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Wind energy is the fastest growing source of renewable energy, but as wind farms are getting larger and

more remotely located, installation and infrastructure costs are rising. It is estimated that the expenses for

electrical infrastructure account for 15-30% of the overall initial costs, hence it is important to optimize

offshore inter-array cable routing. The routing should connect all turbines to one (or more) offshore sub-

station(s) while respecting cable capacities, no-cross restrictions, connection-limits at the substation, and

obstacles at the site. The objective is to minimize both the capital that must be spent immediately in cable

and installation costs, and the future reduced revenues due to power losses. The latter goal has not been

addressed in previous work. We present a Mixed-Integer Linear Programming approach to optimize the

routing using both exact and math-heuristic methods. In the power losses computation, wind scenarios are

handled efficiently as part of the preprocessing, resulting in a MIP model of only slightly larger size. A library

of real-life instances is introduced and made publicly available for benchmarking. Computational results on

this testbed show the viability of our methods, proving that savings in the order of millions of Euro can be

achieved.

Key words : Wind energy, mixed-integer linear programming, branch-and-cut, matheuristics, benchmark

instances, computational analysis.

History :

1. Introduction

Wind power is an important technology in the transition to renewable energy, fighting climate

changes. Designing a wind farm is, however, a complex process including selection of the right

plot, optimizing the location of each turbine (González et al. 2014, Fischetti and Monaci 2015),

establishing the infrastructure (Bauer and Lysgaard 2015) and connecting the farm to the existing

electrical grid (Qi et al. 2015). According to González et al. (2014) the expenses for electrical
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infrastructure account for 15-30% of the overall initial costs of an offshore wind farm. It is therefore

very important to optimize the cable connections among turbines not only from an installation

cost perspective, but also considering the power losses during operation.

Thanks to the collaboration with Vattenfall BA Wind it has been possible to build a detailed

model including all the constraints arising in practical applications (some of which are missing in

previous work from the literature) and to measure, for the first time, the savings in the long run

by optimizing the layout and type of cables while taking power losses into account.

The power production of offshore turbines needs to be collected through one or more substations

and then conveyed to the coast. To do that, each turbine must be connected through a cable to

another turbine, and eventually to a substation. Figure 1 gives an example of cable layout for a

real wind park. The final cable layout, often called a cable routing, has a tree structure where the

non-root nodes correspond to the given turbines, the substations play the role of roots, and the

energy (i.e., electric current) flows from the nodes to the roots along the tree.

Figure 1 An example of cable routing for a real-world offshore wind park (Thanet) owned by Vattenfall—image

from (Kis-orca 2015).
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A number of constraints must be taken into account when designing a feasible cable routing.

First of all, the energy flow is unsplittable, i.e., the flow leaving a turbine must be supported by a

single cable. In addition, each substation has a physical layout that imposes a maximum number

of entering cables.
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An important practical constraint is that cable crossings should be avoided. In principle, cable

crossing is not impossible, but is strongly discouraged in practice as building one cable on top of

another is more expensive and increases the risk of cable damages. Another restriction is due to

the possible presence of obstacles in the site, e.g., nature reserves, already existing wind farms

or cables, or terrain irregularities. As a consequence, the final cable routing needs to avoid these

areas.

Different types of cable with different costs, capacities and electrical resistances are available on

the market. Therefore, one has to optimize also the cable type selection in order to deliver all the

energy production to the substations while minimizing both direct costs (i.e., cable and installation

costs) and the future revenue losses due to power losses along the cables. This latter aspect is

very important in practice, in that more expensive cables/layouts can be more profitable in the

long run if they limit the amount of energy lost along the cables. As far as we know, power losses

were not addressed in previous work from the optimization literature, perhaps because the loss is

a nonlinear function of the current flowing in the cable, hence being more difficult to handle in an

MILP framework.

To the best of our knowledge, just few articles from the literature use Mixed Integer Linear

Programming (MILP) for cable routing; see e.g. Bauer and Lysgaard (2015), Hertz et al. (2012),

Fagerfjall (2010), Dutta (2012), Berzan et al. (2011). Our work seems to be the only one considering

obstacles and power losses. An open vehicle routing approach was proposed by Bauer and Lysgaard

(2015), but their model requires that only one cable can enter a turbine, a condition that is not

imposed in our real-world cases. Different solution approaches were proposed in Berzan et al. (2011),

where a divide-and-conquer heuristic is proposed together with an Integer Programming model

that is tested on small cases involving up to 11 turbines. Hertz et al. (2012) study cable layout for

onshore cases. The onshore cable routing problem has however some main differences compared to

the offshore one. First of all cables can be of two types: underground cables (connecting turbines

to other turbines or to the above-ground level), and above-ground cables. In the first case, the

cables need to be dug in the ground. Due to the fact that parallel lines can use the same dug

hole, parallel structures are preferred (up to a fixed number). The above-ground level cables need

to follow existing roads. These constraints do not exist in the offshore case. Finally, Dutta and

Overbye (2011) present a clustering heuristic for cable routing.

In this paper we present a new MILP model that is able handle all the real-world constraints

above. Our goal was the design of a practical optimization tool to be used to validate, on real cases,

the potential savings resulting from power-loss reduction.

The paper is organized as follows. Section 2 describes our MILP model and is divided into

subsections where a basic model is first presented and then improved and extended. In particular,
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we show how to model power losses, and propose a precomputing strategy that is able to handle

this non-linearity in a very simple way, thus avoiding sophisticated quadratic models that would

make our approach impractical. We also prove that our specific version of the cable routing problem

is NP-hard. Section 3 introduces MILP-based heuristics in the so-called matheuristic framework

(Boschetti et al. 2009, Hansen et al. 2009). We first propose a relaxation of the initial MILP model

that allows one to quickly find an initial (possibly infeasible) solution, and then we introduce

different ways of defining a restricted MILP to improve the current-best solution. This approach

is combined with an exact solution method to obtain a hybrid heuristic/exact solution method

whose performance is investigated in Section 4 on a testbed of real-world cases—input data being

available, on request, from the first author. Section 5 analyzes a real case provided by Vattenfall,

namely Horns Rev 3, and quantifies the savings obtained by an optimized cable routing taking

power losses into account. Some conclusions and future directions of work are finally addressed in

Section 6.

2. MILP model

We first introduce the basic MILP model, discuss complexity, and then describe various extensions

of the model.

2.1. Basic model

A first step of designing a wind farm layout is to locate the turbines to maximize wind energy

capture while minimizing the wake loss. Various techniques, mainly heuristic, have been proposed

for this first step (Samorani 2013, González et al. 2014, Kusiak and Song 2010, Archer et al. 2011,

Fischetti and Monaci 2015).

Assuming that the best turbine positions have been identified, the next step is to to find an

optimal cable connection among all turbines and the given substation(s), minimizing the total

cable cost (excluding power losses, as these will be addressed later). Our model is based on the

following requirements:

• the energy flow leaving a turbine must be supported by a single cable;

• different cables, with different capacities and costs, are available;

• the energy flow on each connection cannot exceed the capacity of the installed cable;

• a given maximum number of cables, say C, can be connected to each substation;

• cable crossing should be avoided.

Let us consider the turbine positions as the nodes of a complete and loop-free directed graph

G= (V,A), and all possible connections between them as directed arcs. Some nodes correspond to

the substations that are considered as the roots of the distribution network, and are the only nodes
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that collect energy. We also add some Steiner nodes to add some flexibility to the cable structure,

with the additional constraint that at most one cable can enter and exit each of them—hence these

nodes can be left uncovered by the cable routing. As explained in Subsection 2.4, these dummy

nodes are useful when considering obstacles in the area, or to allow for curvy connections between

two nodes.

All nodes h ∈ V have associated coordinates in the plane, that are used to compute distances

between nodes as well as to determine whether two given line segments [i, j] and [h,k] cross each

other, where [a, b] denotes the line segment in the plane having nodes a, b ∈ V as endpoints. In

our application, two line segments meeting at one extreme point do not cross. Analogously, two

segments do not cross if one is contained in the other, as they represent two parallel cables that

can be physically built one besides the other without crossing issues.

We partition the node set V into (VT , V0, VS), where VT contains the nodes corresponding to the

turbines, V0 contains the nodes corresponding to the substation(s), and VS contains the Steiner

nodes (if any). Furthermore, let Ph ≥ 0 denote the power production at node h∈ V , where Ph > 0

for h∈ VT and Ph = 0 for h∈ VS (Ph being immaterial for h∈ V0).

Let T denote the set of different types of cable that can be used. Each cable type t ∈ T has a

given capacity kt ≥ 0 and a unit cost ut ≥ 0. Arc costs

cti,j = ut · dist(i, j)

are defined for each arc (i, j)∈A and for each type t∈ T , where dist(i, j) is the Euclidean distance

between nodes i and j.

In our model, for each arc (i, j) ∈ A we use a continuous variable fi,j ≥ 0 to represent the

(directed) energy flow from i to j, and the binary variable xt
i,j with the following meaning:

xt
i,j =

{
1 if arc (i, j) is constructed with cable type t

0 otherwise.
(i, j)∈A, t∈ T.

Finally, binary variables yi,j indicate whether an arc (i, j) is built with any type of cable, i.e.,

yi,j =
∑
t∈T

xt
ij, (i, j)∈A.

For the sake of generality, in our model we allow the costs cti,j to be defined arbitrarily. In

addition, we define the undirected edge set E = {{i, j} : (i, j)∈A} and generalize the non-crossing

property by considering a generic input set C ⊂E×E of crossing edges with the property any two

arcs (i, j) and (h,k) cannot be both constructed if ({i, j},{h,k})∈ C.

Our basic MILP model then reads:
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min
∑

(i,j)∈A

∑
t∈T

cti,jx
t
i,j (1)∑

t∈T

xt
i,j = yi,j, (i, j)∈A (2)∑

i∈V :i6=h

(fh,i− fi,h) = Ph, h∈ VT ∪VS (3)∑
t∈T

kt x
t
i,j ≥ fi,j, (i, j)∈A (4)∑

j∈V :j 6=h

yh,j = 1 h∈ VT (5)∑
j∈V :j 6=h

yh,j = 0, h∈ V0 (6)∑
j∈V :j 6=h

yh,j ≤ 1, h∈ VS (7)∑
i∈V :i 6=h

yi,h ≤ 1, h∈ VS (8)∑
i∈V :i 6=h

yi,h ≤C, h∈ V0 (9)

yi,j + yj,i + yh,k + yk,h ≤ 1, ({i, j},{h,k})∈ C (10)

xt
i,j ∈ {0,1}, (i, j)∈A, t∈ T (11)

yi,j ∈ {0,1}, (i, j)∈A (12)

fi,j ≥ 0, (i, j)∈A. (13)

The objective function (1) minimizes the total cable layout cost. Constraints (2) impose that

only one type of cable can be selected for each built arc, and defines the yi,j variables. Constraints

(3) are flow conservation constraints: the energy (flow) exiting each node h is equal to the energy

entering h plus the power production of that node. Note that these constraints are not imposed

for h ∈ V0, i.e., when h corresponds to a substation. Constraints (4) ensure that the flow does

not exceed the capacity of the installed cable. Constraints (5) impose that only one cable can

exit a turbine and constraints (6) that none can exit the substation (tree structure with root in

the substation). Note that the Steiner nodes can be connected or not, and if connected only one

cable can enter these nodes (constraints (8)). In addition, (7) imposes that only one cable can exit

a Steiner node. Constraint (9) imposes the maximum number of cables (C) that can enter each

substation. Finally, no-cross constraints (10) forbid building any two incompatible arcs.

Note that the above constraints imply that the y variables define a set of connected components

(one for each substation), each component containing a directed tree with out-degree at most one
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(i.e an anti-arborescence) rooted at a substation; see Figure 2 for an illustration. Circuits are not

explicitly forbidden in the model, however because of (3) they can only arise among Steiner nodes

(for which Ph = 0) and involve at least 3 such nodes because of (10). As explained in the following,

this possibility is allowed in our model and used to take obstacles into account.

We finally observe that one could easily extend our model to also include a maximum number

of cables entering each turbine (by adding a constraint similar to (9) for each turbine) or to limit

the number of cables
∑

(i,j)∈A x
t
i,j used for each cable type t.

Figure 2 A feasible cable routing; arcs are directed according to the electric current flow, i.e., towards roots

(substations).

2.2. Problem complexity

We next address the complexity of the cable routing problem defined in the previous section. The

first theorem considers the case where all turbines have the same power production Pv = 1 and the

nodes are not associated with Euclidean coordinates, the second one considers the case where the

turbines are allowed to have different production and they are associated with points on a plane.

Theorem 1. The cable routing problem is strongly NP-hard even if Pv = 1 for all v ∈ VT , |T |= 1,

C = 2, |V0|= 1, VS = ∅, and C = ∅.



Fischetti and Pisinger: Wind farm cable routing
8

Proof. We prove the claim by reduction from the Weight Constrained Graph Tree Partition

Problem (WGTPP). The latter problem is defined as follows. An undirected graph G = (V,E)

is given, with associated cost ce for each edge e ∈ E, and weight wv for each node v ∈ V . The

problem is to partition the node set V into p disjoint clusters Ur and to build on each of them a

spanning tree Tr. The objective is to find a partition such that the overall tree cost
∑p

r=1

∑
e∈Tr

ce

is minimized, while ensuring that each cluster satisfies a weight constraint
∑

v∈Ur
wv ≤W .

In Cordone and Maffioli (2004) the WGTPP problem was proven to be strongly NP-hard by

reduction from SAT. Actually WGTPP remains strongly NP-hard even if G is a complete graph,

all nodes v have the same weight wv = 1, p= 2, and the edge costs satisfy the triangle inequality.

Given an instance of the WGTPP on a complete graph and with p= 2 and wv = 1 for all v ∈ V ,

we transform it to a cable routing problem by using the same vertices as turbines having production

Pv = wv = 1. An extra node is added to represent a single substation, with connection cost −M

with all other nodes, where M is a sufficiently large positive value. The substation can be connected

to at most C = p cables, and only one cable type exists (|T |= 1) with capacity k1 =W . No Steiner

nodes are present (VS = ∅), and C = ∅. By construction, an optimal solution of the cable routing

problem yields the required optimal WGTPP partition.

�

Interestingly for our wind-farm application, our cable routing problem remains NP-hard even in

its 2D-Euclidean version, i.e., when nodes have associated coordinates in the plane, costs depend

on the Euclidean distance, and set C is defined according to the geometrical crossing property

between line segments in the plane.

Theorem 2. The 2D-Euclidean cable routing problem is NP-hard even when VS = ∅, C =∞, and

|T |= 1.

Proof. We use a reduction from the following well-known NP-complete problem (Garey and

Johnson 1979):

PARTITION: Given a set of n positive integers r1, · · · , rn, does there exist a set Q⊂ {1, · · · , n}

such that
∑

h∈Q rh =
∑n

h=1 rh/2?

Given any instance of PARTITION, we define an instance of our cable routing problem as follows.

We define V0 = {0}, VT = {1, · · · , n}, VS = ∅, and Ph = rh for h= 1, · · · , n. We define only one type

of cable (i.e., T = {1}) with unit cost u1 = 1 and capacity k1 =
∑n

h=1 rh/2, and set C =∞. As to

point coordinates in the plane, we position the substation node 0 at coordinates (0,0), while all

turbine points h∈ VT are located at coordinates (1,0). As all points lay on a line, no crossing can

arise as the line segments corresponding to the arcs of G are parallel. By construction, the answer

to PARTITION is yes if and only if the optimal cable routing problem has an optimal value of 2,
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meaning that only 2 cables are connected to the substation, each with saturated capacity. This

completes the proof of correctness of our reduction. �

2.3. Improved no-cross constraints

No-cross constraints (10) in our basic model have two main drawbacks: they are weak in polyhedral

terms, and their number can be very large (up to O(|V |4) constraints). We therefore propose a

clique strengthening of these constraints, that exploits constraints (5)-(7) to reduce their number

and to typically improve their quality. For any node triple (a, b, k), let the clique arc subsetQ(a, b, k)

be defined

Q(a, b, k) = {(a, b), (b, a)}∪ {(k,h)∈A : ({a, b},{k,h})∈ C} (14)

Theorem 3. The following improved no-cross constraints are valid for model (1)-(13):∑
(i,j)∈Q(a,b,k)

yi,j ≤ 1, a, b, k ∈ V, |{a, b, k}|= 3 (15)

Proof. Let (y,x, f) be any feasible solution of model (1)-(13). As the solution cannot contain

2-node circuits, we have ya,b + yb,a ≤ 1. If ya,b = yb,a = 0, the claim follows from the out-degree

inequalities (5)–(7) that imply
∑

h∈V :h6=k yk,h ≤ 1. Otherwise, assume without loss of generality

ya,b = 1, and observe that the no-cross constraint (10) forbids the selection of any arc (k,h) such

that ({a, b},{k,h})∈ C, hence yk,h = 0 for all (k,h)∈Q\{(a, b), (b, a)}. This proves that y satisfies

all inequalities (15), as claimed. �

Note that the improved no-cross constraints can (15) replace (10) in model (1)-(13), thus reducing

their number from O(|V |4) to O(|V |3). However, although typically better, constraints (15) do not

dominate (10) in the sense that a fractional solution y can violate a certain inequality (10) but no

improved inequality (15).

2.4. Modeling obstacles and curvy cable connections

In practical applications, some obstacles can be present in the site, meaning that some areas of

the site cannot be crossed by cables. As an illustration, consider the real-world offshore wind park

of Figure 3 where two big obstacles are present—they are represented by the two polygons in the

figure. All the given 29 turbines must be connected to the offshore substation, represented by the

square node 0 in the figure. The substation has a limit of C = 8 connected cables. In this example

we considered three types of cables:

• type 1 can support up to 5 turbines and has a price of 135 Euro/m;

• type 2 can support up to 7 turbines and has a price of 250 Euro/m;
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• type 3 can support up to 9 turbines and has a price of 370 Euro/m.

The above prices above are publicly available and do not include installation costs. In Figure 3 ,

type 1 cables are depicted in green, while type 2 cables are in bold blue (type 3 is not selected in

any solution).

To define each obstacle area, viewed as a closed polygon, in our model we introduce artificial

Steiner nodes (with no production) at the vertices of polygon and connect them through a circuit

made by a artificial zero-cost cable that is forced in the solution by fixing the corresponding binary

variable to 1. In this way, the final cost of the layout is not affected by the artificial cables but,

due to the no-cross constraints, the actual cables cannot cross the obstacles. Referring to Figure 3

(left subfigure), only 9 Steiner nodes were introduced, namely:

• nodes 30, 31, 32, and 33, used to define the obstacle in the top-left corner.

• nodes 34, 35, 36, 37, and 38, used to define the big central obstacle;

Figure 3 (left) shows the optimized cable routing when considering only the 9 Steiner points

above. Looking at the final layout, it is clear that the cable routing is rather expensive due to the

Figure 3 A real-world offshore wind farm with obstacles modeled through Steiner nodes. The layout on the right

uses additional Steiner nodes to deal with curvy cable connections, and allows for a 7% cost saving.

non-flexibility of the cables (note, indeed, that our model can only deal with straight-line cable

connections). For example, turbine 18 cannot be connected directly to the substation, because the

straight edge [18,0] would cross the obstacle. In this particular case, this has a significant impact
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on the final cost, as 18 is connected to 19 and therefore arc (19,0) needs a more expensive cable,

since it has nine turbines connected; see the bold blue line in Figure 3 (left).

In real world, however, cables can be curvy so this connection would be possible. To simulate

the curvy form of some cable connections, we can again use Steiner nodes. Our idea is to put some

of them around the obstacles, so that the final solution can possibly use them to circumvent the

obstacles. In particular, in the above example, one can put a new Steiner node over each of the

artificial nodes delimiting the obstacles, plus two extra Steiner nodes overlying the two obstacle-

points closer to the substation (which are in the most critical area). In this way a curvy cable

can connect 14 to the substation and another can connect 18 to the substation. These connections

support less flow (from five turbines each) and therefore can use a cheaper cable. Note, that two

overlapping cables are not considered as a cable crossing since they can be laid in parallel. More

specifically, in Figure 3 (right) the additional Steiner points used to add flexibility are:

• nodes 39, 40, 41, and 42 overlying respectively nodes 30, 31, 32, and 33;

• nodes 43, 44, 45, and 46 overlying respectively nodes 34, 35, 36, and 37;

• nodes 47, 48, and 49 overlying respectively nodes 35, 36 and 37.

Figure 3 (right) shows the new optimized cable routing, which uses only the less-expensive cable

type 1 and allows for a cost saving of about 7% with respect to the previous one.

2.5. Modeling cable losses

In this section we extend the previous model to take cable losses into account. We first explain

the physics behind the problem and next we introduce an alternative way to handle power losses

through a simple preprocessing to be applied to the input data of our MILP model.

Physically, power losses are proportional to the square of the current. If we indicate with gti,j ≥ 0

the current actually passing through the cable of type t on arc (i, j), the total power loss in all the

cable layout can be computed as ∑
(i,j)∈A

∑
t∈T

Qt
i,j (gti,j)

2 (16)

where Qt
i,j is a positive constant depending on the cable type and length that we define as

Qt
i,j =Rt · dist(i, j) (17)

and Rt is the electrical resistance of cable type t, in Ω/m. If we want to estimate the value of these

losses (in order to compare them with the layout price) we need to multiply the result by Keuro.

Keuro is the cost for each MW of production.

Of course the current passing through each cable depends on the production of the connected

turbines and is limited by the capacity of the used cable.
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Having understood the physic behind cable losses, we prefer to stick to a much simpler (and

practically very effective) approach is to deal with cable losses implicitly according to the following

idea. We consider the MILP model without cable losses on a modified instance where each cable

type is replaced by a series of sub-cables with discretized capacity and modified cable cost taking

both installation costs and revenue losses into account.

As an illustration, consider a common situation where all turbines in the wind farm are identical,

hence the maximum power production Ph of each turbine can be assumed to be 1. This means

that we can express cable capacities as the maximum number of turbines supported by each cable

type. Now consider a certain cable type t that can support up to kt turbines. We replace it by

kt sub-cable types of capacity f = 1, · · · , kt whose actual unit cost is computed by adding the

cable/installation unit cost (ut) and the unit power-loss cost (say losst,f ) computed by considering

the current produced by exactly f turbines. As unit costs increase with f , the optimal solution will

always select the sub-cable type f supporting exactly the number of turbines connected, hence the

approach models power losses in a correct way.

Note that the final sub-cable list would in principle contain
∑

t∈T kt different sub-cable types.

However, for each sub-cable capacity f = 1, · · · , kMAX = max{kt : t∈ T} one only needs to keep the

sub-cable with capacity f and minimum unit cost, i.e., only kMAX “undominated” sub-cable types

need to be considered in practice. This figure is not too large in practical cases, and can effectively

be handled by our solution algorithms.

The above approach also allows us to consider multiple wind scenarios (and hence different cur-

rent productions of the turbines) without affecting the model size. This is achieved by precomputing

the sub-cable unit costs by considering a weighted average of the loss cost under different wind

scenarios. In our computational study, the wind energy experts computed the loss contribution to

the unit cost for a 3-phase sub-cable of capacity f as

losst,f = 3
∑

s∈S πs(fI
s)2RtKeuro (18)

where S is the set of wind scenarios under consideration, πs is the probability of scenario s ∈ S,

and Is is the current produced by a single turbine under wind scenario s assuming negligible wake

effects, i.e., all turbines produce the same electric current.

We refer to Section 4 for a practical example.

2.6. No-cross constraint separation

As the number of no-cross constraints (14) on the complete graph G = (V,A) can be very large

for real-world instances, we decided not to include them in the model that is passed to the MILP

solver. Instead, we generate them on the fly, during the MILP solver execution. To this end, we
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implemented a cut separation “callback” function that is automatically invoked by the solver to

verify whether the current solution satisfies (14). This callback function is invoked both for (possibly

fractional) solutions arising when solving the LP relaxation at any given branching-tree node, and

for integer solutions generated by the internal MILP-solver heuristics.

Our separation function receives the (possibly fractional) solution y∗ on input, and scans all

node triples (a, b, k) with a < b to check whether the corresponding improved no-cross constraint

(14) is violated by y∗. Pairs (a, b) with y∗a,b = y∗b,a = 0 are skipped as they cannot lead to a violation

constraint as y∗ satisfies the out-degree inequalities (5)–(7).

Violated constraints, if any, are returned to the MILP solver in an appropriate format, so they

can automatically be added to the current model. If no violated constraint (14) is found and y∗ is

fractional, we also apply a similar separation procedure to possibly generate violated constraints

(14)(though this occurs in very rare cases).

3. Solution method

Since the MILP model cannot solve large problems to optimality and often fails in even finding a

feasible solution, we propose a matheuristic to find high-quality solutions in reasonable time.

3.1. A relaxed model

To be able to find meaningful (though possibly infeasible) initial solutions in very short computing

times, we relax our MILP model by allowing it to produce disconnected solutions. To this end, for

each h∈ VT we replace the corresponding equality in (5) by a less-or-equal inequality. This however

would not affect the final solutions due to the presence of the flow equilibrium equations (3). So we

also relax the latter by allowing for a current loss in some nodes. This is obtained by introducing

a slack continuous variable lh ≥ 0 for each h∈ V , that indicates the energy lost at node h, and by

replacing (3) by ∑
i∈V :i 6=h

(fh,i− fi,h) + lh = Ph, h∈ VT ∪VS (19)

0≤ lh ≤ kMAX , h∈ VT ∪VS (20)

where kMAX = max{kt : t ∈ T} is the maximum cable capacity. The objective function coefficient

of the new variables lh is set to a very large positive constant, say M � 0, thus ensuring that a

connected solution would always have a lower cost compared with a disconnected one.

To avoid solutions where no arcs are built, we add to the model a constraint that requires to

install a total capacity in the arcs entering the substations that is sufficient to support the total

turbine production, namely ∑
t∈T

∑
(i,j)∈A:j∈V0

ktxt
i,j ≥

∑
h∈VT

Ph. (21)
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Our computational experience showed that a black-box MILP solver applied to the relaxed model

above is typically able to find, in a few seconds, a feasible (possibly disconnected) first solution

and to quickly proceed in the tree enumeration to discover better and better ones.

3.2. Matheuristics

As its name suggests, a matheuristic (Boschetti et al. 2009, Hansen et al. 2009) is the hybridization

of mathematical programming with metaheuristics. The hallmark of this approach is the possibility

of designing sound heuristics on top of a black-box MILP solver, by just changing its input data

in a way that favors finding a sequence of improved solutions. In our settings, the black-box MILP

solver is our exact method described in the previous section, where no-crossing constraints are

separated on the fly as described in Section 2.6.

In our setting, the matheuristic is used as a refining tool that receives a certain solution H

(described by its associated vector, say (xH , yH)) and tries to improve it by solving a restricted

MILP “tailored around H” by fixing ya,b = 1 for a suitable-defined subset of the y variables with

yHa,b = 1. Note that this variable-fixing scheme is very powerful in our context as every time a certain

ya,b = 1 is fixed on input, one can forbid all possible crossing arcs, in a preprocessing phase, by

just setting yi,j = 0 for (i, j) ∈Q(a, b, k) \ {(a, b)} for all k ∈ V \ {a, b}. This is very important for

the success of our heuristic, as the restricted problem becomes much easier to solve due to the

large number of variables fixed to 0 or to 1, and because of the fact that many relevant no-cross

constraints are implicitly imposed by preprocessing.

In our implementation, we iteratively apply our refining matheuristic to the current best solution

H available. At each iteration, we temporarily fix to 1 some y variables according to a certain

criterion (to be described later), and apply the preprocessing described above to temporarily fix

some other y variables to zero. We then apply the MILP solver to the corresponding restricted

problem, and we warm start the solver by providing the current solution (xH , yH). We abort the

execution as soon as a better solution is found, or a short time limit of a few seconds is reached.

Then all fixed variables are unfixed, and the overall approach is repeated until a certain overall

time limit (or maximum number of trials) is reached.

The very first solution H passed to the matheuristic plays an important but unpredictable role

in determining the quality of the final solution. As a matter of fact, starting with a very bad

(disconnected) solution can sometimes lead to very good final solutions. This behaviour suggests a

multi-start strategy where a number of different initial solutions are generated and then iteratively

improved by using our overall matheuristic. In our implementation, the initial solutions are defined

by taking the very first (typically highly disconnected) solution found by the MILP solver when

applied to our relaxed model with a random objective function (where all the variables have a
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random cost). To enhance diversification even further, we also use different input values for the

MILP-solver’s random seed parameter.

We next describe four possible variable-fixing criteria.

Our first criterion, called RANDOM, follows a simple random variable-fixing scheme that fixes

variables ya,b with yHa,b = 1 with a certain probability, e.g., 50%.

Our second criterion, DISTANCE, uses a problem-specific strategy to choose the arc-fixing prob-

ability. To be more specific, the arc-fixing probability is related with the distance to the substation,

namely: the arcs closer to the substation(s) are fixed with a larger/smaller probability.

Our third criterion, SWEEP, is specific for wind farms with only one substation. In these cases,

the optimal solutions tend to divide the wind farm into radial sectors emanating from the sub-

station. To take advantage of this property, we tentatively partition the wind farm into sectors,

and we then iteratively reoptimize each sector by fixing all the arcs that involve two nodes not

belonging to it.

To be more specific, within SWEEP all nodes are initially ordered according to their angle with

the substation. This produces a cyclic node sequence where the last-ranked node is followed by the

first-ranked one. A seed node is randomly selected and a sector is defined by picking the SPAN ,

say, nodes that follow it in the cyclic ordered sequence. (In our implementation, we set SPAN

as a certain percentage of the total number of turbines.) The y variables associated with the arcs

connecting two nodes outside this sector are fixed to their value in y∗, while any other y variable is

left unfixed and the subproblem is reoptimized though our black-box MILP solver. If an improved

solution is found, we select the seed s for the new iteration to be close to the previous one (i.e.,

in the cyclic sequence we randomly pick a node in the interval [s-2, s+2]). If the solution is not

improved, instead, the new seed is taken by moving of 5 (say) nodes forward in the sequence.

The SWEEP heuristic ends when the seed s moved along a complete cycle without improving the

current solution.

Our fourth criterion, STRINGS, is similar to SWEEP but at each iteration it defines the sector

to be reoptimized as follows. For each arc (i, r) with y∗i,r = 1 that enters the substation, say r, we

define the node set Si containing all the nodes that reach the substation r passing through node

i. In other words, Si contains all the predecessors of node i in the anti-arborescence corresponding

to y∗. Node sets Si’s are then sorted according to the angle formed by segment [i, r] with respect

to a vertical line passing through r. At each iteration, we choose a seed set Sseed and define the

current sector to be optimized by taking Sseed∪Sseed+1∪· · ·∪Sseed+SPAN (where SPAN is a given

parameter and subscripts are taken in a cyclic way).
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3.3. Computational tuning

To test how our four matheuristic algorithms perform on realistic data, we created a dataset of 11

synthetic wind farms. All instances are difficult as they involve a large number of turbines (from

60 to 93) and in some cases one or more obstacles.

Our matheuristics have been implemented on top of the state-of-the art commercial MILP solver

IBM ILOG CPLEX 12.6. We used 3 instances for the parameter tuning of each algorithm (training

set), and the remaining 8 to compare the matheuristics (test set). Each test has been run four

times with four different random seeds, thus producing different final solutions. All matheuristics

have been run with a time limit of 15 minutes on an Intel Xeon CPU X5550 running at 2.67GHz.

For the sake of space, we do not report here the detailed results of our experiments. Instead, we

next summarize our findings.

• Matheuristic RANDOM is quite effective in its first iterations as it quickly finds good feasible

solutions, though its performance becomes less satisfactory when the current solution becomes

almost optimal.

• Matheuristic DISTANCE does not provide significantly better results than RANDOM, both

when the fixing probability is larger for the arcs closer to the substation(s) and vice-versa. So

RANDOM should be preferred as it is simpler and less prone to overtuning.

• Matheuristics SWEEP and STRINGS have a comparable performance and each of them tends

to outperform RANDOM when the current solution is close to optimality

• The best overall results are obtained by using the above matheuristics in a synergetic way.

3.4. The overall algorithm

Our final algorithm is a mixture of matheuristic and exact solvers. To be specific, we first apply the

RANDOM matheuristic with 50% fixing probability for 30 iterations, so as to quickly obtain a good

solution. Then we apply STRINGS with SPAN = 3, and finally SWEEP with SPAN = 0.3 · |VT |.

This matheuristic sequence is applied 5 times, in a multi-start vein, each time restarting from

scratch from a different random initial solution. At each restart, the initial solution is defined as the

very first (typically disconnected) solution found by the exact MILP solver (CPLEX 12.6) when

applied to the relaxed model of Subsection 3.1 with a random objective function.

After the 5th restart, the exact MILP solver is applied to the original model without any heuristic

variable fixing, using the best-available solution to initialize the incumbent. In this way, we obtain

soon very good heuristic solutions (in the matheuristic phase) along with a valid lower bound

(computed and tightened during the exact solution phase), and eventually converge to a provable

optimal solution.
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4. Computational analysis

This section is aimed at testing the performance of the MILP-based approach described in Sub-

section 3.4, using real-world data.

4.1. Test instances

For benchmark purposes we collected the data of five different real wind farms in operation in

United Kingdom and Denmark. This data is available, on request, from the fist author.

Table 1 summarizes the relevant information of the different sites for these five instances, named

wf01, wf02, wf03, wf04 and wf05 in what follows. Figure 4 shows the different wind farms locations.

Figure 4 The real-world wind farms used in our tests.

We estimated the maximum number of connections to the substation, namely the input parame-

ter C, by looking at the existing cable layout publicly available at (Kis-orca 2015) and (4cOffshore

2015). The corresponding constraint also determines the cable types to be used, which are reported

in the last column of Table 1.

Our first wind farm (wf01) refers to Horns Rev 1, one of the oldest large-scale wind parks in the

world. It was built in 2002 in the North Sea, about 15 km from the Danish shore, and produces

around 160 MW. Our second wind farm (wf02) is Ketish Flats. Ketish Flats is located close to

Kent in South East England, and can produce up to 140MW. It is a near-shore wind farm, so it

is connected to the onshore electrical grid without any offshore substation. Nevertheless, only one

export cable is connected to the shore, therefore we took the starting point of the export cable to

act as a substation. This is handled by setting C =∞ as there is no physical substation limitation

in this case.
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Our third wind farm (wf03) is Ormonde located in UK as well, but in the Irish Sea. It has a total

capacity of 150 MW. Close to Kentish Flats (wf02) there is also Thanet (wf05), a bigger wind park

with capacity 300 MW. When it was opened, in 2010, Thanet was the biggest offshore wind farm

in the world. Finally wf04 refers to the DanTysk offshore wind farm, located west of the island

of Sylt and directly on the German-Danish border. With a total of 80 wind turbines (288MW),

DanTysk can provide up to 400,000 homes with green energy. All the considered sites are owned

by Vattenfall.

The turbines in each wind park are of the same type, so we can assume Ph = 1 for all turbine

nodes and we can express the cable capacities as the maximum number of turbines that it can

support. Table 2 reports the capacity for the different cable types. We considered 5 different sets

of real cables, named cb01, cb02, cb03, cb04, and cb05. As we know their capacity, resistance and

price, we could precompute their unit costs both with and without power losses, following the

strategy we proposed in Subsection 2.5.

We already observed that power losses depend on the current flowing in the cables, that in turn

depends on the average wind conditions within the site. We computed the cable-loss prices as a

combination of real measured data and estimations based on Weibull distributions.

Table 1 Basic information on the real-world wind farms we used for tests.

name site turbine type n. of turbines C allowed cables

wf01 Horns Rev 1 Vestas 80-2MW 80 10 cb01-cb02-cb05
wf02 Kentish Flats Vestas 90-3MW 30 ∞ cb01-cb02-cb03-cb04-cb05
wf03 Ormonde Senvion 5MW 30 4 cb03-cb04
wf04 DanTysk Siemens 3.6MW 80 10 cb01-cb03-cb04-cb05
wf05 Thanet Vestas 90-3MW 100 10 cb04-cb05

We will next show an example of how the power-loss prices are computed for cb05 (these are

realistic cables, but do not refer to any specific cables on the market). In the wf01 case, for example,

we used formula (18) from Subsection 2.5 with πs and Is taken from the actual wind statistics

from the specific site. Parameter Keuro = 0.68 was computed by Vattenfall’s experts by considering

a cable lifetime of 25 years, a WACC of 8%, a warranted price of 0.10 Euro/KWh for 10 years and

then a market price of 0.02 Euro/KWh, while resistance Rt is defined according to Table 3.

The prices considering cable cost, installation and losses for cb05 in the Horns Rev case are

shown in Table 4.

The comparison between Table 3 and 4 shows the impact of considering losses on cable prices.

While from a installation perspective the cost for each cable type is fixed, now it varies depending

on how many turbines are connected. As we will see, this can have a large impact on the optimal

cable routing.
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Table 2 Basic information on the real-world cables

we used for tests.

n. of turbines supported
cables type 2MW 3MW 5MW 3.6MW

cb01
1 7 5 3 4
2 11 8 4 6
3 13 9 6 8

cb02
1 7 5 3 5
2 12 8 5 7

cb03
1 12 8 5 7
2 23 16 5 14

cb04
1 9 7 4 6
2 21 15 9 13

cb05
1 10 7 4 6
2 14 10 6 8

Table 3 Cable information for cb05.

n. of 2MW resistance price install. price
cables type turb. connected [Ohm/km] [Euro/m] [Euro/m]

cb05
1 10 0.13 180 260
2 14 0.04 360 260

Table 4 Cable prices precomputed

considering fixed costs and power losses for wf01
with cb05.

n. of 2MW price
cable type turb. supported [Euro/m]

1

1 441.16831
2 442.71000
3 445.27949
4 448.87676
5 453.50184
6 459.15471
7 465.83537
8 473.54382
9 482.28007
10 492.04412

´

2

11 639.77540
12 643.41221
13 647.36527
14 651.63457

Each combination of site (i.e. wind farm) and feasible cable set represents an instance in our

testbed, resulting in a total of 29 instances. Table 5 reports the main characteristics of our testbed.
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Each instance is identified by a number from 1 to 29 (first column in the table), and corresponds

to an existing wind farm layout (second column) and to a set of possible cables (third column).

Table 5 Our testbed.

number wind farm cable set

01

wf01

wf01 cb01 capex
02 wf01 cb01
03 wf01 cb02 capex
04 wf01 cb02
05 wf01 cb05 capex
06 wf01 cb05

07

wf02

wf02 cb01 capex
08 wf02 cb01
09 wf02 cb02 capex
10 wf02 cb02
11 wf02 cb03
12 wf02 cb04 capex
13 wf02 cb04
14 wf02 cb05 capex
15 wf02 cb05

16

wf03

wf03 cb03 capex
17 wf03 cb03
18 wf03 cb04 capex
19 wf03 cb04

20

wf04

wf04 cb01 capex
21 wf04 cb01
22 wf04 cb03
23 wf04 cb04
24 wf04 cb05 capex
25 wf04 cb05

26

wf05

wf05 cb04 capex
27 wf05 cb04
28 wf05 cb05 capex
29 wf05 cb05

4.2. Tests

We first test the MILP model we developed in Section 2. To understand the capability of the

model alone, we solve our real-world instances with a 10 hours time limit (Intel Xeon CPU X5550

running at 2.67GHz, CPLEX 12.6). The results are shown in Table 6. The first column indicates

the instance considered (refer to Table 5 for details), the second the best solution found within

the time limit, the third one reports the quality of the solution as computed by the solver and

the last column reports the time used to find the proven optimal solution (36000.00 if the time

limit is exceeded without finding it). It is seen that the MILP model alone works well for smaller
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instances: for instances 07 to 19 the optimal solution is found in a few seconds. However, these

instances refer to the smallest wind farms in our data set (Ormonde and Kantish Flats). When

considering bigger wind parks (as DanTysk and Thanet) the MILP solver alone is not able to find

even a feasible solution within 10 hours. Modern wind parks are often of the size of Thanet and

DanTysk, so the algorithm should be designed to solve such instances.

Table 6 Solution quality obtained using

our MILP model alone with a time limit of

36000 secs (– means infeasible solution).

Inst. bestsol % error LB time

01 19437282.55 0.079 36000.00
02 – – 36000.00
03 22611988.67 0.007 36000.00
04 24446239.21 0.470 36000.00
05 23482483.25 0.327 36000.00
06 – – 36000.00
07 8555171.40 0.000 2.78
08 8806838.99 0.000 5.03
09 10056670.31 0.000 1.67
10 10303320.51 0.000 5.34
11 9200184.65 0.000 20.75
12 8604208.93 0.000 0.97
13 8933494.59 0.000 5.67
14 10173931.59 0.000 1.12
15 10348430.63 0.000 12.34
16 8054844.90 0.000 25.11
17 8560008.68 0.000 145.91
18 8357195.91 0.000 117.08
19 9178499.88 0.000 10029.88
20 – – 36000.00
21 – – 36000.00
22 – – 36000.00
23 44421681.46 2.490 36000.00
24 – – 36000.00
25 – – 36000.00
26 22336016.56 3.330 36000.00
27 – – 36000.00
28 – – 36000.00
29 – – 36000.00

Therefore, we now evaluate the capability of the matheuristic algorithm we presented in Sub-

section 3.4 to solve these real-world cable routing instances. To this end, we performed different

runs with a time limit of 60, 300, 600, 1800, 3600 (1h), 36000 (10h), and 86400 secs (24h) on our

computer.

Table 7 reports the quality of the solution found compared with the best solution known. For

any instance, LB denotes the best-known lower bound computed by the exact solver after 24 hours

of computing time. The table reports the instance number, the best-known feasible solution (best)

and the associated percentage error with respect to LB (%error wrt best/LB), the computing time

needed to get the best solution (time, in CPU secs), and then the percentage error with respect to
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LB and best at the various time limits. Solutions with a relative error of at most 0.01% satisfy the

default optimality tolerance of our solver (10−4), so they are considered optimal. Entries “–” refer

to an infeasible (i.e., disconnected) solution found by the matheuristic in its early stage.

Table 7 Solution quality obtained using our matheuristic with different time limits. (– means infeasible solution).

60 s. 300 s. 600 s. 1800 s. 3600 s. 10 h 24 h
% error time %error wrt %error wrt %error wrt %error wrt %error wrt %error wrt %error wrt

Inst. best sol. best/LB to best LB best LB best LB best LB best LB best LB best LB best

01 19436700.18 0.01 14748.8 1.75 1.74 0.08 0.07 0.08 0.07 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00
02 21403410.11 0.09 86400.5 – – 0.29 0.19 0.09 0.00 0.09 0.00 0.09 0.00 0.09 0.00 0.09 0.00
03 22611988.67 0.01 4621.3 0.39 0.38 0.18 0.17 0.03 0.02 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00
04 24445688.02 0.25 86400.9 – – 0.45 0.21 0.27 0.02 0.25 0.00 0.25 0.00 0.25 0.00 0.25 0.00
05 23482483.25 0.17 86400.3 2.22 2.04 0.64 0.46 0.58 0.41 0.58 0.41 0.24 0.07 0.24 0.07 0.17 0.00
06 24768927.72 0.97 86401.3 2.85 1.86 1.01 0.04 0.97 0.00 0.97 0.00 0.97 0.00 0.97 0.00 0.97 0.00
07 8555171.40 0.00 43.0 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00
08 8806838.99 0.00 58.4 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00
09 10056670.31 0.00 28.3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
10 10303320.51 0.00 59.4 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00
11 9200184.65 0.00 174.4 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00
12 8604208.93 0.00 23.1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
13 8933494.59 0.00 73.2 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00
14 10173931.59 0.00 24.4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
15 10348430.63 0.00 88.0 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00
16 8054844.90 0.00 247.8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
17 8560008.68 0.00 1278.3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
18 8357195.91 0.00 354.4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
19 9178499.88 0.01 1718.1 0.93 0.92 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00
20 38977593.84 5.10 86400.4 – – 6.62 1.45 5.57 0.45 5.10 0.00 5.10 0.00 5.10 0.00 5.10 0.00
21 44857986.73 4.53 86401.3 – – 4.88 0.34 4.53 0.00 4.53 0.00 4.53 0.00 4.53 0.00 4.53 0.00
22 40949573.29 2.11 86400.1 2.71 0.59 2.17 0.06 2.11 0.00 2.11 0.00 2.11 0.00 2.11 0.00 2.11 0.00
23 44421681.46 2.54 86400.1 4.89 2.29 2.54 0.00 2.54 0.00 2.54 0.00 2.54 0.00 2.54 0.00 2.54 0.00
24 50379247.34 7.94 86400.5 12.12 3.88 8.15 0.20 7.94 0.00 7.94 0.00 7.94 0.00 7.94 0.00 7.94 0.00
25 52331587.72 4.64 86400.9 – – 9.13 4.29 7.43 2.67 6.59 1.87 4.71 0.06 4.64 0.00 4.64 0.00
26 22337935.84 3.49 86400.6 3.98 0.48 3.49 0.00 3.49 0.00 3.49 0.00 3.49 0.00 3.49 0.00 3.49 0.00
27 23362025.61 3.42 86400.2 5.52 2.03 3.85 0.42 3.45 0.03 3.42 0.00 3.42 0.00 3.42 0.00 3.42 0.00
28 26637602.25 2.57 86400.5 – – – – 6.20 3.54 3.32 0.73 3.32 0.73 3.32 0.73 2.57 0.00
29 27295289.87 3.87 86401.7 – – – – – – 4.84 0.94 3.87 0.00 4.09 0.21 4.09 0.22

Comparing Table 7 with the performance of the MILP model alone (Table 6), the impact of using

a matheuristic framework is clear. Using this approach, indeed, we are able to provide feasible high

quality solutions for all the instances, even the more difficult ones that were unsolvable earlier.

According to Table 7, our method is able to solve 15 out of 29 instances to proven optimality

(within the 0.01% tolerance), in many cases within few minutes. After just 1 minute, the method

provides good solutions for all but 7 instances (all but 2 after 5 minutes, and all but 1 after 10

minutes). Very good (often provably optimal) solutions are available after 30 minutes for all the

29 instances in our testbed. After 1 hour the current solution value is, on average, just 0.03% from

the best-known value, and 1.47% from the lower bound.

Figure 5 plots the best solution value over time for a typical run (instance n. 3). A feasible

solution having objective 22,698,576.88 is found after 50 secs, within the initial matheuristic phase,
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Figure 5 Heuristic solution value vs computing time for instance n. 3.

while the best solution having objective 22,611,988.67 (at most 0.01% from optimum) is found

after about 800 secs.

Note that our matheuristic framework is able to find feasible solutions very quickly also for the

most difficult instances. In this matter, Figure 6 shows the evolution of the solution value for three

difficult instances (2, 20 and 27) referring to three different real-world big parks (Horns Rev 1,

Dan Tysk and Thanet). These instances were unsolvable using the MILP solver alone, but using

our matheuristic approach a feasible solution is found in about 100 seconds.

Figure 6 Heuristic solution value vs computing time for instances n. 2, 20 and 27. The green line indicates

the feasibility threshold: solutions under the green line are feasible (connected) solutions. These three

instances, unsolvable with the MILP solver alone, now reach a feasible solution in less than 100 seconds.
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5. Discussion of a real case

In the previous sections we discussed the methodology we used to optimize offshore cable routing

and its effectiveness for real world cases. In what follows, we would like to give an example of the

impact of considering losses on the cable layout solution. This is a major result from a commercial

perspective since, having a cable route optimized considering power losses, can translate to huge

savings. Here we refer to a new wind farm, Horns Rev 3 (HR3) that is still under construction

(Energinet.dk 2013). The planned Horns Rev 3 is an area of approximately 160km2 in the eastern

North Sea, 10-20km north of Horns Rev.

Figure 7 Location of Horns Rev 3 (Energinet.dk 2013)

Energinet.dk has designed the substation for the future offshore wind farm as well as the con-

nections with the coast. Therefore the position of the substation and its characteristics are fixed.

We considered a preliminary layout provided by Vattenfall with 50 8MW turbines, where turbine

positions are fixed. The project team already decided that the following types of cable must be

used for our tests:

• type 1 can have up to 3 turbines connected, a price of 180 Euro/m, a resistance of 0.13

Ohm/km, and insulation losses of 111 W/km.

• type 2 can have up to 4 turbines connected, a price of 360 Euro/m, a resistance of 0.04

Ohm/km, and insulation losses of 109 W/km.
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The substation can be connected to only 12 cables, therefore we need at least 2 cables of 5 turbines

each. For this reason we were allowed to overload two of the cables of type 2 (in this case it would

carry 5 turbines each). Note that these overloaded cables need particular systems to monitor their

temperature, which are expensive, therefore we had to limit their use (they can be used only two

times).

We considered an installation price fixed at 260 Euro/m for both types of cable. The problem

has been studied considering 13 real-world wind scenarios from HR3 with 8MW turbines. From

this data we compute the cost of cables considering losses according to (18). Considering cable

prices, installation, cable losses in 25 years and insulation losses, the equivalent prices for each type

of cables are shown in Table 8.

Table 8 Costs for cable type 1 (considering power

losses over 25 years) supporting 1, 2 or 3 turbines
respectively. Costs for cable type 2 (considering losses

over 25 years) supporting 4 or 5 turbines respectively

1wtg 2wtg 3wtg 4wtg 5wtg

cable 1 470.9 561.3 711.87
cable 2 786.5 879.7

We ran our matheuristic with the original cable prices and installation costs (without losses)

according to model (1) – (13). The solution found is therefore an optimized cable route from

an immediate investment perspective, the so called CAPital EXpenditure (CAPEX). When we

considered the new prices of Tables 8, we obtained a different layout: this is the optimal layout

from a long term perspective, and is the one that would allow a bigger revenue in 25 years. The

two layouts are compared in Figure 8.

In this case the long-term-optimized layout costs around 370KEuro more at construction time

but after 25 years this amount is are paid back and another 891KEuro (net present value) are

saved.

One could also analyze the structure of this long-term-optimized solution compared with the

CAPEX optimized one. First, in the layout optimized considering losses (first plot in Figure 8)

there are more nodes with in-degree larger than 1, i.e., with more than one cable entering a turbine.

In the layout we have 3 such nodes versus only one of the CAPEX optimized layout (second plot in

Figure 8). To understand why, let us e.g. observe the connection between turbines 50, 8 and 9. Arc

(8,9) is slightly shorter than arc (8,50), therefore it is more convenient from a CAPEX perspective.

However, when considering the losses, we notice that in cable (9,50) of the second layout in Figure

8 the current from 2 turbines is flowing, therefore there is a larger loss compared to the connection
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(9,50) of the first layout where only one turbine is connected. All in all, this structure is more

convenient from a long term perspective because it maximizes the use of cable that carries less

energy (from only one turbine).

Figure 8 Optimized layouts for HR3: On the left is the optimal layout considering cable losses over 25 years,

while on the right is the layout optimized by considering only CAPEX costs. Black cables are of cable

type 1, green are of cable type 2, and blue are of cable type 2 carrying 5 turbines.

We can finally compare the use of the different types of cable in the different solutions (Table

9): in the layout considering only CAPEX, 63% of the total cable length is for type 1 cable (the

cheapest), while in the layout considering losses this value decreases to 59%. This reflects the fact

that the smallest (i.e. the cheapest) cable has the highest losses.

Table 9 Use of different types of cable in the two solutions. The first

table refers to the CAPEX optimized solution, where 63% of the total cable
length is in smaller (less expensive) cables. The second table refers to the

optimized layout considering losses: the use of thicker cables (less sensible

to losses) increased.

CAPEX optimized layout
type length [m] % of the total

1 57149 63
2 33387 37

long-term optimized layout
type length [m] % of the total

1 52715 59
2 37130 41

This real-world test case was particularly limited by the number of connections to the substation,

therefore we re-ran the cable routing optimization for the same site but imposing a maximum of

18 connections (instead of 12). Of course, to physically add connections can significantly increase

the substation price, but here we just want to test the optimizer behaviour, so we suppose to have
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a substation already built with the extra connections. In this test the optimization is more free to

play with the different cable types.

The results of the optimization considering CAPEX prices only, as well as those considering

losses over 25 years (same prices as in Table 8) are shown in Figure 9.

Figure 9 Optimized layouts for HR3 with maximum 18 connections to the substation: plot on the left is the

optimal layout considering only CAPEX costs while on the right is the layout optimized considering

cable losses over 25 years. Black cables represent cable type 1, green are cable type 2 and blue are cable

type 2 overloaded.

The new layouts confirm the tendencies already discussed: the layout optimized considering losses

has more nodes with higher degree than the other, and is using more expensive cables. Table 10

shows the use of different types of cable in the two new solutions: in this case there is a difference

of 15% in the use of the different kinds of cable.

Table 10 Use of different types of cable in the two solutions. The first
table refers to the CAPEX optimized solution, where 74.5% of the total

cable length is in smaller (less expensive) cables. The second table refers to

the layout optimized by considering losses: the use of thicker cables (less
sensible to losses) increased.

CAPEX optimized layout
type length [m] % of the total

1 68910 74.5
2 23584 25.5

long-term optimized layout
type length [m] % of the total

1 53447 59
2 36693 41

In the 18 connections case the long-term layout costs around 1 324 KEuro more at construction

time but in 25 years this amount is paid back and another 1 156KEuro (net present value) are saved.
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All in all, these results show the importance of considering losses when designing the inter-array

cable routing.

6. Conclusions

In this paper we have introduced a new MILP model for optimal cable routing in offshore wind

farms. A main novelty of our model is its capability of taking both installation costs and power

losses into full account. We have also developed a new matheuristic framework in order to have a

practical optimization tool to be used on difficult real cases. Thanks to the collaboration between

Vattenfall and DTU, we have been able to describe the problem as it appears in real applications,

and to validate our results on real-world instances that have been made publicly available for

benchmarking. Using a sound matheuristic framework, for most of our instances we have been able

to produce extremely good solutions in about 15 minutes of computing time on a standard PC.

Finally, we have fully analyzed a real wind farm whose data was provided by Vattenfall, namely

Horns Rev 3, to quantify the commercial impact of considering power losses in the cable routing

design. We have shown that savings in the order of millions Euros can be achieved in a wind park

lifetime. These kinds of highly-optimized layouts cannot be produced by a manual operator, due to

the complexity of the corresponding design problem. In addition, evaluating the impact of losses

on a long term perspective and understanding how the layout should be changed in order to reduce

them, represents an extremely valuable analysis for a company, that could not have been carried

out otherwise.
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Summary: The contribution of this paper is to develop and computationally analyse both exact 
and math-heuristic methods to optimize offshore wind farm cable routing. The routing should 
connect all turbines to one (or more) offshore sub-station(s) while respecting cable capacities, 
no-cross restrictions, connection-limits at the substation, and obstacles at the site. The objective 
is to minimize both the capital that must be spent immediately in cable and installation costs, 
and the future reduced revenues due to power losses. The latter goal has not been addressed 
in previous work. We present a Mixed-Integer Linear Programming approach to optimize the 
routing using both exact and math-heuristic methods, proving that our method can be used for 
large instances as well. In the power losses computation, wind scenarios are handled efficiently 
as part of the pre-processing, resulting in a MIP model of only slightly larger size. A library of 
real-life instances is introduced and made publicly available for benchmarking. Computational 
results on this testbed show the viability of our methods, proving that savings in the order of 
millions of Euro can be achieved.  
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