2,871 research outputs found

    Efficient Micro-Mobility using Intra-domain Multicast-based Mechanisms (M&M)

    Full text link
    One of the most important metrics in the design of IP mobility protocols is the handover performance. The current Mobile IP (MIP) standard has been shown to exhibit poor handover performance. Most other work attempts to modify MIP to slightly improve its efficiency, while others propose complex techniques to replace MIP. Rather than taking these approaches, we instead propose a new architecture for providing efficient and smooth handover, while being able to co-exist and inter-operate with other technologies. Specifically, we propose an intra-domain multicast-based mobility architecture, where a visiting mobile is assigned a multicast address to use while moving within a domain. Efficient handover is achieved using standard multicast join/prune mechanisms. Two approaches are proposed and contrasted. The first introduces the concept proxy-based mobility, while the other uses algorithmic mapping to obtain the multicast address of visiting mobiles. We show that the algorithmic mapping approach has several advantages over the proxy approach, and provide mechanisms to support it. Network simulation (using NS-2) is used to evaluate our scheme and compare it to other routing-based micro-mobility schemes - CIP and HAWAII. The proactive handover results show that both M&M and CIP shows low handoff delay and packet reordering depth as compared to HAWAII. The reason for M&M's comparable performance with CIP is that both use bi-cast in proactive handover. The M&M, however, handles multiple border routers in a domain, where CIP fails. We also provide a handover algorithm leveraging the proactive path setup capability of M&M, which is expected to outperform CIP in case of reactive handover.Comment: 12 pages, 11 figure

    Low latency IP mobility management: Protocol and analysis

    Get PDF
    Mobile IP is one of the dominating protocols that enable a mobile node to remain reachable while moving around in the Internet. However, it suffers from long handoff latency and route inefficiency. In this article, we present a novel distributed mobility management architecture, ADA (Asymmetric Double-Agents), which introduces double mobility agents to serve one end-to-end communication. One mobility agent is located close to the MN and the other close to the CN. ADA can achieve both low handoff latency and low transmission latency, which is crucial for improvement of user perceived QoS. It also provides an easy-to-use mechanism for MNs to manage and control each traffic session with a different policy and provide specific QoS support. We apply ADA to MIPv6 communications and present a detailed protocol design. Subsequently, we propose an analytical framework for systematic and thorough performance evaluation of mobile IP-based mobility management protocols. Equipped with this model, we analyze the handoff latency, single interaction delay and total time cost under the bidirectional tunneling mode and the route optimization mode for MIPv6, HMIPv6, CNLP, and ADA. Through both quantitative analysis and NS2-based simulations, we show that ADA significantly outperforms the existing mobility management protocols. © 2011 Liu et al; licensee Springer

    Virtual Mobility Domains - A Mobility Architecture for the Future Internet

    Get PDF
    The advances in hardware and wireless technologies have made mobile communication devices affordable by a vast user community. With the advent of rich multimedia and social networking content, an influx of myriads of applications, and Internet supported services, there is an increasing user demand for the Internet connectivity anywhere and anytime. Mobility management is thus a crucial requirement for the Internet today. This work targets novel mobility management techniques, designed to work with the Floating Cloud Tiered (FCT) internetworking model, proposed for a future Internet. We derive the FCT internetworking model from the tiered structure existing among Internet Service Provider (ISP) networks, to define their business and peering relationships. In our novel mobility management scheme, we define Virtual Mobility Domains (VMDs) of various scopes, that can support both intra and inter-domain roaming using a single address for a mobile node. The scheme is network based and hence imposes no operational load on the mobile node. This scheme is the first of its kind, by leveraging the tiered structure and its hierarchical properties, the collaborative network-based mobility management mechanism, and the inheritance information in the tiered addresses to route packets. The contributions of this PhD thesis can be summarized as follows: · We contribute to the literature with a comprehensive analysis of the future Internet architectures and mobility protocols over the period of 2002-2012, in light of their identity and handoff management schemes. We present a qualitative evaluation of current and future schemes on a unified platform. · We design and implement a novel user-centric future Internet mobility architecture called Virtual Mobility Domain. VMD proposes a seamless, network-based, unique collaborative mobility management within/across ASes and ISPs in the FCT Internetworking model. The analytical and simulation-based handoff performance analysis of the VMD architecture in comparison with the IPv6-based mobility protocols presents the considerable performance improvements achieved by the VMD architecture. · We present a novel and user-centric handoff cost framework to analyze handoff performance of different mobility schemes. The framework helps to examine the impacts of registration costs, signaling overhead, and data loss for Internet connected mobile users employing a unified cost metric. We analyze the effect of each parameter in the handoff cost framework on the handoff cost components. We also compare the handoff performance of IPv6-based mobility protocols to the VMD. · We present a handoff cost optimization problem and analysis of its characteristics. We consider a mobility user as the primary focus of our study. We then identify the suitable mathematical methods that can be leveraged to solve the problem. We model the handoff cost problem in an optimization tool. We also conduct a mobility study - best of our knowledge, first of its kind - on providing a guide for finding the number of handoffs in a typical VMD for any given user\u27s mobility model. Plugging the output of mobility study, we then conduct a numerical analysis to find out optimum VMD for a given user mobility model and check if the theoretical inferences are in agreement with the output of the optimization tool

    New Mobility Trends in Data Networks

    Get PDF
    Dizertační práce se zabývá návrhem nového algoritmu řízení handoveru v rámci protokolu Mobile IPv6, který umožní nasazení tohoto protokolu v leteckých datových sítích. Existující algoritmy řízení handoveru sice dosahují dostatečné výkonnosti v konvenčních pozemních bezdrátových sítích disponujích velkou šířkou pásma a nízkou latencí, jako jsou WiFi nebo UMTS, ale jak ukazuje tato práce, nasazení těchto algoritmů prostředí leteckých datových sítí nepřináší očekávané výhody. Analýza ukazuje, že v úzkopásmových leteckých sítích trpí tyto algoritmy řízení handoveru velkou latencí a způsobují značnou režii. Nový algoritmus řízení handoveru v MIPv6 navržený v této práci je založený na jednoduché myšlence: ''Já jsem letadlo, já vím, kam letím!'' To znamená, že pohyb letadla není náhodný, ale vysoce předvídatelný. Díky tomu je možno předvídat handovery mezi přístupovými sítěmi podél očekávané trajektorie letadla a vykonat nezbytné operace pro přípravu handoverů již na zemi, kde je letadlo připojeno k širokopásmové síti letiště. Tato dizertační práce dále uvádí porovnání existujících algoritmů řízení handoveru s nově navrženým pomocí analytické metody ohodnocení handoveru. Díky tomu je možno kvantifikovat výhody, které nový algoritmus přináší a taktéž popsat slabiny algoritmů existujících.The doctoral thesis is focused on a design of novel Mobile IPv6 handover strategy suitable for deployment in aeronautical data networks. The current handover strategies provide sufficient performance in the conventional ground networks such as WiFi or UMTS that dispose high bandwidth and low latency. However, as this thesis shows, deploying these handover strategies in aeronautical data link environment does not bring desired benefits - the handover latency is high and the related overhead gets high as well. The novel MIPv6 handover strategy presented in this thesis is based on a simple thought: ''I am an aircraft, I know where I'm flying!'' This means that the movement of the aircraft is not random, it is highly predictable. Thanks to that, inter-network handovers may be anticipated and necessary IP handover related actions can be taken in advance, while the aircraft is connected via a broadband ground link at the origination airport. The thesis also presents a comparison of the existing handover strategies with the proposed new one conducted using an analytical approach. This allows to quantify the benefits of the novel handover strategy and the drawbacks of the current ones.

    A HMRSVP approach to support QoS challenges in mobile environment

    Get PDF
    The current Internet architecture with its best effort service model is inadequate for real time applications that need certain Quality of Service (QoS) assurances. Several QoS models are proposed, however, these models were proposed for static environment. The main aim of this paper is to propose a set of protocols that enable the support of seamless mobility with the required QoS. To achieve this, first, the current static environment QoS models are studied, evaluated and compared. Their limitations to support mobility are identified and discussed. Second Mobile RSVP (MRSVP) and its extensions Hierarchal Mobile RSVP (HMRSVP) and Resource Reservation with Pointer Forwarding (HMRSVPpf) approaches are also studied and evaluated. It was shown that the main drawback of these approaches is the scalability issue. Lastly, this paper proposes an extension to the HMRSVP approach to overcome its drawbacks

    Multicast Mobility in Mobile IP Version 6 (MIPv6) : Problem Statement and Brief Survey

    Get PDF
    Publisher PD

    Mobility and Handoff Management in Wireless Networks

    Get PDF
    With the increasing demands for new data and real-time services, wireless networks should support calls with different traffic characteristics and different Quality of Service (QoS)guarantees. In addition, various wireless technologies and networks exist currently that can satisfy different needs and requirements of mobile users. Since these different wireless networks act as complementary to each other in terms of their capabilities and suitability for different applications, integration of these networks will enable the mobile users to be always connected to the best available access network depending on their requirements. This integration of heterogeneous networks will, however, lead to heterogeneities in access technologies and network protocols. To meet the requirements of mobile users under this heterogeneous environment, a common infrastructure to interconnect multiple access networks will be needed. In this chapter, the design issues of a number of mobility management schemes have been presented. Each of these schemes utilizes IP-based technologies to enable efficient roaming in heterogeneous network. Efficient handoff mechanisms are essential for ensuring seamless connectivity and uninterrupted service delivery. A number of handoff schemes in a heterogeneous networking environment are also presented in this chapter.Comment: 28 pages, 11 figure
    corecore