
Theoretical
Computer Science

ELSEVIER Theoretical Computer Science 169 (1996) 23-37

The logic engine and the realization problem
for nearest neighbor graphs *

Peter Eades a,*, Sue Whitesides b

a Department of Computer Science, University of Newcastle. University Drive, Callaghan.

NS W 2308. Australia

bSchool of Computer Science, McGill University, 3480 University Street #31X, Montreal,

Quebec, Canada H3A 2A7

Abstract

Roughly speaking, a “nearest neighbor graph” is formed f?om a set of points in the plane by
joining two points if one is the nearest neighbor of the other. There are several ways in which
this intuitive concept can be made precise.

This paper investigates the complexity of determining whether, for a given graph G, there is
a set of points P in the plane such that G is isomorphic to a nearest neighbor graph on P. We
show that this problem is NP-hard for several definitions of nearest neighbor graph.

Our proof technique uses an interesting simulation of a mechanical device called a “logic
engine”.

1. Introduction

This paper investigates the problem of realizing a given graph G as a “nearest

neighbor graph” of a set P of points in the plane. Roughly speaking, a “nearest neighbor

graph” is formed from a set of points in the plane by joining two points if one is

a nearest neighbor of the other. Fig. 1 gives examples of several kinds of nearest

neighbor graphs.

A nearest neighbor graph is an example of a proximity graph; intuitively, this is

a graph which captures notions about the proximity relations between points in space.

The Euclidean minimum spanning tree of a set of points provides another example

of a proximity graph. Others include Delaunay triangulations, relative neighborhood

graphs, Gabriel graphs, and sphere of influence graphs; for a survey, see [151. Proximity

graphs are much studied in the pattern recognition literature, essentially because a

proximity graph can be used to capture the “shape” of a set of data points.

* Research supported in part by grants from the Australian Research Council (Eades) and NSERC of Canada

and FCAR of Quebec (Whitesides). This work was done in part while Whitesides was visiting University

of Newcastle.
* Corresponding author. E-mail: eades@cs.newcastle.edu.au.

0304-3975/96/$15.00 @ 1996 - Elsevier Science B.V. All rights reserved

PI1 SO304-3975(96)901

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82632961?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

24 P. Eades, S. Whitesidesl Theoretical Computer Science 169 (1996) 23-37

I
--e----e--

l

I I
I (a) I I I
I __-_______ i

I
__---_-_-_

I
I I
I
I d
v I

I 0 I
I I I I I
I I
I

I
I
I

I
I 1

I
I
I
I
I

I I
C-W I

I I
I __________ i I_________:

-M--m-----

l I
I
I

I

I

I
I
I
I $

i
I

I
I
I
I
I

i
I

I I

I
i
I

I

I
I
I

I I
I 0 i
I I
I
I (4 I
I I
I __---____ i

Fig. 1. Several kinds of nearest neighbor graphs, on the same set of points.

Also, the emerging field of graph drawing has stimulated interest in proximity

graphs. Graph drawing research seeks to find good geometric representations of graphs,

where the notion of good varies with application area. Graph drawing algorithms

are used for visualizing relational information, especially in software and informa-

tion engineering (for example, in CASE tools); see [4] for a bibliographic survey.

Intuitively, a geometric representation of a graph as a proximity graph is good be-

cause nodes which are related by an edge are close to each other. This intuition has

led to a number of investigations of the problem of drawing graphs as proximity

graphs:

l Lubiw and Sleumer [13] present characterizations of relative neighborhood graphs.

l Bose et al. [2] show that for several classes of proximity graphs (for example, relative

neighborhood graphs, relatively closest graphs, and Gabriel graphs), the problem of

determining whether a tree can be realized as a proximity graph can be solved in

polynomial time.

Liotta [12] provides a taxonomy of proximity representations of graphs and gives

a variety of algorithms for producing the representations.

Dillencourt [6] investigates and partially solves the problem of drawing a graph as

a Delaunay triangulation.

Eades and Whitesides [7] prove that the realization problem for Euclidean minimum

spanning trees is NP-hard.

A brief survey of this approach appears in [5]. The current paper is motivated by graph

drawing applications.

Nearest neighbor graphs are perhaps the most primitive kind of proximity graph.

For example, for a given set of points, the minimum spanning tree, the Gabiel graph,

the relative neighborhood graph and the Delaunay triangulation all contain a nearest

neighbor graph (see [151).

P. Eudes, S. Whitesidesl Theoretical Computer Science 169 11996) 23.-37 25

In this paper we show that, given a graph G, it is NP-hard to determine whether

a set P of points in the plane can be found such that G is isomorphic to a nearest

neighbor graph on P. The result holds for several precise definitions of the intuitive

concept of nearest neighbor graph.

To prove this result we introduce a mechanical device called a “logic engine”,

illustrated in Fig. 2. This device mechanically simulates the well-known NP-complete

problem NOT-ALL-EQUAL-3SATISFIABILITY. Our results are proved by simulat-

ing the logic engine with nearest neighbor graphs. The logic engine is designed from

a proof paradigm first used by Bhatt and Cosmodakis [l]; the paradigm has proved

very useful in obtaining complexity results for geometric problems (see [7, 11, 10,3]

for examples), and we believe that it can be applied to several classes of proximity

graph problems.

Fig. 2. The essential features of a logic engine.

26 P. Eades, S. WhitesideslTheoretical Computer Science I69 (1996) 23-37

The following definitions are needed because a point may have more than one nearest

neighbor.

Definition 1. Suppose that P is a set of points in the plane. A weak nearest neighbor
graph G on P is a directed graph with a vertex Vi for each point pi E P, and an arc

set that satisfies two properties:

l If (vi, vj) is an arc of G then pj is a nearest neighbor of pi. In other words, if there

is an arc from Ui to Uj then the open circle centered at pi, of radius equal to the

distance d(pi, pj) between pi and pj, contains only point pi from P.
l For each vertex vi of G, there is exactly one arc (Vi, Vi). In other words, every vertex

is joined to exactly one of its nearest neighbors.

Definition 2. Suppose that P is a set of points in the plane. A strong nearest neighbor
graph G on P is a directed graph with a vertex Vi for each point pi E P. There is an

arc (Vi, vj) in G if and only if pj is a nearest neighbor of pi. That is, each vertex is

joined to every one of its nearest neighbors.

Definition 3. Suppose that P is a set of points in the plane. The mutual nearest neigh-

bor graph on P is an undirected graph with a vertex Vi for each point pi E P, and an

edge (vi, vj) if and only if the points pi and pj corresponding to vi and Vj are each

nearest neighbors of the other.

Weak nearest neighbor graphs are in Figs. l(a) and (b), and a strong nearest neighbor

graph is in Fig. l(c). Fig. l(d) is a mutual nearest neighbor graph.

For a given set P of points, the strong and mutual nearest neighbor graphs are unique.

Note, however, that there may be more than one weak nearest neighbor graph on a set

of points. Both the weak nearest neighbor graph and the mutual nearest neighbor graph

(with each undirected edge replaced by a pair of oppositely directed arcs) are subgraphs

of the strong nearest neighbor graph.

A directed graph G is realizable as a weak nearest neighbor graph if there is a set

P of points in the plane such that a weak nearest neighbor graph on P is isomorphic

to G. Realizability for strong nearest neighbor graphs is defined in the same way. An

undirected graph G is realizable as a mutual nearest neighbor graph if there is a set P
of points in the plane such that the mutual nearest neighbor graph is isomorphic to G.

The remainder of this paper is mostly devoted to showing that the following problem

is NP-hard.

Mutual Nearest Neighbor Graph Realization (MNNGR)
Instance: An undirected graph G.

Question: Is G realizable as a mutual nearest neighbor graph?

Theorem 1. MNNGR is NP-hard

For future reference, we give the definition of the NP-complete problem (see [9])

that we use in the proof of Theorem 1.

P. Eades. S. Whitesides! Theoretical Computer Science 169 (1996) 23-37 27

Not-All-Equal-3-Sat (NAE3SAT)

Instance: A set C of m clauses CI,C~,. ..,c,, each containing 3 literals from a set

X of n boolean variables Xl,&, . . . ,X, and their complements.

Question: Can consistent truth values be assigned to the literals so that each clause

contains at least one true literal and at least one false literal?

Without loss of generality, we assume that no clause in C contains both a variable

Xj and its complement XI!. Such clauses are automatically satisfied by every consis-

tent assignment of truth values, and they can be pruned quickly from any NAE3SAT

instance.

We also prove the NP-hardness of the realizability problems for strong nearest

neighbor graphs and weak nearest neighbor graphs; these results follow easily from

Theorem 1 and the results of [7].

The rest of this paper is organized as follows. Section 2 describes the proof paradigm

in terms of the logic engine, which provides an easy-to-understand introduction to our

NP-completeness reduction. Section 3 shows how to simulate the essential properties

of a logic engine with a graph to be realized as a mutual nearest neighbor graph; this

constitutes a proof of Theorem 1. Section 4 briefly discusses the complexity of the

realizability problem for other types of nearest neighbor graphs. The last section gives

some concluding remarks about proximity graphs and the logic engine approach.

2. Logic engines for the NAE3SAT problem

This section describes a buildable mechanical device we call a “logic engine”.

2.1. Logic engine design

The (m,n) logic engine is designed to encode instances of NAE3SAT having m

clauses and n variables. The basic engine is described below; in the following sub-

section we show how to modify the basic engine to encode a particular instance of

NAE3SAT.

The essential features of an (m,n) logic engine (see Fig. 2) are as follows.

l The engine has a rigid frame, which supports a non-rotating shaft.

l To the shaft is mounted a nested sequence of n armatures A;, 1 <<j <n. Each arma-

ture can rotate about the shaft, but its position on the shaft is fixed; it cannot slide

back and forth along the shaft. The spacing between armatures is designed to ensure

that the armatures can rotate independently of one another.

l Each armature Aj holds two tautly stretched chains aj and a.: of equal-length links.

One stretches from one end of the armature to the shaft, the other stretches from the

other end of the armature to the shaft. Each of the chains on the innermost armature

Al holds m links. The chains of the remaining armatures are proportionately longer.

l The sides of the frame extend on either side of the shaft at least as far as the chains

do.

28 P. Eades, S. Whitesidesl Theoretical Computer Science I69 (1996) 23-37

In each chain held by an armature, the m links closest to the shaft are numbered

1,2,. . . , m, where the link adjacent to the shaft is numbered 1.

Looking ahead to the connection between NAE3SAT and the logic engine, each

armature Aj corresponds to a variable Xj in an instance of NAE3SAT. The chain aj

corresponds to the variable Xj, and the chain a: corresponds to its complement X/.

Planar layouts of the logic engine (that is, configurations where all the armatures and

chains lie in the same plane) correspond to truth assignments for NAE3SAT as follows.

Each armature Aj can be in one of two positions: either aj can be above the shaft with

a$ below the shaft (corresponding to Xj = 1 and X,! = 0); or ai can be above the shaft

with aj below the shaft (corresponding to X,! = 1 and Xj = 0).

Note that when the engine and its armatures lie flat, the links in the chains line up

to form rows. A clause ck corresponds to the kth rows out from the shaft on either

side. Clearly the set of links associated with ck does not depend on how the armatures

are rotated about the shaft.

The basic logic engine may be modified by attaching jags to the links 1,2,. . . , m in

chains aj and a; for 16 j <m. The next section shows how to attach flags to specific

links to obtain encodings of instances of NAE3SAT.

Each flag can rotate freely about the chain. The flag thus has two possible positions

when the logic engine is placed in the plane: it can point toward the front, or it can be

“flipped” to point toward the rear. However, the flags are designed so that when the

logic engine is placed in the plane, collisions involving Bags occur under the following

conditions.

l Two flags that lie in the same row and that are attached to chains of adjacent

armatures collide with each other if and only if they are flipped so that they point

toward each other.

l Any flag attached to the chain of the outermost armature A, collides with the frame

if it points toward the front edge of the frame.

a Any flag attached to the chain of the innermost armature A1 collides with that

armature if it points toward it.

The process of encoding an instance of NAE3SAT involves attaching flags to links

according to the clause-literal incidence relation. Then an attempt is made to flip the

armatures and the flags to produce a collision-free planar configuration of the logic

engine and its remaining flags. In the next subsection, we show that an instance of

NAE3SAT is a “yes” instance if and only if one or more such planar collision-free

configurations exist.

Firstly, however, we note a purely geometric property. Consider a planar config-

uration of an (m,n) logic engine and its armatures. Each armature Aj is configured

independently of the others, with the chain aj corresponding to Xj positioned either

above or below the shaft. Hold this configuration of armatures fixed for the moment,

and consider any of the first m rows of links above or below the shaft. We allow the

flags in this row to be turned in either direction, independently of one another. (In

particular, they need not all point in the same direction.) If all n links in the row are

flagged, then it is clearly impossible to avoid a collision in this row. On the other hand,

P. Eades, S. Whitesidesl Theoretical Computer Science 169 (1996) 23-37 29

if one or more of the links in the row is unflagged, then collisions in that row may be

avoided simply by directing all the flags toward any one of the unflagged links. This

leads to the following observation.

Observation 1. A given planar conjiguration of a logic engine and its armatures has

a collision avoiding placement of its jags if and only 17 each row contains at least

one unJlagged link.

2.2. Customizing logic engines

This subsection explains how to customize an (m,n) logic engine to encode a par-

ticular instance of NAE3SAT.

The instance of NAE3SAT is encoded as follows. For 1 d idm we attach a flag to

the ith link of every chain aj and ai (1 <j <n), except that

1. if variable X, appears in clause ci then the ith link of aj is unflagged; and

2. if variable Xl appears in clause ci then the ith link of a: is unflagged.

Fig. 3 illustrates part of a logic engine with flags, customized to encode the following

instance of NAE3SAT:

We claim that an instance of NAE3SAT is a “yes” instance if and only if the

customized (m,n) logic engine has a planar configuration without collisions.

Lemma 1. An instance of NAE3SAT is a “yes” instance if and only if the corres-

ponding customized (m, n) logic engine has a collision-free planar layout.

Proof. Suppose that we have a “yes” instance of NAE3SAT, and the truth assignment

t gives at least one true and at least one false literal for each clause. The armatures

may be rotated to simulate the truth assignment t as follows: if t(Xj) = 1, then place

aj at the top and ai at the bottom; if t(X/) = 0, then place a; at the top and LI, at

the bottom. With this layout of armatures, since each clause c, contains at least one

literal Y with t(Y) = 1 and at least one literal 2 with t(2) = 0, there is at least one

unflagged link in each horizontal row of links; thus a collision-free layout is possible.

On the other hand, suppose that we have a collision-free planar layout of the cus-

tomized logic engine; then there is at least one unflagged link in each row. Thus there

is at least one true and at least one false literal in each clause. 0

Fig. 3 shows a collision-free planar layout of an encoded logic engine. Note that the

armature Al and its chains have been rotated around the shaft, and the flags have been

flipped so that they do not collide. This layout corresponds to a truth assignment that

has at least one true literal and at least one false literal in each clause.

Suppose that we regard two collision-free planar configurations as equivalent

provided that their armatures are oriented in the same way. Then there is a clear

30 P. Eades. S. WhitesidesITheoretical Computer Science 169 (1996) 23-37

X1 x2 X3' X4'
idselitmals

Fig. 3. Part of a (3,4) logic engine, customized with flags.

one-one correspondence between not-all-equal truth assignments and equivalence classes

of collision-free planar configurations of the customized logic engine.

3. The simulation of a logic engine by a graph

For this section we limit our attention to mutual nearest neighbor graphs and abbre-

viate our terminology accordingly: we say that a graph is realized by a set P of points

if G is isomorphic to the mutual nearest neighbor graph on P, and G is realizable if

it is realizable as a mutual nearest neighbor graph.

This section presents a proof of Theorem 1. For motivation we preview how the

transformation of NAE3SAT to MNNGR will proceed. Given an instance of NAE3SAT

with m clauses and n variables, we define an (m,n) logic graph G, which is an instance

of MNNGR. We design the (m, n) logic graph to simulate an (m, n) logic engine before

the addition of flags. After customization by attachment of subgraphs that simulate flags,

the customized graph will have a realization if and only if the NAE3SAT instance is

a ‘yes” instance.

The first subsection shows how to construct a basic (m,n) logic graph. Furthermore,

it describes the ways in which the logic graph can be realized as a mutual nearest

neighbor graph; these realizations correspond to the planar configurations of the logic

engine.

The second subsection shows how the logic graph can be customized to simulate

the logic engine and thus to simulate NAE3SAT.

3.1. Logic graph design

We begin with an elementary lemma which is easy to prove and is used throughout.

Lemma 2. Suppose that G is a mutual nearest neighbor graph of some point set P

and that G is connected. Then all edge segments of G have the same length.

P. Eades, S. Whitesidesl Theoretical Computer Science 169 (1996) 23-37 31

In view of Lemma 2, we can assume that the edge segments of a realization of

a connected mutual nearest neighbor graph all have unit length.

We say that a graph G is uniquely realizable if all the sets that realize G are equio-

alent, that is, one can be obtained from the other by rotations, reflections, translations

and changes of scale. The proof of NP-hardness depends on the unique realizability of

certain graphs.

We will build a simulation of the logic engine with a large uniquely realizable graph;

but we begin with a simple lemma which ensures the correctness of the technique of

building larger uniquely realizable graphs from smaller uniquely realizable graphs.

Lemma 3. Suppose that H is a graph isomorphic to a subgraph of graph G, and thut

H is uniquely realizable. Then in any realization of G, the drawings of the subgruph

corresponding to H must be equiz,alent to the unique realization of H.

We can now describe the essential building blocks of the logic graph.

Definition 4. (a) Fig. 4(a) gives a realization of a link graph as a mutual nearest

neighbor graph of its vertex-points.

(b) A link graph may be extended to a flagged link graph by the addition of three

new vertices f ,g, and h as shown in Fig. 4(b).

(c) A chain graph of length k is a sequence of k link graphs joined together as

shown in Fig. 4(c).

From Lemma 2 we can deduce the following.

Lemma 4. Both the link graph and the jagged link graph are uniquely realizable.

/

@@ @

I

*

(4 03

Fig. 4. (a) Link graph, (b) flagged link graph, (c) chain

32 P. Eades, S. Whitesidesi Theoretical Computer Science 169 (1996) 23-37

Note that a chain graph of length greater than one is not uniquely realizable as

a mutual nearest neighbor graph. While all edges of a realization have the same length

by Lemma 2, the angle between edges belonging to consecutive link graphs of the

chain but sharing a common endpoint can vary from just over 743 to just under rt,

assuming that the edges are adjacent in the cyclic ordering of edges about the shared

endpoint. In fact, this phenomenon explains the reason for the nested armatures in the

logic engine/graph design. Their purpose is to hold chains taut while still permitting

them to be on either side of the shaft. If the chains were not taut, then the customized

logic graph defined below might be realizable for “no” instances of NAE3SAT.

From the basic building blocks above, we can build a logic graph.

Definition 5. An (m,n) logic graph consists of a frame to which armatures with chains

are attached as in Fig. 5.

As Fig. 5 shows, the (m,n) logic graph is realizable.

Lemma 5. The (m,n) logic graph is uniquely realizable.

Proof. One can show that the frame is uniquely realizable using Lemmas 2 and 3. To

prove uniqueness of the realization of the shaft, we need to show that the shaft is taut.

The Euclidean distance between the endpoints of an edge on the shaft is precisely 1

by Lemma 2. Thus the maximum Euclidean distance between the extremal endpoints

of the shaft is equal to the number of edges in the shaft, and this can be achieved

only if the vertices are stretched out along a line. Thus the unique realizability of the

frame forces the shaft to be drawn as a straight line as shown.

It is not difficult to extend this argument to show uniqueness of the armatures and

the attached chains, and then to the whole logic graph. 0

The set of points in the plane occupied by the vertices in any realization is unique

up to rotations, translations, reflections and changes of scale. However, the labeled

graph has many realizations. These are described as follows.

l Each armature can be turned about the shaft so that either side of the armature can

be placed in the closed region determined by the shaft and the frame.

l On each chain, each link except the center link can be turned, independently of the

other links, so that either one of the two degree 3 vertices of the link lies in the

closed region defined by that particular armature and its chain.

Thus the realizations of the logic graph simulate the planar layouts of the logic engine.

This completes the definition of basic logic graphs.

3.2. Customizing logic graphs

The customization of logic graphs to simulate NAE3SAT follows the customization

of logic engines presented in Section 2.2. A logic graph customized with flags for the

same example as in Section 2.2 is in Fig. 6. Note that a “collision” occurs between

P. Eades, S. Whiresid~siTheoreticaL Computer Science 169 (1996) 23-31 33

shaft-
-

Armature

Fig. 5. An (m,n) logic graph.

two flags whenever a vertex of one flag is placed within a distance of one unit from

a vertex of the other flag.

Lemma 6. There is a pobynomial time transformation from NAE3SAT to MNNGR

Proof. It is clear that the construction of the customized logic graph as described in

the previous subsection can be done in time proportionai to the size of the NAE3SAT

instance.

The proof that the customized logic graph is realizable if and only if the NAE3SAT

instance is a “yes” instance follows the same argument as in Section 2.2. 0

34 P. Eades, S. Whitesides I Theoretical Computer Science 169 (1996) 23-37

Fig. 6. An (m,n) logic graph customized for an instance of NAE3SAT.

Theorem 1 follows immediately from Lemma 6 and the NP-completeness of

NAE3SAT [9].

4. Other types of nearest neighbor graphs

In this section we briefly indicate techniques for proving that the realization problems

for the strong and weak nearest neighbor graphs are also NP-hard.

Strong Nearest Neighbor Graph Realization (SNNGR)

Instance: A directed graph G.

Question: Is G realizable as a strong nearest neighbor graph? That is, is there a set

P of points in the plane such that the strong nearest neighbor graph r on P is

isomorphic to G?

P. Eades, S. Whitesides I Theoretical Computer Science 169 11996) 23-37 35

Weak Nearest Neighbor Graph Realization (WNNGR)

Instance: A directed graph G.

Question: Is G realizable as a weak nearest neighbor graph? That is, is there a set

P of points in the plane and a weak nearest neighbor graph r on P such that G is

isomorphic to r?

Theorem 2. SNNGR and WNNGR are NP-hard.

Proof. First consider SNNGR. We consider the undirected logic graph constructed in

Section 3 as a directed graph in which each arc is oriented in both directions. This is

realizable as a strong nearest neighbor graph if and only if it is realizable as a mutual

nearest neighbor graph. Thus this transformation proves that SNNGR is NP-hard.

Next we consider WNNGR. The NP-hardness of realizing Euclidean minimum span-

ning trees is established in [7] using a simulation of a logic engine by a tree called

a Zoyipede. This graph simulates a logic engine in a way similar to the logic graph

introduced in Section 3. An example of a logipede is shown in Fig. 7. Here 1~,12.l~, 11
represent literals and cl, ~2, c3 represent clauses.

To show that WNNGR is NP-hard, one can use essentially the same transformation.

From an instance of NAE3SAT we can construct a logipede. Then we must give

a direction to each edge, since weak nearest neighbor graphs are directed. We choose

a leaf of the logipede, and orient the edge incident with that leaf in both directions.

Fig. 7. The logipede

36 P. Eades, S. Whitesidesf Theoretical Computer Science 169 (1996) 23-37

Then we orient every other edge in the logipede toward the chosen leaf. This ensures

that the outdegree of every vertex is precisely one. Further, every realization of the

logipede as a minimum spanning tree is also a realization as a weak nearest neighbor

graph. It follows that the transformation given in [7], followed by the orientation of

edges described above, can be used to show that WNNGR is NP-hard. I?

5. Concluding remarks

The logic engine approach provides a powerful method for investigating the com-

plexity of layout problems; see [7, 1 1, 10,3] for examples. As a final example, consider

the following problem, investigated in [8].

Unit Planar Drawing (UPD)

Instance: A planar graph G.

Question: Is there a planar drawing of G in which each edge has length one?

Eades and Wormald show that UPD is NP-hard, using a complex reduction to a flow

problem. Using the logic engine approach, a much simpler proof is possible: in fact,

one can follow almost the same construction as in Section 3.

Polynomial time realization algorithms are available for some kinds of proximity

graphs as long as the input is restricted; for example, linear time algorithms for drawing

trees as relative neighborhood graphs are available (see [121 for a survey of such

algorithms). To the best of the authors’ knowledge, none of the common kinds of

proximity graphs have polynomial time algorithms for general inputs. It would be

interesting to know if all these problems are NP-hard.

References

[1] S. Bhatt and S. Cosmodakis, The complexity of minimizing wire lengths in VLSI layouts, Inform.
Process, Lett. 25 (1987) 263-267.

[2] P. Bose, G. Di Bat&a, W. Lenhart and G. Liotta, Proximity constraints and representable trees, in:

Graph Drawing, Lecture Notes in Computer Science, Vol. 894 (Springer, Berlin) 328-339.

[3] F.J. Brandenburg, Nice drawings of graphs and trees are computationally hard, TR MIP-8820, Univ. of

Passau, 1988.

[4] G. Di Battista, P. Eades, R. Tamassia and I. Tollis, Algorithms for drawing graphs: an annotated

bibliography, in: Computational Geometry: Theory and Applications 4 (1994) 235-282. Currently
available from wilma.cs.brown.edu by ftp.

[5] G. Di Bat&a, W. Lenhart and G. Liotta, Proximity drawability: a survey, in: Graph Drawing, Lecture

Notes in Computer Science, Vol. 894 (Springer, Berlin) 340-351.

[6] M. Dillencourt, Realizability of Delaunay triangulations, Inform. Process. Lett. 38 (1990) 283-287.
[7] P. Eades and S. Whitesides, The realization problem for Euclidean minimum spanning trees is NP-hard,

Algorithmica 16 (1996) 60-82.
[S] P. Eades and N. Wormald, Fixed edge length graph drawing is NP-hard, Discrete Appl. Math. 28

(1990) 111-134.

[9] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-

completeness (W.H. Freeman, San Francisco, 1979).

P. Eades, S. WhitesideslTheoretical Computer Science 169 (1996J 23-37 31

[lo] A. Gregori, Unit length embedding of binary trees on a square grid, Inform. Process. Lett. 31 (1989)

1677172.

[II] P.J. Idicula, Drawing trees in grids, M.Sc. Thesis, Computer Science, Univ. Auckland, 1990.

[12] G. Liotta, Computing proximity drawings of graphs, Ph.D. Thesis, Univ. of Rome “La Sapienza”, 1995.

[13] A. Lubiw and N. Sleumer, Maximal outerplanar graphs are relative neighborhood graphs, in: Proc
Canadian Conf on Computational Geometry (1993) 198-203.

[14] K. Sugiyama, A readability requirement on drawing digraphs: level assignment and edge removal for

reducing the total length of lines, TR 45, International Institute for Advanced Study of Social Information

Science (March 1984).

[15] G. Toussaint, A graph-theoretical primal sketch. in: G. Toussaint, ed., Computational Morpholoq)
(Elsevier, Amsterdam, 1988) 229-260.

