310 research outputs found

    Integrating Blockchain and Fog Computing Technologies for Efficient Privacy-preserving Systems

    Get PDF
    This PhD dissertation concludes a three-year long research journey on the integration of Fog Computing and Blockchain technologies. The main aim of such integration is to address the challenges of each of these technologies, by integrating it with the other. Blockchain technology (BC) is a distributed ledger technology in the form of a distributed transactional database, secured by cryptography, and governed by a consensus mechanism. It was initially proposed for decentralized cryptocurrency applications with practically proven high robustness. Fog Computing (FC) is a geographically distributed computing architecture, in which various heterogeneous devices at the edge of network are ubiquitously connected to collaboratively provide elastic computation services. FC provides enhanced services closer to end-users in terms of time, energy, and network load. The integration of FC with BC can result in more efficient services, in terms of latency and privacy, mostly required by Internet of Things systems

    A patient agent controlled customized blockchain based framework for internet of things

    Get PDF
    Although Blockchain implementations have emerged as revolutionary technologies for various industrial applications including cryptocurrencies, they have not been widely deployed to store data streaming from sensors to remote servers in architectures known as Internet of Things. New Blockchain for the Internet of Things models promise secure solutions for eHealth, smart cities, and other applications. These models pave the way for continuous monitoring of patient’s physiological signs with wearable sensors to augment traditional medical practice without recourse to storing data with a trusted authority. However, existing Blockchain algorithms cannot accommodate the huge volumes, security, and privacy requirements of health data. In this thesis, our first contribution is an End-to-End secure eHealth architecture that introduces an intelligent Patient Centric Agent. The Patient Centric Agent executing on dedicated hardware manages the storage and access of streams of sensors generated health data, into a customized Blockchain and other less secure repositories. As IoT devices cannot host Blockchain technology due to their limited memory, power, and computational resources, the Patient Centric Agent coordinates and communicates with a private customized Blockchain on behalf of the wearable devices. While the adoption of a Patient Centric Agent offers solutions for addressing continuous monitoring of patients’ health, dealing with storage, data privacy and network security issues, the architecture is vulnerable to Denial of Services(DoS) and single point of failure attacks. To address this issue, we advance a second contribution; a decentralised eHealth system in which the Patient Centric Agent is replicated at three levels: Sensing Layer, NEAR Processing Layer and FAR Processing Layer. The functionalities of the Patient Centric Agent are customized to manage the tasks of the three levels. Simulations confirm protection of the architecture against DoS attacks. Few patients require all their health data to be stored in Blockchain repositories but instead need to select an appropriate storage medium for each chunk of data by matching their personal needs and preferences with features of candidate storage mediums. Motivated by this context, we advance third contribution; a recommendation model for health data storage that can accommodate patient preferences and make storage decisions rapidly, in real-time, even with streamed data. The mapping between health data features and characteristics of each repository is learned using machine learning. The Blockchain’s capacity to make transactions and store records without central oversight enables its application for IoT networks outside health such as underwater IoT networks where the unattended nature of the nodes threatens their security and privacy. However, underwater IoT differs from ground IoT as acoustics signals are the communication media leading to high propagation delays, high error rates exacerbated by turbulent water currents. Our fourth contribution is a customized Blockchain leveraged framework with the model of Patient-Centric Agent renamed as Smart Agent for securely monitoring underwater IoT. Finally, the smart Agent has been investigated in developing an IoT smart home or cities monitoring framework. The key algorithms underpinning to each contribution have been implemented and analysed using simulators.Doctor of Philosoph

    An efficient selective miner consensus protocol in blockchain oriented iot smart monitoring

    Get PDF
    Blockchains have been widely used in Internet of Things(IoT) applications including smart cities, smart home and smart governance to provide high levels of security and privacy. In this article, we advance a Blockchain based decentralized architecture for the storage of IoT data produced from smart home/cities. The architecture includes a secure communication protocol using a sign-encryption technique between power constrained IoT devices and a Gateway. The sign encryption also preserves privacy. We propose that a Software Agent executing on the Gateway selects a Miner node using performance parameters of Miners. Simulations demonstrate that the recommended Miner selection outperforms Proof of Works selection used in Bitcoin and Random Miner Selection.Proceedings of the IEEE International Conference on Industrial Technolog

    An offloading method using decentralized P2P-enabled mobile edge servers in edge computing

    Get PDF
    Edge computing has emerged as a promising infrastructure for providing elastic resources in the proximity of mobile users. Owing to resource limitations in mobile devices, offloading several computational tasks from mobile devices to mobile edge servers is the main means of improving the quality of experience of mobile users. In fact, because of the high speeds of moving vehicles on expressways, there would be numerous candidate mobile edge servers available for them to offload their computational workload. However, the selection of the mobile edge server to be utilized and how much computation should be offloaded to meet the corresponding task deadlines without large computing bills are topics that have not been discussed much. Furthermore, with the increasing deployment of mobile edge servers, their centralized management would cause certain performance issues. In order to address these challenges, we firstly apply peer-to-peer networks to manage geo-distributed mobile edge servers. Secondly, we propose a new deadline-aware and cost-effective offloading approach, which aims to improve the offloading efficiency for vehicles and allows additional tasks to meet their deadlines. The proposed approach was validated for its feasibility and efficiency by means of extensive experiments, which are presented in this paper

    Towards Cyber Security for Low-Carbon Transportation: Overview, Challenges and Future Directions

    Full text link
    In recent years, low-carbon transportation has become an indispensable part as sustainable development strategies of various countries, and plays a very important responsibility in promoting low-carbon cities. However, the security of low-carbon transportation has been threatened from various ways. For example, denial of service attacks pose a great threat to the electric vehicles and vehicle-to-grid networks. To minimize these threats, several methods have been proposed to defense against them. Yet, these methods are only for certain types of scenarios or attacks. Therefore, this review addresses security aspect from holistic view, provides the overview, challenges and future directions of cyber security technologies in low-carbon transportation. Firstly, based on the concept and importance of low-carbon transportation, this review positions the low-carbon transportation services. Then, with the perspective of network architecture and communication mode, this review classifies its typical attack risks. The corresponding defense technologies and relevant security suggestions are further reviewed from perspective of data security, network management security and network application security. Finally, in view of the long term development of low-carbon transportation, future research directions have been concerned.Comment: 34 pages, 6 figures, accepted by journal Renewable and Sustainable Energy Review
    • …
    corecore