1,173 research outputs found

    Proximity search heuristics for wind farm optimal layout

    Get PDF
    A heuristic framework for turbine layout optimization in a wind farm is proposed that combines ad-hoc heuristics and mixed-integer linear programming. In our framework, large-scale mixed-integer programming models are used to iteratively refine the current best solution according to the recently-proposed proximity search paradigm. Computational results on very large scale instances involving up to 20,000 potential turbine sites prove the practical viability of the overall approach

    Mixed Integer Programming Models and Algorithms for Wind Farm Layout

    Get PDF
    The aim of the thesis is the optimization of wind farm layout: given a specific wind farm site and wind data for the site, an optimal location of turbines is determined such that the power production is maximized and wake effects and other constraints are taken into account. Several Mixed Integer Linear Programming (MILP) models and ad-hoc heuristics have been proposed, and a new approach for very large-scale instances has been developed. Tests on real data show the effectiveness of our methodope

    Mathematical Optimization and Algorithms for Offshore Wind Farm Design: An Overview

    Get PDF
    Wind energy is a fast evolving field that has attracted a lot of attention and investments in the last dec- ades. Being an increasingly competitive market, it is very important to minimize establishment costs and increase production profits already at the design phase of new wind parks. This paper is based on many years of collaboration with Vattenfall, a leading wind energy developer and wind power operator, and aims at giving an overview of the experience of using Mathematical Optimization in the field. The paper illustrates some of the practical needs defined by energy companies, showing how optimization can help the designers to increase production and reduce costs in the design of offshore parks. In particular, the study gives an overview of the individual phases of designing an offshore windfarm,andsomeoftheoptimizationproblemsinvolved. Finally it goes in depth with three of the most important optimization tasks: turbine location, electrical cable routing and foundation optimization. The paper is concluded with a discussion of future challenges

    Optimization of Wind Farm Layout: A Refinement Method by Random Search

    Get PDF

    A Review of Methodological Approaches for the Design and Optimization of Wind Farms

    Get PDF
    This article presents a review of the state of the art of the Wind Farm Design and Optimization (WFDO) problem. The WFDO problem refers to a set of advanced planning actions needed to extremize the performance of wind farms, which may be composed of a few individual Wind Turbines (WTs) up to thousands of WTs. The WFDO problem has been investigated in different scenarios, with substantial differences in main objectives, modelling assumptions, constraints, and numerical solution methods. The aim of this paper is: (1) to present an exhaustive survey of the literature covering the full span of the subject, an analysis of the state-of-the-art models describing the performance of wind farms as well as its extensions, and the numerical approaches used to solve the problem; (2) to provide an overview of the available knowledge and recent progress in the application of such strategies to real onshore and offshore wind farms; and (3) to propose a comprehensive agenda for future research

    Multi-objective Optimization of Wind Farm Layouts Under Energy Generation and Noise propagation

    Get PDF
    Wind farm design deals with the optimal placement of turbines in a wind farm. Past studies have focused on energymaximization, cost-minimization or revenue-maximization objectives. As land is more extensively exploited for onshore wind farms, wind farms are more likely to be in close proximity with human dwellings. Therefore governments, developers, and landowners have to be aware of wind farms’ environmental impacts. After considering land constraints due to environmental features, noise generation remains the main environmental/health concern for wind farm design. Therefore, noise generation is sometimes included in optimization models as a constraint. Here we present continuous-location models for layout optimization that take noise and energy as objective functions, in order to fully characterize the design and performance spaces of the optimal wind farm layout problem. Based on Jensen’s wake model and ISO-9613-2 noise calculations, we used single- and multiobjective genetic algorithms (NSGA-II) to solve the optimization problem. Preliminary results from the biobjective optimization model illustrate the trade-off between energy generation and noise production by identifying several key parts of Pareto frontiers. In addition, comparison of single-objective noise and energy optimization models show that the turbine layouts and the inter-turbine distance distributions are different when considering these objectives individually. The relevance of these results for wind farm layout designers is explored
    • …
    corecore