa.dia.gas.jpbc.ElementPowPreProcessing;

import it.unisa.dia.gas.jpbc.Field;

import it.unisa.dia.gas.jpbc.Pairing;

import it.unisa.dia.gas.plaf.jpbc.field.curve.CurveField;

import it.unisa.dia.gas.plaf.jpbc.pairing.DefaultCurveParameters;

import it.unisa.dia.gas.plaf.jpbc.pairing.a.TypeACurveGenerator;

import it.unisa.dia.gas.plaf.jpbc.pairing.a.TypeAPairing;

import java.io.ByteArrayInputStream;

import java.io.File;

import java.io.FileInputStream;

import java.io.FileNotFoundException;

import java.io.InputStream;

import java.util.Random;

import java.util.logging.Level;

import java.util.logging.Logger;

/**

 *

219

 * @author david

 */

public class AFGHGlobalParameters {

 private int rBits, qBits;

 private Pairing e;

 private Field G1, G2, Zq;

 private Element g, Z;

 private ElementPowPreProcessing g_ppp, Z_ppp;

 private CurveParameters curveParams;

 private Random random;

 public AFGHGlobalParameters(DefaultCurveParameters curveParameters){

 initialize(curveParameters);

 }

 public AFGHGlobalParameters(int r, int q) {

 rBits = r;

 qBits = q;

 random = new Random(0);

 boolean generateCurveFieldGen = false;

 // Init the generator...

 CurveGenerator curveGenerator = new TypeACurveGenerator(random, rBits, qBits, generateCurveFieldGen);

 // Generate the parameters...

 curveParams = curveGenerator.generate();

 initialize(curveParams);

 }

 public AFGHGlobalParameters(InputStream is){

 curveParams = new DefaultCurveParameters();

 ((DefaultCurveParameters) curveParams).load(is);

 initialize(curveParams);

 }

 public AFGHGlobalParameters(File f) throws FileNotFoundException{

220

 this(new FileInputStream(f));

 }

 public AFGHGlobalParameters(byte[] b){

 this(new String(b));

 }

 public AFGHGlobalParameters(String cp){

 try {

 curveParams = new DefaultCurveParameters();

 ByteArrayInputStream is = new ByteArrayInputStream(cp.getBytes());

 ((DefaultCurveParameters) curveParams).load(is);

 initialize(curveParams);

 } catch (Exception ex) {

 Logger.getLogger(AFGHGlobalParameters.class.getName()).log(Level.SEVERE, null, ex);

 }

 }

 private void initialize(CurveParameters cp){

 random = new Random(0);

 //e = PairingFactory.getPairing(cp);

 e = new TypeAPairing(random, cp);

 // Groups G1 and G2 of prime order q

 G1 = e.getG1();

 G2 = e.getGT();

 // Field Zq

 Zq = e.getZr();

 // Global system parameters: g \in G1, Z = e(g,g) \in G2

 g = ((CurveField) G1).getGen().getImmutable();

// if(g.isZero()){

// System.out.println("g es 0!! :(");

221

// System.exit(-1);

// }

// g = G1.newRandomElement().getImmutable();

 //System.out.println("g = " + ProxyMain.elementToString(g));

 Z = e.pairing(g, g).getImmutable();

 Z_ppp = Z.pow();

 g_ppp = g.pow();

 /*

 System.out.println(G1.getClass());

 System.out.println(G2.getClass());

 System.out.println(Zq.getClass());

 System.out.println(e.getClass());

 System.out.println(g.getClass());

 System.out.println(g.toBytes()[0]);

 System.out.println(Z.getClass());*/

 }

 public Field getG1() {

 return G1;

 }

 public Field getG2() {

 return G2;

 }

 public Element getZ() {

 return Z;

 }

 public Field getZq() {

 return Zq;

 }

222

 public Pairing getE() {

 return e;

 }

 public Element getG() {

 return g;

 }

 public ElementPowPreProcessing getZ_ppp() {

 return Z_ppp;

 }

 public ElementPowPreProcessing getG_ppp() {

 return g_ppp;

 }

 @Override

 public String toString() {

 return curveParams.toString();

 /*try {

 ByteArrayOutputStream os = new ByteArrayOutputStream();

 ObjectOutput oo = new ObjectOutputStream(os);

 curveParams.writeExternal(oo);

 os.close();

 return os.toString();

 } catch (IOException ex) {

 Logger.getLogger(GlobalParameters.class.getName()).log(Level.SEVERE, null, ex);

 return "";

 }*/

 }

 public byte[] toBytes() {

 return toString().getBytes();

 /*try {

 ByteArrayOutputStream os = new ByteArrayOutputStream();

223

 ObjectOutput oo = new ObjectOutputStream(os);

 curveParams.writeExternal(oo);

 os.close();

 return os.toString();

 } catch (IOException ex) {

 Logger.getLogger(GlobalParameters.class.getName()).log(Level.SEVERE, null, ex);

 return "";

 }*/

 }

}

AFGHPROXYREENCRYPTION.JAVA

/*

 * To change this template, choose Tools | Templates

 * and open the template in the editor.

 */

package nics.crypto.proxy.afgh;

import it.unisa.dia.gas.jpbc.Element;

import it.unisa.dia.gas.jpbc.ElementPowPreProcessing;

import it.unisa.dia.gas.jpbc.Field;

import it.unisa.dia.gas.jpbc.Pairing;

import it.unisa.dia.gas.jpbc.PairingPreProcessing;

import java.util.Arrays;

import nics.crypto.Tuple;

/**

 *

 * @author david

 */

public class AFGHProxyReEncryption {

 public static Element generateSecretKey(AFGHGlobalParameters global) {

224

 Field Zq = global.getZq();

 /*

 * KEY GENERATION

 */

 // sk = a \in Zq

 return Zq.newRandomElement().getImmutable();

 }

// public static byte[] generateSecretKey(GlobalParameters global) {

// return generateSecretKey(global).toBytes();

// }

 public static Element generatePublicKey(Element sk, AFGHGlobalParameters global) {

 ElementPowPreProcessing g = global.getG_ppp();

 // pk = g^sk

 return g.powZn(sk).getImmutable();

 }

 public static byte[] generatePublicKey(byte[] sk_bytes, AFGHGlobalParameters global) {

 Element sk = bytesToElement(sk_bytes, global.getZq());

 return generatePublicKey(sk, global).toBytes();

 }

 public static Element generateReEncryptionKey(Element pk_b, Element sk_a) {

 /*

 * Re-Encryption Key Generation

 */

 // RK(a->b) = pk_b ^(1/sk_a) = g^(b/a)

 Element rk_a_b = pk_b.powZn(sk_a.invert());

 return rk_a_b.getImmutable();

 }

225

 public static byte[] generateReEncryptionKey(byte[] pk_bytes, byte[] sk_bytes, AFGHGlobalParameters global) {

 return generateReEncryptionKey(

 bytesToElement(pk_bytes, global.getG1()),

 bytesToElement(sk_bytes, global.getZq())).toBytes();

 }

 public static byte[] firstLevelEncryption(byte[] message, byte[] pk_a, AFGHGlobalParameters global) {

 Field G2 = global.getG2();

 Field G1 = global.getG1();

 // message = m \in G2

 Element m = bytesToElement(message, G2);

 // pk_a \in G1

 Element pk = bytesToElement(pk_a, G1);

 Tuple c = firstLevelEncryption(m, pk, global);

 return mergeByteArrays(c.get(1).toBytes(), c.get(2).toBytes());

 }

 public static Tuple firstLevelEncryption(Element m, Element pk_a, AFGHGlobalParameters global) {

 /*

 * First Level Encryption

 * c = (c1, c2) c1, c2 \in G2

 * c1 = Z^ak = e(g,g)^ak = e(g^a,g^k) = e(pk_a, g^k)

 * c2 = m·Z^k

 */

 Field G2 = global.getG2();

 Field Zq = global.getZq();

 Pairing e = global.getE();

 Element Z = global.getZ();

 Element g = global.getG();

226

 // random k \in Zq

 Element k = Zq.newRandomElement().getImmutable();

 // g^k

 Element g_k = g.powZn(k);

 // c1 = Z^ak = e(g,g)^ak = e(g^a,g^k) = e(pk_a, g^k)

 Element c1 = e.pairing(pk_a, g_k);

 // c2 = m·Z^k

 Element c2 = m.mul(Z.powZn(k));

 // c = (c1, c2)

 Tuple c = new Tuple(c1, c2);

 return c;

 }

 public static byte[] secondLevelEncryption(byte[] message, byte[] pk_a, AFGHGlobalParameters global) {

 Field G2 = global.getG2();

 Field G1 = global.getG1();

 System.out.println(G2.getClass());

 System.out.println("G2: " + G2.getLengthInBytes());

 // message = m \in G2

 Element m = bytesToElement(message, G2);

// System.out.println("M : " + Arrays.toString(m.toBytes()));

 // pk_a \in G1

 Element pk = bytesToElement(pk_a, G1);

 Tuple c = secondLevelEncryption(m, pk, global);

227

 return mergeByteArrays(c.get(1).toBytes(), c.get(2).toBytes());

 }

 public static Tuple secondLevelEncryption(Element m, Element pk_a, AFGHGlobalParameters global) {

 /*

 * Second Level Encryption

 * c = (c1, c2) c1 \in G1, c2 \in G2

 * c1 = g^ak = pk_a^k

 * c2 = m·Z^k

 */

 //Field G2 = global.getG2();

 Field Zq = global.getZq();

 Pairing e = global.getE();

 Element Z = global.getZ();

 // random k \in Zq

 Element k = Zq.newRandomElement().getImmutable();

 //System.out.println("k = " + elementToString(k));

 // c1 = pk_a^k

 Element c1 = pk_a.powZn(k).getImmutable();

 // c2 = m·Z^k

 Element c2 = m.mul(Z.powZn(k)).getImmutable();

 // c = (c1, c2)

 Tuple c = new Tuple(c1, c2);

228

 return c;

 }

 public static Tuple secondLevelEncryption(Element m, ElementPowPreProcessing pk_a_PPP,

AFGHGlobalParameters global) {

 /*

 * Second Level Encryption

 * c = (c1, c2) c1 \in G1, c2 \in G2

 * c1 = g^ak = pk_a^k

 * c2 = m·Z^k

 */

 //Field G2 = global.getG2();

 Field Zq = global.getZq();

 Pairing e = global.getE();

 //Element Z = global.getZ();

 ElementPowPreProcessing Z_PPP = global.getZ_ppp();

 // random k \in Zq

 Element k = Zq.newRandomElement().getImmutable();

 //System.out.println("k = " + elementToString(k));

 // c1 = pk_a^k

 Element c1 = pk_a_PPP.powZn(k).getImmutable();

 // c2 = m·Z^k

 Element c2 = m.mul(Z_PPP.powZn(k)).getImmutable();

229

 // c = (c1, c2)

 Tuple c = new Tuple(c1, c2);

 return c;

 }

 public static Tuple reEncryption(Tuple c, Element rk, AFGHGlobalParameters global) {

 /*

 * Re-Encryption

 * c' = (e(c1, rk) , c2) \in G2 x G2

 */

 Pairing e = global.getE();

 return new Tuple(e.pairing(c.get(1), rk), c.get(2));

 }

 public static Tuple reEncryption(Tuple c, Element rk, PairingPreProcessing e_ppp) {

 /*

 * Re-Encryption

 * c' = (e(c1, rk) , c2) \in G2 x G2

 */

 return new Tuple(e_ppp.pairing(c.get(1)), c.get(2));

 }

 public static byte[] reEncryption(byte[] c, byte[] rk, AFGHGlobalParameters global) {

 //System.out.println("R: " + Arrays.toString(c));

 // c1 \in G1, c2 \in G2

 Field G1 = global.getG1();

 Field G2 = global.getG2();

 Element c1 = G1.newElement();

230

 int offset = bytesToElement(c, c1, 0);

 c1 = c1.getImmutable();

 Element c2 = G2.newElement();

 bytesToElement(c, c2, offset);

 c2 = c2.getImmutable();

 Tuple t = reEncryption(new Tuple(c1, c2), bytesToElement(rk, G1), global);

 return mergeByteArrays(t.get(1).toBytes(), t.get(2).toBytes());

 }

 public static Element firstLevelDecryption(Tuple c, Element sk, AFGHGlobalParameters global) {

 // c1, c2 \in G2

 Element alpha = c.get(1);

 Element beta = c.get(2);

 Element sk_inverse = sk.invert();

 Element m = beta.div(alpha.powZn(sk_inverse));

 return m;

 }

 public static Element firstLevelDecryptionPreProcessing(Tuple c, Element sk_inverse, AFGHGlobalParameters

global) {

 // c1, c2 \in G2

 Element alpha = c.get(1);

 Element beta = c.get(2);

 Element m = beta.div(alpha.powZn(sk_inverse));

 return m;

 }

 public static byte[] firstLevelDecryption(byte[] b, byte[] sk, AFGHGlobalParameters global) {

 //System.out.println(Arrays.toString(b));

231

 // c1, c2 \in G2

 Field G2 = global.getG2();

 Element alpha = G2.newElement();

 int offset = bytesToElement(b, alpha, 0);

 alpha = alpha.getImmutable();

 Element beta = G2.newElement();

 bytesToElement(b, beta, offset);

 beta = beta.getImmutable();

 //System.out.println(Arrays.toString(beta.toBytes()));

 Element key = bytesToElement(sk, global.getZq());

// key.invert();

// System.out.println(Arrays.toString(key.invert().toBytes()));

 Element m = firstLevelDecryption(new Tuple(alpha, beta), key, global);

 return m.toBytes();

 }

 public static byte[] secondLevelDecryption(byte[] b, byte[] sk, AFGHGlobalParameters global) {

 // c1 \in G1, c2 \in G2

 Field G1 = global.getG1();

 Field G2 = global.getG2();

 Element alpha = G1.newElement();

 int offset = bytesToElement(b, alpha, 0);

 alpha = alpha.getImmutable();

 Element beta = G2.newElement();

 bytesToElement(b, beta, offset);

 beta = beta.getImmutable();

 Element key = bytesToElement(sk, global.getZq());

232

 Element m = secondLevelDecryption(new Tuple(alpha, beta), key, global);

 return m.toBytes();

 }

 public static Element secondLevelDecryption(Tuple c, Element sk, AFGHGlobalParameters global) {

 Element alpha = c.get(1);

 Element beta = c.get(2);

 Pairing e = global.getE();

 Element g = global.getG();

 Element m = beta.div(e.pairing(alpha, g).powZn(sk.invert()));

 return m;

 }

 public static Element decryption(Tuple c, Element sk, AFGHGlobalParameters global) {

 Field G2 = global.getG2();

 // if c1 \in G2 then First-Level

 if (c.get(1).getField().equals(G2)) {

 return firstLevelDecryption(c, sk, global);

 } else {

 return secondLevelDecryption(c, sk, global);

 }

 }

 public static Element stringToElement(String s, Field G) {

 //System.out.println(s + " = " + Arrays.toString(s.getBytes()));

 //return bytesToElement(Base64.decode(s), G);

 return bytesToElement(s.getBytes(), G);

 }

 public static Element bytesToElement(byte[] b, Field G) {

 int maxLengthBytes = G.getLengthInBytes();

233

 //System.out.println("maxLengthBytes = " + maxLengthBytes);

 if (b.length > maxLengthBytes) {

 throw new IllegalArgumentException("Input must be less than " + maxLengthBytes + " bytes");

 }

 //System.out.println(Arrays.asList(b));

 Element x = G.newElement();

 x.setFromBytes(b);

 //Element x = G.newElement(new BigInteger(1, b));

 return x.getImmutable();

 }

 public static int bytesToElement(byte[] b, Element x, int offset) {

 offset += x.setFromBytes(b, offset);

 return offset;

 }

 public static String elementToString(Element x) {

 //return Base64.encodeBytes(x.toBytes());

 return new String(x.toBytes()).trim();

 }

 public static byte[] mergeByteArrays(byte[]... bs) {

 int newLength = 0;

 for (byte[] b : bs) {

 newLength += b.length;

 }

 byte[] merge = new byte[newLength];

 int from = 0;

 for (byte[] b : bs) {

 System.arraycopy(b, 0, merge, from, b.length);

 from += b.length;

 }

234

 return merge;

 }

}

PROXYMAIN.JAVA

*

 * To change this template, choose Tools | Templates

 * and open the template in the editor.

 */

package nics.crypto.proxy.afgh;

import nics.crypto.Tuple;

import it.unisa.dia.gas.jpbc.*;

/**

 *

 * @author david

 */

public class ProxyMain {

 static long cpuTime;

 static long time[] = new long[20];

 static int i = 0;

 /**

 * @param args the command line arguments

 */

 public static void main(String[] args) throws Exception {

 //java.security.

 cpuTime = System.nanoTime();

 // 80 bits seg: r = 160, q = 512

 // 128 bits seg: r = 256, q = 1536

 // 256 bits seg: r = 512, q = 7680

235

 int rBits = 256; //160; // 20 bytes

 int qBits = 1536; //512; // 64 bytes

 AFGHGlobalParameters global = new AFGHGlobalParameters(rBits, qBits);

 medirTiempoMicroSegundos();

// // Secret keys

//

// byte[] sk_a = AFGH.generateSecretKey(global).toBytes();

//

// System.out.println(medirTiempo());

//

// byte[] sk_b = AFGH.generateSecretKey(global).toBytes();

//

// System.out.println(medirTiempo());

//

// // Public keys

//

// byte[] pk_a = AFGH.generatePublicKey(sk_a, global);

//

// System.out.println(medirTiempo());

//

// byte[] pk_b = AFGH.generatePublicKey(sk_b, global);

//

// System.out.println(medirTiempo());

//

// // Re-Encryption Key

//

// byte[] rk_a_b = AFGH.generateReEncryptionKey(pk_b, sk_a, global);

//

// System.out.println(medirTiempo());

//

// String message = "David";

// byte[] m = message.getBytes();

//

// System.out.println(medirTiempo());

//

// byte[] c_a = AFGH.secondLevelEncryption(m, pk_a, global);

//

236

// System.out.println(medirTiempo());

//

// String c_a_base64 = Base64.encodeBase64URLSafeString(c_a);

// //System.out.println("c_a_base64 = " + c_a_base64);

//

// System.out.println(medirTiempo());

//

// String rk_base64 = Base64.encodeBase64URLSafeString(rk_a_b);

// //System.out.println("rk_base64 = " + rk_base64);

// System.out.println(medirTiempo());

//

// byte[] c, rk;

// rk = Base64.decodeBase64(rk_base64);

//

// System.out.println(medirTiempo());

//

// c = Base64.decodeBase64(c_a_base64);

//

// System.out.println(medirTiempo());

//

// byte[] c_b = AFGH.reEncryption(c, rk, global);

// //System.out.println("cb: " + Arrays.toString(c_b));

// System.out.println(medirTiempo());

//

// String c_b_base64 = Base64.encodeBase64URLSafeString(c_b);

// //System.out.println("c_b_base64 = " + c_b_base64);

//

// System.out.println(medirTiempo());

//

// c = Base64.decodeBase64(c_b_base64);

//

// System.out.println(medirTiempo());

//

// byte[] m2 = AFGH.firstLevelDecryption(c_b, sk_b, global);

// //System.out.println("m2:" + new String(m2));

//

// System.out.println(medirTiempo());

//

// assert message.equals(new String(m2).trim());

//

237

// System.out.println();

// System.out.println(global.toBytes().length);

// System.out.println(sk_a.length);

// System.out.println(sk_b.length);

// System.out.println(pk_a.length);

// System.out.println(pk_b.length);

// System.out.println(rk_a_b.length);

// System.out.println(m.length);

// System.out.println(c_a.length);

// System.out.println(c_b.length);

//

// //

// Map<String, byte[]> map = new HashMap<String, byte[]>();

// map.put("sk_a", sk_a);

// map.put("sk_b", sk_b);

// map.put("pk_a", pk_a);

// map.put("pk_b", pk_b);

// map.put("rk_a_b", rk_a_b);

// map.put("global", global.toBytes());

// map.put("c_a_base64", c_a_base64.getBytes());

//

// ObjectOutputStream fos = new ObjectOutputStream(new

FileOutputStream("/Users/david/Desktop/pre.object"));

// fos.writeObject(map);

// fos.close();

 //

 // Secret keys

 Element sk_a = AFGHProxyReEncryption.generateSecretKey(global);

 medirTiempoMicroSegundos();

 Element sk_b = AFGHProxyReEncryption.generateSecretKey(global);

 medirTiempoMicroSegundos();

 Element sk_b_inverse = sk_b.invert();

 medirTiempoMicroSegundos();

238

 // Public keys

 Element pk_a = AFGHProxyReEncryption.generatePublicKey(sk_a, global);

 medirTiempoMicroSegundos();

 Element pk_b = AFGHProxyReEncryption.generatePublicKey(sk_b, global);

 medirTiempoMicroSegundos();

 ElementPowPreProcessing pk_a_ppp = pk_a.pow();

 medirTiempoMicroSegundos();

 // Re-Encryption Key

 Element rk_a_b = AFGHProxyReEncryption.generateReEncryptionKey(pk_b, sk_a);

 medirTiempoMicroSegundos();

 String message = "12345678901234567890123456789012";

 Element m = AFGHProxyReEncryption.stringToElement(message, global.getG2());

 medirTiempoMicroSegundos();

 Tuple c_a = AFGHProxyReEncryption.secondLevelEncryption(m, pk_a_ppp, global);

 medirTiempoMicroSegundos();

 PairingPreProcessing e_ppp = global.getE().pairing(rk_a_b);

 medirTiempoMicroSegundos();

 Tuple c_b = AFGHProxyReEncryption.reEncryption(c_a, rk_a_b, e_ppp);

 medirTiempoMicroSegundos();

 Element m2 = AFGHProxyReEncryption.firstLevelDecryptionPreProcessing(c_b, sk_b_inverse, global);

239

 medirTiempoMicroSegundos();

 assert message.equals(new String(m2.toBytes()).trim());

 for(int j = 0; j < i; j++){

 System.out.println(time[j]);

 }

// System.out.println("m string : " + message.getBytes().length);

// System.out.println("m in G2 : " + m.toBytes().length);

// System.out.println("c_a_1 in G2: " + c_a.get(1).toBytes().length);

// System.out.println("c_a_2 in G1: " + c_a.get(2).toBytes().length);

// System.out.println("c_b_1 in G2: " + c_b.get(1).toBytes().length);

// System.out.println("c_b_2 in G2: " + c_b.get(2).toBytes().length);

// System.out.println("m2 in G2 : " + m2.toBytes().length);

 //System.out.println(AFGH.elementToString(m2));

 //System.out.println(medirTiempo());

 }

 public static long medirTiempoMicroSegundos() {

 time[i] = (System.nanoTime() - cpuTime)/1000;

 i++;

 cpuTime = System.nanoTime();

 return time[i];

 }

}

240

CODE FOR THE ACDC3 SCHEME

The following code was developed for testing the ACDC3 scheme.

package nics.crypto.proxy.afgh;

import nics.crypto.Tuple;

import it.unisa.dia.gas.jpbc.*;

import java.io.File;

import java.io.FileInputStream;

import java.io.FileOutputStream;

import java.io.IOException;

import java.io.ObjectInputStream;

import java.io.ObjectOutputStream;

import java.util.ArrayList;

import org.apache.commons.io.FileUtils;

public class Main {

 public static final int rBits = 256; //160; // 20 bytes

 public static final int qBits = 1536; //512; // 64 bytes

 public static final GlobalParameters global = new GlobalParameters(rBits, qBits);

 public static void main(String[] args) throws IOException, ClassNotFoundException

 {

 // Secret keys

 Element sk_a = AFGH.generateSecretKey(global);

 Element sk_b = AFGH.generateSecretKey(global);

 // Public keys

 Element pk_a = AFGH.generatePublicKey(sk_a, global);

241

 Element pk_b = AFGH.generatePublicKey(sk_b, global);

 ElementPowPreProcessing pk_a_ppp = pk_a.pow();

 // Re-Encryption Key

 Element rk_a_b = AFGH.generateReEncryptionKey(pk_b, sk_a);

 // Plain Text

 File plainText = new File("sheffieldlogosmall.png");

 log(plainText.getAbsolutePath());

 byte[] b = FileUtils.readFileToByteArray(plainText);

 Element m = AFGH.bytesToElement(b, global.getG2());

 Tuple CT = AFGH.secondLevelEncryption(m, pk_a_ppp, global);

 PairingPreProcessing e_ppp = global.getE().pairing(rk_a_b);

 // Re-Encryption into ciphertext CT

 Tuple CTT = AFGH.reEncryption(CT, rk_a_b, e_ppp);

 // Send to TTP

 sendToTTP(CTT);

 // Decryption by Bob

242

 Tuple CTTT = readFromTTP("CTT.ser");

 Element sk_b_inverse = sk_b.invert();

 Element mResult = AFGH.firstLevelDecryptionPreProcessing(CTTT, sk_b_inverse, global);

 FileUtils.writeByteArrayToFile(new File("result.txt"), mResult.toBytes());

 }

 private static void log(String str)

 {

 System.out.println(str);

 }

 private static void sendToTTP(Tuple t) throws IOException

 {

 ArrayList<byte[]> res = t.toBytes();

 FileOutputStream fout = new FileOutputStream("CTT.ser");

 ObjectOutputStream oos = new ObjectOutputStream(fout);

 oos.writeObject(res);

 oos.flush();

 oos.close();

 fout.flush();

 fout.close();

 }

 private static Tuple readFromTTP(String file) throws IOException,

ClassNotFoundException

 {

 FileInputStream fin = new FileInputStream(file);

 ObjectInputStream ois = new ObjectInputStream(fin);

 @SuppressWarnings("unchecked")

243

 ArrayList<byte[]> CTTList = new ArrayList<byte[]>((ArrayList<byte[]>)

ois.readObject());

 ois.close();

 fin.close();

 Element[] elements = new Element[CTTList.size()];

 for (int i = 0; i < CTTList.size(); i++)

 {

 elements[i] = AFGH.bytesToElement(CTTList.get(i), global.getG2());

 }

 return new Tuple(elements);

 }

}

244

RESEARCH PLAN TIMELINE AND MILESTONES

A Gantt chart shown in figure 35 entails the major milestones and timeline of the project.

ID Task Name Start Finish Duration
20122011 2013

Q4Q3 Q1Q1 Q2Q2Q3 Q4 Q3

1 65d28/10/201101/08/2011
Development of new scheme (RG1
and RG4)

2 67d01/02/201201/11/2011ACDC3 Scheme (RG1 and RG4)

5 71d11/05/201203/02/2012
Developing Risk Assessment Scheme

6 45d13/07/201214/05/2012
Design Scheme ACDC3 (RG1 and
RG4)

8 45d14/09/201216/07/2012
Using Corus methodology for risk
assessment scheme

11 43d14/11/201217/09/2012
Secure Scalable Video Paper (1st
Draft)

18 44d21/08/201423/06/2014Thesis Submission First Draft

13

12 21d14/12/201216/11/2012
Deployment on OPTIMIS testbed (Risk
Assessment Scheme)

75d27/03/201313/12/2012
Implementing ACDC3 Scheme (RG1
and RG4)

16 42d24/05/201328/03/2013
Integration with OPTIMIS toolkit
Security Risk Framework

17 198d20/06/201418/09/2013
Publishing of Scalable Video Research
Paper

3 81d31/01/201211/10/2011
Progress Report Submission
(Milestone)

9 108d29/06/201201/02/2012Thesis outline (Milestone)

15 40d28/12/201205/11/2012Thesis Audit (Milestone)

20 88d31/07/201301/04/2013Thesis Seminar (Milestone)

21 23d31/10/201301/10/2013Final Thesis Submission (Milestone)

4 82d01/02/201211/10/2011
Redesigning ACDC3 Scheme and
countering shortcomings

7 43d13/04/201215/02/2012
Access Control and Data
Confidentiality in Cloud Computing
(EU Patent Filed)

10 88d30/11/201201/08/2012
Security Threat Analysis (Research
Paper, Cloudcom 2012)

14 21d01/03/201301/02/2013
Secure Scalable Video Research
paper writeup

19 52d03/11/201422/08/2014Thesis Submission Second Draft

Figure 35: Gantt chart of the project

245

CLAIMS AND ABSTRACT OF THE PATENT (ACDC3)

The above research work was filed by the BT IP Department in the form of two patents

to the EU Patent Office and US Patent Office. BT’s reference number for the patent is

Europe A32311 [169] [170].

ABSTRACT

Embodiments of the invention provide a method and system which allow for ready

revocation of end user access rights by virtue of storing data in an encrypted form in a

network environment, and using a trusted proxy server to re-encrypt the data itself to

permit eventual decryption of the data by an authorised end user. However, if the end

user’s access rights are revoked then the trusted proxy does not perform the re-

encryption of the data, and the end user is not then able to subsequently decrypt data

stored in the network environment, even if it is able to access the data without

permission. Embodiments therefore have advantages that access control is decoupled

from data confidentiality to provide scalability, and revocation of user access rights can

be accomplished without requiring re-encryption of the stored data.

CLAIMS

Following are the claims of the patent,

1. A method for use in accessing data from network data storage, the data being

encrypted with one or more layers of encryption including a first encryption layer applied

by the data owner, the method comprising:

 receiving a request from a data consumer for access to data stored in the network

data storage;

246

 determining whether to grant the request in dependence on whether the data

consumer has access rights to the requested data;

 obtaining a proxy re-encryption key generated by the data owner; and

 if it is determined that the data consumer may access the data, obtaining the

requested data from the network data storage and proxy re-encrypting the data to

enable subsequent decryption of the first encryption layer applied by the data owner

whereby to enable eventual access to the data.

2. A method according to claim 1, wherein the re-encryption key re-encrypts the

data so that the first encryption layer may be decrypted by the data consumer, the

method further comprising sending the re-encrypted data to the data consumer.

3. A method according to claim 2, wherein the data has a single layer of encryption

being the first layer, wherein the data consumer is able to decrypt the re-encrypted data

to plaintext data to access the data.

4. A method according to claim 1, wherein the re-encryption key re-encrypts the

data so that the first encryption layer may be decrypted by the trusted authority, the

method further comprising, at the trusted authority, decrypting the first encryption layer.

5. A method according to claim 4, wherein the data has at least two layers of

encryption, being one or more other layers and the first layer, the decryption resulting in

the data encrypted with the one or more other layers.

6. A method according to claims 4 or 5, and further comprising sending the proxy

decrypted data to the data consumer, the data consumer then obtaining the decryption

key to decrypt the one or more first layers to obtain plaintext data from the data owner.

7. A method according to claim 6, wherein the trusted authority requests the

decryption key to decrypt the one or more first layers from the data owner, and forwards

the decryption key to the data consumer.

8. A method for use in storing data in network data storage, the method comprising:

247

 encrypting data to be stored in the network data storage with one or more layers

of encryption, including at least a first encryption layer;

 storing the encrypted data in the network data storage;

 generating a proxy re-encryption key to allow a trusted authority to re-encrypt

data encrypted with the first encryption layer so that the first encryption layer may be

decrypted by a third party; and

 sending the proxy re-encryption key to the trusted authority.

9. A method according to claim 8, wherein the re-encryption key is generated so as

to be able to re-encrypt the data such that the first encryption layer may be decrypted

by the data consumer.

10. A method according to claim 9, wherein the data has a single layer of encryption

being the first layer, wherein the data consumer is able to decrypt the re-encrypted data

to plaintext data to access the data.

11. A method according to claim 8, wherein the re-encryption key re-encrypts the

data so that the first encryption layer may be decrypted by the trusted authority.

12. A method according to claim 10, wherein the data has at least two layers of

encryption, being one or more other layers and the first layer, the method further

comprising, receiving a request for the decryption key or keys for the one or more other

layers, and sending the keys in response to the request.

13. A computer program or suite of computer programs so arranged such that when

executed by a computer system it/they cause(s) the computer system to operate in

accordance with the method of any of the preceding claims.

14. A computer readable medium storing a computer program or at least one of a

suite of computer programs according to claim 13.

15. A system, comprising:

248

 at least one processor;

 memory; and

 at least one computer readable medium storing a computer program or suite of

computer programs so arranged such that when loaded into memory and executed by

the processor they cause the system to operate in accordance with the method of any of

claims 1 to 12.

249

REFERENCES

[1] L. Rodero-Merino, M. Lindner, J. Caceres, and L. M. Vaquero, “A break in the clouds,”

ACM SIGCOMM Computer Communication Review, vol. 39, no. 1. p. 50, 2008.

[2] R. Buyya, “Market-Oriented Cloud Computing: Vision, Hype, and Reality of Delivering

Computing as the 5th Utility,” 2009 9th IEEE/ACM Int. Symp. Clust. Comput. Grid, 2009.

[3] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic, “Cloud computing and

emerging IT platforms: Vision, hype, and reality for delivering computing as the 5th

utility,” Futur. Gener. Comput. Syst., vol. 25, no. 6, p. 17, 2009.

[4] Siemens IT solutions, “Cloud Computing – Business Models, Value Creation Dynamics

and Advantages for Customers,” 2010. [Online]. Available: http://www.it-

solutions.siemens.com/b2b/it/en/global/Documents/Publications/CloudComputing_Whi

tepaper_PDF_e.pdf. [Accessed: 01-Nov-2010].

[5] European research consortium for Informatics and mathematics (ERCIM), Cloud

Computing: Special theme. 2010.

[6] EU, “OPTIMIS EU project FP7,” 2010. [Online]. Available: http://www.optimis-

project.eu/. [Accessed: 20-Mar-2012].

[7] BT, “Virtual Data Centre (VDC) – A New Concept in Service Delivery,” 2010. [Online].

Available:

http://globalservices.bt.com/LeafAction.do?Record=Virtual_Data_Centre_products_uk_

en-gb. [Accessed: 24-Jun-2012].

[8] A. J. Ferrer, F. Hernández, J. Tordsson, E. Elmroth, A. Ali-Eldin, C. Zsigri, R. Sirvent, J.

Guitart, R. M. Badia, K. Djemame, W. Ziegler, T. Dimitrakos, S. K. Nair, G. Kousiouris, K.

Konstanteli, T. Varvarigou, B. Hudzia, A. Kipp, S. Wesner, M. Corrales, N. Forgó, T. Sharif,

and C. Sheridan, “OPTIMIS: A holistic approach to cloud service provisioning,” Futur.

Gener. Comput. Syst., vol. 28, no. 1, pp. 66–77, 2012.

250

[9] I. Hogganvik, F. Vraalsen, F. Braber, K. Stølen, and M. S. Lund, “Model-based security

analysis in seven steps — a guided tour to the CORAS method,” BT Technology Journal,

vol. 25, no. 1. pp. 101–117, 2007.

[10] F. D. Braber, “The Coras Model-based method for security risk analysis,” SIntef, 2006.

[11] R. Fredriksen, M. Kristiansen, B. Gran, and K. Stolen, “The CORAS framework for a

model-based risk management process,” in Lecture notes in, vol. 2434, S. Anderson, M.

Felici, and S. Bologna, Eds. Springer-Verlag, 2002, pp. 94–105.

[12] Information Security Forum (ISF), “Information risk analysis methodology (IRAM),” 2010.

[Online]. Available: https://www.securityforum.org/iram#iramtva. [Accessed: 15-Apr-

2012].

[13] R. Sandhu and J. Park, “Usage Control: A Vision for Next Generation Access Control,”

2003. [Online]. Available:

http://profsandhu.com/confrnc/misconf/2003_MMS_UCON.pdf. [Accessed: 08-Aug-

2013].

[14] I. Foster, Y. Z. Y. Zhao, I. Raicu, and S. Lu, “Cloud Computing and Grid Computing 360-

Degree Compared,” 2008 Grid Comput. Environ. Work., 2008.

[15] P. Mell and T. Grance, “The NIST Definition of Cloud Computing Recommendations of

the National Institute of Standards and Technology,” 2011.

[16] D. F. Ferraiolo, D. R. Kuhn, R. Sandhu, S. Gavrila, and R. Chandramouli, “Proposed NIST

standard for role-based access control,” ACM Transactions on Information and System

Security, vol. 4, no. 3. pp. 224–274, 2001.

[17] L. Youseff, M. Butrico, and D. Da Silva, “Toward a Unified Ontology of Cloud Computing:

Grid Computing Environments Workshop, 2008. GCE ’08,” Grid Comput. Environ. Work.

2008. GCE ’08, pp. 1–10, 2008.

[18] F. Shimba, “Cloud Computing:Strategies for Cloud Computing Adoption,” Dublin Institute

of Technology, 2010.

251

[19] A. Khajeh-Hosseini, D. Greenwood, J. W. Smith, and I. Sommerville, “The Cloud Adoption

Toolkit: supporting cloud adoption decisions in the enterprise.,” Softw., Pr. Exper., vol.

42, no. 4, pp. 447–465, 2012.

[20] A. Khajeh-Hosseini, I. Sommerville, and I. Sriram, “Research Challenges for Enterprise

Cloud Computing,” CoRR, vol. abs/1001.3, 2010.

[21] S. Migay and M. Govikar, “Does Cloud Computing Have a ‘Green’ Lining?,” Gartner Inc,

2010.

[22] J. Staten, “Is Cloud Computing Ready For The Enterprise ?,” Reproduction, vol. 7, p. 15,

2008.

[23] W. Fellows, “Partly Cloudy, Blue-Sky Thinking About Cloud Computing,” WhitePaper, 451

Group, 2008.

[24] R. Buyya and K. Bubendorfer, Market-oriented grid and utility computing, Ch12 SLA-

BASED RESOURCE MANAGEMENT AND ALLOCATION. Wiley Online Library, 2009.

[25] Amazon, “Amazon Elastic Compute Cloud (EC2),” AWS. [Online]. Available:

http://aws.amazon.com/ec2/. [Accessed: 06-May-2013].

[26] Google, “Google Compute.” [Online]. Available: https://cloud.google.com/compute/.

[Accessed: 11-Nov-2011].

[27] IBM, “IBM IaaS.” [Online]. Available: http://www.ibm.com/cloud-

computing/us/en/iaas.html. [Accessed: 11-Nov-2014].

[28] Google, “Google Apps Engine,” Google. [Online]. Available:

http://code.google.com/appengine/. [Accessed: 06-May-2011].

[29] VmWare, “Vsphere,” VmWare. [Online]. Available:

http://www.vmware.com/products/vsphere/mid-size-and-enterprise-

business/features.html. [Accessed: 12-Jun-2011].

252

[30] Openstack, “OpenStack.” [Online]. Available: http://www.openstack.org/. [Accessed: 11-

Nov-2014].

[31] “HP Cloud.” [Online]. Available: http://www.hpcloud.com/. [Accessed: 07-Jan-2015].

[32] S. K. Nair, S. Porwal, T. Dimitrakos, A. J. Ferrer, J. Tordsson, T. Sharif, C. Sheridan, M.

Rajarajan, and A. U. Khan, “Towards Secure Cloud Bursting, Brokerage and Aggregation,”

2010 Eighth IEEE Eur. Conf. Web Serv., pp. 189–196, 2010.

[33] NVIDIA, “NVIDIA Reality Server,” NVIDIA. [Online]. Available:

http://www.nvidia.com/object/realityserver.html. [Accessed: 09-Apr-2011].

[34] AWS, “Amazon Simple Storage Service,” Amazon. [Online]. Available:

http://aws.amazon.com/s3/. [Accessed: 15-Jul-2011].

[35] P. Mell and T. Grance, “The NIST Definition of Cloud Computing: Recommendations of

the National Institute of Standarts and Technology,” Natl. Inst. Stand. Technol., vol. 800–

145, pp. 1–7, 2011.

[36] AWS, “Amazon Web Services,” Overview of Secuirty Processes. [Online]. Available:

http://s3.amazonaws.com/aws_blog/AWS_Security_Whitepaper_2008_09.pdf.

[Accessed: 22-Jul-2011].

[37] Rackspace, “Rackspace security data sheet,” 2011. [Online]. Available:

http://broadcast.rackspace.com/downloads/pdfs/RackspaceSecurityApproach.pdf.

[Accessed: 22-Jul-2011].

[38] Rackspace, “Rackspace,” Rackspace. [Online]. Available:

http://www.rackspace.co.uk/rackspace-home/. [Accessed: 22-Jul-2011].

[39] GoGrid, “GoGrid website,” GoGrid. [Online]. Available: http://www.gogrid.com/.

[Accessed: 21-Jul-2011].

[40] Terremark, “Terremark website,” Terremark. [Online]. Available:

http://www.terremark.com/default.aspx. [Accessed: 14-Jul-2011].

253

[41] GoGrid, “GoGrid Security Data Sheet,” Security data sheet. [Online]. Available:

http://storage.pardot.com/3442/33711/GoGrid_hosted_private_cloud_data_sheet_201

10111.pdf. [Accessed: 21-Jul-2011].

[42] Joyent, “Joyent Security architecture,” Joyent. [Online]. Available:

http://www.joyent.com/software/smartdatacenter/security-architecture/. [Accessed:

22-Jul-2012].

[43] Xen, “Xen Virtualization Engine,” Xen. [Online]. Available: http://www.xen.org/.

[Accessed: 10-Jul-2011].

[44] SAS, “SAS 70 Type 2 Audit,” 2012. [Online]. Available:

http://sas70.com/sas70_overview.html. [Accessed: 09-Nov-2011].

[45] Windows, “Windows Azure.” [Online]. Available:

http://www.microsoft.com/windowsazure/. [Accessed: 22-Jun-2011].

[46] Force.com, “Force.com.” [Online]. Available: http://www.salesforce.com/platform/.

[Accessed: 25-Jul-2011].

[47] Force.com, “Force.com,” Security Overview. [Online]. Available:

http://wiki.developerforce.com/index.php/An_Overview_of_Force.com_Security.

[Accessed: 25-Jul-2011].

[48] Heroku, “Heroku.” [Online]. Available: http://heroku.com/. [Accessed: 29-Jul-2011].

[49] AWS, “Amazon Web-Services (AWS),” Amazon. [Online]. Available:

http://aws.amazon.com/. [Accessed: 22-Jun-2011].

[50] N. Fips, “197: Announcing the advanced encryption standard (AES),” … Technol. Lab.

Natl. Inst. Stand. …, vol. 2009, pp. 8–12, 2001.

[51] O. Hart, “Regulation and Sarbanes-Oxley,” J. Account. Res., vol. 47, no. 2, pp. 437–445,

2009.

254

[52] T. H. E. Data, P. Act, D. Protection, and T. Act, “Data Protection Act,” UK Legislation,

1998. [Online]. Available: http://www.legislation.gov.uk/ukpga/1998/29/contents.

[53] US Congress, “Health Insurance Portability and Accountability Act of 1996 (HIPPA),”

104th United States Congress, 1996. [Online]. Available:

http://aspe.hhs.gov/admnsimp/pl104191.htm, 1996. [Accessed: 23-Apr-2013].

[54] D. Bowers, “What Will It Take to Get HIPPA-Compliant?,” J. Heal. Care Compliance, vol.

3, p. 48, 2001.

[55] Windows, “Windows Azure,” Security data sheet, 2011. [Online]. Available:

http://www.microsoft.com/windowsazure/. [Accessed: 22-Jun-2011].

[56] Salesforce, “Salesforce website,” Salesforce. [Online]. Available: Available at:

http://www.salesforce.com/. [Accessed: 28-Jul-2011].

[57] Salesforce, “Salesforce Security Datasheet,” 2010. [Online]. Available:

http://www.salesforce.com/assets/pdf/datasheets/security.pdf.

[58] Marketo, “Marketo security,” Marketo security. [Online]. Available:

http://www.marketo.com/security.php. [Accessed: 22-Jul-2011].

[59] Marketo, “Marketo.” [Online]. Available: http://www.marketo.com/about/. [Accessed:

22-Jul-2011].

[60] Zuora, “Zuora.” [Online]. Available: http://www.zuora.com/. [Accessed: 21-May-2012].

[61] Terremark, “Terremark Data sheet,” Terremark Data Service. [Online]. Available:

http://www.terremark.com/uploadedFiles/Services/ADS/BackupDraftv2.pdf. [Accessed:

15-Jul-2011].

[62] A. Armando, R. Carbone, L. Campagna, J. Cuellar, and L. Tobarra, “Formal Analysis of

SAML 2.0 Web Browser Single Sign-On: Breaking the SAML-Based Single Sign-On for

Google Apps,” 6th ACM Work. Form. Methods Secur. Eng. FMSE, 2008.

255

[63] E. Messmer, “Gartner: Cloud-based security as a service set to take off,” Network World,

2013. [Online]. Available: http://www.networkworld.com/article/2171424/data-

breach/gartner--cloud-based-security-as-a-service-set-to-take-off.html. [Accessed: 21-

Apr-2012].

[64] “Qualys.” [Online]. Available: www.qualys.com. [Accessed: 22-Jul-2012].

[65] C. Cloud, “Cipher Cloud.” [Online]. Available: http://www.ciphercloud.com/. [Accessed:

22-Aug-2012].

[66] D. Sheet, “Cipher Cloud for AWS,” Cloud, Cipher, 2014. [Online]. Available:

http://www.ciphercloud.com/wp-content/uploads/2013/11/CipherCloud-for-Amazon-

Web-Services.pdf. [Accessed: 22-Sep-2011].

[67] Qualys, “Qualys Guard.” [Online]. Available:

https://www.qualys.com/solutions/compliance/cag/. [Accessed: 22-Aug-2012].

[68] G. Leopold, “Forecasts Call For Cloud Burst Through 2018,” IDC, 2014.

[69] X. Chen, G. B. Wills, L. Gilbert, and D. Bacigalupo, “Technical Report on Using Cloud for

Research: A Technical Review,” University of Southampton, 2010.

[70] D. Catteddu and G. Hogben, “Cloud Computing: Benefits, risks and recommendations for

information security,” ENISA, 2009.

[71] R. Boutaba, L. Cheng, and Q. Zhang, “Cloud computing: state-of-the-art and research

challenges,” Journal of Internet Services and Applications, vol. 1, no. 1. pp. 7–18, 2010.

[72] B. R. Kandukuri, V. R. Paturi, and A. Rakshit, “Cloud Security Issues,” in Services

Computing, 2009. SCC ’09. IEEE International Conference on, 2009, pp. 517–520.

[73] Z. S. Z. Shen and Q. T. Q. Tong, “The security of cloud computing system enabled by

trusted computing technology,” Signal Process. Syst. (ICSPS), 2010 2nd Int. Conf., vol. 2,

2010.

256

[74] K. Popović and Ž. Hocenski, “Cloud computing security issues and challenges,” IEEE -

Comput. Inf. Sci., vol. 3, no. 3, pp. 344–349, 2010.

[75] Department of Defense, “Trusted computer system evaluation criteria,” {Department of

Defense}, pp. 1–116, 1985.

[76] B. Krebs, “Amazon: Hey Spammers, Get Off My Cloud!,” The Washington Post, 2008.

[Online]. Available:

http://voices.washingtonpost.com/securityfix/2008/07/amazon_hey_spammers_get_off

_my.html.

[77] A. Ferdowsi, “Checksum Failure of Amazon S3,” 2008. [Online]. Available:

https://forums.aws.amazon.com/thread.jspa?threadID=22709&start=0&tstart=.

[Accessed: 12-Aug-2011].

[78] H. Lindqvist, “Mandatory access control,” UMEA University, 2006.

[79] D. F. Ferraiolo, D. M. Gilbert, and N. Lynch, “An examination of federal and commercial

access control policy needs,” in 16th NIST-NSA National Computer Security Conference,

1993.

[80] D. Ferraiolo, D. Kuhn, and R. Chandramouli, “Role-based access control,” in 15th

National Computer Security Conference, 2003, no. 1992, pp. 554 – 563.

[81] R. Sailer, T. Jaeger, E. Valdez, R. Caceres, R. Perez, S. Berger, J. L. Griffin, and L. van

Doorn, “Building a MAC-based security architecture for the Xen open-source

hypervisor,” 21st Annu. Comput. Secur. Appl. Conf., 2005.

[82] R. Sailer, E. Valdez, T. Jaeger, R. Perez, L. Van Doorn, J. L. Griffin, S. Berger, and Y.

Heights, “IBM Research Report sHype : Secure Hypervisor Approach to Trusted

Virtualized Systems sHype : Secure Hypervisor Approach to Trusted Virtualized Systems

1,” in Science, 2005, vol. 23511, no. RC23511.

257

[83] C. J. McCollum, J. R. Messing, and L. Notargiacomo, “Beyond the pale of MAC and DAC-

defining new forms of access control,” Proceedings. 1990 IEEE Comput. Soc. Symp. Res.

Secur. Priv., 1990.

[84] R. Needham and R. MAYBURY, “Access Control,” in Security Engineering: A guide to

building dependable distributed systems, University of Cambridge.

[85] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman, Role based access control

models, 29th ed. IEEE Computer, 1996.

[86] R. S. Sandhu and P. Samarati, Access control: Principles and practice, 32nd ed. IEEE

Communication, 1994.

[87] W. Li, H. Wan, X. Ren, and S. Li, “A Refined RBAC Model for Cloud Computing,” in

Proceedings of the 2012 IEEE/ACIS 11th International Conference on Computer and

Information Science, 2012, pp. 43–48.

[88] P. Singh and S. Singh, “A New Advance Efficient RBAC to Enhance the Security in Cloud

Computing,” Int. J. Adv. Res. Comput. Sci. Softw. Eng., vol. 3, no. 6, 2013.

[89] M. Kallahalla, E. Riedel, R. Swaminathan, Q. Wang, and K. Fu, “Plutus: Scalable secure file

sharing on untrusted storage,” in FAST ’03: Proceedings of the 2nd USENIX Conference on

File and Storage Technologies, 2003, pp. 29 – 42.

[90] E. Goh, H. Shacham, N. Modadugu, and D. Boneh, “SiRiUS: Securing remote untrusted

storage,” Netw. Distrib. Syst. Secur. (NDSS ’03) Symp., no. 0121481, pp. 131–145, 2003.

[91] S. Hohenberger, K. Fu, M. Green, and G. Ateniese, “Improved proxy re-encryption

schemes with applications to secure distributed storage,” ACM Transactions on

Information and System Security, vol. 9, no. 1. pp. 1–30, 2006.

[92] S. Di Vimercati, S. Foresti, and S. Jajodia, “Over-encryption: management of access

control evolution on outsourced data,” Very large data bases, pp. 123–134, 2007.

[93] M. Blaze, G. Bleumer, and M. Strauss, “Divertible protocols and atomic proxy

cryptography,” Adv. Cryptol. � EUROCRYPT98, vol. 1403, pp. 127–144, 1998.

258

[94] M. Blanton, N. Fazio, M. J. Atallah, and K. B. Frikken, “Dynamic and Efficient Key

Management for Access Hierarchies,” ACM Transactions on Information and System

Security, vol. 12, no. 3. pp. 1–43, 2009.

[95] S. Y. S. Yu, C. W. C. Wang, K. R. K. Ren, and W. L. W. Lou, “Achieving Secure, Scalable, and

Fine-grained Data Access Control in Cloud Computing,” INFOCOM, 2010 Proc. IEEE, 2010.

[96] A. Sahai and B. Waters, “Fuzzy Identity-Based Encryption,” Eurocrypt, vol. 3494, pp. 1–

15, 2005.

[97] V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-based encryption for fine-

grained access control of encrypted data,” Proc. 13th ACM Conf. Comput. Commun.

Secur. CCS 06, p. 89, 2006.

[98] M. Chase and S. S. M. Chow, “Improving privacy and security in multi-authority attribute-

based encryption,” in Proceedings of the 16th ACM conference on Computer and

communications security - CCS ’09, 2009, p. 121.

[99] L. Hu, S. Ying, X. Jia, and K. Zhao, “Towards an Approach of Semantic Access Control for

Cloud Computing.,” in CloudCom, 2009, vol. 5931, pp. 145–156.

[100] GFI, “Control User Access to Endpoint Connections,” GFI Endpoint Security. [Online].

Available: http://www.gfi.com/landing/uk/esecstordev-

uk.asp?adv=953&loc=4&gclid=CIaQ5tyus6UCFQkf4QodhlDnYQ. [Accessed: 12-Aug-

2012].

[101] Symantec, “Symantec Data Loss prevention,” Symantec. [Online]. Available:

http://www.symantec.com/en/uk/business/solutions/solutiondetail.jsp?solid=sol_info_r

isk_comp&solfid=sol_data_loss_prevention&om_sem_cid=biz_sem_emea_uk_Google_D

LP. [Accessed: 12-Aug-2011].

[102] D. E. O’Leary, “Intrusion Detection Systems,” in Journal of Information Systems (Spring),

1992, pp. 63–74.

259

[103] K. Wang and S. J. Stolfo, “Anomalous payload-based network intrusion detection,”

Recent Adv. Intrusion Detect., vol. 3224, pp. 203–222, 2004.

[104] D. Wagner and P. Soto, “Mimicry Attacks on Host-Based Intrusion Detection Systems,” in

Proceedings of the 9th ACM conference on Computer and communications security - CCS

’02, 2002, p. 255.

[105] A. Ghosh, A. Schwartzbard, and M. Schatz, “Using program behavior profiles for

intrusion detection,” in … of the SANS Intrusion Detection …, 1999, no. 703, pp. 1–7.

[106] K. Ilgun, “USTAT: a real-time intrusion detection system for UNIX,” Proc. 1993 IEEE

Comput. Soc. Symp. Res. Secur. Priv., 1993.

[107] T. D. Garvey and T. F. Lunt, “Model based intrusion detection,” 14th Natl. Comput. Secur.

Conf., 1991.

[108] T. F. Lunt, A. Tamaru, F. Gilham, R. Jagannathan, P. G. Neumann, and C. Jalali, “IDES: a

progress report [Intrusion-Detection Expert System],” [1990] Proc. Sixth Annu. Comput.

Secur. Appl. Conf., 1990.

[109] T. F. Lunt, “A survey of intrusion detection techniques,” Comput. Secur., vol. 12, no. 4,

pp. 405–418, 1993.

[110] BBC, “Wikileaks: Suspect Bradley Manning faces 22 new charges,” BBC News, 2011.

[Online]. Available: http://www.bbc.co.uk/news/world-us-canada-12628983. [Accessed:

12-Sep-2012].

[111] N. MacDonald, “Hypervisor Attacks in the Real World,” Gartner, 2009. [Online].

Available: http://blogs.gartner.com/neil_macdonald/2009/02/20/hypervisor-attacks-in-

the-real-world/.

[112] E. Ray and E. Schultz, “Virtualization security,” Proc. 5th Annu. Work. Cyber Secur. Inf.

Intell. Res. Cyber Secur. Inf. Intell. Challenges Strateg. CSIIRW 09, no. 1965, p. 1, 2009.

[113] Vmware, “Vmware nat networking buffer overflow vulnerability,” Vm. [Online].

Available: http://secunia.com/advisories/18162/. [Accessed: 12-Jun-2011].

260

[114] M. Carpenter, T. Liston, and E. Skoudis, “Hiding Virtualization from Attackers and

Malware,” IEEE Secur. Priv. Mag., vol. 5, no. 3, 2007.

[115] R. Naraine, “Blue Pill Prototype Creates 100% Undetectable Malware,” eWEEK, 2006.

[Online]. Available: http://www.eweek.com/c/a/Windows/Blue-Pill-Prototype-Creates-

100-Undetectable-Malware.

[116] S. T. King, P. M. Chen, Y. W. Chad, V. Helen, and J. W. Jacob, “SubVirt: Implementing

malware with virtual machines,” 2006 IEEE Symp. Secur. Priv. SP06, vol. 00, no. c, pp.

314–327, 2006.

[117] A. Khalid, “Testing Security of XEN using Dynamic and Static Analysis Techniques,”

University of York.

[118] J. Wei, X. Zhang, G. Ammons, V. Bala, and P. Ning, “Managing security of virtual machine

images in a cloud environment,” Proc. 2009 ACM Work. Cloud Comput. Secur. - CCSW

’09, no. Vm, pp. 91–96, 2009.

[119] P. A. Karger, “Multi-level security requirements for hypervisors,” 21st Annu. Comput.

Secur. Appl. Conf., 2005.

[120] M. Christodorescu and S. Jha, “Static analysis of executables to detect malicious

patterns,” in SSYM’03 Proceedings of the 12th conference on USENIX Security

Symposium, 2003, vol. 12, pp. 12–12.

[121] M. Christodorescu, S. Jha, S. A. Seshia, D. Song, and R. E. Bryant, “Semantics-aware

malware detection,” 2005 IEEE Symp. Secur. Priv., 2005.

[122] C. Kruegel, W. Robertson, and G. Vigna, “Detecting kernel-level rootkits through binary

analysis,” 20th Annu. Comput. Secur. Appl. Conf., 2004.

[123] Checkmarx, “Checkmarx.” [Online]. Available: https://www.checkmarx.com. [Accessed:

20-Jun-2012].

[124] U. Bayer, A. Moser, C. Kruegel, and E. Kirda, “Dynamic Analysis of Malicious Code,”

EICAR, 2006.

261

[125] Acunetix, “Acunetix.” [Online]. Available: https://www.acunetix.com/. [Accessed: 05-

Apr-2015].

[126] J. Bergeron, M. Debbabi, J. Desharnais, M. M. Erhioui, Y. Lavoie, N. Tawbi, J. Bergeron,

M. Debbabi, J. Desharnais, M. Erhioui, Y. Lavoie, and N. Tawbi, “Static Detection of

Malicious Code in Executable Programs,” Control, pp. 184–189, 2001.

[127] Kali, “Kali Linux.” [Online]. Available: https://www.kali.org/. [Accessed: 05-Apr-2015].

[128] R. Goldberg, “Survey of virtual machine research,” IEEE Computer Magazine, pp. 34–45,

Jun-1974.

[129] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh, “Terra: A virtual machine-

based platform for trusted computing,” in Operating Systems Review (ACM), 2003, vol.

37, no. 5, pp. 193–206.

[130] T. Garfinkel and M. Rosenblum, “A Virtual Machine Introspection Based Architecture for

Intrusion Detection,” in Proc. Network and Distributed Systems Security …, 2003, vol. 1,

pp. 253–285.

[131] VMware, “Vmware Inc.” [Online]. Available: www.vmware.com. [Accessed: 12-Jun-

2011].

[132] L. Litty, “Hypervisor based intrusion detection.,” University of Toronto, 2005.

[133] M. Dou El Kefel and B. Mohamed, “Risk management in cloud computing,” in Innovative

Computing Technology (INTECH), 2013 Third International Conference on, 2013, pp. 127–

131.

[134] S. Tanimoto, C. Murai, Y. Seki, M. Iwashita, S. Matsui, H. Sato, and A. Kanai, “A Study of

Risk Management in Hybrid Cloud Configuration,” in Computer and Information Science

SE - 18, vol. 493, R. Lee, Ed. Springer International Publishing, 2013, pp. 247–257.

[135] CSA, “CSA Guidance,” 2012. [Online]. Available:

https://cloudsecurityalliance.org/csaguide.pdf.

262

[136] A. Shamir, “How to share a secret,” Communications of the ACM, vol. 22, no. 11. pp.

612–613, 1979.

[137] D. Brink, “Security and Cloud Best Practices,” Aberdeen Gr., 2011.

[138] A. U. Khan, M. Oriol, M. Kiran, M. Jiang, and K. Djemame, “Security risks and their

management in cloud computing,” in 4th IEEE International Conference on Cloud

Computing Technology and Science Proceedings, 2012, pp. 121–128.

[139] IRAM, “Information risk analysis methodology,” 2012. [Online]. Available:

https://www.securityforum.org/iram#iramtva. [Accessed: 09-Nov-2012].

[140] P. Mcnamaara, “DDoS attack against Bitbucket darkens Amazon cloud,” Network World,

2009. [Online]. Available: http://www.networkworld.com/community/node/45891.

[Accessed: 05-Aug-2010].

[141] ISO, “ISO 27002 Standard,.” [Online]. Available: http://www.27000.org/iso-27002.htm.

[Accessed: 09-Nov-2012].

[142] J. M. Grusha N., “Attack Surfaces: A Taxonomy for Attacks on Cloud services,” in IEEE 3rd

Int Conference on Cloud Computing, 2010.

[143] Google, “Security Whitepaper: Google Apps Messaging and Collaboration Products,”

2010. [Online]. Available: https://docs.google.com/fileview?id=0B5Y-

fwYJF2hLY2MwNzk0NjQtYTZlNy00MjdiLThmMmUtOTM1OTRjMTdjNDMx&hl=en.

[144] Wikileaks, “Wikileaks.org.” [Online]. Available: http://wikileaks.org/. [Accessed: 29-Oct-

2012].

[145] J. Garmon, “Endusers:The achilles heel in googleapps,” Backupify, 2010. [Online].

Available:

http://www.backupify.com/resources/end_users.pdf?&utm_source=resources&utm_m

edium=whitepaper&utm_campaign=EndUserAchillesHeel. [Accessed: 01-Jan-2012].

[146] T. Shifrin, “Human error cost most data loss,studysays,” PCWorld, 2007. [Online].

Available:

263

http://www.pcworld.com/article/129736/human_error_causes_most_data_loss_study_

says.html. [Accessed: 02-May-2012].

[147] P. Gordon, “Data Leakage-Threat and Mitigation,” SANS Institute, 2007. [Online].

Available: http://www.sans.org/reading_room/whitepapers/awareness/data-leakage-

threats-mitigation_1931. [Accessed: 12-Sep-2012].

[148] I. Thomson, “Google Docs Leaks Private User Data Online,” v3, 2009. [Online]. Available:

http://www.v3.co.uk/vnunet/news/2238122/google-docs-leaks-private.

[149] Blackhat, “Cloudburst: Arbitrary code execution vulnerability for VMWare,” 2009.

[Online]. Available: http://www.blackhat.com/presentations/bh-usa-

09/KORTCHINSKY/BHUSA09-Kortchinsky-Cloudburst-SLIDES.pdf. [Accessed: 12-Sep-

2012].

[150] T. Ormandy, “An Empirical Study into the Security Exposure to Hosts of Hostile

Virtualized Environments,” Test, pp. 1–10, 2007.

[151] S. Yilek, “Resettable Public-Key Encryption : How to Encrypt on a Virtual Machine,” in CT-

RSA 2010: Topics in Cryptology, 2010, pp. 41–56.

[152] W. J. Clinton and A. Gore, “A Framework for Global Electronic Commerce,” IT Law Wiki.

[Online]. Available:

http://itlaw.wikia.com/wiki/A_Framework_for_Global_Electronic_Commerce.

[Accessed: 21-Jun-2011].

[153] R. R. Schriver, “You Cheated, You Lied: The Safe Harbor Agreement and Its

Enforcement,” Fordham Law Review, 2002. [Online]. Available:

http://ir.lawnet.fordham.edu/cgi/viewcontent.cgi?article=3848&context=flr. [Accessed:

12-Aug-2011].

[154] BitBucket, “Another EBS/EC2 incident,” BB, 2010. [Online]. Available:

http://blog.bitbucket.org/2010/04/20/another-ec2ebs-incident-what-happened/.

[Accessed: 23-Jan-2013].

264

[155] F. Y. Rashid, “Wikileaks no longer on Amazon EC2, return to Swedish hosting service,”

eWEEK. [Online]. Available: http://www.eweek.com/c/a/Security/WikiLeaks-No-Longer-

on-Amazon-EC2-Returns-to-Swedish-Hosting-Service-671260/. [Accessed: 14-Nov-2012].

[156] A. Ferdowsi, “Checksum Failure of Amazon S3,” Amazon. [Online]. Available:

https://forums.aws.amazon.com/thread.jspa?threadID=22709&start=0&tstart=.

[Accessed: 12-Aug-2011].

[157] A. U. Khan and T. Dimitrakos, “Keys for protecting user access to media,”

PCT/GB2009/000793, 2009.

[158] A. Perrig, R. Canetti, J. Tygar, and D. Song, “The TESLA broadcast authentication

protocol,” CryptoBytes, vol. Summer/Fal, no. 5:2, pp. 2–13, 2002.

[159] S. Wee and J. Apostolopoulos, “Secure scalable video streaming for wireless networks,”

IEEE Int. Conf., 2001.

[160] S. Wee and J. Apostolopoulos, “Secure scalable streaming and secure transcoding with

JPEG-2000,” Proc. 2003 Int. Conf. Image Process. (Cat. No.03CH37429), vol. 1, 2003.

[161] S. J. Wee and J. G. Apostolopoulos, “Secure scalable streaming enabling transcoding

without decryption,” Proc. 2001 Int. Conf. Image Process. (Cat. No.01CH37205), vol. 1,

2001.

[162] G. R. Blakley, “Safeguarding cryptographic keys,” in AFIPS, 1979, p. 313.

[163] QMU, “Multimedia & Vision Research Group,” Queen Mary University, 2006. [Online].

Available: http://www.eecs.qmul.ac.uk/group/mmv/svc.html. [Accessed: 07-Sep-2012].

[164] Secure Cloud Storage, “Huddle,” Huddle, 2013. .

[165] K. Scarfone and A. Orebaugh, “Technical Guide to Information Security Testing and

Assessment Recommendations of the National Institute of Standards and Technology,”

Nist Spec. Publ., vol. 800, pp. 1–80, 2008.

265

[166] F. Whiteside, L. Badger, M. Iorga, J. Mao, and S. Chu, “Challenging Security Requirements

for US government Cloud Computing Adoption,” Spec. Publ. 500-296, 2013.

[167] M. Kiran, A. U. Khan, M. Jiang, K. Djeame, M. Oriol, and M. Corrales, “Managing Security

Threats in Clouds,” Digit. Res., 2012.

[168] A. U. Khan, M. Oriol, and M. Kiran, “Threat Methodology for Securing Scalable Video in

the Cloud,” 8th IEEE Int. Conf. Internet Technol. Secur. Trans. Proceedings, 2013, 2013.

[169] A. U. Khan, F. La Torre, and M. Oriol, “Network and Access Security System,” Patent

Application Number: 13715392, 2013.

[170] A. U. Khan, F. La Torre, and M. Oriol, “METHOD AND SYSTEM FOR NETWORK DATA

ACCESS,” PCT/GB2013/000145, 2013.

[171] L. Ibraimi, M. Petkovic, S. Nikova, P. Hartel, and W. Jonker, “Mediated Ciphertext-Policy

Attribute Based Encryption and its Application,” Work. Inf. Secur. Apl. (WISA ‘09), pp.

309–323, 2009.

[172] S. Yu, C. Wang, and W. Lou, “Attribute Based Data Sharing with Attribute Revocation,” in

Proceeding ASIACCS ’10 Proceedings of the 5th ACM Symposium on Information,

Computer and Communications Security, 2010, pp. 261–270.

[173] Edney and W. A. Arbaugh, Real 802.11 Security: Wi-Fi Protected Access and 802.11I.

Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 2003.

[174] T. Hardjono and L. R. Dondeti, Security In Wireless LANS And MANS (Artech House

Computer Security). Norwood, MA, USA: Artech House, Inc., 2005.

[175] Oasis, “Oasis XACML.” [Online]. Available: http://www.oasis-

open.org/committees/xacml/. [Accessed: 14-Nov-2012].

[176] D. Nunez, “NICS Crypto Library,” NICS, 2012. [Online]. Available:

https://www.nics.uma.es/dnunez/nics-crypto. [Accessed: 24-Jun-2014].

266

[177] D. Nunez, I. Agudo, and J. Lopez, “Integrating OpenID with proxy re-encryption to

enhance privacy in cloud-based identity services,” in CloudCom 2012 - Proceedings: 2012

4th IEEE International Conference on Cloud Computing Technology and Science, 2012,

pp. 241–248.

