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Abstract 

Roughly speaking, a “nearest neighbor graph” is formed f?om a set of points in the plane by 
joining two points if one is the nearest neighbor of the other. There are several ways in which 
this intuitive concept can be made precise. 

This paper investigates the complexity of determining whether, for a given graph G, there is 
a set of points P in the plane such that G is isomorphic to a nearest neighbor graph on P. We 
show that this problem is NP-hard for several definitions of nearest neighbor graph. 

Our proof technique uses an interesting simulation of a mechanical device called a “logic 
engine”. 

1. Introduction 

This paper investigates the problem of realizing a given graph G as a “nearest 

neighbor graph” of a set P of points in the plane. Roughly speaking, a “nearest neighbor 

graph” is formed from a set of points in the plane by joining two points if one is 

a nearest neighbor of the other. Fig. 1 gives examples of several kinds of nearest 

neighbor graphs. 

A nearest neighbor graph is an example of a proximity graph; intuitively, this is 

a graph which captures notions about the proximity relations between points in space. 

The Euclidean minimum spanning tree of a set of points provides another example 

of a proximity graph. Others include Delaunay triangulations, relative neighborhood 

graphs, Gabriel graphs, and sphere of influence graphs; for a survey, see [ 151. Proximity 

graphs are much studied in the pattern recognition literature, essentially because a 

proximity graph can be used to capture the “shape” of a set of data points. 
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Fig. 1. Several kinds of nearest neighbor graphs, on the same set of points. 

Also, the emerging field of graph drawing has stimulated interest in proximity 

graphs. Graph drawing research seeks to find good geometric representations of graphs, 

where the notion of good varies with application area. Graph drawing algorithms 

are used for visualizing relational information, especially in software and informa- 

tion engineering (for example, in CASE tools); see [4] for a bibliographic survey. 

Intuitively, a geometric representation of a graph as a proximity graph is good be- 

cause nodes which are related by an edge are close to each other. This intuition has 

led to a number of investigations of the problem of drawing graphs as proximity 

graphs: 

l Lubiw and Sleumer [13] present characterizations of relative neighborhood graphs. 

l Bose et al. [2] show that for several classes of proximity graphs (for example, relative 

neighborhood graphs, relatively closest graphs, and Gabriel graphs), the problem of 

determining whether a tree can be realized as a proximity graph can be solved in 

polynomial time. 

Liotta [12] provides a taxonomy of proximity representations of graphs and gives 

a variety of algorithms for producing the representations. 

Dillencourt [6] investigates and partially solves the problem of drawing a graph as 

a Delaunay triangulation. 

Eades and Whitesides [7] prove that the realization problem for Euclidean minimum 

spanning trees is NP-hard. 

A brief survey of this approach appears in [5]. The current paper is motivated by graph 

drawing applications. 

Nearest neighbor graphs are perhaps the most primitive kind of proximity graph. 

For example, for a given set of points, the minimum spanning tree, the Gabiel graph, 

the relative neighborhood graph and the Delaunay triangulation all contain a nearest 

neighbor graph (see [ 151). 
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In this paper we show that, given a graph G, it is NP-hard to determine whether 

a set P of points in the plane can be found such that G is isomorphic to a nearest 

neighbor graph on P. The result holds for several precise definitions of the intuitive 

concept of nearest neighbor graph. 

To prove this result we introduce a mechanical device called a “logic engine”, 

illustrated in Fig. 2. This device mechanically simulates the well-known NP-complete 

problem NOT-ALL-EQUAL-3SATISFIABILITY. Our results are proved by simulat- 

ing the logic engine with nearest neighbor graphs. The logic engine is designed from 

a proof paradigm first used by Bhatt and Cosmodakis [l]; the paradigm has proved 

very useful in obtaining complexity results for geometric problems (see [7, 11, 10,3] 

for examples), and we believe that it can be applied to several classes of proximity 

graph problems. 

Fig. 2. The essential features of a logic engine. 
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The following definitions are needed because a point may have more than one nearest 

neighbor. 

Definition 1. Suppose that P is a set of points in the plane. A weak nearest neighbor 
graph G on P is a directed graph with a vertex Vi for each point pi E P, and an arc 

set that satisfies two properties: 

l If (vi, vj) is an arc of G then pj is a nearest neighbor of pi. In other words, if there 

is an arc from Ui to Uj then the open circle centered at pi, of radius equal to the 

distance d(pi, pj) between pi and pj, contains only point pi from P. 
l For each vertex vi of G, there is exactly one arc (Vi, Vi). In other words, every vertex 

is joined to exactly one of its nearest neighbors. 

Definition 2. Suppose that P is a set of points in the plane. A strong nearest neighbor 
graph G on P is a directed graph with a vertex Vi for each point pi E P. There is an 

arc (Vi, vj) in G if and only if pj is a nearest neighbor of pi. That is, each vertex is 

joined to every one of its nearest neighbors. 

Definition 3. Suppose that P is a set of points in the plane. The mutual nearest neigh- 

bor graph on P is an undirected graph with a vertex Vi for each point pi E P, and an 

edge (vi, vj) if and only if the points pi and pj corresponding to vi and Vj are each 

nearest neighbors of the other. 

Weak nearest neighbor graphs are in Figs. l(a) and (b), and a strong nearest neighbor 

graph is in Fig. l(c). Fig. l(d) is a mutual nearest neighbor graph. 

For a given set P of points, the strong and mutual nearest neighbor graphs are unique. 

Note, however, that there may be more than one weak nearest neighbor graph on a set 

of points. Both the weak nearest neighbor graph and the mutual nearest neighbor graph 

(with each undirected edge replaced by a pair of oppositely directed arcs) are subgraphs 

of the strong nearest neighbor graph. 

A directed graph G is realizable as a weak nearest neighbor graph if there is a set 

P of points in the plane such that a weak nearest neighbor graph on P is isomorphic 

to G. Realizability for strong nearest neighbor graphs is defined in the same way. An 

undirected graph G is realizable as a mutual nearest neighbor graph if there is a set P 
of points in the plane such that the mutual nearest neighbor graph is isomorphic to G. 

The remainder of this paper is mostly devoted to showing that the following problem 

is NP-hard. 

Mutual Nearest Neighbor Graph Realization (MNNGR) 
Instance: An undirected graph G. 

Question: Is G realizable as a mutual nearest neighbor graph? 

Theorem 1. MNNGR is NP-hard 

For future reference, we give the definition of the NP-complete problem (see [9]) 

that we use in the proof of Theorem 1. 
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Not-All-Equal-3-Sat (NAE3SAT) 

Instance: A set C of m clauses CI,C~,. ..,c,, each containing 3 literals from a set 

X of n boolean variables Xl,&, . . . ,X, and their complements. 

Question: Can consistent truth values be assigned to the literals so that each clause 

contains at least one true literal and at least one false literal? 

Without loss of generality, we assume that no clause in C contains both a variable 

Xj and its complement XI!. Such clauses are automatically satisfied by every consis- 

tent assignment of truth values, and they can be pruned quickly from any NAE3SAT 

instance. 

We also prove the NP-hardness of the realizability problems for strong nearest 

neighbor graphs and weak nearest neighbor graphs; these results follow easily from 

Theorem 1 and the results of [7]. 

The rest of this paper is organized as follows. Section 2 describes the proof paradigm 

in terms of the logic engine, which provides an easy-to-understand introduction to our 

NP-completeness reduction. Section 3 shows how to simulate the essential properties 

of a logic engine with a graph to be realized as a mutual nearest neighbor graph; this 

constitutes a proof of Theorem 1. Section 4 briefly discusses the complexity of the 

realizability problem for other types of nearest neighbor graphs. The last section gives 

some concluding remarks about proximity graphs and the logic engine approach. 

2. Logic engines for the NAE3SAT problem 

This section describes a buildable mechanical device we call a “logic engine”. 

2.1. Logic engine design 

The (m,n) logic engine is designed to encode instances of NAE3SAT having m 

clauses and n variables. The basic engine is described below; in the following sub- 

section we show how to modify the basic engine to encode a particular instance of 

NAE3SAT. 

The essential features of an (m,n) logic engine (see Fig. 2) are as follows. 

l The engine has a rigid frame, which supports a non-rotating shaft. 

l To the shaft is mounted a nested sequence of n armatures A;, 1 <<j <n. Each arma- 

ture can rotate about the shaft, but its position on the shaft is fixed; it cannot slide 

back and forth along the shaft. The spacing between armatures is designed to ensure 

that the armatures can rotate independently of one another. 

l Each armature Aj holds two tautly stretched chains aj and a.: of equal-length links. 

One stretches from one end of the armature to the shaft, the other stretches from the 

other end of the armature to the shaft. Each of the chains on the innermost armature 

Al holds m links. The chains of the remaining armatures are proportionately longer. 

l The sides of the frame extend on either side of the shaft at least as far as the chains 

do. 
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In each chain held by an armature, the m links closest to the shaft are numbered 

1,2,. . . , m, where the link adjacent to the shaft is numbered 1. 

Looking ahead to the connection between NAE3SAT and the logic engine, each 

armature Aj corresponds to a variable Xj in an instance of NAE3SAT. The chain aj 

corresponds to the variable Xj, and the chain a: corresponds to its complement X/. 

Planar layouts of the logic engine (that is, configurations where all the armatures and 

chains lie in the same plane) correspond to truth assignments for NAE3SAT as follows. 

Each armature Aj can be in one of two positions: either aj can be above the shaft with 

a$ below the shaft (corresponding to Xj = 1 and X,! = 0); or ai can be above the shaft 

with aj below the shaft (corresponding to X,! = 1 and Xj = 0). 

Note that when the engine and its armatures lie flat, the links in the chains line up 

to form rows. A clause ck corresponds to the kth rows out from the shaft on either 

side. Clearly the set of links associated with ck does not depend on how the armatures 

are rotated about the shaft. 

The basic logic engine may be modified by attaching jags to the links 1,2,. . . , m in 

chains aj and a; for 16 j <m. The next section shows how to attach flags to specific 

links to obtain encodings of instances of NAE3SAT. 

Each flag can rotate freely about the chain. The flag thus has two possible positions 

when the logic engine is placed in the plane: it can point toward the front, or it can be 

“flipped” to point toward the rear. However, the flags are designed so that when the 

logic engine is placed in the plane, collisions involving Bags occur under the following 

conditions. 

l Two flags that lie in the same row and that are attached to chains of adjacent 

armatures collide with each other if and only if they are flipped so that they point 

toward each other. 

l Any flag attached to the chain of the outermost armature A, collides with the frame 

if it points toward the front edge of the frame. 

a Any flag attached to the chain of the innermost armature A1 collides with that 

armature if it points toward it. 

The process of encoding an instance of NAE3SAT involves attaching flags to links 

according to the clause-literal incidence relation. Then an attempt is made to flip the 

armatures and the flags to produce a collision-free planar configuration of the logic 

engine and its remaining flags. In the next subsection, we show that an instance of 

NAE3SAT is a “yes” instance if and only if one or more such planar collision-free 

configurations exist. 

Firstly, however, we note a purely geometric property. Consider a planar config- 

uration of an (m,n) logic engine and its armatures. Each armature Aj is configured 

independently of the others, with the chain aj corresponding to Xj positioned either 

above or below the shaft. Hold this configuration of armatures fixed for the moment, 

and consider any of the first m rows of links above or below the shaft. We allow the 

flags in this row to be turned in either direction, independently of one another. (In 

particular, they need not all point in the same direction.) If all n links in the row are 

flagged, then it is clearly impossible to avoid a collision in this row. On the other hand, 
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if one or more of the links in the row is unflagged, then collisions in that row may be 

avoided simply by directing all the flags toward any one of the unflagged links. This 

leads to the following observation. 

Observation 1. A given planar conjiguration of a logic engine and its armatures has 

a collision avoiding placement of its jags if and only 17 each row contains at least 

one unJlagged link. 

2.2. Customizing logic engines 

This subsection explains how to customize an (m,n) logic engine to encode a par- 

ticular instance of NAE3SAT. 

The instance of NAE3SAT is encoded as follows. For 1 d idm we attach a flag to 

the ith link of every chain aj and ai (1 <j <n), except that 

1. if variable X, appears in clause ci then the ith link of aj is unflagged; and 

2. if variable Xl appears in clause ci then the ith link of a: is unflagged. 

Fig. 3 illustrates part of a logic engine with flags, customized to encode the following 

instance of NAE3SAT: 

We claim that an instance of NAE3SAT is a “yes” instance if and only if the 

customized (m,n) logic engine has a planar configuration without collisions. 

Lemma 1. An instance of NAE3SAT is a “yes” instance if and only if the corres- 

ponding customized (m, n) logic engine has a collision-free planar layout. 

Proof. Suppose that we have a “yes” instance of NAE3SAT, and the truth assignment 

t gives at least one true and at least one false literal for each clause. The armatures 

may be rotated to simulate the truth assignment t as follows: if t(Xj) = 1, then place 

aj at the top and ai at the bottom; if t(X/) = 0, then place a; at the top and LI, at 

the bottom. With this layout of armatures, since each clause c, contains at least one 

literal Y with t(Y) = 1 and at least one literal 2 with t(2) = 0, there is at least one 

unflagged link in each horizontal row of links; thus a collision-free layout is possible. 

On the other hand, suppose that we have a collision-free planar layout of the cus- 

tomized logic engine; then there is at least one unflagged link in each row. Thus there 

is at least one true and at least one false literal in each clause. 0 

Fig. 3 shows a collision-free planar layout of an encoded logic engine. Note that the 

armature Al and its chains have been rotated around the shaft, and the flags have been 

flipped so that they do not collide. This layout corresponds to a truth assignment that 

has at least one true literal and at least one false literal in each clause. 

Suppose that we regard two collision-free planar configurations as equivalent 

provided that their armatures are oriented in the same way. Then there is a clear 
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X1 x2 X3' X4' 
idselitmals 

Fig. 3. Part of a (3,4) logic engine, customized with flags. 

one-one correspondence between not-all-equal truth assignments and equivalence classes 

of collision-free planar configurations of the customized logic engine. 

3. The simulation of a logic engine by a graph 

For this section we limit our attention to mutual nearest neighbor graphs and abbre- 

viate our terminology accordingly: we say that a graph is realized by a set P of points 

if G is isomorphic to the mutual nearest neighbor graph on P, and G is realizable if 

it is realizable as a mutual nearest neighbor graph. 

This section presents a proof of Theorem 1. For motivation we preview how the 

transformation of NAE3SAT to MNNGR will proceed. Given an instance of NAE3SAT 

with m clauses and n variables, we define an (m,n) logic graph G, which is an instance 

of MNNGR. We design the (m, n) logic graph to simulate an (m, n) logic engine before 

the addition of flags. After customization by attachment of subgraphs that simulate flags, 

the customized graph will have a realization if and only if the NAE3SAT instance is 

a ‘yes” instance. 

The first subsection shows how to construct a basic (m,n) logic graph. Furthermore, 

it describes the ways in which the logic graph can be realized as a mutual nearest 

neighbor graph; these realizations correspond to the planar configurations of the logic 

engine. 

The second subsection shows how the logic graph can be customized to simulate 

the logic engine and thus to simulate NAE3SAT. 

3.1. Logic graph design 

We begin with an elementary lemma which is easy to prove and is used throughout. 

Lemma 2. Suppose that G is a mutual nearest neighbor graph of some point set P 

and that G is connected. Then all edge segments of G have the same length. 
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In view of Lemma 2, we can assume that the edge segments of a realization of 

a connected mutual nearest neighbor graph all have unit length. 

We say that a graph G is uniquely realizable if all the sets that realize G are equio- 

alent, that is, one can be obtained from the other by rotations, reflections, translations 

and changes of scale. The proof of NP-hardness depends on the unique realizability of 

certain graphs. 

We will build a simulation of the logic engine with a large uniquely realizable graph; 

but we begin with a simple lemma which ensures the correctness of the technique of 

building larger uniquely realizable graphs from smaller uniquely realizable graphs. 

Lemma 3. Suppose that H is a graph isomorphic to a subgraph of graph G, and thut 

H is uniquely realizable. Then in any realization of G, the drawings of the subgruph 

corresponding to H must be equiz,alent to the unique realization of H. 

We can now describe the essential building blocks of the logic graph. 

Definition 4. (a) Fig. 4(a) gives a realization of a link graph as a mutual nearest 

neighbor graph of its vertex-points. 

(b) A link graph may be extended to a flagged link graph by the addition of three 

new vertices f ,g, and h as shown in Fig. 4(b). 

(c) A chain graph of length k is a sequence of k link graphs joined together as 

shown in Fig. 4(c). 

From Lemma 2 we can deduce the following. 

Lemma 4. Both the link graph and the jagged link graph are uniquely realizable. 

/ 

@@ @ 

I 

* 

(4 03 

Fig. 4. (a) Link graph, (b) flagged link graph, (c) chain 
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Note that a chain graph of length greater than one is not uniquely realizable as 

a mutual nearest neighbor graph. While all edges of a realization have the same length 

by Lemma 2, the angle between edges belonging to consecutive link graphs of the 

chain but sharing a common endpoint can vary from just over 743 to just under rt, 

assuming that the edges are adjacent in the cyclic ordering of edges about the shared 

endpoint. In fact, this phenomenon explains the reason for the nested armatures in the 

logic engine/graph design. Their purpose is to hold chains taut while still permitting 

them to be on either side of the shaft. If the chains were not taut, then the customized 

logic graph defined below might be realizable for “no” instances of NAE3SAT. 

From the basic building blocks above, we can build a logic graph. 

Definition 5. An (m,n) logic graph consists of a frame to which armatures with chains 

are attached as in Fig. 5. 

As Fig. 5 shows, the (m,n) logic graph is realizable. 

Lemma 5. The (m,n) logic graph is uniquely realizable. 

Proof. One can show that the frame is uniquely realizable using Lemmas 2 and 3. To 

prove uniqueness of the realization of the shaft, we need to show that the shaft is taut. 

The Euclidean distance between the endpoints of an edge on the shaft is precisely 1 

by Lemma 2. Thus the maximum Euclidean distance between the extremal endpoints 

of the shaft is equal to the number of edges in the shaft, and this can be achieved 

only if the vertices are stretched out along a line. Thus the unique realizability of the 

frame forces the shaft to be drawn as a straight line as shown. 

It is not difficult to extend this argument to show uniqueness of the armatures and 

the attached chains, and then to the whole logic graph. 0 

The set of points in the plane occupied by the vertices in any realization is unique 

up to rotations, translations, reflections and changes of scale. However, the labeled 

graph has many realizations. These are described as follows. 

l Each armature can be turned about the shaft so that either side of the armature can 

be placed in the closed region determined by the shaft and the frame. 

l On each chain, each link except the center link can be turned, independently of the 

other links, so that either one of the two degree 3 vertices of the link lies in the 

closed region defined by that particular armature and its chain. 

Thus the realizations of the logic graph simulate the planar layouts of the logic engine. 

This completes the definition of basic logic graphs. 

3.2. Customizing logic graphs 

The customization of logic graphs to simulate NAE3SAT follows the customization 

of logic engines presented in Section 2.2. A logic graph customized with flags for the 

same example as in Section 2.2 is in Fig. 6. Note that a “collision” occurs between 
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shaft- 
- 

Armature 

Fig. 5. An (m,n) logic graph. 

two flags whenever a vertex of one flag is placed within a distance of one unit from 

a vertex of the other flag. 

Lemma 6. There is a pobynomial time transformation from NAE3SAT to MNNGR 

Proof. It is clear that the construction of the customized logic graph as described in 

the previous subsection can be done in time proportionai to the size of the NAE3SAT 

instance. 

The proof that the customized logic graph is realizable if and only if the NAE3SAT 

instance is a “yes” instance follows the same argument as in Section 2.2. 0 
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Fig. 6. An (m,n) logic graph customized for an instance of NAE3SAT. 

Theorem 1 follows immediately from Lemma 6 and the NP-completeness of 

NAE3SAT [9]. 

4. Other types of nearest neighbor graphs 

In this section we briefly indicate techniques for proving that the realization problems 

for the strong and weak nearest neighbor graphs are also NP-hard. 

Strong Nearest Neighbor Graph Realization (SNNGR) 

Instance: A directed graph G. 

Question: Is G realizable as a strong nearest neighbor graph? That is, is there a set 

P of points in the plane such that the strong nearest neighbor graph r on P is 

isomorphic to G? 
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Weak Nearest Neighbor Graph Realization (WNNGR) 

Instance: A directed graph G. 

Question: Is G realizable as a weak nearest neighbor graph? That is, is there a set 

P of points in the plane and a weak nearest neighbor graph r on P such that G is 

isomorphic to r? 

Theorem 2. SNNGR and WNNGR are NP-hard. 

Proof. First consider SNNGR. We consider the undirected logic graph constructed in 

Section 3 as a directed graph in which each arc is oriented in both directions. This is 

realizable as a strong nearest neighbor graph if and only if it is realizable as a mutual 

nearest neighbor graph. Thus this transformation proves that SNNGR is NP-hard. 

Next we consider WNNGR. The NP-hardness of realizing Euclidean minimum span- 

ning trees is established in [7] using a simulation of a logic engine by a tree called 

a Zoyipede. This graph simulates a logic engine in a way similar to the logic graph 

introduced in Section 3. An example of a logipede is shown in Fig. 7. Here 1~,12.l~, 11 
represent literals and cl, ~2, c3 represent clauses. 

To show that WNNGR is NP-hard, one can use essentially the same transformation. 

From an instance of NAE3SAT we can construct a logipede. Then we must give 

a direction to each edge, since weak nearest neighbor graphs are directed. We choose 

a leaf of the logipede, and orient the edge incident with that leaf in both directions. 

Fig. 7. The logipede 
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Then we orient every other edge in the logipede toward the chosen leaf. This ensures 

that the outdegree of every vertex is precisely one. Further, every realization of the 

logipede as a minimum spanning tree is also a realization as a weak nearest neighbor 

graph. It follows that the transformation given in [7], followed by the orientation of 

edges described above, can be used to show that WNNGR is NP-hard. I? 

5. Concluding remarks 

The logic engine approach provides a powerful method for investigating the com- 

plexity of layout problems; see [7, 1 1, 10,3] for examples. As a final example, consider 

the following problem, investigated in [8]. 

Unit Planar Drawing (UPD) 

Instance: A planar graph G. 

Question: Is there a planar drawing of G in which each edge has length one? 

Eades and Wormald show that UPD is NP-hard, using a complex reduction to a flow 

problem. Using the logic engine approach, a much simpler proof is possible: in fact, 

one can follow almost the same construction as in Section 3. 

Polynomial time realization algorithms are available for some kinds of proximity 

graphs as long as the input is restricted; for example, linear time algorithms for drawing 

trees as relative neighborhood graphs are available (see [ 121 for a survey of such 

algorithms). To the best of the authors’ knowledge, none of the common kinds of 

proximity graphs have polynomial time algorithms for general inputs. It would be 

interesting to know if all these problems are NP-hard. 
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