48 research outputs found

    Witness Gabriel Graphs

    Get PDF
    We consider a generalization of the Gabriel graph, the witness Gabriel graph. Given a set of vertices P and a set of witnesses W in the plane, there is an edge ab between two points of P in the witness Gabriel graph GG-(P,W) if and only if the closed disk with diameter ab does not contain any witness point (besides possibly a and/or b). We study several properties of the witness Gabriel graph, both as a proximity graph and as a new tool in graph drawing.Comment: 23 pages. EuroCG 200

    Witness gabriel graphs

    Get PDF
    We consider a generalization of the Gabriel graph, the witness Gabriel graph. Given a set of vertices P and a set of witness points W in the plane, there is an edge ab between two points of P in the witness Gabriel graph GGGG^-(P,W) if and only if the closed disk with diameter ab does not contain any witness point (besides possibly a and/or b). We study several properties of the witness Gabriel graph, both as a proximity graph and as a new tool in graph drawing.Postprint (published version

    Generating Outerplanar Graphs Uniformly at Random

    Get PDF
    This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.We show how to generate labelled and unlabelled outerplanar graphs with nn vertices uniformly at random in polynomial time in nn. To generate labelled outerplanar graphs, we present a counting technique using the decomposition of a graph according to its block structure, and compute the exact number of labelled outerplanar graphs. This allows us to make the correct probabilistic choices in a recursive generation of uniformly distributed outerplanar graphs. Next we modify our formulas to also count rooted unlabelled graphs, and finally show how to use these formulas in a Las Vegas algorithm to generate unlabelled outerplanar graphs uniformly at random in expected polynomial time.Peer Reviewe

    Weak unit disk and interval representation of graphs

    Full text link
    We study a variant of intersection representations with unit balls: unit disks in the plane and unit intervals on the line. Given a planar graph and a bipartition of the edges of the graph into near and far edges, the goal is to represent the vertices of the graph by unit-size balls so that the balls for two adjacent vertices intersect if and only if the corresponding edge is near. We consider the problem in the plane and prove that it is NP-hard to decide whether such a representation exists for a given edgepartition. On the other hand, we show that series-parallel graphs (which include outerplanar graphs) admit such a representation with unit disks for any near/far bipartition of the edges. The unit-interval on the line variant is equivalent to threshold graph coloring, in which context it is known that there exist girth-3 planar graphs (even outerplanar graphs) that do not admit such coloring. We extend this result to girth-4 planar graphs. On the other hand, we show that all triangle-free outerplanar graphs and all planar graphs with maximum average degree less than 26/11 have such a coloring, via unit-interval intersection representation on the line. This gives a simple proof that all planar graphs with girth at least 13 have a unit-interval intersection representation on the line. © Springer International Publishing Switzerland 2016

    Proximity Constraints and Representable Trees

    Get PDF

    On the edge-chromatic number of 2-complexes

    Full text link
    We propose an open question that seeks to generalise the Four Colour Theorem from two to three dimensions. As an appetiser, we show that 12 instead of four colours are both sufficient and necessary to colour every 2-complex that embeds in a prescribed 3-manifold. However, our example of a 2-complex that requires 12 colours is not simplicial.Comment: 7 pages, 3 figure

    Improved Approximation Algorithms for Box Contact Representations ⋆

    Get PDF
    Abstract. We study the following geometric representation problem: Given a graph whose vertices correspond to axis-aligned rectangles with fixed dimensions, arrange the rectangles without overlaps in the plane such that two rectangles touch if the graph contains an edge between them. This problem is called CONTACT REPRESENTATION OF WORD NETWORKS (CROWN) since it formalizes the geometric problem behind drawing word clouds in which semantically related words are close to each other. CROWN is known to be NP-hard, and there are approximation algorithms for certain graph classes for the optimization version, MAX-CROWN, in which realizing each desired adjacency yields a certain profit. We present the first O(1)-approximation algorithm for the general case, when the input is a complete weighted graph, and for the bipartite case. Since the subgraph of realized adjacencies is necessarily planar, we also consider several planar graph classes (namely stars, trees, outerplanar, and planar graphs), improving upon the known results. For some graph classes, we also describe improvements in the unweighted case, where each adjacency yields the same profit. Finally, we show that the problem is APX-hard on bipartite graphs of bounded maximum degree.

    The logic engine and the realization problem for nearest neighbor graphs

    Get PDF
    AbstractRoughly speaking, a “nearest neighbor graph” is formed from a set of points in the plane by joining two points if one is the nearest neighbor of the other. There are several ways in which this intuitive concept can be made precise.This paper investigates the complexity of determining whether, for a given graph G, there is a set of points P in the plane such that G is isomorphic to a nearest neighbor graph on P. We show that this problem is NP-hard for several definitions of nearest neighbor graph.Our proof technique uses an interesting simulation of a mechanical device called a “logic engine”

    Witness (Delaunay) Graphs

    Get PDF
    Proximity graphs are used in several areas in which a neighborliness relationship for input data sets is a useful tool in their analysis, and have also received substantial attention from the graph drawing community, as they are a natural way of implicitly representing graphs. However, as a tool for graph representation, proximity graphs have some limitations that may be overcome with suitable generalizations. We introduce a generalization, witness graphs, that encompasses both the goal of more power and flexibility for graph drawing issues and a wider spectrum for neighborhood analysis. We study in detail two concrete examples, both related to Delaunay graphs, and consider as well some problems on stabbing geometric objects and point set discrimination, that can be naturally described in terms of witness graphs.Comment: 27 pages. JCCGG 200
    corecore