
Evaluation of Security and Performance
of Clustering in the Bitcoin Network,

with the Aim of Improving the
Consistency of the Blockchain

Muntadher Fadhil Sallal

A thesis submitted for the degree of
Doctor of Philosophy

The Networking Research Group
School of Computing

University of Portsmouth

December 2018





Declaration

Whilst registered as a candidate for the above degree, I have not been registered for any other
research award. The results and conclusions embodied in this thesis are the work of the named
candidate and have not been submitted for any other academic award.

Muntadher Fadhil Sallal
December 2018





Acknowledgements

First and foremost, I would like to thank Allah (God) for all what I am and all what I have. I
would like to particularly thank my supervision team- Dr Gareth Owenson and Dr Mo Adda
for the continuous support, encouragement and advice. Special thanks must go to my mother
Rabab Ridha, grandfather(Ridha Serhan), grandmother as well as my brothers and sisters
(Hayder, Azhar, Hawraa, and Zufran) for the financial support during my academic studies
in the past as well as the spiritual support and encouragement for my embarking on the PhD
research in the past two and half an years. In addition, I would also like to thank my best friends
Ali Malik and Hayder Murad for the continuous support and encouragement during my PhD
study that have facilitated significantly my involvement in the writing process for this thesis.

Last but not least, my unique gratefulness goes out to Safa Shubbar, my precious gift from
God; my best friends Dawood, Ahmad Shelaka, Mohanad, Neamah and Hani ben Hussain, they
have always been there when I needed them. Without whom I would have struggled to find the
inspiration and motivation needed to complete this thesis.

God bless you all.





Dissemination

Journal Articles

Sallal, M., Owenson, G., Adda, M. (2017). Towards Bitcoin Scalability: A Study to Improve
Propagation Delay in Bitcoin Peer-to-Peer Network, IEEE Access Journal.(Under Review)

Sallal, M., Owenson, G., Adda, M. (2018). Security evaluation of Clustering in the Bit-
coin Peer-to-Peer Network, International Journal of Ad Hoc and Ubiquitous Computing.

Conference papers

Fadhil, M., Owenson, G., Adda, M. (2016). Bitcoin network measurements for simulation
validation and parametrisation. In International networking conference. Frankfurt/ Germany.

Fadhil, M., Owenson, G., Adda, M. (2016). A Bitcoin model for evaluation of cluster-
ing to improve the transaction propagation delay in Bitcoin network. In 19th IEEE International
Conference on Computational Science and Engineering. Paris.

Fadhil, M., Owenson, G., Adda, M. (2017, May). Locality based approach to improve
propagation delay on the Bitcoin peer-to-peer network. In Integrated Network and Service
Management (IM), 2017 IFIP/IEEE Symposium on (pp. 556-559). IEEE.

Fadhil, M.,Owenson, G., Adda, M. (2017, June). Proximity awareness approach to enhance
propagation delay on the Bitcoin peer-to-peer network. In Distributed Computing Systems
(ICDCS), 2017 IEEE 37th International Conference on (pp. 2411-2416). IEEE.

Sallal, M.,Owenson, G., Adda, M. (2018, October). Optimisation Clustering Protocol For Fast
Information Propagation in the Bitcoin Peer-to-Peer Network. In the International Symposium
on DIStributed Computing (DISC). New Orleans/USA.



viii

Presentations

“Bitcoin Network Clustering to Support a Higher Bitcoin Network Scalability”, Comput-
ing Seminar, University of Portsmouth, 11 November 2015.

“Bitcoin Network Measurements for Simulation Validation and Parameterisation”, Computing
Seminar, University of Portsmouth, 16 March 2016.

“A Bitcoin Model for Evaluation of Clustering to Improve Propagation Delay in Bitcoin
Network ”, Faculty of Technology Research Conference, University of Portsmouth, 7 June
2016.

“Optimisation Clustering Protocols For Fast Information Propagation in The Bitcoin Peer-
to-Peer Network ”, Graduate school, University of Portsmouth, 11 October 2016.

“Locality Based Approach to Improve Propagation Delay on the Bitcoin Peer-to-Peer Network
”, Computing Seminar, University of Portsmouth, 1 November 2017.

Posters

“Bitcoin Network Clustering to Support a Higher Bitcoin Network Scalability”, Comput-
ing student conference, University of Portsmouth, 15 March 2016.

“A Bitcoin Model for Evaluation of Clustering to Improve Propagation Delay in Bitcoin
Network”, Faculty of Technology Research Conference, University of Portsmouth, 7 June
2016.

“Locality Based Approach to Improve Propagation Delay on the Bitcoin Peer-to-Peer Network
”, Integrated Network and Service Management (IM), 2017 IFIP/IEEE Symposium.



Abstract

Bitcoin is a digital currency based on a peer-to-peer network to propagate and verify transactions.
Bitcoin is gaining wider adoption than any previous crypto-currency and many well-known busi-
nesses have begun accepting bitcoins as means of financial payments. However, the mechanism
of peers randomly choosing logical neighbors without any knowledge about the underlying
physical topology can cause a delay overhead in information propagation which makes the
system vulnerable to double spend attacks due to inconsistencies in the blockchain. Aiming at
alleviating the propagation delay problem, this thesis evaluates the concept of network cluster-
ing in tackling the propagation delay problem in the Bitcoin network throughout introducing a
proximity-aware extensions to the current Bitcoin protocol, named Locality Based Clustering
(LBC), Ping Time Based Clustering (BCBPT), Super Node Based Clustering (BCBSN), and
Master Node Based Clustering (MNBC). The ultimate purpose of the proposed protocols, that
are based on how clusters are formulated and nodes define their membership, is to improve
the information propagation delay in the Bitcoin network. The proximity of connectivity in
the Bitcoin network is increased in the LBC and BCBPT protocol by grouping Bitcoin nodes
based on different criteria, physical location in LBC protocol and link latencies between nodes
in the BCBPT. In the BCBSN protocol, geographical connectivity increases as well as the
number of hops between nodes decreases through assigning one node to be a cluster head
that is responsible for maintaining the cluster. Whereas, MNBC incorporates master node
technology and proximity-awareness into the existing Bitcoin protocol with the aim of creating
fully connected clusters based on physical Internet proximity. We show, through simulations,
that the proposed approaches define better clustering structures that optimize the transaction
propagation delay over the Bitcoin protocol. However, MNBC is more effective at reducing the
transaction propagation delay compared to the BCBPT, LBC, and BCBSN.

On the other hand, this thesis evaluates the resistance of the Bitcoin network and the
proposed approaches against the partitioning attack. Even though the Bitcoin network is more
resistant against partition attacks than the proposed approaches, more resources need to be
spent to split the network in the proposed approaches especially with a higher number of nodes.



x

Finally, this thesis introduces a novel methodology to measure the transaction propaga-
tion delay in the real Bitcoin network with the aim of validating any model of the Bitcoin
network. Transaction propagation measurements show that the transaction propagation time is
significantly affected by the number of connected nodes and the network topology which is
not proximity defined. In addition, large-scale measurements of the real Bitcoin network are
performed in thesis with the aim of providing an opportunity to parameterise any model of the
Bitcoin network accurately. Furthermore, this thesis presents a simulation model of the Bitcoin
peer-to-peer network which is an event based simulation.
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Chapter 1

Introduction

Money is any item or verifiable record that can be accepted in a transaction that involves transfer
of goods and service from one person to other (Mishkin, 2007) (Durlauf et al., 2008). Money
has been represented by different forms over time, starting from a commodity that is a good
whose physical value serves as a value of money, to fiat currency whose value serves less than
the value it represents as money. In an economy, fiat money is used as a medium of exchange
that includes currency bills and coins that are the most common and generally accepted as a
unit of account (Kim, 2016). Therefore, trading with fiat currency requires physical interaction
between parties (e.g. two people need to present in person in order to exchange money for
a good). With the emergence of e-commerce, sending money can be done through money
remittance agents or through banks for a fee, often can be for free, without the need for physical
coins or notes.

Nowadays, the market has many innovative money payment systems which are built on
several platforms such as mobile phones, internet, and digital storage cards. As these alternative
payment systems have seen interest, more payment systems have continued emerging, such as
PayPal, Apple Pay, Google Wallet, Transferwise, and others (Chuen, 2015).

Beyond the development in the payment systems that are based on fiat currency, a new
currency generation is raised to support these payment systems with respect to allow faster,
flexible, and more innovative payments that support trading goods and services (Chuen, 2015).
Specifically, the adoption of new internet technologies that are supported by advances in
encryption and network computing, have driven transformational changes in the global economy,
including how goods and assets are exchanged. Furthermore, Kleinrock (1996) had a vision that
the internet, advanced wireless technologies, portable and distributed computing will consider
the vision of ’anytime’, ’anywhere’ which ensures anytime, anywhere access to computing and
communications, for instance while one is in transit and/or when one reaches one’s destination.
This vision has come to fruition recently as remote collaboration is now possible between
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organizations, and people can interact and communicate through the Internet. This development
in the Internet technologies has also brought a new phenomenon, known as a digital currency,
that uses the Internet technologies as a medium of money transfer and store. In the following
section, background with respect to digital currency will be given.

1.1 Digital Currency as Alternative Currency

1.1.1 "Digital" versus "Virtual"

There is a misunderstanding around the terms ’digital’ and ’virtual’ as people often use them
interchangeably, while each of these terms has a different meaning. Digital currencies can
be described as a non-physical representation of traditional fiat currency that is stored and
transferred electronically. Whereas virtual currencies are considered as a truly online asset
that does not have a value in the physical reality, as it represents only a value in its virtual
world (Al Shehhi et al., 2014). More interestingly, Euro, USD, and AED are deemed as an
example of traditional currencies that can be stored electronically in order to shop online. While
’Pokécoins’ in the game ’Pokémon GO’, for instance, traditional currency (in digital form)
requires to be converted to a virtual currency. The level of centralization is also deemed to
be another key distinction between digital and virtual currencies. Clearly, digital currencies
fall under the control of central banks and governments, while there is no central authority
that controls virtual currencies as it can be created by any corporate such as Facebook, app
makers, individual, so virtual currency lies outside of national fiscal policy. However, the
main common factor between digital and virtual currencies is that both of these currencies are
handled electronically (He et al., 2016).

1.1.2 History of Digital Currencies

There are several generations of digital currencies that have emerged and developed over the
time, see Fig.1.1 for more clarification. In the 1980, the idea of the digital money emerged and
has adopted by many researchers. After a quarter of a century, the idea has become a reality
and early digital currencies were introduced. These currencies, that are proposed in (Chaum,
1983),(Law et al., 1996), are quite similar to the traditional banking systems where the third
party is used to settle all transactions at regular intervals. In addition, these currencies were
almost controlled and targeted by governments who are concerned about the regulation of these
currencies.

Later on, the first emergence sign of virtual currencies was when early digital currencies
have replaced by approaches like B-money (Dai, 1998), Karma (Vishnumurthy et al., 2003),
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and Bit Gold (Szabo, 2008), which are based on a cryptographic puzzle (proof of work) as
a replacement for central authorities where those currencies can be created by any private
developers in any corporate independently from a bank. These approaches still require a central
authority to maintain the money ownership records. However, these virtual currencies are not
denominated in fiat currency and have their own unit of account.

Fig. 1.1 Development History of Digital Currencies

After that, another generation of virtual currency has appeared. This generation comprises
two key elements. First, the digital representation of "currency" that can be transferred
between parties. Second, maintaining distributed ownership records in order to get rid of banks.
Specifically, quorum systems which introduced the concept of voting, have been developed
(Szabo, 1998). In this system, a correct value can be obtained by elections if the majority of
peers(quorum) are honest (Malkhi & Reiter, 1998).

On the other hand, convertible virtual currencies have been developed to fill the gap of
the previous virtual currencies being non-convertible currencies operated only within a self-
contained virtual environment. Whereas convertible virtual currencies allow for the virtual
currencies to be exchanged with fiat currencies (or other virtual currency) and used to pay for
goods and services in the real world economy (He et al., 2016).

The development of virtual currencies has continued and contributed in the emergence of
innovative distributed and decentralized virtual currencies. Cryptocurrencies is one of these
currencies in which the governance is decentralized and they can be transacted with any outside
agent. This kind of virtual currency does not fall under governments regulation as there is no
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legal entity responsible for the activities. In the following section, cryptocurrencies will be
discussed in details.

1.2 Cryptocurrencies

Cryptocurrencies are considered as a virtual payment system that generates a currency supply as
well as tracks, verifies, and records transactions without involving any kind of central authority
to act as an escrow. This payment system is adopted by businesses and individuals who prefer
transacting over the Internet and not willing to supply ’Credit Cards’ or ’Banking information’.
Cryptocurrencies are based on cryptographic techniques that use digital signatures, the main
reason why cryptocurrencies are named so. Despite all the positive aspects of cryptocurrencies
such as transferring funds for long-distance easily without intermediaries, cryptocurrencies
have negative aspects as well. Relative anonymity in cryptocurrencies could offer a great
chance for illegal transactions and money laundering to be taken place (Sharma et al., 2017).
However, the absence of the third party makes the regulatory agents unable to get involved
in these systems which, on other hand, enables transactions to be exchanged without the fees
attached. In contrast, the cost of transferring $1,000.00 internationally via Credit card will be
around 3% or $30, and 3.9% or $39 if the transfer will be done via Paypal (Ahamad et al.,
2013). In the cryptocurrencies systems, cryptography is used to legitimatize a user’s claim to a
value. Precisely, cryptographic digital signatures are used to prove the ownership of a digital
asset through signing a digital transaction.

While the value of fiat currencies are supported by creditworthiness of governments and
banks, there is no backing source for the value of cryptocurrencies. Instead, the value of
cryptocurrencies is derived solely from the expectation that others would also value and use
them (Al Shehhi et al., 2014). Moreover, cryptocurrencies are deemed to be "pseud-anonymous"
as users who own these currencies are known by their virtual currency addresses which can not
be linked to the real world identity. However, cryptocurrencies systems limit the number of
currencies that might be ultimately issued.

Even though there are many types of cryptocurrencies such as Riplle, Alcoins, Litecoins,
etc, only one cryptocurrency grabbed a lot of attention as it made a worldwide impact. This
currency is known as "Bitcoin" which is considered as a well-known example of cryptocurrency.
In addition, Bitcoin is the first decentralised cryptocurrency that has a good reputation in the
business field and large markets capitalization started using and accepting payments using this
currency. In the following section, more details will be given about Bitcoin as an example of
cryptocurrencies.
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1.3 The rise of Bitcoin

In 2008, a paper was published on a cryptography mailing list by someone who used Satoshi
Nakamoto as a pseudonym (Nakamoto, 2008). In this paper, a fully peer-to-peer electronic
cash system, which is known as Bitcoin, was introduced. After the Bitcoin white paper, a proof
of concept software client of Bitcoin was released in 2009 by an online community of computer
scientists who studied cryptography (Bitcoin Wiki, 2008). Those scientists aimed to create
an efficient and verifiable digital asset. When the Bitcoin network was launched in January
2009, majority of Bitcoin users were scientists who worked towards testing the software in
order to verify Bitcoin’s working parts (Ciaian et al., 2016). Over time, the use of Bitcoin
increased greatly and many users have adopted Bitcoin as an official payment currency (Moore
& Christin, 2013).

There are three key innovations that have been introduced in Bitcoin. These innovations
can be outlined as follows: Distributed ownership ledger that records all the available digital
assets in Bitcoin in a form of transactions that are verified by all users of Bitcoin. Unlike
previous attempts to develop digital assets, the cryptographic payment system that is proposed
by Nakamoto does not rely on a third party trust to verify the currency supply and transactions.
Instead, Bitcoin developers built a decentralized network of computers that work concurrently
towards achieving a common goal which is validating transactions in the Bitcoin network. The
decentralized and distributed network allows every user to verify the validity of transactions
based on a cryptographic protocol and the transactions history in Bitcoin that is shared over the
entire Bitcoin network. The distributed transaction history, known as blockchain, is considered
as one of the important innovations in Bitcoin which is stored locally on the computer hard
drive of every user running a full version of the Bitcoin software. The blockchain is maintained
through the proof of-work “mining” process. This process is achieved through running a special
mining variant of the Bitcoin software that requires a great amount of computing power in
order to win the right of adding information to the blockchain. Users who cover the mining
task are named as miners (Antonopoulos, 2014).

The second key innovation in Bitcoin is distributed currency supply by which a unit of value
on the Bitcoin network, known as bitcoin is released in the system. A bitcoin is represented
by eight decimal places, and the smallest unit of bitcoin, known as a satoshi, has a value of
1/100,000,000th of a bitcoin. Regarding the source code of Bitcoin, only 21 million bitcoins will
be supplied as mining rewards for miners opposite to the process that adds information to the
blockchain. To date, around 70 percent of all bitcoins have been supplied, and approximately
90 percent of all bitcoins will have been supplied by 2026 (Kaplanov, 2012). Due to the use of
a cryptographic proof and the distributed blockchain, verifying the authenticity and ownership
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of a bitcoin as well as transferring a bitcoin’s possession become possible without involving a
trusted third party.

The Bitcoin protocol that is operated on a peer-to-peer network represents the third inno-
vation in Bitcoin. Specifically, the Bitcoin protocol allows the main parts of Bitcoin to work
together in a compatible way. Furthermore, the Bitcoin protocol allows payments to be handled
without a fraud, which means a fully secure payment between two parties can be done without
a mediator between those parties.

Unlike traditional currencies, virtual bitcoins are implied in transactions as Bitcoin maintains
irreversible transactions by which bitcoins can be exchanged between users regardless of where
the sender or receiver are located, same city or halfway around the world. Furthermore, Bitcoin
gained a lot of media attention for being an anonymous digital currency as users in Bitcoin can
hold multiple public addresses which are not linked to any personal information (Androulaki
et al., 2013). Despite the wide adoption of Bitcoin, the identity of Nakamoto remains obscure
and it is subject to speculation. For instance, it is not certain whether Bitcoin was created by a
group of developers or the name Nakamoto is a pseudonym.

The distributed nature of Bitcoin as well as the easy trust conditions that are required among
users, are the main key points behind the success of Bitcoin. Precisely, users can join Bitcoin
for free and take part in the transaction verification process as well as the confirmation of
transactions. In addition, Bitcoin introduces new payment strategies, such as micropayment,
contract, and escrow transactions. These payment technologies were not available as traditional
payments due it is high fees (Karame et al., 2012).

As Bitcoin goes beyond the scope of cash, the adoption of Bitcoin is growing into being
an alternative to other fiat currencies such as dollars or pounds. In addition, the growth rates
and circulation of Bitcoin do not follow any government or monetary policy, not similar to US
dollars, for instance, that the Federal Reserve controls its growth rate. Therefore, Bitcoin does
not consider any optimal rate of monetary growth. Instead, Bitcoin protocol is designed in a
way that keeps the rate of bitcoin supply closes to zero by the year 2140, when the last bitcoin
will be supplied as the limit of 21 million bitcoins will be reached (Chuen, 2015). However,
a more Bitcoin adoption results in increasing the Bitcoin demand. With a constant supply of
Bitcoin, increasing demand causes the Bitcoin price gradually increases over the long-term
(Brito et al., 2014).

1.4 Overview of how Bitcoin works

A new user can get started with Bitcoin without deeply understanding the technical details.
Bitcoin, from a user perspective, is just an application called Bitcoin wallet, Bitcoin core, etc,
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that can be installed on either a mobile or a computer. By this application, users can get a
personal wallet by which the first Bitcoin address can be generated in order to start trading
with Bitcoin. Normally, there are several ways to obtain a bitcoin, such as buying them from a
Bitcoin exchange or vending machines, or get them as a payment for a product or service.

As mentioned earlier, the role of a trusted third party is no longer needed in the Bitcoin
system, whereas the availability of a trusted third party in digital currencies is deemed as an
essential condition to launch payments. Consider a payment between Alice and Bob needs
to be carried out through a normal digital payment system that requires a third party. When
Alice sends 100$ to Bob, the role of the third party starts here. The third party, e.g PayPal,
that maintains a record of available balances, checks whether Alice has a sufficient balance
that covers 100$. The third party adds 100$ to Bob’s record if Alice has enough money in
his account, otherwise the payment will be discarded by the third party. In Bitcoin, the third
party is replaced by a publicly distributed record of all available balances. This record is
approachable by everyone, so the responsibility of managing this ledger is shared over the
entire network rather than relying on a central authority to manage this ledger. This brings the
possibility of checking all accounts by any participant in Bitcoin. Specifically, Bitcoin uses a
computational proof of work principle which is used by the decentralized network nodes to
prevent any financial fraud through reaching a consensus on valid transactions which, on other
hand, leads to build a distributed record of all available balances.

In the digital currency world, the double spending problem means that digital currencies
can be spent twice. Clearly, consider a situation where digital money are represented by just
a computer file, like a digital document. Alice can transfer 100$ to Bob by simply sending a
money file by e-mail. Alice can send a copy of the money file without deleting the original
one. Within the absence of a central authority, Alice is still able to send another copy of the
same money file to someone else. In Bitcoin, the distributed record solves the double spending
problem without requiring a central authority. As mentioned before, participants of the Bitcoin
network share a public ledger that includes all valid transactions that have ever been processed.
Therefore, every user’s computer can verify the validity of each transaction and check whether
or not it has been spent before. Though, an attempt to double spend a transaction that has
already been spent will be detected.

The Bitcoin user can send and receive bitcoins by using an address which is similar to a
bank account. Each address consists of a public key and private key. Users of Bitcoin are
distinguishable by their public key which is deemed as in opposition to their name or other
identifiable information. Therefore, the public key is published and anyone can send bitcoins
to it. In contrast, the private key should be kept secret as bitcoins that have been sent to a
public key can only be spent by a user who possesses an appropriate private key. Users in
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Bitcoin can hold multiple public addresses which are not linked to any personal information.
Though, knowing a user from his public address is quite a hard task to achieve as this address
is pseudonymous.

A bitcoin, that have been included in the blockchain, can be transferred between two wallets
by a signed transaction. A transaction is signed by a private key that is kept in the Bitcoin
wallet to provide a mathematical proof that the transaction has been sent by the wallet’s owner.
In addition, the private key prevents the transaction being replaced by other users once it has
been issued. Once the transaction is created, it can be sent to a destination by broadcasting it
in a peer-to-peer network which validates it against the sender’s public key. In other words,
the transaction is propagated to all of other nodes in the network if the balance of the sending
address has sufficient amount of bitcoin. After incorporating the transaction into a block by a
miner, the block will be propagated to all network nodes and then it will be incorporated in a
public ledger, known as blockchain, by miners which usually takes 10 minutes. By including
the transaction in the blockchain, a chronological order of the transaction will be enforced and
all nodes of the network agree on the state of the system. However, updating a particular block
is considered impossible as it requires modifying the entire previous blocks.

Fig. 1.2 Life cycle of transaction process

In order to give a better understanding of the overall methodology of payment in Bitcoin,
consider the example in Fig.1.2 where Bob wants to send 1 bitcoin to Alice. Bob is required to
achieve two mandatory requirements, a Bitcoin wallet software that runs the Bitcoin’s client
installed in his phone/computer, and his private key as well as Alice’s public key. Then, Bob
creates a transaction that implies 1 bitcoin and propagate it to the entire Bitcoin network. By
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doing this, all miners in Bitcoin will be alerted in order to inform them about the new transaction.
After that, miners start verifying the transaction (checking that Bob has sufficient funds) in
order to add this transaction to the blockchain. Upon successful verification of the transaction,
miners start racing to bundle Bob’s transaction along with all the pending transactions in the
Bitcoin network in order to confirm them in the blockchain. To do this, miners are required to
solve a computational problem that need to spend some computational effort. Upon successful
confirmation of transactions, both Bob and Alice will receive a confirmation about the successful
transaction.

1.5 Distributed trust in the Bitcoin

As mentioned earlier, a distributed trust mechanism is achieved based on the publicly dis-
tributed ledger that is shared by the entire network nodes (Decker & Wattenhofer, 2013). This
mechanism is considered as a monitoring technique by which the amount of the available
bitcoins in the system will be tracked. To achieve this mechanism, two main requirements need
to be fulfilled: (i) transactions verification process has to be achieved in a distributed manner
to ensure the validity of transactions, and (ii) successfully processed transactions have to be
quickly announced to everyone in order to guarantee the consistent state of the blockchain
(Conti et al., 2017). As transactions are validated against the blockchain, reaching a consistent
state of the blockchain is considered as a fundamental requirement towards achieving the dis-
tributed transactions verification process. Upon achieving the transaction verification process, a
Bitcoin transaction has to be broadcasted to all nodes within the network in order to reach a
consensus about which transactions are valid. Eventually, this consensus will be recorded in the
blockchain. As the probability of reaching a global state of the blockchain is mainly affected
by how quickly the Bitcoin information( transactions/blocks) are announced to everyone in the
Bitcoin network, the main goal of the Bitcoin network is to propagate the information to the
entire nodes as quickly as possible. Alas, a delay in information propagation is experienced
during the transaction verification process which results in inconsistent blockchain. This makes
Bitcoin vulnerable to some classes of attacks.

However, the focus of this work is on how to perform overall improvement in the information
propagation delay in the Bitcoin network in a fashion that makes the blockchain more consistent.

1.6 Motivation

Transactions verification process must end up with a situation where all of nodes in the
Bitcoin network agree to a common transactions history. However, transaction validation is
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far from trivial due to the fact that the distribution of verified information(transaction/block)
is delayed due to the network latency(Conti et al., 2017). Consequently, inconsistency in
the replicas of the ledger that every node keeps are unavoidable. This results in a situation
where the Bitcoin network nodes become uncertain about the validity of a given transaction.
Furthermore, a desynchronized replicas of the ledger incentivises attackers to impose their own
transaction history, possibly using the same bitcoins more than once. However, the latency of
communications between nodes in the Bitcoin network is critical even though the probability
of reaching an agreement about transactions history is high (Garay et al., 2015) (Miller &
LaViola Jr, 2014).

As reaching a consensus in the Bitcoin network might require tens of minutes (Karame
et al., 2012), a vendor accepts Bitcoin transactions and delivers products without waiting for
the transactions’ confirmations, a method known as fast payment. In this case, the probability
of a double-spend is not negligible (Karame et al., 2012).

The main motivation for this work is to overcome the problem of achieving agreement on
a common transactions log among nodes in the Bitcoin network through maintaining faster
information propagation in the network. This work evaluates the impact of different network
clustering approaches on improving the propagation delay in the Bitcoin network without
compromising security. To date, most research investigations have focused on speeding up
information propagation in the Bitcoin network by either modifying the scenario of how
information are propagated in the network, or updating the Bitcoin network overlay structure.
Previous attempts of updating the network topology structure have not taken into account any
clustering approach. Instead, these attempts have considered either increasing the network
connectivity by maintaining a mesh network topology, or relying on several coordinator nodes
to support proximity of connectivity in the network without paying attention to security risks.
Therefore, a gap in the research on considering the network clustering concept in speeding
up information propagation in the Bitcoin network throughout presenting an entire network
architecture that is based on the proximity of connectivity is evident.

1.7 Problem Statement

As highlighted above, the information propagation delay is a serious problem facing the
consistency of the blockchain and several methods have been proposed in order to fix this
problem (See chapter 2). As mentioned in (Decker & Wattenhofer, 2013), one of the causes
of the propagation delay problem is the Bitcoin network topology layout where nodes are
connected to each other randomly without taking into consideration any proximity criteria.
This forces transactions and blocks to travel between nodes throughout long distance links.
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Therefore, the crucial point that this thesis focuses on is to indicate whether or not the concept
of the network clustering based proximity, where nodes is connected via short-distance links, is
able to speed up information propagation in the Bitcoin network without compromising security.
Furthermore, this thesis aims to identify how to evaluate the performance of different clustering
approaches proposed in this thesis against the acceleration of information propagation in the
Bitcoin network. Moreover, this thesis aims to indicate whether or not considering clustering
approaches based on proximity in the Bitcoin network would have a security impact.

The main aim of this research is to determine ’ Can clustering in the Bitcoin network
improve the information propagation delay without compromising security?’.

1.8 Contributions

This section outlines the key area of contributions of this work as following:

1. The main contribution of this thesis is in examining the concept of clustering in the Bitcoin
network to reduce average latencies of information delivery between peers. For any peer in
the Bitcoin network, choosing other peers to connect with must be dependent on a particular
proximity criteria, rather than handling random connections with other peers. This results in
grouping peers according to their real-world proximity which would minimize the distance
between any two nodes. In this thesis, examining the proximity based clustering concept
involves proposing and evaluating four clustering approaches proposed in this thesis as follows:

A- Locality Based Clustering (LBC): The LBC protocol aims to increase the locality of
connectivity in the Bitcoin network by supporting the geographical proximity based connec-
tions among nodes. Proximity of connectivity can be achieved in this protocol by referring an
extra function for each node. By this function, each node is able to recommend other nodes
that are close in the geographical distance to its’ local neighbours. Clearly, each node runs
the protocol independently by information about the discovered nodes and local neighbours.
Each node can obtain this information by calculating the geographical distance between the
discovered nodes and its local neighbours. Geographical groups can connect to each other by
border nodes which are defined as a geographically closest pair of nodes that belong to two
different clusters. In addition, a distributed mechanism is developed in this protocol which
handles the entry and exit of the nodes in the network. The LBC protocol is different from the
already existing approaches that are proposed in other classes of peer-to-peer network to group
nodes based on geographical location. The LBC approach is achieved in a distributed manner
without requiring any central point or a complete view of the network layout. Instead, all nodes
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participate in the mechanism of suggesting closer nodes to their neighbours which gives no
control for a certain node or centralised service over the network layout. This ensures the
decentralised manner of the Bitcoin network which reflects a certain level of security awareness.

B- Ping Time Based Clustering (BCBPT): The key insight of the BCBPT protocol is to
optimize the overlay topology by creating distinct, but connected clusters of peers with P2P
latencies under a given intra-cluster threshold. Based on round trip ping latencies, nodes can
detect and cut most of the inefficient and redundant logical links, and add closer nodes as its
direct neighbour. Similar to the LBC protocol, the BCBPT protocol considers the distributed
algorithm principle where each node can recommend closer nodes to its neighbours. The key
difference between the LBC and the BCBPT protocol is that the recommendation of closer
nodes is done based on the physical internet distance between two nodes in the network rather
than the geographical distance.

C- Bitcoin Clustering Based Super Node (BCBSN): The BCBSN protocol is introduced
as a way to combine the reduction of the intermediate hops between any two peers as well
as increasing the proximity of connectivity in the Bitcoin network based on the geographical
distance between peers. In the BCBSN protocol, each peer connects to one cluster head and
each cluster head connects to other cluster heads. The BCBSN protocol is different from
other super peers approaches that are proposed in different classes of the peer-to-peer network.
The difference lies in the area of how to choose nodes to act as super peers. In the BCBSN
protocol, super peers are elected by applying a proposed selection algorithm that forces every
node intends to be as a super peer to handle a reputation protocol based on achieving certain
requirements. These requirements ensure that impersonating the super peer role is challenging
which, on other hand, increases the security awareness. In addition, a peer joining algorithm is
proposed in this protocol which ensures that newly joined peers will be directed to the right
cluster based on the geographical distance.

D- Master Node Based Clustering (MNBC): The MNBC incorporates master node tech-
nology and proximity-awareness into the existing Bitcoin protocol with the aim of creating
fully connected clusters based on the physical Internet proximity. In the MNBC protocol,
information can be exchanged between clusters via master nodes as well as normal nodes. In
order to increase the security awareness, the MNBC protocol selects master nodes based on the
same requirements of super peer selection in the BCBSN protocol. Physical Internet distance is
used as a proximity metric in the MNBC protocol which is different from the BCBSN protocol
where the proximity of connectivity is measured based on the geographical distance. Edge
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nodes are proposed in the MNBC protocol to open more connection channels between clusters
which is considered as another key difference between the MNBC and the BCBSN protocol.

2. As undertaking clustering in the Bitcoin network is different from clustering within other
classes of the peer-to-peer network due to the strict requirements of security, this research
examines whether clustering can be done safely without increasing the likelihood of certain
classes of attacks, in particular, partitioning attacks. Though, the potential of partition attacks
on the proposed protocols as well as the Bitcoin network is evaluated in this thesis. In addition,
this thesis evaluated the performance of the proposed protocols based on the information
dissemination speed in the network.

3. Measurements of the transaction propagation delay in the Bitcoin network are presented
in this thesis. These measurements are collected using a novel methodology by which the
transaction propagation delays are accurately measured as these delays are indicated when
peers receive transactions. In addition, large scale measurements of the real Bitcoin network
parameters that have a direct impact on a client behavior and information propagation in the
real Bitcoin network, are performed in this thesis. These measurements are used to param-
eterise a model of the Bitcoin network which is developed in this thesis, while transaction
propagation measurements are utilized to test whether or not the developed model is reflecting
the virtual reality. To enable the evaluation of the proposed clustering protocols with respect to
the performance and security point of view, several simulations are developed in this thesis.

1.9 Research methodology

This section introduces the research methodology of this thesis which considers the combination
of two main research approaches, scientific method and computer simulation. In the following
subsections, scientific method, computer simulation, and key research methodology stages will
be explained.

1.9.1 Scientific Method

In order to find out a solution for problems or questions that raised within the science, scientific
method was used (Peart, 2014). In this method, answers can be formulated in a form of
theories or meta-theories. Fig.1.3 shows the Hypothetico-Deductive method where theories
can pass through continuous flow of the scientific change and development (Dodig-Crnkovic,
2002). Hypothetico-Deductive method is adopted by scientist who usually re-examine theories
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in order to achieve new-theories or offer a new context for old ones. From each iteration
in Hypothetico-Deductive method, a hypothesis that is derived from existing theories and
observations is predicted. After that, a theoretical test or practical experiment is conducted in
order to be replaced within the boundary of a certain world view. One of the advantages of
the scientific method is that it is unbiased, an argument raised by critics of the Hypothetical-
Deductive method (Dodig-Crnkovic, 2002) (Grimes, 1990). This is due to fact that this method
allows experiments to be repeated and results to be reproduced (Peart, 2014). This would
offer a chance to re-validate or evaluate the obtained results. However, this work demands
the hypothesis to be continuously tested by considering an iterative approach that ensures
conducting incremental experiments.

Fig. 1.3 The iterative nature of the Hypothetico-Deductive Method,(Dodig-Crnkovic,
2002)(Grimes, 1990)

1.9.2 Computer Simulation

Computer simulation is an approach that allows conducting controlled experiments that provide
empirical data. Therefore, computer simulation offers an opportunity to observe parameters of
a system phenomena within controlled conditions, enabling the evaluation of the whole system
phenomena (Peart, 2014). Upon enabling a phenomena to be modelled, important aspects and
features of the phenomena need to be identified and analyzed. Once a model is built, predicting
consequences of considering some changes in a particular system becomes possible throughout
several controlled experiments using the developed model. The reliability of experiments
and validity of the obtained data are mainly based on the ’quality’ of the developed model.
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Therefore, building any model of the real world should be evidenced that the model is reflecting
the reality. To ensure this, the developed model needs to be validated against prior models or
the real world using ’a model emulating’. The model emulating is provided by the computer
simulation to test the performance of the developed models through conducting experiments of
the real-world (Law et al., 1991).

Fig. 1.4 Steps in a discrete simulation study (Law, 2003),(Law et al., 1991), (Bar-Noy et al.,
1995), (Peart, 2014)

Within computer science research, computer simulation plays an important role towards
supporting both theoretical and experimental methods. In addition, computer simulation is
quite similar to Hypothetico-Deductive method with respect to providing an iterative research
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approach by extending the investigations to study a phenomena. Moreover, simulation method
can be used to model the complexity of non-linear real world systems in such a way that reflects
the virtual reality (Ringland, 2010). However, there are three types of simulation methodology
which are, discrete events; system dynamics; and agent-based simulations (Borshchev &
Filippov, 2004).

This work uses event based simulation, where defined systems are modelled as an ordered
sequence of well-defined events that comprises a specific change in the system’s state. The
reason behind adopting discrete event rather than other simulation approaches is that the discrete
event simulation can model activities that happen in an interval of time using multiple events.
This would provide a chance to utilize computational advantages that the discrete event offers
over a continuous dynamics simulation. An iterative approach that is adopted in a discrete-event
simulation (Law et al., 1991)(Bar-Noy et al., 1995), is illustrated in Fig.1.4. This approach
starts with observing and investigating the problem as well as identifying plans along with
objectives. In the next stage, the required data derived from the existing system, is collected and
utilized to define a model. In the following stage, the collected data is used to form assumptions.
Then, the required model is built (step 5) and verified (step 6). In step 6, if the model is valid,
then the model is used to design the required experiments (step 7) which will be run (step 8) to
produce results, which will be analyzed (step 9) before being documented (step 10). On the
other hand, if the model is not valid (step 6), then the method iterates back to step 2 where data
can be re-reviewed and corrected before conducting the the stages of the method again.

1.9.3 Key research methodology stages

This work follows a methodology that interleaves the hypothetico-deductive model and the
discrete simulation study methodology. The key stages of the methodology that are conducted
in this research are illustrated in Fig.1.5. According to the conducted research methodology, the
literature that focuses on information propagation in the Bitcoin network is deeply reviewed in
order to support and prove the hypothesis which considers the network clustering concept as a
way to speed up information propagation. Also, the literature is analysed to figure out the main
influential entities that need to be modelled. After identifying and collecting parameters that
have a direct impact on a Bitcoin client behavior and information propagation in the real Bitcoin
network such as number of the reachable nodes, link latencies between peers, and the peer’s
session lengths, a core simulation model can be built for the purpose of experiments setup.
The collected data is attached to the developed model in order to simulate the reality. Before
conducting any experiments, the developed model must be validated against the real-world
system. This can be done by comparing the results that are produced from the developed
simulator to the real system results. Specifically, the validation of the simulation model is done
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based on measurements of the transaction propagation delay. Therefore, establishing the range
of propagation delays within the real Bitcoin network is conducted as a fundamental stage in
this methodology.

Fig. 1.5 depicts a conceptual model of key research methodology stages

Once the simulation model is validated, the experiments can be designed to test the hypoth-
esis. To ensure that the experiments’ output is not corrupted, an iterative incremental approach
will be considered where every single variable will be tested at each iteration. However, simu-
lations are conducted for a number of times to ensure reliable results. Finally, the produced
results will be evaluated in order to validate the hypothesis.

1.10 Thesis Outline

This thesis consists of six main chapters namely, introduction, literature review, proposed
clustering approaches, Bitcoin measurements and simulation model, performance and security
evaluation , and conclusion. The rest of the thesis is organized as follows:

Chapter 2 gives an overview of the key components Bitcoin. In addition, this chapter critically
analyses double spending attacks in the Bitcoin network and how blockchain forks offer a
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chance to perform this kind of attack. In addition, Chapter 2 also discusses information propa-
gation in the Bitcoin network and how propagation delay may result in inconsistency in the
public ledger. Furthermore, Chapter 2 critically reviews some existing methods and techniques
in relation to the acceleration of information propagation in the Bitcoin network as well as
overcoming double spending attacks. Moreover, existing methods and techniques with respect
to the mitigation of propagation delay in other peer-to-peer networks are highlighted in this
chapter.

Chapter 3 introduces four clustering approaches with the aim of speeding up information
propagation in the Bitcoin network. These approaches are based on improving the proximity of
connectivity in the Bitcoin network.

Chapter 4 introduces large-scale measurements of the most influential parameters of the
Bitcoin network. In addition, a novel methodology that measures the transaction propagation
delay in the Bitcoin network is introduced in this chapter. Furthermore, a simulation model of
the Bitcoin network is presented in this chapter.

Chapter 5 presents performance and security evaluations in relation to the proposed clus-
tering approaches. Performance evaluation is based on the transaction propagation delay, while
the security evaluation is based on the difficulty of performing partition attacks.

Chapter 6 describes the contributions of this thesis and how research questions are addressed.
Furthermore, future work is also highlighted towards further improvement in this research area.
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Literature Review

As discussed in Chapter 1, this thesis focuses on the evaluation of clustering as a mechanism
to improve the information propagation delay in the Bitcoin network without compromising
security. This chapter critically discusses some existing methods and techniques in relation
to the acceleration of information propagation in the Bitcoin network including minimize
verification, pipelining information propagation, and connectivity increase. This chapter also
discusses how the propagation delay problem was addressed in other peer-to-peer networks.
Furthermore, prior theories that focus on analysing and mitigating double spending attacks will
be highlighted in this chapter.

This chapter also includes the description of information propagation in the Bitcoin network
and how it affects the consistency of the blockchain. Furthermore, a background about different
components of Bitcoin will be given in this chapter.

2.1 Background

As it is mentioned earlier, Bitcoin is the name of currency that Bitcoin enables, one bitcoin
(BTC) has an equivalent value in British pounds, US dollar. Depending on the context, Bitcoin
is the name that is used as an indication for an abstracted protocol that has been introduced
by Satoshi Nakamoto (Nakamoto, 2008). In addition, Bitcoin also refers to a reference
implementation, known as bitcoind, which is the most common and used Bitcoin client that
is written as a proof of concept implementation. As shown in the Fig.2.1, Bitcoin consists of
several main components that support and handle the Bitcoin protocol. These components
include Bitcoin P2P network, Bitcoin protocol, Bitcoin user, transactions and blocks, consensus
blockchain, and miners who maintain the blockchain.

The role of users in Bitcoin includes sending and receiving payments throughout establish-
ing wallets that represent the Bitcoin client (Androulaki et al., 2013). By getting the Bitcoin



20 Literature Review

Fig. 2.1 Major components of the Bitcoin payment system

wallet installed (e.g. Bitcoin-Qt), a user becomes an actual participant in Bitcoin. On the other
hand, transactions and blocks help in achieving the Bitcoin protocol. Transactions transfer
coins between two destinations, whereas blocks contribute in building the ledger that considers
transactions’ chronological order (Heilman et al., 2015). This ledger stores the entire networks’
transactions history which reflects the available bitcoins in the Bitcoin system. Though, when a
user claims a bitcoin, this means that he has got a valid transaction with a balance that covers
the claimed amount confirmed in the blockchain. Furthermore, maintaining the blockchain is
a competitive task that is fulfilled by a group of nodes named as miners (Garay et al., 2015).
These miners normally get paid for doing this task. However, Bitcoin protocol is considered as
a secure environment in which all the aforementioned components interact and work with each
other to achieve the main goal of Bitcoin. For more clarification purpose, major components of
Bitcoin will be critically explained in the following sections.

2.1.1 The Bitcoin Network

The Bitcoin network is simply a peer-to-peer network by which Bitcoin users from around
the globe are able to interact with each other and exchange the currency, so this contributes in
making Bitcoin a global payment system (Ron & Shamir, 2013). By using the Bitcoin network,
the Bitcoin protocol is able to establish the global state of the Bitcoin system which is achieved
by propagating transactions and blocks through the network. In the following subsection, a
brief background in relation to peer-to-peer networks will be given before moving on to discuss



2.1 Background 21

the Bitcoin network structure, Bitcoin network discovery, and DNS seed node in the Bitcoin
network.

2.1.1.1 The Peer-to-peer Networks

The term peer-to-peer network (P2P) refers to a network of computers(nodes) that are configured
to allow each node to peer to other nodes. P2P networks are considered as a decentralized
environment which has no controlling authority or central server. Every node in the P2P
network can act as a server and a client at the same time, which means that every node can
send and receive information within the network. The early Internet in which nodes on the IP
network were equal, is considered as the best example of a P2P network architecture (Herley,
2008).

Basically, the P2P networks follow a dynamic reorganization of peer members where every
peer can join a P2P network at anytime or at the same time where old peers leave the network
(Schollmeier, 2001). Furthermore, peers can simultaneously download files and collaborate
by sharing the network resources (e.g. file sharing). Another feature of P2P networks is its
resistance against fault-tolerance when a resistant routing protocol is adopted. Specifically,
P2P networks can still work effectively even though a peer is disconnected or goes down. In
Bittorrent system, for instance, a file can be downloaded by clients which are classified as
servers (Qiu & Srikant, 2004). When a certain server does not respond to a message request
from a client, the client can contact other servers in the network and pick up parts of the file.
This is the opposite to a client-server model with respect to fault tolerance as all network
communications stop if the server goes down.

P2P networks are divided into two types, pure P2P network, and hybrid P2P networks
(Herley, 2008). In pure P2P networks, all peers are equal with respect to the assigned functions.
Peers can interact and collaborate with each other without any central point that acts as a
coordinator. While in the hybrid P2P networks, a central organizer must be applied to coordinate
the connections and interactions among peers, such as Napster network, and BitTorrent network.
Regarding fault tolerance, pure P2P networks have a higher level of fault tolerance compared
to hybrid network.

On the other hand, pure P2P networks consume more network resources, the main reason
why pure P2P networks is less scalable than the hybrid P2P networks. For instance, searching
for files or data item in file sharing systems which represents a pure P2P network, requires
exploring the whole network throughout flooding the network with request messages. Therefore,
every peer receives a request message should check the request against the locally known data
items and forward it to its neighbours. This results in an overhead as massive duplicated request
messages would be available at each peer. However, there is a completely different relay theory
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that has been followed in the Bitcoin network. Rather than searching for a specific file or data
items, Bitcoin network’s main target is to distribute information as fast as possible to reach
consensus on the blockchain (Tschorsch & Scheuermann, 2016).

2.1.1.2 Bitcoin network structure

Bitcoin network refers to a group of nodes that handle the Bitcoin protocol. As it is already
mentioned, Bitcoin is built on a decentralised structure which is considered as one of the key
features of Bitcoin. Though, there is no centralised server that the Bitcoin architecture relies on.
Instead, a distributed protocol has been maintained to support the system (Donet et al., 2014).

Fig. 2.2 Bitcoin network

In this network, as shown in Fig.2.2, each peer runs the Bitcoin protocol and connects with
other peers over a TCP channel (Biryukov et al., 2014). As the Bitcoin network topology is
not proximity defined, connecting to other peers is maintained randomly. In addition, every
node should maintain a maximum of 8 outgoing connections to peers and accepts up to 117
connections (Heilman et al., 2015). Nodes can join and leave the network at any time they want.
When a node re-joins, it asks other nodes for new blocks to be able to complete its local copy of
the blockchain (Kondor et al., 2014). For the purpose of making denial of service impractical,
just the valid information (transactions and blocks) are propagated, whereas invalid transactions
and blocks are discarded. Bitcoin network nodes are classified into two groups, servers which
can accept incoming connections and those which can not (clients), because they are behind
NAT or firewall (Feld et al., 2014).
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Fig. 2.3 A Bitcoin network node with all four functions: Wallet, Miner, full Block- chain
database, and Network routing

As shown in Fig.2.3, the Bitcoin nodes take different roles in the network based on the
functionality that those nodes support such as wallet services, routing, etc. As Bitcoin relies
on distributed validation, an essential role in which transactions are validated in a distributed
manner, is covered by all nodes in the network (Heilman et al., 2015). In order to participate in
the Bitcoin network, all nodes have to do the routing function. This function includes validate
and propagate transactions, and maintaining connections to other nodes. Nodes that maintain a
full up-to-date copy of the public ledger(blockchain) are known as full nodes (Antonopoulos,
2014). Those nodes are able to verify any transaction without requiring an external reference.
Whereas, SPV nodes that maintain only part rather than the full version of blockchain, can
verify transactions using a method named Simplified Payment Verification (SPV). SPV is
simply a protocol that follows a light transaction verification process for transactions which is
sent from a user (Kiayias et al., 2016). SPV is vulnerable to some classes of attacks, such as
the sybil attack and the double spending attack (Okupski, 2014).

Nodes that attempt to solve the proof of work problem by running specialized equipment,
are known as mining nodes. Full nodes can be classified as mining nodes as they maintain a
full version of the blockchain, whereas SPV nodes need to participate in a mining pool in order
to work as a miner. The mining pool consists of a set of miners that agreed to divide the mining
reward of blocks that found by a miner in the pool. Mining pool relies on a server pool that acts
as a full node (Schrijvers et al., 2016). Although a full node is represented by a user wallet who
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use the desktop Bitcoin client(desktop wallet), many users wallet nowadays are considered as
SPV nodes which suite the resource-constrained devices such as smart phones.

2.1.1.3 Bitcoin network discovery

When a node N joins the Bitcoin network for first time, a discovery mechanism that does not
consider any proximity criteria, is adopted to find other nodes in the network. As a first step, at
least one existing Bitcoin node needs to be discovered by the node N in order to discover more
nodes (Antonopoulos, 2014). After that, more connections will be established between the node
N and the nodes that are discovered. Establishing connections to other nodes is done without
taking into account any proximity priority as the Bitcoin network topology is not proximity
defined (Decker & Wattenhofer, 2013) (Stathakopoulou et al., 2015).

Fig. 2.4 Initial Handshake mechanism between Nodes A and B

To establish a TCP connection, as shown in Fig.2.4, a handshake with a known peer is
handled by sending a version message which contains basic identifying information. These
information include:
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-Protocol-version which is a constant number that refers to the Bitcoin protocol such as
70002.

-nTime: refers to the current time.
-ddrYou: indicates the IP address that belongs to the remote node.
-addrMe: indicates the IP address that belongs to the local node.
-BestHeight: points out the current block height of the node’s blockchain.
-subver: The type of software that is running in this node is indicated by this field such as

/Satoshi:0.9.2.1/ .
A peer responds back to the version message by sending a verack message. Each peer holds

a list of IPs of peers that are connected to it. To stop peers misbehaving, each node handles
a penalty score mechanism for each node connected to it. The score is increased when an
unreliable behavior is announced. When the score reaches 100, the misbehaving IP is banned
by the node that handles the penalty score. Furthermore, a transactions pool is maintained by
each node which includes transactions that wait to be verified and relayed to the neighboring
nodes (Biryukov et al., 2014).

On the question of how a new node discovers the first node in the network, there are some
stable nodes that behave as seed nodes listed in the Bitcoin client that could suggest to the new
node some other nodes in the network (Heilman et al., 2015). Specifically, bootstrapping that
needs to be handled by the new node, requires at least one IP address of a Bitcoin network node
which is known as DNS seed node. After maintaining a connection to the seed node, further
introductions to other nodes will be handled. Then, more connections to other nodes will be
established and the new node will disconnect from the seed node. However, connecting to
other nodes would help the new joining node in discovering more nodes. This can be done
through sending an Addr message which includes the IP address of the sender node. Precisely,
the newly connected node can advertise its own IP to other nodes by sending an Addr message
to its neighbours. This helps the new node to be found by other nodes. On the other hand,
the new node can get to know other nodes by sending a Getaddr message to its neighbours.
As illustrated in Fig.2.5, neighbours respond to the Getaddr message by sending a list of IP
addresses of other nodes in the network (Antonopoulos, 2014).

However, Addr message is continuously initialized by a node that sends its IP address to
each node of its connected nodes (Heilman et al., 2015). In addition, Addr message is also sent
when a node receives an Add message with no more than 10 addresses. In this case, the node
forwards this Add message to two peers of its connections. These peers are selected by taking
the hash of each connected peer’s IP as well as a nonce that associated with the day. Based on
the lexicographical order of hash values, the node selects peers that have the first and second
hash values. To stop propagating Addr message at a certain point, each node maintains a list



26 Literature Review

Fig. 2.5 Dissemination of Addr message between two peers

of known IPs that have been sent to or learnt from each peer of its connected peers, so no IP
address is sent from the known list. In addition, flushing on a daily bases is done in the known
IPs list.

Even though each node establishes connections to other nodes, the node should continue
discovering more nodes and advertise its existence to the newly joined nodes (Biryukov et al.,
2014). This is due to unreliable paths as nodes come and go in the network in a random way.
Therefore, a node that connects to other nodes does not guarantee that these connections will not
be lost. However, discovering other nodes continues to operate with the aim of offering diverse
paths into the Bitcoin network. When a node reboots, it can re-join the network without needing
to bootstrap the network again as the node can still remember most recent successful nodes
connections, so the node tries to reestablish connections to those nodes by sending connection
requests. While there are no responses for these requests, the node starts bootstrapping the
network again. In terms of a connection has no traffic goes through for more than 90 minutes,
the connection will be dropped off (Antonopoulos, 2014).
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2.1.1.4 DNS seed nodes in the Bitcoin network

As it is mentioned earlier, A Bitcoin DNS seeder is a server that assists nodes to discover
active peers in the Bitcoin network. Therefore, the DNS seeder responds to the DNS query by
initiating a message that contains a list of IPs. The maximum number of IPs that can be attached
to the message is limited by constraints on DNS, around 4000 messages can be returned by a
single DNS query (Heilman et al., 2015). In the Bitcoin network, there are six DNS seeds that
periodically crawl the entire network in order to obtain active IP addresses. However, there
are two scenarios where DNS seeders are queried by other nodes. The first scenario happens
when a node that joins the network for the first time, and tries to connect to the active IPs.
While in the second scenario, the DNS seeder is queried by a node that restarts and attempts to
reconnect to new peers. In this case, the DNS query is initialized after 11 seconds since the
node attempted to reconnect and has less than two outgoing connections (Heilman et al., 2015).
However, DNS service can be considered as a form of centralization in the Bitcoin network.

2.1.2 Bitcoin protocol

As it is mentioned earlier, the Bitcoin’s goal is to achieve a peer-to-peer electronic payment
system that cut out the role of the third party, which means a fully secure payment between two
parties can be done without a mediator between those parties (Moore & Christin, 2013). Due
to a problem, known as Byzantine Generals problem, achieving payments in Bitcoin without a
security issue is far from trivial (Buchman, 2016). Basically, the Byzantine Generals problem
focuses on the scenario of how two remote entities in a network could send messages between
each other while also knowing that those messages are authentic and not manipulated in some
way against rules (Lamport et al., 1982) (Hsieh & Chiang, 2014). In other words, in the sense
of large networks how it is guaranteed that everyone in that network is working towards the
right goal. Reflecting the Byzantine Generals problem on P2P cash systems, users of these
systems can easily double spend transactions, or attempt to deny service from another user or a
type of transaction. To this extent, the Bitcoin protocol is proposed in Bitcoin to overcome the
Byzantine Generals problem by using a very complex transaction verification process along
with digital signatures(Pease et al., 1980). The Bitcoin protocol also uses an ongoing ledger that
is a hash based proof-of-works ledger which can not be changed without re-doing that works.
In other words, the Bitcoin protocol is based on a distributed public ledger which records all
bitcoins in the network. Each entry in this record is considered as a transaction by which the
virtual currency is transferred. In order to have a complete overview over the main aspects of
the Bitcoin protocol, several components of Bitcoin that have a direct impact on the Bitcoin
protocol will be described in details in the following subsections.
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2.1.2.1 Transactions

Transactions are considered as one of the main entities that the Bitcoin protocol relies on.
For bitcoins value to be transferred from one or more source to one or many destinations,
transactions take the responsibility of achieving this goal. Specifically, transactions are created
by a Bitcoin user who intends to send a specific amount of bitcoins to one or more destination
accounts (Decker, 2016). A distention account can spend the transferred bitcoins by giving
an authorization to another user, and so on. Each transaction includes input which represents
debit against a Bitcoin account, and output which represents credit added to a Bitcoin account
(Antonopoulos, 2014). To combine or split bitcoins, as shown in Fig.2.6, a Bitcoin transaction
can handle multiple inputs and outputs. Outputs represent the transferred bitcoins whereas
inputs reference funds from other previous transactions. The sum of all outputs should be
equal to the sum of all inputs. In some cases the amount of bitcoin in the output might be
less than the amount of bitcoin in the input as there is a bitcoin fee which is dedicated from
the output as a reward for a miner who confirmed the transaction in the public ledger. The
new owner of the transferred bitcoins is determined by a transaction output which creates a
new output/outputs when it is referenced as an input in a future transaction. Valid transactions
should be signed with a private key which is associated with a spending account. This signature
is an Elliptic Curve Digital Signature Algorithm (ECDSA) which is a digital signature scheme
based on public key cryptosystem ECC that is considered as a proof of ownership which can be
independently verified by other users (Wang, 2014). The balance of an account is the sum of all
unspent outputs of the account which can be tracked by the public ledger. A transaction output
consists of a numerical value of bitcoin as well as a condition to spend that output which known
as “encumbrance”. Outputs are fundamental information that manage the bitcoin spending in
such a way that prevents any accounts clashes or double spend the same amount (Biryukov
et al., 2014). Precisely, only previously unspent outputs can be considered in the input of a
follow-up transaction. As unspent outputs are tracked in the ledger, outputs are verified against
the public ledger which needs to be consistent.

Each transaction is known by a hash of its serialised representation. For a transaction to be
valid, several criteria have to be fulfilled. Firstly, an output is spent only once. Secondly, the
sum of the newly allocated outputs should be less or equal to the sum of the claimed outputs
(Heilman et al., 2015).

2.1.2.2 Blocks

An agreement has to be achieved among nodes in the Bitcoin network regarding a common
order over transactions with the aim of keeping the ledger replicas consistent. In distributed
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Fig. 2.6 Bitcoin transaction

systems, reaching a consensus on a common order of transactions is not trivial. Therefore, valid
transactions should be committed and synchronized by broadcasting a block that forms part of
the ledger, in order to keep the chronological order of the valid transactions across nodes (Ober
et al., 2013).

Once a node commits a set of transactions Tk, Tk is included in a block k which is created
by the same node. Then, the block k is disseminated to the entire nodes in the network. On
receiving the block k by each node, it checks the validity of the block k in order to add it to the
blockchain. In addition, nodes verify all transactions inside the block k. This includes checking
if the node that created the block k sent himself the correct reward (currently 25 BTC). In
case of the block k passed through the validity checks at a particular node, the node rolls back
the tentatively committed transactions since the last block and consider applying transactions
from the received block k. In this sense, an agreement among all nodes on the validity of
all transactions that are included in the block k is achieved. In other words, transactions that
were committed and included in a block are considered to be confirmed and not possible to be
re-applied (Decker, 2016). On the other hand, transactions that conflict with other transactions
which are included in a block are discarded as they are deemed to be invalid (Koshy et al.,
2014).

The view of the changes achieved by the block creator that implies acknowledging a group
of transactions in the block, can be effectively reflected and imposed since the previous block.
However, these changes are limited and transactions cannot be forged by the block creator
unless the underlying public/private key cryptosystem is not secure (Tschorsch & Scheuermann,
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2016). The block creator can only be able to control the arrived transactions’ order and which
transactions should be included in its block. In order to determine which node may impose its
view and acknowledge a group of transactions in a block, nodes spend a computational effort
attempting to find a solution to a proof-of-work (Natoli & Gramoli, 2016). The solution is based
on achieving a byte string of meaningless data, called nonce, which is combined with the block
header. This combination results in SHA-256 hash of the block that have a certain number
of leading zero-bits, or target (Barber et al., 2012). Target is a 256-bit number (extremely
large) that all Bitcoin clients share. As hashes are one-way functions, finding the right nonce is
not trivial. Calculating the block hash for all possible nonces is considered the only possible
way to get a good nonce. However, finding out the input of the solution is a difficult task to
achieve. On the other hand, verifying the solution is a straightforward task to fulfill. Based on
the nonce that is part of the block, nodes that receive the solution can easily check whether or
not the block creator solved the proof-of-work. In order to identify the target, consensus by all
nodes should be achieved which allows an average of one result every 10 minutes in the entire
network. Furthermore, the target is adjusted every 2016 blocks, approximately every 14 days
(Conti et al., 2017). The block is accepted by the network if the hash of a block’s header is
lower than or equal to the current target. A lower target, a more difficult to generate a block.

As an incentive, a reward in a form of newly minted bitcoins is given for a node that finds a
solution for the proof of work problem, known as a miner (Babaioff et al., 2012) (Sompolinsky
& Zohar, 2013). This reward can be assigned by including a transaction, which has no inputs
but may specify outputs for a predetermined number of bitcoins, into a block. The rewarding
transaction is considered valid when it is included in a block as well as the sum of outputs is
smaller or equal to the sum of the transaction’s input.

2.1.2.3 Blockchain & Blockchain forks

Creating blocks that contain transactions does not guide Bitcoin towards achieving a general
consensus, unless these blocks are chained together, creating a chronological order over blocks
and transactions (Decker, 2016). To this purpose, all valid transactions are grouped into blocks
forming a directed tree. Apart from first block, which is known as genesis block, as it is
illustrated in Fig.2.7, every block in this tree is linked with previous blocks by including a
unique hash of the previous block in its header. In this case, the previous block B that is
referenced by a block K, is classified as the parent of the block K. The root of the tree is the
genesis block which is considered as an ancestor of all blocks. The longest path from the
genesis block to any block in the tree is defined as blockchain (Decker & Wattenhofer, 2013).
The height of a block in the blockchain is defined as the distance between the block and genesis
block. The blockchain head refers to the block that is furthest away from the genesis block. In
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addition, a summary of all transactions in a block is maintained and included in the blockchain.
This summary is attached to every block in the blockchain in a form of a binary hash tree,
known as Merkle tree (Karame et al., 2015) (Conti et al., 2017).

Fig. 2.7 Bitcoin Blockchain

Including the hash of the previous block in the block header ensures that the parent block
has to be found before the child block. As a result, the chronological order of transactions is
fulfilled, transactions in a higher block height have been found and verified after transactions
that are included in a lower block height. However, this chaining supports the security of Bitcoin
as linking each block to the previous block guarantees that every change in the parent block
requires changes in the child block (Rosenfeld, 2014). Specifically, when any modification
needs to be taken place in the parent block, the parent’s hash changes. As the parent’s hash is
included in the child’s block header, a change in the child’s hash is required which, on the other
hand, requires a change in the grandchild’s hash and so on. This ensures that updating a block
requires forcing a recalculation of all blocks following it. Consequently, massive computation
effort is required for such a recalculation especially when a block has many subsequent blocks
as it is computationally difficult. Therefore, blockchain is resistant to modifications from the
most resourceful attackers (Miers et al., 2013). However, finding a block that can appear in
the blockchain guarantees a reward with a new minted bitcoin. This encourages miners to
find a block that can build on the current blockchain header due to the fact that building on
an earlier block requires creating a longer branch than the current longest branch (Okupski,
2014). A branch is a path in the blockchain which starts from a leaf block to the genesis block
(Androulaki et al., 2013).
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However, the wide adoption of Bitcoin causes an enormous increase in the number of
transactions which, on the other hand, imposes a constant growing in the size of the blockchain
(Croman et al., 2016). This results in a non-negligible size of both blockchain and blocks.
Nowadays, tens of gigabytes is the approximate size of blockchain. As a consequences, the
transactions validation process requires more effort.

Due to the information validation process (transactions/blocks) that is fulfilled in a dis-
tributed way, blockchain f orks might occur. The delay overhead in information propagation is
considered as the main causes factor of blockchain forks (Decker & Wattenhofer, 2013).

Since a block can only have one parent block, it might have multiple children reference the
same parent as a previous block (Antonopoulos, 2014). This scenario, known as blockchain
forks, can happen when two different blocks have been found simultaneously at the same time
by miners (Sompolinsky & Zohar, 2013). In this case, the blockchain becomes inconsistent due
to the argument between nodes on which block is the current blockhead. Specifically, suppose
A and B are two blocks represent the blockchain head. A conflict will be raised due to the fact
that both A and B include a reward transaction. This conflict indicates that the blockchain is no
longer consistent.

On receiving a new block b by a node N whose blockchain head a at height t, the node N,
adds b to the blockchain and considers it as a new blockchain head with height t

′
>t. The new

block b will be either merged with the same branch as a or with another branch. Specifically,
an action has to be done by the node N while a new blockchain head b is found. This action is
based on whether or not the block b is on the same branch as the block a. Precisely, when the
block a is not an ancestor of the new blockchain head b which means that the block b is in a
different branch, the length of the branch matters. If the block b is on a branch which is longer
than the branch of a, it becomes the new blockchain head. Though, a common ancestor will be
shared by both blocks. This helps the node N in updating its blockchain head through reverting
all changes down till the common ancestor and changes will be applied on the branch of b. In
case of both blocks are on the same branch, all the intermediate blocks in the branch will be
retrieved and updated incrementally (Rosenfeld, 2014).

A Blockchain fork can be worse when every partition of the network has its own blockchain
head which results in new blocks that are built based on partitions’ respective blockchain heads.
Eventually, forks should be resolved and only the block that is built on the longest branch
will win, whereas, the rest of blocks, known as orphan blocks, will be discarded (Karame
et al., 2015). All partitions should switch to the longest branch in terms of not adopting
it. Furthermore, building blocks is continued on the longest ’locally’ known fork that owns
the highest computational power. A fork becomes the longest fork if its miners broadcast
validations before others. This ensures that the fork ’overtakes’ the current longest fork.
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Fig. 2.8 Double spending (race attack)

Consider the example in Fig.2.8 in which Alice tries to double spend the same coins with
Bob and Rich. At the same time, Alice has submitted a valid transaction to subset miners
twice. Therefore, the same transaction appears in two different forks in the blockchain. The
winner transaction is the Alice’s transaction to Bob which appears in the longest fork. While
the Alice’s transaction to Rich is nullified as it tries to double spend the same coin. Rich will
be informed that the received transaction is no longer valid once the fork is resolved.

Nevertheless, double spending attacks still have a potential with the presence of blockchain
forks (Karame et al., 2015) (Rosenfeld, 2014). Suppose that Alice buys a product from Rich,
Alice might be able to secretly mine a branch which includes, the transaction that returns
the payment to himself, while disseminating the Rich’s transaction. Alice will not broadcast
this branch until the Rich’s transaction gets confirmed. In this scenario, Rich is going to be
confident about the transaction and then he will consider delivering products. Furthermore,
Alice has to be sure that the secret branch is longer than the public branch, so if necessary,
continue extending the secret branch. Finally, Alice broadcasts the secret branch when he
confirms that the secret branch is longer than the public one. By doing this, Rich’s transaction
is no longer valid. Typically, this is computationally expensive, requiring an attacker to control
50% of the computing available in the network. The kind of attack known as double spending
attacks with N-confirmation (Rosenfeld, 2014).

On the other hand, double spending attacks can easily happen within another scenario,
known as double spending attacks with 0-confirmations (Karame et al., 2012) (Bamert et al.,
2013). In this attack, blockchain accidental forks do not play any role, as the blockchain is not
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checked at all. In particular, 0-confirmation attacks mostly happen in fast payments when a
vendor accepts Bitcoin transactions and delivers products without waiting for the transactions’
confirmations. Specifically, double spending attacks take place when two transactions (TK and
TR) are created by an attacker. These transactions have the same input (same source of Bitcoin)
and different outputs (different recipients, suppose we have two transactions, TK will go to
the majority of peers and TR will go to the vendor). A double spending attack is considered
to be successful when the majority of peers accept TK while the vendor accepts just TR. This
means TK is confirmed before TR. The acceptability of TK by subsequent blocks as an original
transaction would prevent the vendor redeeming the TR because it is considered as an invalid
transaction as it is trying to spend money which has already been spent.

2.1.2.4 Miners

Mining is a novel mechanism in Bitcoin by which the general consensus regarding the set of
committed transactions is achieved. In this mechanism, some nodes known as miners try to
solve proofs of work through finding inputs to hashes that yield digests with many leading
zeros (Eyal & Sirer, 2014). A solution for proofs of work can only be achieved through brute
force. The time that is taken by miners to solve the proofs of work is based on the difficulty of
the puzzle (target), 10 minutes on average (Conti et al., 2017). Finding a solution for the proof
of work problem means that the hash of previous puzzle as well as a group of transactions are
included in a block which will be propagated to the rest of the Bitcoin network. Honest miners
accept the block and start working to append it.

However, miners main tasks are described as follows. Firstly, miners collect pending
transactions in order to form blocks, instead of verifying individual transactions. Secondly,
miners validate a block by calculating the hash of the block through trying several nonce
values until getting a hash value that is equal to or lower than the given target. As the target
is readjusted after every 2,016 blocks, the author in (Kraft, 2016) proposed an equation to
calculate the target value of the Bitcoin system. This equation can be written as:

T = Tprev ∗
Tactual

2016∗10min
(2.1)

Where Tprev is the old target value, and Tactual is the time period the the Bitcoin network
took to generate the last 2,016 blocks.

The third task of miners is to propagate blocks along with the calculated hash to the rest
of miners and append it to its blockchain. Other miners validate the received blocks through
verifying the calculated hash value against the target value. Those miners add the received
block to their blockchain if it passes the verification process. Once a block is successfully
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added to the blockchain, the miner who solved the poof of work problem before others wins a
reward. Therefore, miners in Bitcoin system are racing with each other to win the reward, a
more computational power a miner maintains, a more chances to win the race (Croman et al.,
2016).

A reward that is given for miners who solve the proof of works problem is represented in
two forms. A small fee of a transaction committed in a block is considered as one of the reward
forms which is calculated as the difference between the input and output of the transaction.
While the other form of the reward is a set of newly generated coins. To claim the reward by a
miner, a special transaction that has no input, known as coinbase, is included (Tschorsch &
Scheuermann, 2016). However, some miners choose to collaborate with each other in order
to produce a combined CPU power that increases the chances of being able to extend the
blockchain. This collaboration is translated through establishing ‘mining pool’ where miners
work together and each of them is rewarded a part of the received reward. On the other hand,
mining pools is critical in a case where majority of miners join one pool as this pool might
be able to achieve the majority of the mining power that could possibly control the network
through preventing the rest of the network from participating in maintaining the blockchain.

2.2 The role of broadcast in the Bitcoin network

As it is mentioned earlier, Bitcoin follows a distributed trust mechanism which relies on
a distributed validation and tracking of transactions. Based on this mechanism, a Bitcoin
transaction has to be broadcasted to all nodes within the network to reach a consensus about
which transactions are valid. The consensus is recorded in a publicly distributed ledger
which is shared by the entire network (Spagnuolo et al., 2014). As the distributed validation
that is achieved by the Bitcoin protocol is based on a replicated ledger which is collectively
implemented by a network of volunteers, achieving a consistent sequential log of transactions
through updating and synchronizing the ledger replicas is considered as the main goal of the
Bitcoin protocol. For this purpose, two main types of information need to be propagated in the
network: transactions and blocks.

Information(transactions/blocks) validation process in the Bitcoin network is achieved
through a gossip-like protocol to broadcast information throughout the network (Bamert et al.,
2013). Transactions are disseminated through the network using a protocol, which includes
propagating two types of messages, an INV message and a GETDATA message (Decker &
Wattenhofer, 2013). In order to avoid sending a transaction to a node that already receives it
from other nodes, the transaction is not forwarded immediately. Instead, as shown in Fig.2.9,
the transaction availability is announced first to nodes once the transaction has been verified.
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When a node receives a transaction from one of its neighbours, it sends an INV message
containing the hash of the transaction to all of its peers. On receiving an INV message, a node
checks whether the transaction has been received before. If it has not been seen before, the
node will request the transaction by sending a GETDATA message. Responding to the received
GETDATA message, a node sends the transaction’s data. Valid received transactions will be
collected and included in a block by a node that generates the block. A block availability
will be announced to other nodes, as explained in Fig.2.9, following the same mechanism of
transactions availability announcement (Decker, 2016).

Fig. 2.9 Information propagation mechanism between Nodes A and B

An INV message is not propagated to all of the connected peers at the same time, instead,
every 100ms, an INV message is sent to a random selected peer of all connected peers (Miller
& Jansen, 2015). This means the number of connected nodes has a direct impact on the time
that is required for forwarding the INV message.

In order to establish a quick agreement on valid transactions, transactions need to be
submitted for timely inclusion in the directed transaction graph. Alas, when a delay in the
agreement is experienced or transactions have prevented from entering the directed transaction
graph, attackers has an opportunity to ban users from services. However, an attacker might be
able to revert an agreed-upon graph which, on other hand, cause an attacker being able to steal
funds by double spending (Karame et al., 2015). This issue will be discussed in the following
section.
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2.3 Information propagation delay

Based on the aforementioned scenario of information dissemination in the Bitcoin network,
nodes synchronize their replica of the public ledger and form the entire consensus of the Bitcoin
network. However, reaching a consistent state in the network is mainly based on how quickly
information(transactions/blocks) is spread throughout the network. As the agreement between
nodes regarding a common transactions history is affected by the delay in the distribution of a
verified information(transaction/block), speeding up information propagation can contribute in
tackling the risks of an inconsistency state in the Bitcoin network (Decker, 2016). On the other
hand, if a peer in the Bitcoin network is able to disseminate a data item quicker than other peers
in the network, the peer could gain disappropriate profit through applying a scenario of double
spending attacks (Conti et al., 2017).

As the Bitcoin network topology is not proximity defined, connecting to other peers is
maintained randomly without considering any proximity criteria. In other words, long-distance
links are not taken into consideration when the Bitcoin physical network topology is built.
This increases non-compulsory hops that the information passes through. In addition, as it
is mentioned in (Decker & Wattenhofer, 2013), the sheer distance between the origin of a
transaction or block and other nodes is deemed as the most significant problem in the Bitcoin
network. As a result, transaction verification process is slower (Stathakopoulou et al., 2015).
Hence, the potential of double spending attacks, that are more difficult to discover in slow
network, increases due to the conflict between nodes regarding the transactions history.

Turning now to clarify how the information propagation delay imposes Bitcoin being
vulnerable to some classes of attack. Centralized digital currencies requires a central authority to
be in place with the aim of preventing double spending attacks to be taken place (Ahamad et al.,
2013). In contrast, Bitcoin relies on protocol rules which play a key role in avoiding double
spending attacks. These rules state that only previously unspent transaction outputs might be
considered in the input of a follow-up transaction (Nakamoto, 2008). As unspent transaction
output is verified against the common transactions history, public ledger has to be consistent.
Due to a situation where not all nodes agree on the same blockchain header, inconsistency
in the blockchain are unavoidable and spending the same bitcoin twice has a potential. The
main cause of this situation is the delay overhead in the transaction verification process where
all transactions must be verified by all nodes in Bitcoin to achieve an agreement regarding a
common transactions history. Therefore, validating a transaction against an unsynchronised
public ledger would reduce the chances of getting a high probability agreement over the Bitcoin
network nodes. This results in a conflict regarding the validity of a particular transaction
which may facilitate rewriting the transaction history by an attacker. Specifically, uncertainty
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regarding the validity of a given transaction reduces the chance of achieving agreement of all
nodes on the same blockchain header which, on the other hand, would cause blockchain forks.

As is mentioned earlier, forks are created when two blocks are possible to be created simul-
taneously, each one as a possible addition to the same sub-chain. According to (Bitcoin Wiki,
2008) (Sompolinsky & Zohar, 2013), as it is illustrated in Fig.2.10, a transaction can appear in
two different branches of the blockchain. Though, as discussed in (Karame et al., 2015), in the
special case where Bitcoin is subject to blockchain forks, attackers might be able to impose their
own transactions history, possibly to reverse transactions they sent so as to successfully perform
double spending attacks (Rosenfeld, 2014). Specifically, attackers can secretly mine a branch
which includes, the transaction that returns the payment to themselves, while disseminating
the merchant’s transaction. However, blockchain forks are caused by the delay overhead of
information propagation, a fact that has been mentioned in (Decker & Wattenhofer, 2013).

Fig. 2.10 The transaction A appears in two branches A and B

Consider the example in Fig.2.11 where Alice attempts to double spend 10 bitcoins to both
Bob and Charlie. Alice creates two identical transactions with the same amount of bitcoins
and propagates them in the network at the same time. Those transactions confuse the network
nodes and a Bitcoin fork might appear when those transactions are distributed in the network
inappropriately due to the propagation delay of transactions and /or blocks. As its shown in
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Fig.2.11, both of Alices’ transactions are accepted by a different group of nodes which confirms
the disagreement between those groups about which transaction is valid. Therefore, speeding
up information propagation in the Bitcoin network would give a better distribution of these
information which reduces the possibility of the blockchain fork occurrence.

Fig. 2.11 Disagreement between the Bitcoin network nodes about which transaction is valid

Miller & Jansen (2015) research has shown that the number of nodes in the Bitcoin network
and the structure of the overlay network have a great impact on the transaction propagation
time. Their results showed that the overlay topology of the Bitcoin network, which is not
geographically localised, offers inefficient transaction propagation time.

Based on the aforementioned issues which indicate the importance of speeding up the infor-
mation dissemination, the ability to speed up information propagation in the Bitcoin network
is considered as the main challenge that must be faced in Bitcoin. Therefore, accelerating
information dissemination is considered as the main intended impact of this work which would
contribute to the direction of tackling the problem of the agreement on a common transaction
history among nodes in the Bitcoin network.

However, more recent attention in the Bitcoin field has focused on the problem of the delay
overhead in information propagation which is linked to the problem of reaching a consensus in
the Bitcoin network. The first attempt to overcome the information propagation delay in Bitcoin
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network was proposed in (Decker & Wattenhofer, 2015) which suggested an offline payment
known as a micropayment. This payment that consists of a separated type of transactions,
passes through special micropayment channels (Rosenberg, 2010). Though, transactions are
propagated outside the Bitcoin network, in a network of payments provider. However, this
solution does not handle the decentralized concept of Bitcoin. In the following section, related
work in speeding up information propagation in the Bitcoin network as well as other peer to
peer networks, and in modelling approaches to avoid double spending attacks will be critically
reviewed.

2.4 Related Work

In this section, prior theories and approaches that impose some changes in the Bitcoin network
with respect to nodes’ behaviour with the aim of applying some modifications in the information
propagation protocol, and overlay Bitcoin network topology, will be critically discussed. The
main objective of these theories and approaches was to overcome information propagation
overhead which, on the other hand, assist in mitigating double spending attacks throughout
reaching to a consistent transactions log. In addition, previous theories that are proposed with
the aim of mitigating the information propagation delay in other classes of peer-to-peer network
will be critically discussed. Moreover, existing methods to tackle double spending attacks in
the Bitcoin network will be highlighted in this section.

2.4.1 Minimize verification

There have been several investigations that aim to reduce the information propagation time
throughout minimizing the time of information(transactions/blocks) verification. As it is
mentioned earlier, when a node receives a transaction/block, it verifies whether it is valid or
not. If the transaction/block is valid, the node forwards it to its neighbours. In contrast, invalid
transactions/blocks are discarded. The idea of reducing the information verification time, in
particular, block verification time has been adopted in (Decker & Wattenhofer, 2013) as a way
to speed up information propagation. Basically, the verification process is divided into two
parts:

1. Initial difficulty check
2. A transaction validation
The first part involves comparing the block header that includes the proof of work hash

against the current difficulty target. In addition, this part includes validating the received block
against the recent block in order to make sure that the received block is not a duplicated block
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as well as being referenced by the recent block which is considered as its predecessor. This
guarantees the received block has not been submitted before.

In order to minimize the block verification time, the minimize verification protocol that has
been proposed in (Decker & Wattenhofer, 2013) has stated some changes in the Bitcoin nodes’
behaviour that make every node fulfills only the first part of the block verification process.
Specifically, when a node receives a block, it checks the proof of work difficulty and forwards
the block to its neighbours, rather than suspends the relay until the validation of all transactions
in the block is completed. This would minimize the block propagation delay in the Bitcoin
network.

However, the change in the nodes’ behaviour mentioned above is more likely to have a
security risk on Bitcoin as discarding transactions validation would give a great chance to an
attacker to flood the network with invalid transactions which, on the other hand, results in a
distributed denial of service attack. In addition, the change of nodes’ behavior does not take
into account the transaction propagation delay which means that transactions would still pass
through the original information broadcasting scenario. As a result, the change does not have a
large impact on the overall information propagation delay.

As is mentioned earlier, blockchain plays an important role in information validation where
transactions/blocks are validated against the blockchain. Though, the size of the blockchain
matters in the process of mitigating the delay of information propagation. In this regards, some
research focus on scaling up the blockchain as a way to reduce the information verification
time. In this context, Back et al. (2014) proposed in their white paper a new technology,
known as sidechain, which overcomes the limitations of the size of the blockchain via creating
independent pegged sidechains. The sidechain allows secure transferability for bitcoins or
different assets between multiple blockchains. As shown in Fig.2.12, SPV proof states that
a user who is willing to use his coin in other chains, has to prove that his coin has been
successfully locked in its own chain, and send this proof to other chains to express to users on
those chains that the coin is valid.

Sidechain with the SPV proof seems to have more adoption than other scaling up technolo-
gies due to the convenient transfer of the coins between chains. This implies that a user with
the sidechain technology does not need to make coins or assets compatible when dealing with
a different chains. However, the major flaw that could affect the adoption of the sidechain is
that a user has to wait for approximately two days in order to confirm that the coin or asset is
locked into a valid transaction. So it offers inconvenient time compared to other technologies.
Furthermore, the sidechain approach does not give any type of security for the sidechains. In
other words, these chains do not have a huge hash rate, so it is quite easy to abuse those chains
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Fig. 2.12 Sidechains with SPV proof (Back et al., 2014)

by applying 51% attack where an attacker is being able to generate the longest chain in the
long run (Bastiaan, 2015).

In the same direction, another theory has been proposed in (Pazmiño & da Silva Rodrigues,
2015) which focuses on the blockchain as a main factor of reducing the transaction verification
time. As transactions are validated against the blockchain that currently contains a history of
all transactions and it still grows in the size with each new transaction, it has been claimed that
reducing transactions history at each node plays an important role towards achieving an optimal
transaction verification time (Pazmiño & da Silva Rodrigues, 2015). Precisely, Pazmiño &
Rodrigues have proposed a new algorithm, known as BASELINE, in which the blockchain is
divided at each node in the Bitcoin network into several parts n. These parts are distributed at
each node on several local computers. As all parts represent the same user, public/private keys
are same for all parts. On the other hand, each part has a different portion of the public ledger.
Their evaluation experiment has shown that the verification time could be enhanced by 71.42%
if the blockchain is divided at a given node on five computers. This means that an improvement
in the information propagation delay could be achieved when a number of division at each
node is greater. However, the proposed BASELINE algorithm is less likely to be adopted as a
realistic solution for the propagation delay problem due to the expensive requirements where
every node in the network should maintain several local computers.

In the same context where researchers focused on speeding up information propagation
in conjunction with minimizing the blockchain size, Sompolinsky & Zohar (2013) proposed
a new approach that improves the scalability of the blockchain by performing more security
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for off-chain blocks through miners. More precisely, miners would have the responsibility of
keeping track and protecting the soft forks that are linked to the main blockchain. In principle,
this approach considers miners as a trusted third party and gives them more control over the
Bitcoin network. Therefore, this approach stands against the decentralisation concept of Bitcoin,
resulting in minimizing the security awareness. Furthermore, these soft forks are subject to
51% attack as these forks maintain less hash rate.

On the other hand, the Blinkchain approach is introduced in (Basescu et al.) that focuses
on minimising the transaction verification time with the aim of deceasing the consensus
latency. The Blinkchain approach is based on splitting the blockchain into localised shards, one
blockchain per geographical location. Each blockchain is associated with a number of nearby
validators. This reduces the transactions history at each blockchain which leads to speed up the
transaction verification process. However, this approach reduces the resistance of blockchain to
51% attacks as these blockchains offer less hash rate. Furthermore, this approach doesn’t offer
any interoperability technique that allows shard blockchains to interact with each other.

On the basis of above descriptions about limitations of minimize verification protocol,
sidechain technology, BASELINE algorithm, security of soft forks approach, and Blinkchain
approach, it motivates the development of a new approach/approaches to overcome these
limitations with respect to overall information propagation delay improvement as well as
security efficiency. The new proposed approaches is further introduced in chapter 3.

2.4.2 Pipelining information propagation

As introduced in Stathakopoulou et al. (2015), faster information propagation can be achieved
by pipelining information dissemination in order to minimize the round-trip times between
nodes and their neighbours. Specifically, this solution claims that incoming INV message
which includes a list of hashes of the available transactions, can be immediately forwarded
instead of waiting to receive transactions. Therefore, nodes can ask for a transaction even
though it has not arrived yet. On receiving the transaction, it will be forwarded immediately for
nodes that have asked for it, considering that a GETDATA message has already been received
from those nodes. By doing this, the idle time in which nodes are normally waiting for the
GETDATA message to arrive, would be utilized. Suppose a, b, c are nodes connecting to each
other and an INV message of a transaction Tx arrives to the node a. As shown in Fig.2.13 and
Fig.2.14, two scenarios will be followed based on the availability of the transaction Tx. In the
first scenario, Fig.2.13, the node needs to keep the transaction as it has arrived before receiving
any GETDATA message. While in the second scenario, Fig.2.14, the node needs to keep the
GETDATA message as it has arrived before receiving the transaction TX.
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Fig. 2.13 First scenario where tx arrives before GETDATA

Fig. 2.14 Second scenario where GETDATA arrives before tx

The key problem with the pipelining propagation protocol is that the Bitcoin network global
state might become inconsistent when nodes request a transaction that is not available. As
a result, inconsistent network leads to increase the chances of performing successful double
spending attacks. Furthermore, the pipelining propagation protocol requires unlimited memory
at every node with the aim of keeping either transactions until a GETDATA message arrives,
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or GETDATA messages until transactions arrive. Moreover, it is believed that this theory can
reduce the information propagation delay with a very low rate as transactions still need to pass
through random and unlocalized connections to visit most of the Bitcoin network nodes.

On the basis of above descriptions about limitations of the pipelining propagation protocol,
it motivates the creation of a new representation of the network topology that performs less
number of network hops that information pass through as well as supports the proximity of
connectivity between nodes. This would result in speeding up information propagation which,
on the other hand, make the network more consistent. Therefore, chances of performing double
spending attacks would be less. The new representation is further described in Chapter 3.

2.4.3 Connectivity increase

As it is mentioned earlier, the sheer distance between the initiator of a block or transaction
and nodes is considered as the most causative factor of the information propagation delay in
the Bitcoin network. Studies in (Decker & Wattenhofer, 2013) claimed that increasing the
network connectivity throughout minimizing the distance between any two nodes, by creating
a star sub-graph topology that is used as a central communication hub, has a large effect on
the reduction of the information propagation delay. Specifically, a new network topology is
proposed in (Decker & Wattenhofer, 2013) in which each node maintains a connection pool
that is able to keep up to 4000 open connections. As a result, the node mostly connects to
every single advertised address. Therefore, information would visit less number of hops which
reflects faster information propagation. However, the Bitcoin protocol allows nodes to maintain
up to 8 outgoing connections in order to prevent controlling the network by malicious nodes
(Biryukov & Pustogarov, 2015). Though, the proposed network topology raises severe security
risk due to the fact that nodes are permitted to maintain many connections to other nodes.
Therefore, malicious nodes might be able to control the network and easily disturb, abuse the
network.

On the basis of maximising the proximity of connectivity, another change in the Bitcoin
network topology has been proposed in (Stathakopoulou et al., 2015). This change increases the
geographical connectivity in the Bitcoin network through several coordinator nodes, distributed
strategically around the globe, known as CDN Bitcoin client. These CDN clients are able to
search and suggest Bitcoin network nodes to each other based on the geographical location.
Specifically, the CDN client calculates the geographical distance between the discovered node
and other CDN clients. By doing this, the CDN client are able to recommend geographically
closest nodes to other CDN client. Compared to the protocol that is proposed in (Decker &
Wattenhofer, 2013), CDN clients are allowed to maintain many (up to 100) outgoing connections
to the nodes that are geographically close.
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The main downside of this solution is that, any node can be a CDN client which makes
Bitcoin more vulnerable to some classes of attack. Specifically, malicious nodes can easily
impersonate the role of CDN clients and maintain connections to many nodes in the network.
This results in malicious nodes being able to control a big portions of the network nodes. As a
result, DDOS attacks and partition attacks would be possible to launch. Another concern is
raised with the CDN clients protocol is that it is relatively centralized as any CDN client can
be used as a coordinator node without meeting any requirements or achieving an agreement
over the network nodes. Furthermore, the idea of recommending closer nodes to other nodes
will not have a high impact on the overall network connectivity if it is implemented by limited
nodes that are not well connected.

The above descriptions indicate that the limitations of the connectivity increase protocols
in the above mentioned aspects could result in significant security implications as well as a
low level impact on information propagation. This thus motivates the development of another
connectivity increase approaches that are further introduced in Chapter 3. In the following
section, prior attempts to analyse and mitigate double spending attacks in the Bitcoin network
with respect to 0-confirmations and N-confirmations will be critically discussed.

2.4.4 Mitigating double spending attacks

Some research has been done towards analysing and mitigating double spending attacks with
respect to both scenarios, 0-confirmations and N-confirmations. Regarding N-confirmation
double spending attacks, measurements of the probability of double spending attacks based on
measurements in the real Bitcoin network have been provided in Decker & Wattenhofer (2013)
through developing an analytical model of Bitcoin. Furthermore, a strong correlation between
the size of a message and the propagation delay has been observed. As an adversarial fork of
the blockchain still causes a possibility of double spending, some research have admitted that
reducing the possibility of accidental forks would help in double spending attacks avoidance
(Karame et al., 2015) (Sompolinsky & Zohar, 2013).

In the context of 0-confirmation , a model which considers some modifications in the
transaction dissemination protocol has been presented in (Karame et al., 2015) (Bamert et al.,
2013). The main intuition behind these modifications is to mitigate double spending attacks in
fast payments. In (Karame et al., 2015), a new model was proposed which allows the vendor
receives TK (conflicting transaction) and Tv (honest transaction that sent to the vendor) almost at
the same time. This would help the vendor to discover double spending attacks at the right time
before delivering products. Specifically, the core idea of this model is that when a transaction
is received by a node, it adds the transaction to its pool and forwards it to the other nodes if the
transaction has not been seen before. Otherwise, it directly forwards the transaction to other



2.4 Related Work 47

neighbours without adding it to its pool. This scenario allows the conflicting transaction Tk to
be received by the vendor before delivering products. Though, the vendor would immediately
detect the attempt of the double spending attack when the conflicting transaction TK is received.
The most serious disadvantage of this method is that a large volume of nonessential traffic
would flood the network which results in inefficient performance of the Bitcoin network.

As a realistic solution, a prototype system which is applied in vending machines was
proposed in (Bamert et al., 2013). This system has performed a fast payment with 0.088 as a
probability of double spending attacks through setting a server that observes transactions. This
server gives a signal, which indicates that a transaction has been confirmed to the blockchain,
when the transaction is propagated and reached over 40 nodes. Unfortunately, this solution
is limited because an attacker’s transaction could still be propagated to the majority of nodes.
That disproves the claim of considering a transaction is approved if it is received by 40 nodes.

2.4.5 Mitigating propagation delay outside the electronic currency field:

To date, several studies on the reduction of propagation delay in some of P2P applications
through overcoming the random assignment of connections, have been addressed. These
studies have not dealt with security influences due to the nature of these applications which
are not related to the currency field. Whereas applying any approach that aims to overcome
the propagation delay problem in the Bitcoin network should be done without compromising
security.

Schollmeier & Kunzmann (2003) proposed a new conceptual architecture, known as GnuViz
architecture, which adds location awareness to the Gnutella network in order to overcome the
problem of the random assignment of connections. This architecture relies on a crawler that
explores the network structure in order to identify connections between nodes. Therefore, the
crawler uses PING and PONG messages to create a record that includes the IP addresses of
nodes and connections between these nodes. After building this record, IP addresses of the
explored nodes are mapped to their geographical location using NetGeo (Ma, 2006). The main
limitation of GnuViz architecture is that it does not simulate the reality as the mapping can only
be done offline.

Similarly, there is a basic approach that has been adopted to reduce propagation delay
in the BitTorrent network. Bindal et al. (2006) have proposed an approach, which aims to
improve the traffic locality in the BitTorrent network throughout applying biased neighbour
selection method. In this method, nodes connect with the majority of its neighbors within the
same ISP. That means each node will be forced to connect to the geographically closest nodes.
Specifically, nodes know about the other close nodes by getting locality information form a
tracker. Therefore, when a node contacts the tracker in order to discover nodes in the same ISP,
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the tracker hands back 35 internal nodes (within the same ISP) as well as a number of external
nodes. After that, the node connects to those 35 nodes and form a cluster. The tracker notifies
the node with more nodes if there are less than 35 internal nodes. The tracker follows several
mechanisms in order to have a significant knowledge about ISP locality of nodes. One of these
mechanisms is to use a packet inspection in which packets are sent to discover the traffic of the
network. Whereas the other mechanism is to use internet topology maps or AS(autonomous
system) mappings to identify the ISP.

The key weakness with the biased selection protocol is that the protocol does not follow
a distributed algorithm that runs by each node independently. Instead, nodes rely on trackers
to get information about other nodes in the same ISP locality. Therefore, any failure within
the tracker or delay in the tracker’s responses would affect handling the protocol. On the other
hand, there is a traffic overhead when trackers use packets inspection to get information about
the nodes ISP locality. Though, this motivated the development of a localised based clustering
protocol that follows the distributed algorithm principle where each node runs the protocol
independently by information about discovered nodes and local neighbours.

Regarding Mobile Adhoc network, most of the previous studies have focused on presenting
an extension of best effort routing algorithms as a method to overcome the propagation delay
problem. Lee et al. (2002) have proposed a new routing protocol that is on-demand. In this
approach, a route is discovered only when a node needs to send data. Specifically, when a
node needs to discover a new short route, global search (flooding) procedure is followed. For
the purpose of discovering a route, two packets are propagated, route request (RREQ) and
route reply (RREP). RREQ is initiated by a node that wants to discover a route. After that, the
initiator node broadcasts the packet to all of its neighbours. When a node receives the packet, it
rebroadcasts it further and records details about the request as well as a backward pointer to the
initiator node. On receiving the RREQ by a destination node, a RREP is built and sent to the
initiator of the RREQ by using the backward pointer. The RREP is sent at each hop by uni-cast
and a forward pointer to the destination node is recorded at each hop via the previous hop of
the RREP. Based on the backward and forward pointer, initiator node can establish a short path
to the destination and build a mesh of nodes. However, this approach can be effective in small
networks only as routes in large networks might experience a quite significant delay.

However, a number of authors have attempted to implement a hierarchy organization in ad
hoc networks which results in localised information dissemination. As a result, cluster based
protocols have been proposed in (Marshall & Erciyes, 2005) (Erciyes & Marshall, 2004). These
protocols group nodes in a locality together into a cluster, and assign one node to be a cluster
head that is responsible for maintaining the cluster. Cluster head is responsible for routing
information between nodes on an inter-cluster basis until the cluster containing the node is
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found. Electing a cluster head is done based on some criteria such as choosing a node with the
lowest ID and a dynamic allocation based upon remaining battery life (Gavalas et al., 2006).

However, the clustering approach mentioned above does not take into account whether the
a cluster head and nodes within a cluster are close in the physical network or geographical
location. Due to this, the information propagation delay is not significantly affected. Moreover,
aforementioned clustering approach can not meet the security requirements of Bitcoin in case
of considering it to be applied in Bitcoin network due to the election mechanisms of the cluster
head. These mechanisms ensure the performance of the cluster head without considering rules
that make impersonating the role of cluster head challenging. Therefore, this motivated the
development of clustering approaches that consider the nodes proximity within the geographical
and physical network as well as meets the security requirements of Bitcoin network throughout
challenging rules for occupying the cluster’s head role as well as a distributed mechanism for
cluster heads election.

2.5 Conclusion

This chapter highlights the main components of Bitcoin system. In addition, the essential parts
of Bitcoin system that the Bitcoin protocol relies on, have been indicated and widely explained.
This chapter also focuses on Bitcoin from a networking perspective. Furthermore, the main
structure of transactions and blocks as well as the role of transactions and blocks in achieving
the Bitcoin protocol were described in details. Moreover, how the blockchain is built as well
as the strengths and limitations of the blockchain were analysed. In this chapter, we focused
on one of the blockchain limitations, in particular , blockchain forks that have a significant
security risk on Bitcoin. This risk is raised due to the fact that the blockchain forks give a great
chance to double spending attacks to be launched. Therefore, we analysed double spending
attacks in Bitcoin system. However, information propagation delay is considered as the main
cause factor of blockchain forks.

In this chapter, information propagation delay problem in the Bitcoin network and how
it plays an important role in increasing the possibility of blockchain forks, were critically
discussed. This chapter also reviews some existing methods and techniques that attempt to
overcome the information propagation problem in the Bitcoin network as well as other peer-to-
peer networks. On the other hand, the strengths and limitations of the methods and techniques
are highlighted in this chapter. These thus motivate the development of more advanced methods
and techniques which are further introduced in the following chapter.





Chapter 3

The Proposed Clustering Approaches

3.1 Introduction

Chapter 2 reviewed several methods of speeding up information propagation in the Bitcoin net-
work. A list of limitations of these methods are highlighted and lead to the development of new
approaches for accelerating information propagation. As it is mentioned earlier, information
propagation delay can be responsible for the Bitcoin network being inconsistent. The sheer
distance between the origin of a transaction or block and other nodes is deemed as the most
influence problem in Bitcoin network (Decker & Wattenhofer, 2013). Ignoring this important
problem may result in a considerable increase in communication costs and delays. As a result,
transaction verification is slower (Stathakopoulou et al., 2015). Hence, the potential of double
spending attacks, that are more difficult to discover in slow networks, increases due to the
conflict between nodes regarding the history of transactions. Taking that into account, grouping
peers according to their real-world proximity would minimize the distance between any two
nodes which results in minimising average latencies for information delivery between peers.

This chapter will outline the proposal for a form of proximity of connectivity in the Bitcoin
network which is considered as a mechanism to tackle the problem of information propagation
delay in the Bitcoin network. The proposal includes introducing four clustering approaches
namely LBC, BCBPT, BCBSN, and MNBC. Therefore, the first contribution mentioned in
Section 1.8 is fulfilled in this Chapter.

3.2 Locality Based Clustering (LBC)

As it is mentioned in Chapter 2, prior approaches that focus on increasing the proximity of
connectivity in the Bitcoin network shows significant security implications due to their nature



52 The Proposed Clustering Approaches

that stands against the decentralization principle of Bitcoin as well as maximising the chances
of controlling the network throughout allowing each node to maintain more than 8 outgoing
connections. In addition, previous approaches are implemented by limited nodes which are
not well connected, resulting in a low level impact on information propagation. Therefore, a
location based clustering protocol, named Locality Based Clustering (LBC), that overcomes
security and performance limitations of previous approaches with the aim of maximising the
proximity of connectivity in the Bitcoin network without compromising security.

Fig. 3.1 Example of Localized clusters creation. The black circles represent the border nodes
between clusters, while grey and red circles represent nodes in different clusters.

Aiming to overcome the above limitations, LBC protocol is implemented in a distributed
manner where all nodes contribute in achieving a proximity based network layout. This prevents
any node having control over the network as there is no node that would have a full knowledge
of the entire network topology. In order to evaluate the impact of maximising the geographical
proximity based connections on information propagation in the Bitcoin network, LBC protocol
groups Bitcoin peers based on the geographical locality of their IP prefixes. This contributes
in minimising the network latency between peers which results in improving the information
propagation delay in the Bitcoin network. In LBC protocol, peers’ IPs are used as the basis for
defining a locality area inside the Bitcoin network. However, LBC protocol is a measurement
based and can dynamically change the network layout and connect the geographically closer
peers. Therefore, LBC aims to convert the Bitcoin network topology from normal randomised
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neighbour (connected nodes) selection to location based neighbor selection. Peers in LBC
are self-clustering based on locality, thus every peer must know whether other peers are
geographically close to it. This means every peer in the Bitcoin network chooses its neighbour
mostly from those within the same geographical location and forms a cluster. Within each
cluster, as it is shown in Fig.3.1, peers are highly connected via short-distance links. Giving
the visibility into the available information from the outside cluster as well as avoiding the
network partitions, clusters are fully connected by their border nodes. Border nodes between
two clusters represent the two closest nodes belonging to the two clusters.

3.2.1 Localised Cluster Generation

In the LBC protocol, each node runs the protocol independently by information about dis-
covered nodes and local neighbours. In this phase, nodes in the network are grouped into
clusters such that the nodes in the same location belong to the same cluster. This can be done
by referring an extra function to each node in the Bitcoin network. By this function, each node
is responsible for recommending proximity nodes to its neighbours. The proximity is defined
based on the physical geographical location. In other words, the proximity relies on a distance
threshold which identifies the number of clusters and the size of a cluster. Specifically, when a
node discovers new Bitcoin nodes, it calculates the distance between its neighbours and the
Bitcoin nodes that it has discovered. Two nodes Ni and N j are considered close to each other if:

Di, j <Dth where Di, j is the distance between Ni and N j, Dth is the distance threshold. LBC
protocol uses the haversine formula to measure the geographical distance (Veness, 2011).
Specifically, the haversine formula is used to calculate the real-world distance between two
nodes on the Earth’s surface specified in longitude and latitude. Therefore, we retrieve from the
IP address of the node the latitude and longitude by using MaxMind GeoLite City database
(Maxmind, 2013). Harversine is defined as:

a = sin2(
∆φ

2
)+ cos(φ1)cos(φ2).sin2(

∆λ

2
) (3.1)

where φ is latitude, λ is longitude,R is earths radius (mean radius = 6,371km (Anderson et al.,
2008)). The distance d in meters is then calculated as:

d = 2R.atan2(
√

a,
√
(1−a)) (3.2)

When a node N discovers another node K that is close to the K’s neighbour M , the node
N sends the discovered node K to its neighbour node M as a recommended node to connect
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with. On receiving the IP address of the recommended node K, the node M should connect to it
and try to find out whether or not the recommended node is also close to its neighbours. This
scenario is repeated at each node that receives recommended nodes from its neighbours.

As mentioned before, clusters are fully connected by their border nodes. Therefore, border
nodes will be selected between every pair of clusters. Border nodes will be selected to be
the closest pair of nodes that belong to two clusters. This ensures an efficient information
dissemination between clusters as many transmission channels will be available for information
to be exchanged among clusters. Furthermore, increasing the number of border nodes between
clusters results in maximising the level of difficulty to partition the network (e.g. partitioning
attack). More clearly, let S = {s1,s2, ...,sm} and R = {r1,r2.....,rn} represent two clusters,
and let [sb,rb] denote their border nodes, where sb ∈ S and rb ∈ R, then for all other pairs
of clusters (such that si ̸= sb,r j ̸= rb,si ∈ S,r j ∈ R), distance(si,r j) ⩾ distance(sb,rb). Note
that distance(x,y) represents the geographical distance between the two nodes x and y in the
network.

3.2.2 Cluster Maintenance

The Bitcoin network structure exhibit some degree of churn where peer nodes enter and exit
the network at arbitrary points in time. The existing clusters of the nodes in the network are
influenced by the dynamics in the Bitcoin network structure. Therefore, a mechanism that
handles the node dynamics is required to avoid re-clustering the entire network on each node
entry and exit. Re-clustering is impractical when the entry and exit of the nodes are frequent as
the clusters never stabilize (Ramaswamy et al., 2005). Though, a mechanism is designed to
handle the entry and exit of the nodes in the Bitcoin network.

When a node Z wants to join the Bitcoin network, it learns about the available Bitcoin nodes
from a list of DNS services. Upon receiving a query from the node Z, DNS services probs the
node Z in order to determine its geographical location through calculating the distance based
on the same methodology that is mentioned in Section 3.5.1. Based on the probes results, DNS
services check the network and return any known peers close to the node Z. If none were found,
random peers will be returned. If the DNS service is close to the node Z, it returns all peers
that are close to itself. Then, the node Z measures the distance to each discovered node to get
its location ordering based on a distance threshold. The Z’s location ordering would help the
node Z to be assigned to a specific cluster. After that, the node Z sends a JOINrequest destined
for the closest node C of the discovered nodes. Once the node Z connects to the node C , it
receives a list of IP’s of nodes that belong to the same cluster of the node C in order to allow
the node Z connects to the nodes that belong to C’s cluster only. When the node Z wants to
leave the network, no further action is required.
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From a security point of view, DNS nodes cannot impose significant security issues, where
a newly joined node is forced to connect to attacker nodes, even though they decide to act as
malicious nodes. The reason behind that is the newly joined nodes normally learn one peer
from Bitcoin DNS nodes, and then nodes can use the normal discovery mechanism of the
Bitcoin network to find more nodes to connect with.

3.3 Ping Time Based Approach(BCBPT)

In fact, nodes that are geographically close might actually be quite far from each other in the
physical internet and vice versa. For instance, hosts directly connected by an optic fiber are
most likely very “close” when the proximity only takes into account the link latency between
network nodes, even if they are physically placed far away from each other. This actual,
physical internet distance may lead to different results, leading to different conclusions too.
As proximity can be measured using different criteria, such as the physical location and the
link latency among peers (Miers et al., 2010), we propose a proximity based latency awareness
protocol with the aim of evaluating the security and performance impact of the proximity of
connectivity based ping latencies on the Bitcoin network. Based on round trip ping latencies,
nodes can detect and cut most of the inefficient and redundant logical links, and add closer
nodes as its direct neighbour. Therefore, peers within each cluster are highly connected via
short link latencies. This offers faster information propagation, resulting in a better distribution
of Bitcoin information over the network which helps in reaching a consistent state in the Bitcoin
network. To maximize the security awareness with respect to network partitions as well as
ensure an efficient information distribution between clusters, clusters are fully connected using
border nodes. Border nodes are selected using the same strategy of border nodes selection in
LBC protocol that is mentioned in section 3.2 with only one difference that the distance(x,y)
represents the distance between the two nodes x and y measured by link latencies.

3.3.1 Distance calculation

The distributed algorithm principle is followed in BCBPT where each node runs the protocol
independently by information about the proximity of local neighbours and discovered nodes. In
this phase, it is necessary to maintain clusters of nodes with less ping latencies. By doing this,
proximity in the physical internet would be enhanced, resulting in improving the information
propagation delay in the Bitcoin network.

In BCBPT, each node is responsible for gathering proximity knowledge regarding the
discovered nodes. When a node discovers new Bitcoin nodes, it calculates the physical Internet
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distance between itself and the Bitcoin nodes that it has discovered. The calculation of the
physical Internet distance relies on the round-trip latency between two nodes. As it is mentioned
earlier, nodes discover other nodes in the Bitcoin network using either the Bitcoin network
discovery mechanism or the Bitcoin DNS service. Two nodes Ni and N j are considered close in
the physical Internet if

Di, j < Dth where Dth is the distance between Ni and N j measured by the round-trip latency,
Dth is the latency threshold. We introduce a utility function that could calculate the distance
between two nodes in the Bitcoin network measured by latency. This function would dramati-
cally change the behavior of the overlay and help enriching nodes with proximity knowledge.
The new utility function is shown in 3.3:

Di, j =
Mping

rate(r)
+2P+q

′
(3.3)

where i and j are two nodes in the network, Mping is the length of the ping message (Bytes).
The term rate(r) represents the rate of transmission which is the total amount of data that can
be sent from one place to another in a given period of time (around ≈ 100 KB/hour), while P
refers to the propagation speed which is the amount of time it takes for one particular signal
to get from one point to another. P is multiplied by 2 because of the roundtrip time. The
propagation speed is calculated as:

P =
DM

S
(3.4)

The term DM denotes the distance between two nodes i and j. DM can be calculated using the
geographical distance calculation methodology that has been used in section 3.2. S is the speed
of the signal which is equal to 3×108m/s when dealing with Wi-Fi internet, while it is equal to
2/3×3×108m/s in terms of copper cable. q

′
represents the queuing time(average). Queuing

time can be calculated as:
q
′
=

Mping

rate(r)−λ
×Mping (3.5)

where λ represents the arrival rate (How many pings are arriving to the node j).
As distance measurements are subject to the network congestion and therefore dynamic,

within some variance, multiple messages between pairs of nodes, repeatedly are sent over the
time in order to determine variance. In terms of a discovered node being close to another
node, the node establishes a connection with the discovered node by sending a version message
as a handshake. In contrast, these two nodes would have a very little chance to get directly
connected and stay in the same cluster if they are so far away from each other. Therefore,
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clusters in the overlay network become more proximity-aware and nodes make a better decision
in terms of limiting the cost of communication.

3.3.2 Cluster Maintenance

Regarding the cluster creation and maintenance protocol, a node N, while joining the network
for first time, learns about the available Bitcoin nodes from a list of DNS services. However, the
node discovery service should also make a ranking on which node to select as the initial DNS
seed service might return sub optimal peers. Therefore, DNS service nodes should recommend
available nodes to the node N based on the proximity in the physical geographical location as
the geographic distance in the Internet, in many cases, is a good indication of the topological
distance. DNS service follows the geographical distance calculation methodology that has
been used in LBC protocol, Section 3.2, in order to recommend the closest available nodes
to the node N. The node N calculates the distance to each discovered node in order to get its
proximity ordering based on a link latency threshold. This ordering would help the node N to
be directed to a specific cluster. After that, the node N tries to connect to a node K which is
the closest node in the nodes list that is supplied by the DNS service. However, the role of the
DNS service stops once the node N connects to the node k. Periodically, the node N discovers
other nodes in the network using the Bitcoin network nodes discovery mechanism (Heilman
et al., 2015). Then, the node N finds out whether the discovered nodes are physically close by
following the distance calculation mechanism that has been mentioned in Section 3.3.1. When
the node N wants to leave the network, in this case no further action is required.

Similar to LBC protocol, Bitcoin DNS service cannot rise a serious security risk as the
newly joined nodes normally use the Bitcoin network discovery mechanism after connecting to
at least one node supplied by the DNS service.

3.4 Super Node Based Approach (BCBSN)

As the number of hops between peers is considered as one of the factors that the proximity
between nodes in the peer-to-peer networks is based on (Miers et al., 2010), such an approach
that utilize the idea of super peers technology can contribute in minimizing the intermediate
hops between peers. As the Bitcoin network is a financial instrument which needs to be
resilient against active attacks, the super peer approach introduced in this work enhances, in
different ways, previous super peer solutions (Mizrak et al., 2003) (Yang & Garcia-Molina,
2003) with respect to security awareness. First, it does not require any network node to have
full knowledge of the entire network topology. It is therefore adequate for supporting the
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decentralized concept of Bitcoin. Second, super peers are selected based on achieving several
conditions in a distributed manner. Therefore, impersonating a super peer role by a malicious
node is a challenging task to achieve. In such a super-peer approach, the design of the overlay
network is composed of several clusters of peers. It selects a peer to be a super-peer and this
super-peer becomes a cluster head that propagates network information to other super peers in
different clusters. In addition, super-peers can be given an extra functions to be handled in the
network, such as grouping peers based on a specific criteria. If we can group peers according to
their geographical proximity, we can further speed up information broadcasting in the network.
Thus, a hierarchical Bitcoin overlay network that clusters nearby peers might achieve faster
information propagation than the original Bitcoin system. In this work, the concept of super
peers is applied on the Bitcoin network in order to gain the capability of optimizing proximity
of connectivity between peers taking into account their geographical location.

Fig. 3.2 Example of super peer clusters creation. The Blue circles represents super peers in
each cluster, while grey and red circles represent nodes in different clusters.

A cluster generation protocol is introduced, named as Bitcoin Clustering Based Super
Node (BCBSN), as a way to combine the reduction of the intermediate hops between any two
peers as well as increasing the geographical connectivity between peers. BCBSN protocol
aims to generate a set of geographically diverse clusters in the Bitcoin network by exploiting
super peers technology. Within each cluster, BCBSN protocol assigns one node to be a super
peer that is responsible for maintaining the cluster as well as broadcasting information in the
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Bitcoin network. However, this is the first work to address the clustering based super-peer
technology in the Bitcoin network. It is claimed that applying BCBSN protocol, where each
peer connects to one super peer and each super peer connects to other super peers, would
reduce the non-compulsory hops that the transaction passes through, so that, on the other hand,
this may minimize the propagation delay. Specifically, as it is shown in Fig.3.2, several nodes
are selected to be as a coordinator of clusters (super peer). Each super peer connects to the
geographically closest nodes and forms a cluster. All super peers in the network are fully
connected and known to each other. BCBSN protocol constructs super peer clusters using two
proposed algorithms: the peer joining algorithm and super-peer selection algorithm. These
algorithms allow peers to to be destined to a cluster where all peers are close in the geographical
location.

3.4.1 Super peer selection algorithm

Due to security requirements, super peer selection algorithm in BCBSN is differing on the
criterion for the selection of the super nodes. For instance, in (Lin & Gerla, 1997), super peer
selection is based on the unique identifier ID of each node. In other words, the node which has
a lowest ID is selected as a super peer. Whereas, super peer position has several conditions
need to be fulfilled in BCBSN protocol. Precisely, super peer selection is based on handling a
reputation protocol. This protocol is achieved by referring a weight defined by a positive real
number for each node. The weight is calculated based on how much bitcoins are spent by each
node and how long each node has been online. A node with a bigger weight is selected as a
super peer. The main advantage of this approach is that, impersonation of a super peer by a
malicious node would be challenging as well as the super peer’s role would be occupied by
those nodes that are better suited for that role. According to the rewarding mechanism that has
been proposed in (Babaioff et al., 2012), it has been proven that applying such a rewarding
schema would incentivize information propagation in the Bitcoin network. Therefore, a reward
is given in the BCBSN protocol for a super peer when it propagates a valid transaction and
behaves honestly. This is considered as an incentive mechanism for nodes to win the super
peer’s role. In the case of a super peer goes offline, each cluster selects a backup peer which
copies the entire cluster state information periodically from the super peer. The backup peer is
selected based on the same mechanism and criteria of super peer selection. However, BCBSN
protocol requires some changes on the real Bitcoin network propagation protocol. Consider
a number of nodes grouped by locality into two clusters, A and B. Each cluster has elected
a node to act as a super peer. A node n within cluster A wishing to initiate a transaction and
broadcast it to its connected nodes. On receiving the transaction at a super peer S in cluster A,
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it is re-broadcasted to other super peer S1 in cluster B as well as S’s connected nodes within
cluster A. S1 also rebroadcasts the transaction to its connected nodes within cluster B.

As one of the parameters of calculating a weight for each node is to identify how long a
node has been online, the super peer selection algorithm handles a penalty score mechanism
by which the stability of nodes will be measured. In this mechanism, each node maintains a
penalty score for every node connected to it. Every time a node goes offline, its penalty score is
increased by 1 by its connected nodes. After that, a super peer should receive the updated score
from those nodes that increased the score. Once the super peer’s record is updated, the super
peer sends the updated score to all of its connections.

Regarding super peer selection, two types of messages are propagated , a SupINV and an
AcceptINV . Once a node k decides to be a super peer, it invites its connected nodes by sending
a SupINV which includes the node’s ID and weight. On receiving of SupINV message at the
node M, as illustrated in Algorithm 1, the node M accepts k′s invitation if it finds the node k to
be geographically closer and has a bigger weight than the super peer that M is connected to. The
node M decides whether or not k is geographically close to it by calculating the geographical
distance using the same methodology that have been followed in LBC protocol. Section 3.2.
The node M accepts k′s invitation by sending an AcceptINV . The node M should keep for-
warding the SupINV to all its connected nodes which in turn will propagate the SupINV further.

Algorithm 1: SupINV handler function
Let k as :nearest superpeer() with Bigger weight
Let sp as :current superpeer

1 if sp ̸= k then
2 sp = k
3 connectTo (k)
4 Forward (SupINV )

5 else
6 Forward (SupINV )
7 end

3.4.2 The peer joining algorithm

Turning now to the second phase of the BCBSN protocol which is the cluster maintenance
protocol where the entry and exit of nodes in the Bitcoin network are handled. However,
notations are delivered to be used in this phase before presenting the peer joining algorithm.
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Let M = {k0,k1, . . . ,ki−1} be a set of peers in the Bitcoin network, where i is the number of
total peers. Let P = {sp0,sp1, . . . ,sp j−1} be a set of super peers, where j is the number of
super peers and P⊆M. Let spl{spl,b0,b1, ....,bn−1}, where, l is ranged over (0,1, . . . , j−1)
and similarly in the case of n which reflects the set of peers in the network. Therefore, we have
spl ⊆M and M = sp0∪ sp1∪ ...∪ sp j−1. When a node z wants to join the Bitcoin network, it
first learns about the available super nodes by contacting an arbitrary node k which already
have been learnt from the DNS service. The node k responds with a list of the super peers
it knows about in the network. According to the peer joining algorithm 2, the node z selects
a super peer sps, such that ∀q ∈ P,distance(z,sps) ≤ distance(z,q). Then, the node z sends
a JoiningRequest message to the selected super peer. Note that distance(x,y) represents the
geographical distance between the two nodes x and y in the network which can be calculated by
following the method that has been used in LBC protocol, in Section 3.2. The super peer sps

responds with an Acceptance message which includes a list of nodes addresses that the node
sps connects with in order to allow the node z connects to the nodes that belong to sps cluster
only. When the node z wants to leave the network, it sends a disconnect message to its super
peer, which requires no reply. Then, the node sps should update its nodes list automatically.
Once the node z joins the Bitcoin network, it sends metadata over its connections to its super
peer, at the same time the super peer adds the node z to its index.

Algorithm 2: Peer joining algorithm
Let P as :Super peers set
Let z as :new peer to join the network

1 while P ̸= 0 do
2 d← distance(z,spi)where ∀spi ∈ P
3 d1← distance(z,sp j) where ∀sp j ∈ P
4 if d < d1 then
5 z← connectTo spi
6 else
7 z← connectTo sp j
8 end
9 end



62 The Proposed Clustering Approaches

3.5 Master Node Based Clustering (MNBC)

Master Node Based Clustering protocol (MNBC) extends the BCBSN protocol that was
proposed in Section 3.4, with the aim of addressing security and performance limitations of
BCBSN protocol. As it is mentioned in section 3.4, the BCBSN protocol aims to generate a set
of geographically diverse clusters in the Bitcoin network by exploiting super peers technology.
Within each cluster, the BCBSN protocol assigns one node to be a super peer that is responsible
for maintaining the cluster and broadcasting information in the Bitcoin network. In the BCBSN
protocol, clusters are fully connected via super peers only. Due to this, the information flow
between clusters in the BCBSN protocol is only fulfilled through super peers. Furthermore,
super peers in the BCBSN protocol group peers based on their geographical location in order
to increase the proximity of connectivity in the network. However, as it is mentioned in section
3.3, long-link distance might be applied between any two peers even though they are in the
same geographical location. From a security point of view, the level of security awareness in
the BCBSN protocol can be improved if more nodes between clusters are maintained. This
reduces the probability of the network partition occurrence.

The limitations of BCBSN protocol mentioned above have motivated the development of
a new protocol that overcomes the lack of connection channels between clusters as well as
considers the physical internet distance rather than the geographical location. Specifically,
the new protocol, named as Master Node Based Clustering(MNBC), relies on several nodes,
known as master nodes, to achieve fully connected clusters based on the physical Internet
proximity, where information can be exchanged between clusters via master nodes as well
as normal nodes. The idea of the MNBC protocol is inspired by the Master node technology
that was originally adopted in Darkcoin (Duffield et al., 2014). However, master nodes in
Darkcoin were responsible only for propagating the network information to the majority of
nodes without taking into account whether or not those nodes are close. Also selecting master
nodes in Darkcoin does not require conditions to be fulfilled with the aim of ensuring security.
Whereas master nodes in the MNBC protocol connect to other nodes based on a proximity
criteria. Furthermore, master nodes in the MNBC protocol are selected through applying a
selection phase that requires several conditions need to be fulfilled in order to cover the role of
master nodes.

As it is shown in Fig.3.3, clusters in MNBC are fully connected via master nodes. Giving
the possibility of a better improvement in information propagation and security awareness,
clusters are also connected by several nodes, known as edge nodes, that represent the closest
nodes belonging to different clusters. Master nodes are normal Bitcoin full nodes that can offer
a level of additional functions as follows. Creating a set of clusters in the Bitcoin network where
each cluster includes nodes that are close to each other in the physical network. Furthermore,
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Fig. 3.3 Example of master node clusters creation. The black circles represent the edge nodes
between clusters, while grey and red circles represent nodes in different clusters. Blue circles
represents master nodes in each cluster.

supporting a propagation scenario, by which messages are propagated to a list of all known
master nodes across the network as well as nodes that belong to the master node’s cluster. In
addition, information can be propagated to outside a cluster by edge nodes that are connected
to other nodes in different clusters.

3.5.1 Master Node Selection

Master node selection follows the same selection criteria of super peers that are mentioned in
BCBSN protocol. Specifically, master node role requires gaining a score which is calculated
based on how much each node burns bitcoins and how long a node has been online. The main
advantage of this approach is that, impersonation of a master node by a malicious node would
be challenging. Therefore, this score helps in electing master nodes that are better suited for
that role. To incentives nodes to compete towards winning the master node’s role, as it has
proven in (Babaioff et al., 2012), a reward is given for a master node when it propagates a valid
transaction and behaves honestly. When a particular node achieves the best score over other
nodes in the network, as it is illustrated in Algorithm 3, the node would be elected as a master
node.



64 The Proposed Clustering Approaches

When a particular peer wants to occupy the role of master nodes, the peer invites other
peers that connect to it by propagating two types of messages a masterINV and an AcceptINV .
Consider a node M decides to be a master node and a peer P receives a masterINV from M,
a modified version of the super peer selection algorithm that is mentioned in section 3.4.1 is
used. The modification includes considering link latencies in the calculation of the distance
between peers and master nodes, rather than relying on the geographical location. Specifically,
the node P accepts M′s invitation if it finds the node M to be closer in the physical internet and
has a bigger weight than the master node that the node P is connected to. The node P decides
whether or not the node M is close in the physical internet by calculating the internet distance
using the same methodology that has been followed in in BCBPT protocol, Section 3.3. The
node P accepts M′s invitation by sending an AcceptINV . The node P should keep forwarding
the masterINV to all its connected nodes which in turn will propagate the masterINV further.

Algorithm 3: Master node score calculation algorithm
Let M as :Master nodes set in the network
Let z as :Best master node score to achieve

1 while M ̸= 0 do
2 for master node in M do
3 n← masternode.CalculateScore()
4 if n > z then
5 z = n
6 winning−node← masternode

7 end
8 end
9 end

3.5.2 Cluster Maintenance

Regarding new peers joining the network, the peer joining algorithm that is mentioned in
section 3.4.2 is modified in order to be used in the MNBC protocol. The modification lies
in the area of calculating the distance between a master node and the newly joined peer. Let
R{n0,n1, ....,ni−1} be a set of peers in the Bitcoin network, where i is the number of total
peers. Let M{mp0,mp1, ...,mp j−1} be a set of master nodes, where j is the number of master
nodes and M ⊆ R. Let mpl{mpl,b0,b1, ....,bk−1}, (l = 0,1, ..., j−1) and k is the number of
peers in the cluster, mpl be a set of peers in the lth cluster. Therefore, we have mpl ⊆ R and
R = mp0∪mp1∪ ...∪mp j−1. When a node z wants to join the Bitcoin network, it first learns
about the available master nodes by contacting an arbitrary node T which already have been
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learnt from DNS service. The node T responds with a list of the master nodes it knows about
in the network. The node z selects a master node mpi such that ∀mp j ∈M,distance(z,mpi)≤
distance(z,mp j). Then, the node z sends a JoiningRequest message to the selected master
node. Note that the distance is also calculated based on the link latency through following the
same methodology that has been adopted in the BCBPT protocol, Section 3.3.1. The master
node mpi responds with an Acceptancemessage which includes a list of nodes addresses that
the node mpi connects with in order to allow the node z to connect to the nodes that belong to
mpi’s cluster. When the node z wants to leave the network, it sends a disconnect message to its
master node, which requires no reply. Then, the master node mpi should update its nodes list
automatically.

As it is mentioned before, clusters are fully connected by their edge nodes and master nodes
with the aim of improving the security and performance of the MNBC protocol. Therefore, edge
nodes will be selected between every pair of clusters. Edge nodes is selected to be the closest
pair of nodes in the physical internet that belong to two clusters. Edge nodes are selected using
the same strategy of border nodes selection that is mentioned in the LBC protocol, Section 3.2,
with only one difference that the distance(x,y) represents the distance between the two nodes x
and y measured by link latency.

3.6 Conclusion

This chapter introduces four approaches, namely LBC, BCBPT, BCBSN, and MNBC, in
relation to the proximity based clustering in the Bitcoin network. These approaches consider
increasing the proximity of connectivity in the Bitcoin network as a mechanism to speed up
information propagation with the aim of tackling the problem of inconsistencies in the Bitcoin
network that is caused by the network latency. These approaches are discussed based on how
clusters are formulated and nodes define their membership. LBC increases the proximity of
connectivity in the Bitcoin network by supporting geographical proximity based connections
among nodes. Whereas, BCBPT optimizes the proximity of the overlay topology by creating
distinct, but connected clusters of peers with P2P latencies under a given intra-cluster threshold.
On the other hand, BCBSN approach combines the reduction of the intermediate hops between
any two peers, using super peer technology, as well as increases the proximity of connectivity in
the Bitcoin network based on the geographical distance between peers. While MNBC approach
incorporates master node technology and proximity-awareness into the existing Bitcoin protocol
with the aim of creating fully connected clusters based on physical Internet proximity. This
chapter also highlights typical advantages of the proposed approaches based on improving the
proximity of connectivity in the Bitcoin network without compromising security. All of these
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approaches are evaluated based on the security and performance in experimental studies in
Chapter 5. The evaluation of these approaches is carried out using a simulation model which
is developed in this thesis. In the following Chapter, the development and validation of the
simulation model as well as measurements of the Bitcoin network are presented.



Chapter 4

Bitcoin Network Measurements and
Simulation Model

4.1 Introduction

In Chapter 3, the several approaches, namely BCBPT, LBC, BCBSN, and MNBC, are proposed
to tackle the problem of the agreement on the common transactions history in the Bitcoin net-
work through speeding up information propagation. To evaluate the security and performance
of these clustering approaches, major changes are required to the Bitcoin protocol which would
have to be accepted by the Bitcoin community. Therefore, this chapter introduces a Bitcoin
simulation model which is an event-based simulation framework dedicated to the simulation
of the Bitcoin network. In addition, measurements of the transaction propagation delay are
presented in this chapter to validate the developed model against the real Bitcoin network.
Moreover, large scale measurements of the real Bitcoin network are performed in this chapter
in order to enable a precise parameterisation of the presented simulation model. Therefore, the
third contribution mentioned in Section 1.8 is fulfilled in this Chapter.

4.2 Bitcoin Network Simulation Model

In this section, the simulation model as well as its parameterisation and validation are discuss.
However, previous models of Bitcoin have been built to perform studies of the Bitcoin network
based on measuring transaction propagation delay as well as evaluating the feasibility of some
attacks in the Bitcoin network. A new shadow plug-in model was presented by Miller &
Jansen (2015) which has been implemented to run the Bitcoin reference client software for
experimental purposes. This model uses a simulation environment to execute the Tor application
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that supports Bitcoin using a plugin. However, this simulator offers no support for gathering
statistics. In addition, it does not allow full scale experiments as each Bitcoin client has to
execute all the expensive blockchain interactions and cryptographic operations of the Bitcoin
network. A new Bitcoin model was proposed by Neudecker et al. (2015) in which the core
segments of Bitcoin client (bitcoind) was transformed to a simulation model. In this model,
all the computationally expensive cryptographic operations were abstracted in the client code.
Despite this, the difficulty of modeling the complex peer interactions in the proposed clustering
approaches makes this model unsuitable choice for achieving our intended purposes due to fact
that this model cannot be modified.

The aforementioned limitations of the previously developed simulators encouraged the
development of a new model of Bitcoin that meets the requirements of this research. Therefore,
a new model of Bitcoin is developed in this work. The developed simulation model is an
event-based simulation which is created based on the Bitcoin protocol specification and mea-
surements of the real Bitcoin network. The main purpose of our developed model is to evaluate
the proposed clustering protocols as a mechanism to perform faster transaction propagation
without compromising security. As the simulation model should behave as closely to the real
Bitcoin network as possible, integration of the Bitcoin protocol based on the Bitcoin client
behavior(bitcoind) as well as measurements of conditions in the real Bitcoin network are mod-
elled. As information propagation delays are the main aspect that this thesis concentrate on, an
accurate estimation of the link latencies between Bitcoin network peers is required. Therefore,
measurements of the link latencies between peers in the real Bitcoin network are fixed in the
designed simulation model. Additionally, the distribution of peers’ session lengths in the real
Bitcoin network is performed and attached to our model as session length is considered as
an essential network parameter that determines the network topology and the stability of the
network. The expensive cryptographic operations are abstracted in the proposed model as
this research focuses on information propagation delays in the Bitcoin network. This allows
full scale experiments of the Bitcoin network. In the following subsection, measurements of
important parameters of the Bitcoin network are performed. In addition, the Bitcoin simulation
model is presented along with its validation.

4.2.1 Bitcoin Network measurements and Parameterisation

Real Bitcoin network parameters are measured in this section. These measurements are
important to parameterise the presented model accurately. Distribution of the most influential
parameters that have a direct impact on the Bitcoin client behavior and information propagation
in the real Bitcoin network, will be presented in the following subsections. These parameters
have a direct impact on information propagation in the Bitcoin network which is considered as
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the main focus in this research. These parameters include peer’s session lengths, link latencies
between peers, and the number of the reachable nodes.

4.2.1.1 Session Length

In P2P networks, including the Bitcoin network, thousands of peers arrive and departure
independently which causes a collective effect known as churn (Xu, 2013) (Delgado-Segura
et al., 2018). This dynamics of peers participation needs to be taken into consideration in
the development of any model of P2P networks. The main reason behind that is to take into
account the main effect of the session length on the network stability and overall structure
(Stutzbach et al., 2008), the resiliency of the overlay (Leonard et al., 2005), and how the key
design parameters are selected (Li et al., 2005). Furthermore, adopting an accurate model of
churn results in accurate conclusions about P2P networks (Stutzbach & Rejaie, 2006). However,
characterizing the churn of any P2P system requires unbiased information regarding the arrival
and departure of peers (session lengths). Therefore, accurate measurements of session lengths
in the Bitcoin network are performed in this work.

To start with measurements of peers’ session lengths, a Bitcoin client is implemented
in this thesis. This client is used to crawl the entire Bitcoin network through establishing
connections to all reachable peers in the network. Periodically, the client attempts to discover
Bitcoin network peers with the aim of maintaining connections to majority of them. This is
done by sending an Addr message to the client’s neighbours. By getting a list of IPs from
neighbours, the client starts connecting to each IP in the received list of IPs. As crawlers require
time to capture a complete snapshot that accurately reflects the topological properties and
dynamics of unstructured P2P networks (Stutzbach et al., 2008), the developed client crawls the
Bitcoin network over a week. During this week, snapshots of IP addresses of reachable peers
were published every 3 hours to avoid a situation where the captured snapshots become more
distorted due to a gab between consecutive snapshots. By using the data which was gathered
by running the developed crawler for one week, points in time in which peers left or joined the
network were indicated.

The captured snapshots require to be continuous(in time) over a reasonable period of time to
avoid a challenge appears in the data collection for studying churn. More clearly, an incidence
that might happen during snapshots gathering, such as losing the network connectivity or the
observation software crashes, results in a gap in the overall gathering time. During this gap,
an important data will be missing. To overcome the challenge of data missing, measurements
are composed by series of snapshots maintained by the crawler, each snapshot includes the
start time of the crawl. Therefore, it has been possible to identify whether or not some data
got missing through examining the series of times in which snapshots started to be captured.
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By doing this, it has been discovered that significant gaps in the collected data have not been
experienced.

The distributions of session length in the real Bitcoin network are shown in Fig.4.1. Even
though the distributions of session length reveal a considerable churn in the data, 1,400 peers
did not leave the network during the observation time. Taking these distributions into account,
the stability of the network fluctuates. This might lead to change the topology substantially.
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Fig. 4.1 Session lengths of peers in the Bitcoin network

4.2.1.2 Link Latencies

Measurements of the network latency between peers in the Internet play a significant role in
the development of any P2P network model as these measurements control the accuracy of
conclusions produced by network models (Neudecker et al., 2015). Thereby, the quality of the
developed model relies on the Bitcoin network latency information that require acquisition of a
large scale measurements to be provided at each node. On top of that, the aim of our research
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that lies in the area of information propagation in the Bitcoin network, makes the measurements
of link latencies between peers as a considerable requirement to be performed in the developed
model.
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Fig. 4.2 Link latencies between the measurement node(located in Portssmouth/UK) and other
peers In the Bitcoin network

In this work, measurements of link latencies between peers were collected by setting up a
Bitcoin client that crawls the entire Bitcoin network. Specifically, the developed client utilizes a
list of IP addresses that can be obtained by following the Bitcoin network discovery mechanism
mentioned in Chapter 2, to connect to the majority of peers in the network. Also, the client
considers the advantage of ping/pong messages to measure the round trip latency between
the discovered peers and developed client. More precisely, the client attempts to maintain
connections to several peers. After that, the client begins an iterative process of sending ping
messages to each peer of the connected peers. The link latency between the client and a
particular connected peer is calculated when the client hears back from the peer(receiving a
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pong message). Specifically, the link latency is measured by calculating the time difference
between sending a ping message to the peer, and receiving a pong message by the client. In
order to maintain large scale and distributed measurements, the client periodically scan the
network and apply the same scenario of measuring the link latencies.
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Fig. 4.3 Link latencies between the measurement node(located in Los Angeles/US) and other
peers In the Bitcoin network

The distribution of latencies between the developed client that was located in Portsmouth/UK,
and peers in the real Bitcoin network is shown in Fig.4.2. These distributions were collected
by running the developed crawler which was connected to a round 7000 network peers and
observing a total of 27,000 ping/pong messages. The distribution of latencies reveals that
around 75% of the collected latencies are below 800 milliseconds, while 25% of distributions
are over 1000 milliseconds and reach up to 2500 milliseconds. It should be taken into account
that these measured distributions indicate the latency between the developed crawler and other
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peers in the network. However, the obtained link latencies reflect an empirical distribution that
is close to the normal distributions.

Although the link latency between two peers relies on the location of the host from which
the latency is measured, similar distribution of latencies over the entire peers might be obtained
from two different given hosts, each host in a different location. To prove that, the developed
crawler was run in a different location. Fig.4.3 shows the distribution of the round-trip latencies
between peers that are collected by running the developed crawler in Los Angeles/US. It can
be seen that the distributions in Fig.4.3 are relatively similar (not identical) to the previous
distributions in Fig.4.2. However, attaching the obtained link latencies distribution to the
developed simulation model would give an accurate estimate of the time delay that is taken by
a transaction to reach different peers in the network.

4.2.1.3 The size of the Bitcoin network

As the developed model simulates the information propagation in the Bitcoin network, the size
of the network matters due to the fact that the number of nodes has a direct impact on the range
of propagation delays. Therefore, attaching an accurate measurement of the number of nodes
in the network to the developed model assists in drawing appropriate conclusions from it.

The size of the Bitcoin network was measured in this work by using the same developed
crawler in the section 4.2.1.1 . The crawler was able to measure the size of the network by
discovering the available IPs in the network and try to connect to them. Presently, the size of
the Bitcoin network is around 8,000 nodes as the crawler learned 313676 IPs but was only able
to connect to 7,834 peers.

4.2.2 Bitcoin Model Structure & Validation

After gathering measurements of the most influential parameters in the Bitcoin network, these
measurements are used to accurately parameterise the presented Bitcoin model. The presented
model is a lightweight, event-based simulation which is abstracted from cryptography aspects
of Bitcoin. Instead, it focuses on the Bitcoin overlay network and transaction round-trip time
delay. The simulation model is developed in Java for object oriented structure and modularity.
Based on the concept of discrete event simulation, the behavior of the Bitcoin client is modelled
as an ordered sequence of well-defined events. These events, which take place at discrete points
in simulation time, comprise a specific change in the system’s state. Typically, the programmer
can abstract many physical level details while modelling objects using discrete event modelling
(Kesaraju & Ciarallo, 2012).
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In the developed discrete event simulator, two notions of time will be taken into account,
simulation time and run time. Simulation time reflects the virtual time or logical time in the
simulation world, whereas the run time refers to the time of processor that is consumed by a
particular thread. However, simulation time has a direct impact on how the simulation events
are organised and accurate results are gained. Specifically, when an event E1 is executed by a
thread A, as shown in Fig.4.4, E1 should schedule another event E1,Return which represents a
successful return from E1. The E1,Return must be scheduled at a specific point in the simulation
time which is calculated after adding an appropriate delay. This delay is collected from the
time distributions that have been attached to the model and measured in Section 4.2.1.2. During
the time between E1 and E1,Return, the simulator can execute any number of events of the same
or another client.

The simulator centers around a priority queue that includes all events which are ranked
based on its expected time of schedule (ETS) (See Fig. 4.5). ETS is calculated and referred to
each event based on the time distributions which are measured in the real Bitcoin network and
attached to the simulator. Based on ETS, the foremost event will be scheduled and removed
from the queue. An individual node behavior such as joining or leaving the network, create
transactions, forward transaction, is implemented by inheriting from given generic java classes.

Fig. 4.4 Bitcoin event based simulation representation
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Fig. 4.5 Bitcoin simulator structure

4.2.2.1 The Model Validation

In this section, the developed model is validated against the real Bitcoin network based on
the transaction propagation delay. As several aspects of the real Bitcoin network such as
client’s behavior, processing delay, and network topology have a direct impact on transactions
propagation, the transaction propagation delay measurements are important to test whether
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the presented model behaves as close as possible to the real network. In the prior research,
transaction propagation delay measurements were presented in the real Bitcoin network based
on the propagation of INV messages. Specifically, the transaction propagation delay was
measured in (Neudecker et al., 2015) (Decker & Wattenhofer, 2013) by setting up a Bitcoin
client that keeps listening for INV messages. More clearly, the client calculates the time
difference between the first reception of an INV message and subsequent receptions of INV
messages, where all the received INV messages belong to the same announcement of a
transaction. However, the collected measurements are not indicated when transactions are
received, so these measurements do not represent the actual transaction propagation delay.
Therefore, measurements of the transaction propagation delay in real Bitcoin network are
performed in this work using a novel methodology by which the transaction propagation delay
is accurately measured as these delays are indicated when peers receive transactions.

Fig. 4.6 Illustration of propagation experimental setup

To measure how fast a transaction is propagated in the Bitcoin network, the Bitcoin protocol
was implemented and used to establish connections to many points in the network, in order
to measure the time that a transaction takes to reach each point. Clearly, a measuring node
is implemented, which behaves exactly like a normal node with the following functionalities.
The measuring node connects to 10 reachable peers in the Bitcoin network. Furthermore, it
is capable to create a valid transaction and propagate it to one peer of its connections, and
then it tracks the transaction in order to record the time by which each peer of its connections
announces the transaction. Specifically, suppose a client c has connections (1,2,3,...., n), c
propagates a transaction at time T , and it is received by its connected nodes at different times
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(T1,T2,T3, ...,Tn) as illustrated in Fig.4.6. The time differences between the first transaction
propagation and subsequent receptions of the transaction by connected nodes were calculated
(∆tc,1, ...,∆tc,n) according to equation(4.1):

∆tc,n = Tn−Tc (4.1)

Where Tn > Tn−1 >,.....,T2,T1. By running the measuring node, the time in which the
transaction is propagated by the measuring node and reached each node of the measuring node’s
connections was calculated. Specifically, the timing information is collected by running the
experiment 1000 times as one–off style events, networking delays, etc., are average out. At
each run, the measuring node is randomly connected to 10 nodes. The number of connected
nodes represents the sequence of the random nodes that the measuring node connects with at
each run.
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In terms of measuring the transaction propagation delay in the simulation world, the afore-
mentioned measuring method in the real Bitcoin network was used in the simulation. By doing
this, the simulation model was validated by comparing the propagation delay measurements
that have been collected from the Bitcoin simulator to the same measurements that have been
collected from the real Bitcoin network. As the measurements are indicated when peers re-
ceive transactions, the distribution of these measured time differences ∆tc,1 represents the real
transaction propagation delay.
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Fig. 4.8 Proportion of nodes that announced the transaction

The average distribution of ∆tc,n for the real Bitcoin network and the simulated network
is shown in Fig.4.7. Results reveal that during the first 13 seconds the transaction has been
propagated faster and 6 nodes received it with low variance of delays. It should be noted that
the transaction propagation delays are dramatically increased over nodes (9, 10) which means
that the transaction has been received by these nodes with significantly larger variances of
delays. Obviously, these results reveal that the propagation delay negatively corresponds with
the number of nodes, as the total duration of subsequent announcements of the transaction by
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the remaining nodes increases with larger numbers of connected nodes. This happened due to
each node being connected to large segments of the network, while the connected nodes were
not geographically localized. On the other hand, transaction verification at each node affects
trickling transaction to the remaining nodes. However, we discovered that our simulation model
approximately behaves as the real Bitcoin network.

Notably, it has been noticed while measuring the transaction propagation delay in the
real Bitcoin network that not all of the connected nodes received the transaction except rare
cases in which all 10 connected nodes announced the transaction. Fig.4.8 shows proportions
of announcing transactions for each node. Each proportion was calculated over 1000 runs.
Nodes 1, 2, 3 and 4 are almost received transactions within proportions between 90-100. The
proportion dramatically declined at node 5 and continued to go down to reach 34 at node 10.
This pointed to the issue that might be caused by network partitions in which the network is
divided into two or more partitions due to network outages or link failure, so that no information
flow between partitions is possible. However, network partitions can be done by an attacker
to impair the main Bitcoin functions. Therefore, partition attacks in the Bitcoin network are
evaluated in Chapter 5.

4.3 Conclusion

In this chapter, a model of the Bitcoin network which enables a full scale simulation of the
Bitcoin network was presented. In order to parameterise the presented model, the size of the
Bitcoin network, distribution of session’s length, and distribution of latencies between nodes
were accurately measured in this chapter. This chapter also shows a novel methodology to
measure the transaction propagation delay in the real Bitcoin network. Transaction propagation
measurements show that the transaction propagation time is significantly affected by the number
of connected nodes and the network topology which is not geographically localised. In addition,
partitions in the connection graph are actively detected. Validation of the presented model
against the measurements of transaction propagation in the real Bitcoin network was performed.
Validation results proved that the presented model behaves as close as the real Bitcoin network.





Chapter 5

Performance and Security Evaluation

5.1 Introduction

As mentioned in Chapter 4, the proposed protocols, namely BCBPT, LBC, BCBSN, and
MNBC, are developed in order to speed up information propagation in the Bitcoin network with
the aim of overcoming the limitations of the agreement on the common transactions history
in the Bitcoin network. This Chapter evaluates the performance and security of the proposed
protocols empirically in experimental studies. The developed simulator that is presented and
validated in Chapter 4 is used in the evaluation of the proposed protocols. Evaluation results
are also presented and discussed in this Chapter. Therefore, the second contribution and a part
of the first contribution mentioned in Section 1.8 are fulfilled in this Chapter.

5.2 Performance evaluation

As the main goal of the proposed protocols is to perform faster information propagation in
the Bitcoin network, the information propagation delay will be considered to be the main
performance metric in the evaluation of every protocol of the proposed protocols. Specifically,
the performance of the LBC, BCBPT, BCBSN, and MNBC is measured based on whether or
not the proposed protocols offer faster transaction propagation in the Bitcoin network.

5.2.1 Experiments setup

In this section, the experiment setup that is related to the performance evaluation of the proposed
protocols LBC, BCBPT, BCBSN, and MNBC will be explained. This experiment includes four
different scenarios of simulations, each scenario belongs to one of the proposed protocols. In
each simulation, the size of the network matters as the evaluation is based on the transaction



82 Performance and Security Evaluation

propagation delay. Therefore, the size of the network in each simulation matches the size of
the real Bitcoin network which was measured in Chapter 4, Section 4.2.1.3. Each node in
the overlay is allowed to discover new nodes every 100ms. Dependent on which theory is
applied, several proximity based clusters will be generated at certain times. As the performance
evaluation is based on measuring how fast a transaction is propagated in the network after
applying our clustering approaches, the transaction propagation delay in each approach is mea-
sured using the same methodology which was used in Chapter 4, Section 4.2.2.1, to measure
the transaction propagation delay in the real and simulated Bitcoin network. By doing this,
evaluation of each protocol of the proposed protocols against the real Bitcoin network as well
as the rest of the proposed protocols, can be undertaken by comparing measurements of the
transaction propagation delay that have been collected in the simulated Bitcoin protocol to the
same measurements that have been collected in the simulated proposed protocols.

Fig. 5.1 BCBSN simulation setup

Fig.5.1 gives a simple diagram of how the simulation experiment works with respect to the
BCBSN protocol, while Fig.5.2 illustrates the simulation setup of the MNBC protocol. On the
other hand, Fig.5.3 shows an example of the simulation setup for BCBPT and LBC protocol.
Before applying the aforementioned proximity cluster generation algorithms of the proposed
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Fig. 5.2 MNBC simulation setup

techniques that are mentioned in Chapter 5, it is assumed that the network nodes belong to
one cluster. Based on BCBPT and LBC protocol, several proximity based clusters will be
generated at certain times based on a chosen ping latency threshold in BCBPT protocol, and
geographical distance threshold in LBC protocol. In BCBPT, two nodes are close to each other
if the measured distance based latency is lower than the suggested distance threshold dt= 25ms.
In LBC protocol, if the geographical distance between two nodes is lower than the suggested
threshold dt=50km , then those nodes are close to each other. Regarding BCBSN protocol,
super peers will be selected at certain times by running the super peer selection algorithm that
is mentioned in Chapter 3, Section 3.4.1. After that, every super peer of the selected super peers
construct a cluster by recruiting the geographical closer nodes. Similarly, master node selection
algorithm in MNBC protocol that is mentioned in Chapter 3, Section 3.5.1, will be launched at
a certain point in the experiment time to select master nodes. The selected master nodes will
group peers that are close in the physical internet. However, the link distance between nodes are
modelled based on real-world measurements that were collected in Chapter 3, Section 4.2.1.2.

After getting some proximity based clusters in every simulation scenario, normal Bitcoin
simulator events will be launched. Within every protocol of the proposed protocols, a measuring
node c is implemented which is able to create a valid transaction T x and send it to one node of
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Fig. 5.3 LBC & BCBPT simulation setup

its connected nodes. It then tracks the transaction in order to record the time by which each
node of its connections announces the transaction. Therefore, transaction propagation delay is
calculated based on the methodology that has been followed in Chapter 4, Section 4.2.2.1, to
measure the transaction propagation delay in the real Bitcoin network.

However, the latency is determined by an average of approximately 1000 runs in order to
increase the accuracy of the collected latencies which might be affected by several factors such
as data corruption and loss of connection.

5.2.2 Results and discussions

The simulation results show that the proposed protocols offer an improvement in propagation
delay compared to the Bitcoin protocol. Fig.5.4 compares the distributions of ∆tc,n for the
simulated Bitcoin protocol against the same distributions that have been measured in the
simulated proposed protocols BCBSN, LBC, BCBPT, and MNBC. In the figure, the number of
connected nodes represents the sequence of the random nodes that the measuring node connects
with at each run. In all protocols, the distributions of delays increase gradually as the simulation
time moves forward and the number of connected nodes increases. It should be noted that the
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transaction propagation delays are larger in the simulated Bitcoin protocol over nodes (7,8,9,10)
while it has been received with less delays in BCBSN, LBC, BCBPT, and MNBC over the same
nodes sequence. This means that the transaction has been received by the connected nodes
in BCBSN, LBC, BCBPT, and MNBC protocol with lower variances of delays compared to
the simulated Bitcoin protocol. The reduction of the transaction propagation time variances in
the proposed protocols has to do with the fact that the Bitcoin network layout, where nodes
connect to other nodes without taking advantage of any proximity correlations, results in a high
communication link cost measured by the distance between nodes. Consequently, the average
delay to get transactions delivered is also increased which, on the other hand, would affect the
consistency of the public ledger. In fact, contrary to what was previously thought in this area,
result proved that reconstructing the Bitcoin network layout on proximity bases implies faster
transmissions.

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5
·104

Node with the highest transaction time out of 10 connected nodes

Tr
an

sa
ct

io
n

pr
op

ag
at

io
n

tim
e(

m
ill

is
ec

on
ds

)

Bitcoin Protocol
BCBSN Protocol

LBC Protocol
BCBPT protocol
MNBC protocol

Fig. 5.4 Comparison of the distribution of ∆tc,n measured in the simulated Bitcoin protocol
with BCBPT protocol, LBC protocol, BCBSN, and MNBC Protocol simulation results.(dt in
BCBPT=25ms, dt in LBC=50km)
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Turning now to the comparison between BCBPT, LBC, BCBSN, and MNBC protocol. As
shown in Fig.5.4, all the proposed protocols show relatively the same variances of delays over
nodes 1,2,3,4,5 and 6. From node 7, variances of delays in BCBSN protocol started climbing
steadily and reached a peak over the node 10 recording a transaction propagation delay at
nearly 18000 ms. In contrast, the trend of LBC variances of delays flattened off at a level of
2000 ms over the node 6 but then reached a peak of 2500 ms over the node 7. Since then, it has
quickly increased and reached 9000 ms over the node 10. On the other hand, the variances of
delays were improved in the BCBPT protocol over the LBC and BCBSN protocol, especially
over nodes 8,9, and 10. Regarding MNBC protocol, it maintains faster transaction propagation
delays compared to other trends in the graph regardless of the gradually increasing of those
delays when the number of nodes increases. The most likely cause of the higher variances of
delays in the BCBSN protocol is the fact that the information flow between clusters in BCBSN
protocol can only be maintained through supers peers. This causes lack of transformation
channels between clusters which results in inefficient information distribution over the network.
The lack of connections between clusters in BCBSN protocol has been tackled in MNBC
protocol by considering the edge nodes technology which adds an extra connection channels
between clusters. Therefore, faster information propagation has been achieved in the MNBC
protocol compared to the BCBSN protocol.

Even though the LBC protocol handles faster transaction propagation compared to the
BCBSN protocol, lowest variances of delays have been maintained in the BCBPT protocol
over the LBC and BCBSN protocol. It is almost certain that the cause of the lower variances
of delays in the BCBPT protocol compared to the LBC protocol is that two geographically
close nodes may actually be quite far from each other in the physical internet. Therefore,
physical distance may lead to better results, leading to a different conclusion that the proximity
awareness in the physical internet improves delivery latencies with a higher probability due to
offering fewer hops as well as shorter links. However, comparison of MNBC’s results with those
of other proposed protocols confirms that the MNBC protocol achieves the best improvement
that has been made to the delay of information propagation. A possible explanation for this
improvement may be due to the adoption of the physical internet distance as a proximity
metric in both edge nodes technology and clusters creation. Furthermore, the MNBC protocol
provided an extra transformation channels by which faster information distribution is fulfilled.

As BCBPT and LBC protocol are based on a suggested threshold, it is worth investigating
the optimal latency and geographical distance threshold that can achieve the best improvement
in information propagation. To this purpose, we experiment with the BCBPT and LBC based on
several suggested latency and geographical distance thresholds dt . In BCBPT, the comparison
among three variances of delays was undertakenbn based on three different latency suggested
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Fig. 5.5 Comparison of the distribution of ∆tc,n as measured in the simulated BCBPT protocol
with three thresholds (dt =30ms, 60ms, 90ms )

thresholds 30 ms, 60 ms, and 90 ms, whereas the comparison was performed in LBC protocol
based on 20 km, 50 km, and 100 km as geographical suggested thresholds. Results that are
shown in Fig.5.5 reveal that the less latency distance threshold in BCBPT performs less variance
of delays. Judging from that, there is a negative correlation between propagation delay and
the latency threshold, as the total duration of subsequent announcements of the transaction by
the remaining nodes increases with a larger latency threshold. The key reason of variances
of delays declining when the threshold value is reduced is that the number of nodes at each
cluster is minimised due to the limited coverage of the physical topology which is offered
by dt . Similarly, less geographical distance threshold in LBC, as illustrated in Fig.5.6, offers
less variances of delays. The most likely cause of the reduction in variances of delays when
the threshold value is minimised is that the limited coverage of geographical location offers
less number of nodes at each cluster which results in reducing the number of hops that the
transaction passes through.
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Fig. 5.6 Comparison of the distribution of ∆tc,n as measured in the simulated LBC protocol
with three thresholds (dt =20 km, 50 km, 100 km)

5.3 Security Evaluation

The potential of partition attacks on the proposed protocols as well as the Bitcoin network
will be evaluated in this section using the designed simulator. Generally, the main goal of
partition attacks is to partition the network into two or more partitions as well as prevent the
information flow between partitions (Apostolaki et al., 2017). In terms of the Bitcoin network,
the main target for an attacker launching partition attacks is to disturb the normal Bitcoin’s
main functions which would affect the users’ trust in the system. This might be an incentive for
an attacker due to the influence of users’ trust in the system on the Bitcoin exchange rate.

According to the attack model presented in this thesis, the attack will be performed within
three phases. The first phase starts when several malicious nodes which belong to an attacker
join the peer-to peer Bitcoin network and connect to many honest nodes. In order to increase
the probability of connecting to as many honest nodes as possible, only IP addresses of attacker
nodes are announced by other attacker nodes. Once the attacker guarantees that the satisfied



5.3 Security Evaluation 89

number of connections to honest nodes is maintained and the connectivity graph is thinned
out, a proximate snapshot of the network graph layout will be given by launching the second
scenario of the attack. This scenario can be achieved through a probabilistic method which has
been introduced in (Biryukov et al., 2014). By this method, the Bitcoin network topology can
be learnt within a reasonable probability through indicating whether or not two peers in the
network are connected by sending marker addresses and observing the flow of these addresses.
By doing so, the attacker will be able to indicate the minimum vertex cut of the network.
Minimum vertex cut is defined as minimum honest peers that removing them causes splitting
the graph into at least two partitions (Ugurlu et al., 2012). When the attacker selects peers for
Minimum vertex cut, denial-of-service (DDOS) attack will be performed on the selected peers.
However, our partition attack evaluation will be based on minimum vertex cut, as a metric to
indicate the cost of performing partition attacks. This metric has been used in (Neudecker et al.,
2015) to evaluate partition attacks in the Bitcoin network protocol.

5.3.1 Experiment setup

In this section, the experiment setup that deals with the evaluation of partition attacks in
the Bitcoin network as well as the proposed protocols based on minimum vertex cut will be
explained. The first phase of the attack will be started when the network topology is restructured
according to each protocol of the proposed protocols. Specifically, several attacker nodes join
the network and start establishing connections to many honest nodes. As the partition attack
evaluation in this work is based on minimum vertex cut as a cost metric, minimum vertex cut of
the network topology was determined at regular intervals using metis graph partition toolkits
(Karypis & Kumar, 1995). Metis algorithm can achieve a balanced partitioning that minimize
either the communication volume or number of edge cut (Miettinen et al., 2006). However,
the attack’s aim in this work is to get partitions of non-negligible size without taking into
consideration whether or not the partitions are imbalanced. Minimum vertex cut is determined
by an average of approximately 1000 runs in the simulated Bitcoin protocol and the proposed
protocols.

5.3.2 Results and discussions

Fig.5.7 shows the results of four simulated attacks on a model of the real Bitcoin network,
BCBPT, LBC, BCBSN, and MNBC protocol. Each attack was launched based on different
network sizes (2000,4000,6000, and 8000). In the small scenarios with number of nodes
(2,000 and 4,000), the number of honest peers on the minimum vertex cut in all protocols after
launching the partition attack stayed below 500 which reveals that all protocols are relatively
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Fig. 5.7 Number of honest peers on the minimum vertex cut

similar in terms of resistance against partition attacks. While in the large scenarios with 6,000
and 8,000 peers, the level of resistance against partition attacks increased in all protocols as
the number of nodes increases. The highest level is experienced in the Bitcoin protocol, while
the lowest level is appeared in the BCBSN protocol. Precisely, the minimum vertex cut in
the Bitcoin protocol increased from around 500 to 3,800 with the scenario of 8,000 peers
resulting in a notable gap in the minimum vertex cut between the Bitcoin protocol and other
protocols. Whereas, BCBPT, and LBC show less resistance with a minimum vertex cut below
2,000. On the other hand, MNBC protocol shows a relatively higher resistance over LBC and
BCBPT, where the number of honest nodes in the minimum vertex cut goes above 2,500 in the
scenario of 8,000 nodes. However, results of all scenarios reveal that the Bitcoin protocol is
more resistant against partition attacks compared to the proposed protocols. BCBSN protocol
is considered as the worst protocol of the proposed protocols in terms of the ease of performing
partition attacks as it showed the lowest minimum vertex cut in both large and small scenarios.
Although the proposed protocols experienced less minimum vertex cut compared to the Bitcoin
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protocol, the number of honest nodes required to cut in the proposed protocols is still high
which needs significant resources to be considered. As expected, clusters in MNBC that are
fully connected via master nodes and edge nodes, and clusters in LBC and BCBPT that are
connected via border nodes reflect less numbers of honest nodes in the minimum vertex cut.
While, clusters in BCBSN that are connected via super peers result in the number of nodes
in the area of the minimum vertex cut going down. However, results from large scenarios in
all protocols illustrate that a higher number of peers, requires more effort to be spent by an
attacker to split the network.

On the question of whether or not an attacker’s session length affects the resistance of
the network to partition attacks, the resistance of the Bitcoin network as well as the proposed
protocols will be tested against several session lengths of attack. Fig.5.8 shows the results of
the simulated partition attacks on a model of the real Bitcoin network, BCBPT, LBC, BCBSN,
and MNBC protocol, including different session lengths.
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The results that are shown in Fig.5.8 illustrate the impact of the attacker’s session length (SA)
on the success of the attack. Within 24 hours of attack, the number of nodes in the minimum
vertex cut declined in the simulated real Bitcoin network as well as the proposed protocols
as follows: the minimum vertex cut declined from around 3,700 to 1,500 in the real Bitcoin
network. The same scenario happened in the MNBC and BCBPT protocol where the minimum
vertex cut decreased from around 2500 to 1150 in MNBC protocol, and from around 1,800 to
930 in BCBPT protocol . Similarly, minimum vertex cut dropped down from 1,200 to 430 in
the LBC protocol, and from 850 to 290 in the BCBSN protocol. It can also be seen that the
simulated real Bitcoin network still performs better than the rest of the proposed protocols in
terms of the resistance to partition attacks. However, it can be concluded from the obtained
results that more patience from the attackers with a higher number of peers, the better chances
of success in splitting the network.

Moving on now to evaluate the impact of the number of clusters on the difficulty of
performing partitioning attacks in the proposed approaches. Fig.5.9 shows the minimum vertex
cut in the proposed approaches with respect to different numbers of clusters.
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According to the results that are shown in Fig.5.9, increasing the number of clusters results
in more nodes in the minimum vertex cut. It can be noticed that the minimum vertex cut
in all protocols positively corresponds with the number of clusters, more proximity clusters
results in increasing the difficulty to perform partition attacks. This suggests a strong link may
exist between the number of clusters and the improvement of the minimum vertex cut. This
improvement can be translated based on the number of border nodes in the BCBPT and LBC
approach, master nodes and edge nodes in MNBC approach, and super peers in the BCBSN
protocol. Specifically, increasing the number of clusters in the BCBPT and LBC offers more
border nodes between those clusters which results in more nodes in the minimum vertex cut. In
respect to the BCBSN protocol, more clusters reflect more super peers that are classified as
nodes in the minimum vertex cut. In MNBC approach, the number of master nodes and edge
nodes that are located in the minimum vertex cut can be optimized throughout increasing the
number of the proximity clusters in the network.

5.4 Conclusion

This chapter evaluated the performance and security of the proposed approaches. The perfor-
mance evaluation was against the transaction propagation speed, while the security evaluation
was based on the resistance of the proposed approaches to partition attacks. Performance
evaluation results indicate an improvement in the transaction propagation delay over the Bit-
coin network protocol. However, MNBC protocol maintains lowest variance of delays over
the BCBPT, LBC, and BCBSN protocol. Furthermore, experiments with different latency
thresholds in BCBPT as well as different geographical distance threshold values in LBC, have
been conducted to identify the distance threshold that would give better improvement in the
transaction propagation delay. We discovered that providing less latency and geographical
distance threshold would improve the transaction propagation delay with a high proportion.
Security evaluation results revealed that the Bitcoin network is more resistant against attackers
than the proposed protocols. In addition, results proved that maximising the number of clusters
in each proposed approach results in improving the network resistance against partition attacks.
However, attackers still need more resources to split the network in the proposed protocols
especially with a higher number of nodes.

The contributions of the thesis are summarised in Chapter 6. Furthermore, Chapter 6
clarifies the extent to which the research questions are answered. However, there is still room
for further improvement in the specified research area in spite of that the clustering approaches
introduced in the thesis shows significant advantages. Therefore, potential directions of this
research area are also specified further in Chapter 6.





Chapter 6

Conclusions and Future Work

6.1 Introduction

The main aim of this thesis is to evaluate the impact of clustering on information propagation
in the Bitcoin network as mentioned in Chapter 1. The experimental results shown in Chapter 5
prove that the incorporation of clustering based proximity can generally improve information
propagation in the Bitcoin network. Even though the security evaluation results shown in
Chapter 5 revealed that the adoption of clustering in the Bitcoin network might reduce the
network resistance against partition attacks, partition attacks are still hard to perform. However,
maximising the number of clusters in each proposed approach results in improving the network
resistance against partition attacks. This thesis also introduces several clustering approaches
that are based on how clusters in the Bitcoin network are formulated and the nodes define
their membership. The main objective of these approaches is to increase the proximity of
connectivity in the Bitcoin network which results in speeding up information propagation in
the network without compromising security. Furthermore, measurements of the transaction
propagation delay as well as large scale measurements of real Bitcoin network are presented in
this thesis.

This chapter stresses how research questions have been addressed, and also highlights the
contribution in Section 6.2, summarizes the methods and the findings of this research in Section
6.3, and sets out directions for future work in Section 6.5. The next section summarizes the
contribution and the research questions, and illustrates the questions have been addressed.
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6.2 Addressing the research questions

This research adopted a methodology that interleaves the hypothetico-deductive model and the
discrete simulation study methodology to help address the research questions. The methodol-
ogy stresses a three-stages process, which includes: (1) the analysis stage which involves the
investigation of the literature to formulate the hypothesis and figure out the main influential
entities that need to be modelled; (2) the simulation stage which involves the development of
the Bitcoin simulation model; (3) the design stage which involves the experiments setup with
the aim of answering the research questions. The first stage involved the formulation of the
hypothesis that is supported and proved by the investigation of the literature. The second stage
involved building the simulation model based on the main influential entities resulted from
the first stage. The third stage involved designing experiments based on the simulation model
resulted from the second stage. The methodology served to answer the research questions
which resulted in achieving several contributions this research made, which include:

1. Evaluation of clustering as a technique to speed up information propagation in the Bit-
coin network. The evaluation involved proposing four different clustering approaches which
include; (1) Locality based clustering which aims to increase the locality of connectivity by
grouping the Bitcoin network nodes based on geographical proximity; (2) Ping time based
clustering which aims to incorporate proximity-awareness into the existing Bitcoin protocol by
creating distinct, but connected clusters of peers with P2P latencies under a given intra-cluster
threshold; (3) Super peer based clustering which aims to reduce the intermediate hops between
any two peers as well as increasing the geographical connectivity between peers based on se-
lected super peers; (4) Master node based clustering which aims to reduce the non-compulsory
hops that the network information passes through as well as increasing the physical internet
proximity of connectivity between peers based on the selected master nodes. (Chapter 3 & 5).

2. Evaluation of security which involved the evaluation of partition attacks in the Bitcoin
network as well as the proposed approaches. (Chapter 5).

3. Providing the range of propagation delays within the real Bitcoin network with the aim of
validating any model of Bitcoin. (Chapter 4)

4. Performing large scale measurements of the real Bitcoin network in order to enable a
precise parameterisation of the Bitcoin simulation models. (Chapter 4).

The research questions and how they were answered are outlined below.
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(1) What is the range of propagation delays within the real Bitcoin network?
To answer this question, the investigation of how fast a transaction is propagated in the Bitcoin
network and how this is impacted by the number of nodes, was conducted in this PhD with the
aim of gathering validation requirements. The transaction propagation delay was measured in
the prior research by setup a Bitcoin client which keeps listening for INV messages. However,
this thesis introduces a novel methodology by which the transaction propagation delay is accu-
rately measured as measurements are indicated when peers receive transactions. Experiment
methodology and results are presented in the Chapter 4.

(2) Can clustering in the Bitcoin network improve the information propagation delay?
In order to answer this question, the evaluation of clustering in the Bitcoin network was carried
out in this PhD through evaluating four proposed clustering protocols in the Bitcoin network.
The evaluation of each protocol of the proposed protocols is based on the information propaga-
tion delay as a main performance metric. The proposed clustering protocols are presented in
Chapter 3, while the performance evaluation of these protocols are explained in Chapter 5.

(3) What is the security impact of the proposed protocols on the Bitcoin network?
In order to answer this question, evaluation of partition attacks against the proposed clustering
protocols as well as the real Bitcoin network, was carried out in this PhD using the designed
simulator and a partitioning tool (Metis). An attack model which involves three phases was
developed with the aim of evaluating the requirements of partition attacks. The first phase
starts when several malicious nodes that belong to an attacker join the peer-to peer Bitcoin
network and connect to many honest nodes. The second phase involves acquiring a proximate
snapshot of the network graph layout with the aim of identifying peers in the minimum vertex
cut. The third phase involves performing a DDOS attack on peers in the minimum vertex cut.
Experiment methodology and results are presented in the Chapter 5.

(4) How to evaluate any clustering protocol in the Bitcoin network?
To evaluate the security and performance of any clustering theory based on improving informa-
tion propagation, major changes are required to the Bitcoin protocol which would have to be
accepted by the Bitcoin community. Therefore, this question is answered through developing
a Bitcoin simulation model which is an event-based simulation framework dedicated to the
simulation of the Bitcoin network. As building any model of the real world should be evidenced
that the model is reflecting the virtual reality, we parameterise the presented model with data
of the real Bitcoin network. This data was gathered by large-scale measurements of the real
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Bitcoin network. To ensure the model’s validity before any experiments are designed, we
perform validation results of the presented model which were collected by comparing the model
against the real Bitcoin network based on the transaction propagation delay. The model and the
gathered measurements are illustrated in Chapter 4.

6.3 Summary of conducting this PhD research

In the Bitcoin network, all nodes participate in the transaction verification process which is
achieved in a distributed manner. Due to this, nodes should agree to a common transactions
history. However, achieving agreement on a common transactions log among nodes in the
Bitcoin network is far from trivial as inconsistency in the replicas of the ledger has a potential
and forks are more likely to be appeared. This incentivises attackers to perform double
spending attacks. As the consistency of the public ledger is mainly affected by how fast Bitcoin
information are distributed across the network, information propagation speed in the Bitcoin
network is considered as an essential requirement that need to fulfilled. Alas, a significant
delay in the information propagation is experienced due to the high latency of communications
between nodes which is caused by the nature of the network layout where nodes are connected
randomly without taking into account any proximity criteria. The discussion in Chapter 2
revealed that there are several methods have been proposed in order to fix this issue. However,
previous attempts of updating the network topology structure have not taken into account any
clustering approach. Instead, these attempts have considered either increasing the network
connectivity by maintaining a mesh network topology, or relying on several coordinator
nodes to support proximity of connectivity in the network without paying attention to security
risks. Thus, evaluation of different clustering approaches based on speeding up information
propagation in the Bitcoin network was considered throughout this research with the aim of
filling the gap in this respect. As it is mentioned in the previous section, a research methodology
that interleaves the hypothetico-deductive model and the discrete simulation study methodology
is followed in this research to answer the research questions previously mentioned.

The aim of this research was to explore the potential of clustering with respect to improving
the information propagation delay in the Bitcoin network without compromising security. Four
clustering protocols that aim to increase the proximity of connectivity among nodes in the
Bitcoin network, were proposed in this research. These clustering protocols include locality
based clustering (LBC), Ping time based clustering (BCBPT), Super peer based clustering
(BCBSN), and Master node based clustering (MNBC). The LBC protocol was designed to
enhance local connections across the Bitcoin network via promoting connections to nearby
nodes, in terms of geographical distance. To maximise the level of security awareness, LBC
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protocol was achieved based upon the principle of distributed algorithm as each and every
node will run the protocol in an independent fashion using data from nodes discovered in the
local neighborhood. During this phase, nodes all over the network are categorized into clusters
so that each cluster comprises nodes that belong to the same geographical location, this can
be achievable by adding an extra function to each node across the Bitcoin network. On the
other hand, the BCBPT protocol aims to increase the proximity of connectivity in the Bitcoin
network by grouping Bitcoin nodes based on ping latencies between nodes. Each node in the
Bitcoin network should run a distributed algorithm by which nodes connect to the closest nodes
in the physical internet, resulting a significant improvement in the proximity of connectivity of
the network.

The BCBSN protocol relies on several nodes, known as super peers, that contribute in
creating a set of geographically divers and fully connected clusters. Each super peer is
responsible for recruiting nearby nodes to its cluster as well as propagating network information
to its cluster nodes and other super peers in different clusters. Whereas, clusters in MNBC
protocol are generated via specific nodes, known as master nodes, based on proximity in the
physical internet. Clusters are fully connected by master nodes and edge nodes. However,
more details regarding the cluster creation and cluster maintenance in relation to all proposed
protocols are mentioned in Chapter 3.

In order to evaluate the proposed protocols against the information propagation delay in the
Bitcoin network, Bitcoin simulation model was developed in this research. Measurements of
several network parameters that have a direct impact on information propagation were presented
in this research to paramterise the presented model with the aim of reflecting the reality. These
parameters include the size of the real Bitcoin network, session lengths, and link latencies
between nodes. Furthermore, measurements of the transaction propagation delay in the Bitcoin
network were collected using a novel methodology. These measurements were utilized to
validate the Bitcoin simulation model that was developed in this research. The measurements
of the collected Bitcoin network parameters and transaction propagation delay are presented
and explained along with the Bitcoin model validation results in Chapter 4.

The performance evaluation of the proposed clustering protocols was carried out in this
research using the developed simulator. Evaluation results indicate an improvement in the trans-
action propagation delay over the Bitcoin network protocol. However, MNBC maintains lowest
variance of delays over the LBC, BCBPT, and BCBSN protocol. Furthermore, experiments
with different latency thresholds in BCBPT as well as different geographical distance threshold
values in LBC, have been conducted to identify the distance threshold that would give a better
improvement in the transaction propagation delay. It has been discovered that providing less
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latency and geographical distance threshold would improve the transaction propagation delay
with a high proportion (See Chapter 5).

The security evaluation of the proposed protocols was conducted in this research by mea-
suring the resistance of the proposed protocols against partition attacks. Evaluation results
revealed that the Bitcoin network is more resistant against attackers than the proposed protocols.
However, attackers still need more resources to split the network in the proposed protocols
especially with a higher number of nodes. Furthermore, It has been proved that the resistance
of the proposed protocols to partition attacks can be maximised by increasing the number of
clusters in each protocol (See chapter 5).

6.4 Scientific and practical importance

The findings from this PhD respond to the study’s research questions and help to achieve its
goal, which is to evaluate the concept of network clustering based proximity in improving
the information propagation delay in the Bitcoin network without compromising security.
These findings contribute in maximising the probability of reaching a consistent state over the
blockchain. This results in reducing the chances of performing successful double spending
attacks. However, this thesis also have some other scientific and practical aspects.

In the respect of scientific aspects, Bitcoin network measurements presented in this thesis
can be used in other research that aim to analyse the behaviour of Bitcoin network nodes and
perform studies with respect to the network structure. Furthermore, transaction propagation
delays in the real Bitcoin network that are performed in this thesis can be used as a benchmark
in other research with the aim of validating models of Bitcoin as well as evaluating the
performance of the Bitcoin network. Moreover, the simulation model developed in this thesis
can be used to conduct other studies that focus on analysing information propagation in the
Bitcoin network as well as evaluating different classes of attacks on the Bitcoin network.

In the respect of practical aspects, findings from this thesis contribute in increasing the
level of trust in Bitcoin due to the fact that speeding up information propagation in the Bitcoin
network contributes in avoiding double spending attacks. As it is mentioned earlier, accelerating
information propagation in the Bitcoin network maximises the probability of achieving an
agreement on transactions history over the blockchain. This would encourage the adoption of
the blockchain in domains involving voting and collective decision making.

6.5 Future work

This section suggests extensions to the present work.



6.5 Future work 101

6.5.1 Reduce the size of the blockchain

Evaluation of four proposed clustering protocols were conducted in this PhD based on speed-
ing up information propagation in the Bitcoin network. It would be interesting to consider
evaluation of several techniques that can reduce the size of the public ledger at each node.
As transactions are validated against the blockchain that currently contains a history of all
transactions and it still grows in the size with each new transaction, reduction of transactions
history at each node can play an important role towards achieving an optimal transaction
verification time. To overcome this problem, a multichain protocol can be incorporated with
our proposed clustering protocols in order to create an individual blockchain for each cluster.
The evaluation of different interoperability techniques needs to be carried out in order to offer
secure interoperability among chains of different clusters.

Fig. 6.1 Incorporating multichain protocol with clustering in the Bitcoin network

6.5.2 Observing blockchain forks

Evaluation of the proposed protocols was carried out in this research based on transaction
propagation delay. However, it would be interesting to evaluated the proposed clustering
protocol against the blockchain forks. Therefore, more research will be conducted to find out
whether or not the proposed protocols reduce the blockchain occurrence rate.



102 Conclusions and Future Work

6.5.3 Evaluating the network overhead

To measure the distance between nodes in "ping latency" in the BCBPT protocol and MNBC
protocol requires every pair of nodes to interact, which added an extra overhead to the network.
This overhead will be evaluated in our future work. On the other hand, reducing the latency
threshold in the BCBPT protocol and geographical distance threshold in the LBC protocol
would decrease the size of clusters which leads to the creation of many clusters in the network.
This might result in a side effect which is represented by an extra traffic overhead. This will be
investigated in our future work.
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Appendix I : Transaction propagation delay measurements in the real Bitcoin network

Fig. 2 Box plot of transaction propagation delay distribution in the real Bitcoin network





Appendix II: the confirmation time costs for the 25, 50 and 75 percentile for 1000
transactions

Fig. 3 Transactions’ confirmation times





Appendix III: UPR16 Form

Fig. 4





Appendix IV: Bitcoin Crawler

Bitcoin Client

public class BitcoinClient {
Socket client;
InputStream in;
OutputStream out;

/**
* Hash something twice with sha256
*
* @param in what to hash
* @return the hash
*/

public static byte[] sha256twice(byte[] in) {
MessageDigest md;
try {
md = MessageDigest.getInstance("sha-256");
byte[] hash1 = md.digest(in);
md.reset();
return md.digest(hash1);
} catch (NoSuchAlgorithmException e) {
// TODO Auto-generated catch block
e.printStackTrace();
throw new RuntimeException();
}
}

/** generate a hex string of byte array with bytes reversed (bitcoin does this for tx hashes etc)
*
* @param in what to generate hex string from
* @return the hex string
*/

public static String hexStringReversed(byte[] in) {
String hex = Hex.encodeHexString(in);
String nhex = "";
for (int i = hex.length(); i>0; i-=2) {
nhex += hex.substring(i-2, i);
}
return nhex;
}
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public BitcoinClient() {

}

/**
* Attempt to connect to a peer
*
* @param peer
* @return whether successful
*/

public boolean connect(PeerAddress peer) {
// TODO Auto-generated method stub
client = new Socket();

try {
client.connect(new InetSocketAddress(peer.ip, peer.port), 10000);

in = client.getInputStream();
out = client.getOutputStream();
} catch (Exception e1) {
return false;
}

return true;
}

public static BitcoinPacket decodePacket(InputStream in) throws IOException {
// READ ENTIRE PACKET IN
byte[] hdr = new byte[24];

IOUtils.readFully(in, hdr); // hdr bytes
ByteBuffer buf = ByteBuffer.wrap(hdr);
buf.order(ByteOrder.LITTLE_ENDIAN);

int magic = buf.getInt();
if(magic != BitcoinPacket.NETWORK) {
throw new IOException("Incoming packet has wrong NETWORK MAGIC");
}

byte[] cmdbyte = new byte[12];
buf.get(cmdbyte);
String cmd = new String(cmdbyte).trim();

int length = buf.getInt();
byte checksum[] = new byte[4];
buf.get(checksum);
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// get payload
byte payload[] = new byte[length];
IOUtils.readFully(in, payload);

// verify payload checksum
byte[] calc_checksum = sha256twice(payload);
if(!Arrays.equals(checksum, Arrays.copyOfRange(calc_checksum, 0, 4))) {
System.out.println("CHECKSUM FAILED");
throw new IOException("Checksum failed");
}

return new BitcoinPacket(cmd, payload);
}

long lastPingTime = 0;

/**
* Connect to a peer and sent a getaddr message, wait for addr response and
* return list of peers it knows
*
* @param timeout how long to wait for addr response (milliseconds)
* @return list of known peers or null on failure/timeout
*
* @throws IOException
*/

public HashSet<PeerAddress> enumerate(long timeout) throws IOException {
long startConnection = System.currentTimeMillis();

// send version packet
VersionPacket vpkt = new VersionPacket(client);
out.write(vpkt.pack());

while(true) {
if(System.currentTimeMillis() - startConnection > timeout)
return null; // if we’ve been connected more than two minutes then disconnect - the node hasn’t sent the peer address list

BitcoinPacket inPkt = decodePacket(in);

// System.out.println("Received: "+inPkt.command);

// handle incoming packet
if(inPkt.command.equals("version")) {
// acknowledge a version packet, at which point the connection is now up
out.write(new BitcoinPacket("verack", new byte[] {}).pack());

// send a ping
byte []nonce = new byte[8];
new Random().nextBytes(nonce);
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out.write(new BitcoinPacket("ping", nonce).pack());
lastPingTime = System.currentTimeMillis();
out.flush();

// request list of peers as we’re now connected
out.write(new BitcoinPacket("getaddr", new byte[] {}).pack());

} else if(inPkt.command.equals("ping")) {
out.write(new BitcoinPacket("pong", inPkt.payload).pack());

} else if(inPkt.command.equals("pong")) {
long pingTime = System.currentTimeMillis() - lastPingTime;
//System.out.println("PING TIME (ms): "+pingTime); // PRINT OUT PING TIME FOR THIS NODE

} else if(inPkt.command.equals("addr")) {
ByteBuffer pl = ByteBuffer.wrap(inPkt.payload);
int entries = (int) BitcoinPacket.from_varint(pl);

// get list of peers
HashSet<PeerAddress> peerset = new HashSet<>();
for(int i=0; i<entries; i++) {
PeerAddress pa = BitcoinPacket.from_netaddr(pl);
peerset.add(pa);
}

client.close(); //close connection once we’ve got list of addresses (use for crawler only)
return peerset;

} /* else if(inPkt.command.equals("inv")) {
ByteBuffer pl = ByteBuffer.wrap(inPkt.payload);

// print out inv entries:
long count = BitcoinPacket.from_varint(pl);
for (int i = 0; i < count; i++) {
int type = pl.getInt();
byte hash[] = new byte[32];
pl.get(hash);
System.out.println("[INV] Got Type "+type+" with hash "+hexStringReversed(hash));
}

//Uncomment to request full transactions via a getdata
//out.write(new BitcoinPacket("getdata", inPkt.payload).pack());

} */ /* else if(inPkt.command.equals("tx")) { // received a transaction object
System.out.println("TX: "+hexStringReversed(sha256twice(inPkt.payload)));
}*/
}
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}
}
****************************************************************************************************
Bitcoin Packet:

public class BitcoinPacket {

final static int MAINNET = 0xD9B4BEF9;
final static int TESTNET = 0xDAB5BFFA;
final static int TESTNET3 = 0x0709110B;

public static int NETWORK = MAINNET;

byte[] payload;
String command;

public BitcoinPacket(String command, byte[] payload) {
super();
this.command = command;
this.payload = payload;
}

/**
* Convert packet into bytes to be sent over socket
*
* @return bytes
*/

public byte[] pack() {
ByteBuffer buf = ByteBuffer.allocate(1024);
buf.order(ByteOrder.LITTLE_ENDIAN);
buf.putInt(NETWORK);
buf.put(command.getBytes());
for(int i=command.length(); i<12; i++)
buf.put((byte)0);
buf.putInt(payload.length);
buf.put(Arrays.copyOfRange(BitcoinClient.sha256twice(payload), 0, 4));
buf.put(payload);
buf.flip();
byte[] outbuf = new byte[buf.limit()];
buf.get(outbuf);
return outbuf;
}

/**
* Read a netaddr from a bytebuffer (advancing byte buffer) and
* return a peer address
*
* @param buf byte buffer
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* @return
*/

public static PeerAddress from_netaddr(ByteBuffer buf) {
buf.order(ByteOrder.LITTLE_ENDIAN);
Date time = new Date((long)buf.getInt()*1000L);
long services = buf.getLong();
byte[] ipdata = new byte[16];
buf.get(ipdata);
buf.order(ByteOrder.BIG_ENDIAN);
int port = buf.getShort();
InetAddress ip = null;
try {
ip = InetAddress.getByAddress(ipdata);
} catch (UnknownHostException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
buf.order(ByteOrder.LITTLE_ENDIAN);

return new PeerAddress(ip, port, time);
}

static int SERVICES = 1;
/**
* Convert ip and port into netaddr structure for incorporation into bitcoin packet
*
* @param ip
* @param port
* @return bytes to go into packet
*/

public static byte[] to_netaddr(InetAddress ip, int port) {
ByteBuffer buf = ByteBuffer.allocate(1024);
buf.order(ByteOrder.LITTLE_ENDIAN);
buf.putLong(SERVICES); // services
buf.putLong(0);
buf.putInt(0xFFFF0000);
byte ipbuf[] = new byte[4];
try {
ip.getByAddress(ipbuf);
} catch (UnknownHostException e) {
// TODO Auto-generated catch block
e.printStackTrace();
throw new RuntimeException();
}
buf.put(ipbuf);
buf.order(ByteOrder.BIG_ENDIAN);
buf.putShort((short)port);
buf.flip();
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byte out[] = new byte[buf.limit()];
buf.get(out);
return out;
}

/**
* Read varint from byte buffer advancing the byte buffer
*
* @param buf
* @return the value
*/

public static long from_varint(ByteBuffer buf) {
buf.order(ByteOrder.LITTLE_ENDIAN);
int type = buf.get() & 0xff;
buf.order(ByteOrder.LITTLE_ENDIAN);
if(type < 0xFD) {
return type;
} else if (type == 0xfd) {
return buf.getShort();
} else if (type == 0xfe)
return buf.getInt();
else
return buf.getLong();
}

/**
* Long to varint bytes for incorporation into a packet
* @param in
* @return
*/

public static byte[] to_varint(long in) {
ByteBuffer buf = ByteBuffer.allocate(1024);
buf.order(ByteOrder.LITTLE_ENDIAN);

if(in < 0xFD)
buf.put((byte)in);
else if(in < 0xFFFF) {
buf.put((byte)0xFD);
buf.putShort((short)in);
} else if(in < 0xFFFFFFFF) {
buf.put((byte)0xFe);
buf.putInt((int)in);
} else {
buf.put((byte)0xFF);
buf.putLong(in);
}
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buf.flip();

byte out[] = new byte[buf.limit()];
buf.get(out);
return out;
}

/**
* String to varstr bytes for incorporation into packet
*
* @param str
* @return
*/

public static byte[] to_varstr(String str) {
ByteBuffer buf = ByteBuffer.allocate(1024);
buf.order(ByteOrder.LITTLE_ENDIAN);
buf.put(to_varint(str.length()));
buf.put(str.getBytes());
buf.flip();

byte out[] = new byte[buf.limit()];
buf.get(out);
return out;
}
}
************************************************************************************************************
Network Crawler:

public class NetworkCrawler implements Runnable {
public static void main(String[] args) throws InterruptedException, IOException {
new NetworkCrawler();
}

// Queue off to crawl peers
PriorityBlockingQueue<PeerAddress> crawlQueue = new PriorityBlockingQueue<>(1000,new Comparator<PeerAddress>() {
@Override
public int compare(PeerAddress o1,
PeerAddress o2) {
// TODO Auto-generated method stub
return o1.time.before(o2.time) ? +1:-1;
}
});
// Set of known peers (ip,port) peers
ConcurrentHashMap <String, PeerAddress> knownPeers = new ConcurrentHashMap<>();
//Set<PeerAddress> knownPeers = Collections.newSetFromMap(new ConcurrentHashMap<PeerAddress,Boolean>());

public void newPeersDiscovered(HashSet<PeerAddress> set, PeerAddress source) {
for (PeerAddress peerAddress : set) {
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newPeerDiscovered(peerAddress, source);
}
}

public void newPeerDiscovered(PeerAddress peerAddress, PeerAddress source) {
if(!knownPeers.containsKey(peerAddress.toString())) {
if(source != null)
peerAddress.learnedFrom.add(source);
crawlQueue.add(peerAddress);
knownPeers.put(peerAddress.toString(), peerAddress);
} else {
PeerAddress existing = knownPeers.get(peerAddress.toString());
if(source != null)
existing.learnedFrom.add(source);
}
}

public void doDnsSeeding(int count, String host, int port) throws UnknownHostException {
InetAddress addrs[] = InetAddress.getAllByName(host);
for (int i = 0; i < count && i<addrs.length; i++) {
addSeed(addrs[i].getHostAddress(), port);
}
}

public void addSeed(String host, int port) throws UnknownHostException {
PeerAddress seed = new PeerAddress(InetAddress.getByName(host),port,new Date());
newPeerDiscovered(seed, null);
}

AtomicLong successfullyConnected = new AtomicLong(0);
// Connection con = null;
int crawlId = 0;
AtomicLong runningThreads = new AtomicLong(0);
public NetworkCrawler() throws InterruptedException, IOException {
// uncomment for testnet --------------------------
/* BitcoinPacket.NETWORK = BitcoinPacket.TESTNET3;
doDnsSeeding(50, "testnet-seed.bitcoin.petertodd.org", 18333);*/
//-----------------------------

// load seeds
Path good = Paths.get("knowngoodips.txt");
if(good.toFile().exists()) {
for(String line : Files.readAllLines(Paths.get("knowngoodips.txt"), Charset.defaultCharset())) {
String[] info = line.trim().split(" ");
if (info.length != 2)
continue;
addSeed(info[0], Integer.parseInt(info[1]));
}
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}

//MAINNET
doDnsSeeding(10, "bitseed.xf2.org", 8333);
addSeed("46.4.93.54", 8333);
addSeed("207.226.141.129", 8333);
addSeed("68.173.52.208", 8333);
addSeed("209.58.130.210", 8333);
addSeed("66.175.220.212", 8333);
addSeed("195.62.61.25", 8333);
addSeed("93.190.137.186", 8333);
//------------
long startCrawl = System.currentTimeMillis();

// launch a work thread pool to do the crawling (run() is crawl func)
int POOLSIZE = 5000;

// ExecutorService exec = Executors.newFixedThreadPool(POOLSIZE+5);
System.out.println("Launching worker threads... this may take a minute or two...");

while (runningThreads.get() < POOLSIZE) {
//exec.execute(this);
new Thread(this).start();
Thread.sleep(5);
}

// print out status every 200ms
while(runningThreads.get()>0) {
System.out.println((System.currentTimeMillis() - startCrawl) + " STATUS known "+knownPeers.size() + " left to crawl "+crawlQueue.size()+" successful conns "+successfullyConnected.get() +" threads "+runningThreads.get());
try {
Thread.sleep(200);
} catch (InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}
//exec.awaitTermination(100, TimeUnit.DAYS);
System.out.println("FINAL: STATUS known "+knownPeers.size() +" successful conns "+successfullyConnected.get());
SimpleDateFormat sdf = new SimpleDateFormat("yy-MM-dd H.mm.ss");

BufferedWriter fw = new BufferedWriter(new FileWriter("bitcoincrawl "+sdf.format(new Date())+".txt"));
BufferedWriter file_goodips = new BufferedWriter(new FileWriter("knowngoodips.txt"));
for(PeerAddress p : knownPeers.values()) {
fw.write(p.ip.getHostAddress() + " " + p.status + " ");
if(p.status == PeerAddress.STATUS_AVAILABLE) // log known good ips
file_goodips.write(p.ip.getHostAddress() + " " + p.port + "\r\n");
for(PeerAddress lf : p.learnedFrom) {
if(lf == null || lf.ip == null) continue;
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fw.write(lf.ip.getHostAddress() + " ");
}
fw.write("\r\n");
}
fw.close();
file_goodips.close();

}

/* do the crawling thread
*/

public void run() {
runningThreads.incrementAndGet();
while(!crawlQueue.isEmpty()) {
PeerAddress nextPeer;
try {
nextPeer = crawlQueue.poll(2, TimeUnit.MINUTES);
} catch (InterruptedException e1) {
e1.printStackTrace();
runningThreads.decrementAndGet();
return;
}

//System.out.println("Trying "+nextPeer);
BitcoinClient bc = new BitcoinClient();
if(bc.connect(nextPeer)) {

nextPeer.status = PeerAddress.STATUS_AVAILABLE;

try {
bc.client.setSoTimeout(15000);

HashSet<PeerAddress> peercache = bc.enumerate(10000);
successfullyConnected.incrementAndGet();

if(peercache != null) {
newPeersDiscovered(peercache, nextPeer);
}
} catch (IOException e) {
// TODO Auto-generated catch block
nextPeer.status = PeerAddress.STATUS_TIMEOUT;
//e.printStackTrace();
}
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} else {
nextPeer.status = PeerAddress.STATUS_DOWN;
}
}
runningThreads.decrementAndGet();
}
}
************************************************************************************************
Peer Address:

public class PeerAddress {
InetAddress ip;
int port;
Date time;
ArrayList <PeerAddress> learnedFrom = new ArrayList<>();
int status = PeerAddress.STATUS_UNKNOWN; // 0=not tried, 1=down, 2=timeout, 3=up

final static int STATUS_UNKNOWN = 0;
final static int STATUS_DOWN = 1;
final static int STATUS_TIMEOUT = 2;
final static int STATUS_AVAILABLE = 3;

public PeerAddress(InetAddress ip, int port, Date time) {
super();
this.ip = ip;
this.port = port;
this.time = time;
}
@Override
public String toString() {
return "PeerAddress [ip=" + ip + ", port=" + port + "]"; // warn used for comparisons
}

@Override
public int hashCode() {
// TODO Auto-generated method stub
return ip.hashCode();
}

@Override
public boolean equals(Object obj) {
// TODO Auto-generated method stub
if(obj instanceof PeerAddress) {
PeerAddress other = (PeerAddress) obj;
return ip.equals(other.ip) && port == other.port;
}
return false;
}
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}
*******************************************************************************************
Schedule Crawl:

public class ScheduleCrawl {

public static void main(String[] args) throws InterruptedException {
// TODO Auto-generated method stub
long start = System.currentTimeMillis();

while(true) {
long nextCrawl = System.currentTimeMillis() + 3600*1000*3;

try {
new NetworkCrawler();
} catch (InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace();
} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}

System.out.println("Waiting for next crawl time");
while(System.currentTimeMillis() < nextCrawl)
Thread.sleep(5000);

}

}

}
********************************************************************************************

Version Packet:

public class VersionPacket extends BitcoinPacket {

/**
* Generate a version packet
*
* @param remote
*/

public VersionPacket(Socket remote) {
super("version", null);
ByteBuffer buf = ByteBuffer.allocate(1024);
buf.order(ByteOrder.LITTLE_ENDIAN);
buf.putInt(70002);



130 Appendix IV: Bitcoin Crawler

buf.putLong(SERVICES); // services
buf.putLong(System.currentTimeMillis()/1000);
buf.put(to_netaddr(remote.getInetAddress(), remote.getPort()));
buf.put(to_netaddr(remote.getLocalAddress(), remote.getLocalPort()));
buf.putLong(new Random().nextLong());
buf.put(to_varstr("peerenum"));
buf.putInt(0);
buf.put((byte)1);
buf.flip();
payload = new byte[buf.limit()];
buf.get(payload);

// TODO Auto-generated constructor stub
}

}
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Class Calculate Distance:

public class CalculateDistance {

HashMap<Integer, String> connectedVer = new HashMap<Integer, String>();
// HashMap<String, IpParameters> IPS = new HashMap<String, IpParameters>();
List<String> l = new ArrayList<String>();
List<Integer> l1 = new ArrayList<Integer>();
List<String> l2 = new ArrayList<String>();
List<String> l3 = new ArrayList<String>();
public void calculateDis(int N, Graph graph) throws FileNotFoundException {
int randnNode;
// int nodeID;
double T=150.0;

randnNode = randInt(1, N);
while (l3.contains(randnNode)) {

randnNode = randInt(1, N);
}
l1.add(randnNode);// getting random node with its vertice
Vertice v = graph.vMap.get(randnNode);
List<String> connectedIP = new ArrayList<String>();
for (Vertice temp : v.connectedVertices) {
int node = temp.data;

System.out.println("the node"+" "+v.data +" "+" ping the node"+" "+temp.data);
double NormalDistribution=Distribution.NormalDist();

if (NormalDistribution<=T)
{

System.out.println("Ping time is ok="+" "+NormalDistribution+ " keep nodes connected");
String IP1 = connectedVer.get(node); // retrive all the IPS of the
String IP2= connectedVer.get(randnNode);
// Cluster( IP1, IP2, graph);// connected nodes
connectedIP.add(IP1);
// getLatit(IP1);
System.out.println(" the IP is" + IP1);
}

else
{
System.out.println("Ping time isn’t ok="+" "+NormalDistribution+ " Disconnect them");



132 Appendix IIII: Bitcoin Simulator

temp.connectedVertices.remove(v);
System.out.println("Disconnected");
}

}

System.out.println("start explore other nodes");
for (int j = 0; j < l.size(); j++) {

// System.out.println(" the IP2 is");
String IP1 = l.get(j);

//System.out.println("the node"+" "+v.data +" "+" ping the node"+" "+node);
System.out.println("the node"+" "+v.data +" "+" ping the node"+" "+IP1);

double NormalDistribution=Distribution.NormalDist();
if (NormalDistribution<=T)
{

System.out.println("Ping time isn’t ok="+" "+NormalDistribution+ " Disconnect them");
String IP2= connectedVer.get(randnNode);
Cluster( IP1, IP2, graph); // connected nodes

}

/*for (int i = 0; i < connectedIP.size(); i++) {
String IP1 = connectedIP.get(i);
// System.out.println(" the IP2 is");
for (int j = 0; j < l.size(); j++) {
// System.out.println(" the IP2 is");
String IP2 = l.get(j);
// getLatit(IP2);
// System.out.println(" the IP2 is"+IP2);
HarvestFun(IP1, IP2, graph); // measure the distance
}
}*/
}
}

/*
* for (Vertice temp : v.connectedVertices) {
*
*
*
* connectedVer.put(temp, IP);
*
* }
*/

/*public void HarvestFun(String P1, String P2, Graph graph) { // measuring the
// distance
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// between two
// IPs
final int R = 6371; // Radious of the earth
Double lat1 = 0.0;
Double lon1 = 0.0;
Double lat2 = 0.0;
Double lon2 = 0.0;
IP m = new IP();
// IpParameters obj =null;
for (Entry<String, Double> entry : m.IP.entrySet()) {
if (entry.getKey().equals(P1)) {
lat1 = entry.getValue();
}
}
// lat1 = obj.Latit;
for (Entry<String, Double> entry : m.IP1.entrySet()) {
if (entry.getKey().equals(P1)) {
lon1 = entry.getValue();
}
}
// lon1 = obj.Loung;
// IpParameters obj1 = m.IP.get(P2);
for (Entry<String, Double> entry : m.IP.entrySet()) {
if (entry.getKey().equals(P2)) {
lat2 = entry.getValue();
}
}
for (Entry<String, Double> entry : m.IP1.entrySet()) {
if (entry.getKey().equals(P2)) {
lon2 = entry.getValue();
}
}
// lat2 = obj1.Latit;
// lon2 = obj1.Loung;
System.out.println(
"The IP1 is : " + " " + P1 + " " + "the lat" + " " + lat1 + " " + "the long" + " " + lon1);
System.out.println(
"The IP2 is : " + " " + P2 + " " + "the lat" + " " + lat2 + " " + "the long" + " " + lon2);

Double latDistance = toRad(lat2 - lat1);
Double lonDistance = toRad(lon2 - lon1);
Double a = Math.sin(latDistance / 2) * Math.sin(latDistance / 2)
+ Math.cos(toRad(lat1)) * Math.cos(toRad(lat2)) * Math.sin(lonDistance / 2) * Math.sin(lonDistance / 2);
Double c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1 - a));
Double distance = R * c;

System.out.println("The distance between IP1 and IP2 is::" + distance);
Cluster(distance, P1, P2, graph);
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}

private static Double toRad(Double value) {
return value * Math.PI / 180;
}*/

public void Cluster(String P1, String P2, Graph graph) { // If
// the
// distance
// below
// the
// threshold
// ,
// connect
// two
// IPs
/*Double Threshold = 50.00;
Vertice V = null;
Vertice V1 = null;
if (dis < Threshold) {*/
Vertice V = null;
Vertice V1 = null;

for (Entry<Integer, String> entry : connectedVer.entrySet()) {
if (entry.getValue().equals(P1)) {
Integer nodeId = entry.getKey();
V = graph.vMap.get(nodeId);
}

}
for (Entry<Integer, String> entry : connectedVer.entrySet()) {
if (entry.getValue().equals(P2)) {
Integer nodeId1 = entry.getKey();
V1 = graph.vMap.get(nodeId1);
}
}
System.out.println("I’m here in clustering");
graph.connectVertices(V, V1);
}

public void ReferIP() { // Refer an IP for all nodes in the network.
// connectedVer gonna include the id of the node and
// its IP
Simulator s = new Simulator();
IP m = new IP();
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for (int i = 0; i < 5000; i++) {
String IP = s.getRandomList(m.l);
while (l2.contains(IP)) {
IP = s.getRandomList(m.l);
}
l2.add(IP); // To prevent repeating the same IP as we are choosing
// them randomly

connectedVer.put(i, IP);
// System.out.println("I’m here in refer IP");
}
}

public void IPsList(int N) { // the method selects 50 random ips and put
// them in l list. These IPs will be used to
// compare with specific IP
l = new ArrayList<String>();
String IPs = null;
for (int i = 0; i < 50; i++) {
int randnNode = randInt(1, N);
while (l1.contains(randnNode)) {
randnNode = randInt(1, N);
}
l1.add(randnNode);
IPs = connectedVer.get(randnNode);

l.add(IPs);
}
}

public static int randInt(int min, int max) {
Random rand = new Random();
int randomNum = rand.nextInt((max - min) + 1) + min;
return randomNum;
}
}

*****************************************************************************

Class Simulator:

static HashMap<Integer, String> connectedVer1 = new HashMap<Integer, String>();
static PriorityQueue<Event> queue = new PriorityQueue<>(
new Comparator<Event>() {
@Override
public int compare(Event o1, Event o2) {
// TODO Auto-generated method stub
if (o1.time < o2.time)
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return -1;
else if (o1.time == o2.time)
return 0;
else
return +1;
}
});

public static String NodeLocation() {

List<String> countries = new ArrayList<String>();
countries.add("Uk");
// countries.add("FRA");
countries.add("USA");
// m.add("do nothing");
Simulator obj = new Simulator();
/*for(int i=0;i< countries.size();i++)
{
System.out.println("The countries is"+countries.get(i));
}*/
return (obj.getRandomList(countries));
}

public static String getRandomEventType() {

List<String> differentEvents = new ArrayList<String>();
differentEvents.add("Create Transaction");
// differentEvents.add("Forward Transaction");
differentEvents.add("X");
differentEvents.add("Y");
differentEvents.add("Z");
// m.add("France");
// m.add("do nothing");
Simulator obj = new Simulator();
return (obj.getRandomList(differentEvents));
}

public String getRandomList(List<String> m) {
//Random random = new Random();
int index = ThreadLocalRandom.current().nextInt(m.size());
return m.get(index);
}

public static int randInt(int min, int max) {
// NOTE: This will (intentionally) not run as written so that folks
// copy-pasting have to think about how to initialize their
// Random instance. Initialization of the Random instance is outside
// the main scope of the question, but some decent options are to have
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// a field that is initialized once and then re-used as needed or to
// use ThreadLocalRandom (if using at least Java 1.7).
Random rand = new Random();
// nextInt is normally exclusive of the top value,
// so add 1 to make it inclusive
int randomNum = rand.nextInt((max - min) + 1) + min;
return randomNum;
}

static long generateRandom(double lastRandomNumber) {
int UPPER_BOUND = 2;
Random random = new Random();
int randomNumber = random.nextInt(UPPER_BOUND - 1) + 1;
if (randomNumber == lastRandomNumber) {
randomNumber = 0;
}
return randomNumber;
}

void createInitialEvents(int NoOfRandomEvents, int N)
throws InterruptedException {
Random r = new Random();
int randnNode;
long timestamp = 60;
String location = NodeLocation();
randnNode = randInt(1, N);
// Thread.sleep(1);
Transaction1 tx = creatmessage();
queue.add(new Event(timestamp , "CreatTX", randnNode,
location, tx));
for (int i = 0; i < 20; i++) {
// Message m=creatmessage();
// long timestamp= java.lang.System.currentTimeMillis();
// String eventType= getRandomEventType();
location = NodeLocation();

randnNode = randInt(1, N);
// Thread.sleep(1);
tx = creatmessage(); // Here just push a transaction

// for each event as in the
// further steps we will need to
// catch the transaction for
// each event.
queue.add(new Event(timestamp * SECOND, "Dosomething", randnNode,
location, tx));
System.out.println("event added for NODE= " + randnNode
+ " in region " + location + "Time Stamp=" + timestamp);
timestamp = generateRandom(timestamp);
}
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}

public int hash() {
int hash = this.hashCode();
return hash;
}

public static Transaction1 creatmessage() // To create a transaction,
// currently it has just has two
// fields, hash which is just
// number and random coin.I am
// trying to make the hash
// similar to the real
// transaction.(will try)
{

Random r = new Random();
int max = 100;
int min = 1;
int coin = r.nextInt(max - min + 1) + min;
while (l.contains(coin)) {
max = 100;
min = 1;
coin = r.nextInt(max - min + 1) + min;
}
l.add(coin);

String hash = UUID.randomUUID().toString();
Transaction1 tx = new Transaction1(hash, coin, 0);
return tx;

}

public static void runSimulation(int N,Graph graph) throws FileNotFoundException { // method to poll events and
// run them
long timeLimit = 1 * HOUR;
int randnNode;
int count =0;
int PerectageOfNodes=0;
long timestamp=120; //This time for orginaze new incoming events
while (!queue.isEmpty()) {

// System.out.println("New event is entered ");
/* if(Node.HavingEvent()=="Have an event")
{
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String location = NodeLocation();
randnNode = randInt(1, N);
Transaction1 tx = creatmessage();
queue.add(new Event(timestamp * SECOND, "Dosomething", randnNode,
location, tx));

timestamp+=60;
}*/
Event e = queue.poll();
int node = e.node;
long lastUpdatedTime = e.time;

Vertice V1 = graph.vMap.get(node);
String NodeLocation = e.location;
if (currentTime > timeLimit) {
System.out.println("No more events - finishing simulation");
break;
}
switch (e.eventType) {
case "Dosomething": {
if (Node.dosomething() == "CreatTx") {

Transaction1 tx = e.tx;
tx.birthTime = java.lang.System.currentTimeMillis();
e.eventType = " creat transaction";
// e.birthTime=Time;
System.out.println("Event at time " + " " + lastUpdatedTime
+ " with type " + " " + e.eventType + "at node"
+ " " + node + " " + "Transaction" + " "
+ tx.hash);

// System.out.println("Transaction is created at node"+" "+node);
Node.PropogateTransaction(V1, e, tx,N); // method to propagate
// the transaction
// for 8 nodes
} else
System.out.println("the node:" + " " + node + " "
+ "has no event ");
currentTime = lastUpdatedTime;

break;
}

case "CreatTX": {
System.out.println("CreatTX");

Transaction1 tx = e.tx;
tx.birthTime = java.lang.System.currentTimeMillis();
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e.eventType = " creat transaction";
// e.birthTime=Time;
System.out.println("Event at time " + " " + lastUpdatedTime
+ " with type " + " " + e.eventType + "at node"
+ " " + node + " " + "Transaction" + " "
+ tx.hash);
for (Vertice temp : V1.connectedVertices) {
//int node1=temp.data;
M.add(temp);
}
// System.out.println("Transaction is created at node"+" "+node);
Node.PropogateTransaction1(V1, e, tx,N); // method to propagate
// the transaction
// for 8 nodes

break;
}
/*
* case "Received Transaction" : { Transaction1 tx=e.tx;
* System.out.println("Transaction"+" "+tx.hash+" "+
* "is announced by :"+" "+node);
*
* //long currentTime=java.lang.System.currentTimeMillis(); long
* propagationdelay=Time-timeReceive;
*
* System.out.println("The propagation delay"+" "+Time);
* queue.add(new
* Event(Time,"forward Transaction",node,NodeLocation,tx,0));
*
* break; }
*/

case "Forward Transaction": {
Transaction1 tx = e.tx;

if (M.contains(V1)){
System.out.println("Transaction" + " " + tx.hash + " "

+ "is announced by :" + " " + node+" "+"which is one of it’s connction");

long stopTime=java.lang.System.currentTimeMillis();
long propagationdelay = stopTime - tx.birthTime;

System.out.println("The propagation delay is :" + " "
+ propagationdelay);
Node.PropogateTransaction(V1, e, tx,N);
PerectageOfNodes=(int) (count*4000.0/100.0);
System.out.println("Percentage of nodes that have received the transaction is"+" "+PerectageOfNodes);

}
else{
System.out.println("Transaction" + " " + tx.hash + " "
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+ "is announced by :" + " " + node);
long stopTime=java.lang.System.currentTimeMillis();

long propagationdelay = stopTime - tx.birthTime;
System.out.println("The propagation delay is :" + " "
+ propagationdelay);

Node.PropogateTransaction(V1, e, tx,N);
currentTime = lastUpdatedTime;

}
count=count+1;

break;
}

case "AddNode":
{
System.out.println("New node was joined the network");

N= N+1;
graph.createNode(N);
//Node.allNodes.put(N, lastUpdatedTime);
break;

}

case "RemoveNode":
{
System.out.println("Removing Node to the Graph");

graph.removeRandomNode(N);
Node.allNodes.put(node, Node.allNodes.get(node)-1); //updating the score,When node goes offline will get penalty score.

break;
}
}
}
}

public static void main(String[] args) throws InterruptedException, FileNotFoundException {
int N = 3000; // no of nodes in the graph
int NoOfEdgesinGraph = (N * (N - 1)) / 200; // the maximum no of edges
// in the graph is n(n-1)/2
int NoOfRandomEvents = N / 100;

Graph graph = new Graph();
graph.createGraph(N, NoOfEdgesinGraph);
System.out.println(" ------- Graph Created ------------");

Simulator s = new Simulator();
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s.createInitialEvents(NoOfRandomEvents, N);
System.out.println(" ----Random Events Created and added to the priority queue---");
//Node.nodeOnlineScore();
//SuperNodeSelection sup=new SuperNodeSelection();
//sup.ReferLocation();
/*System.out.println("Locations are refered");
sup.peerselected(graph);
System.out.println("New super peers entered superpeers pool");
sup.peerselected(graph);

System.out.println("New super peers entered superpeers pool");
//sup.ConnectToSuperpeers1(graph);
sup.ConnectToSuperpeers(graph);*/
CalculateDistance dis=new CalculateDistance();
IP ip=new IP();
ip.run();
dis.ReferIP();
for(int i=0;i<50;i++)
{
System.out.println("New clustering attempt");
dis.IPsList(N);

dis.calculateDis(N, graph);
}
/* try {

while (true) {
dis.calculateDis(N, graph);

Thread.sleep(5 * 1000);
}

} catch (InterruptedException e) {
e.printStackTrace();

}*/

// s.runSimulation(N,graph);
// JSONObject graphObj = new JSONObject();

for (Integer name: graph.vMap.keySet()){

String a =",";
a=a.replace(",", "");
System.out.print("");

System.out.println("");
String key =name.toString();

// graphObj.put("node",key);

Vertice value = graph.vMap.get(name);
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for (Vertice temp : value.connectedVertices) {
int node=temp.data;
k.add(value);
if (k.contains(temp))
{

}
else
System.out.print("("+key + " ," + node+")"+",");

/* System.out.println("Writing JSON object to file");
System.out.println("-----------------------");

try {

// Writing to a file
File file=new File("N:\\CountryJSONFile.json");
file.createNewFile();
FileWriter fileWriter = new FileWriter(file);

System.out.println(graphObj+ "\n");

fileWriter.write(graphObj.toJSONString());
fileWriter.flush();
fileWriter.close();

} catch (IOException e) {
e.printStackTrace();

} */

}
}

}}

// Transaction t= new Transaction();
// t.createRandomTransaction(N, graph);

****************************************************************************************

Class Node:

package ClusteringBasedPingTime;
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import java.io.FileNotFoundException;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Random;
import java.util.Map.Entry;

public class Node {

static HashMap<Integer, Integer> allNodes = new HashMap<Integer, Integer>();
static List<Integer> l = new ArrayList<Integer>();
int from;
int to;
int milliBitCoins;
public static final long Interval = 3 * 200;
public static double r;
int NodeId;
String IP;

/*
* public void createRandomTransaction(int N, Graph graph) { int v1=
* randInt(1, N); int v2= randInt(1, N); int coins= randInt(1,N);
* this.from=v1; this.to=v2; this.milliBitCoins=coins;
*
* System.out.println("Random Transaction created from Node "+ from+
* " No of milliBitcoins to be sent "+milliBitCoins);
*
* Vertice V1 = graph.vMap.get(v1); Vertice V2 = graph.vMap.get(v2);
* System.out.println(" inserting in to hashmap "+ this.hashCode()+ "to "+
* V1.data); V1.hashCodesRecieved.put(this.hashCode(), true);
* //PropogateTransaction(V1); System.out.println(
* " --------- PROPOGATION COMPLETE FOR TRANSACTION -----------"); }
*
*/

Node(int NodeId, String IP)
{
this.NodeId=NodeId;
this.IP=IP;
}
public static int RandomScore() {
int max=100;
int min=1;
Random r =new Random();
int k=r.nextInt(max - min + 1)+min ;
while(l.contains(k))
{

max=100;
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min=1;
k=r.nextInt(max - min + 1)+min;

}
l.add(k);
return k;
}
public static String dosomething() {
String s = null;

r = Math.random();

if (r >= 0 && r < 0.1) {
s = "CreatTx";
// System.out.println("the value of r is"+r);

// schedule(0);
// createInitialEvents(n);

return s;

}
/*
* else if (r>=0.1 && r<0.11) {
*
* }
*/

return s;
}

public static int check(int N) throws FileNotFoundException
{
Simulator sim = new Simulator();
double NormalDistribution=Distribution.NormalDist();
if( NormalDistribution>N)
return 1;

else
return 0;

}
public static void nodeOnlineScore()
{
for(int i=0;i<=40;i++)
{
int r=RandomScore();
allNodes.put(i, r);
}
}
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public static int getHighestOnlineScore()
{
Entry<Integer, Integer> maxEntry = null;
int superpeer = 0;

for (Entry<Integer, Integer> entry : allNodes.entrySet()) {
if (maxEntry == null || entry.getValue() > maxEntry.getValue()) {
maxEntry = entry;
}
superpeer = maxEntry.getKey();

}

return superpeer;
}

public static void PropogateTransaction(Vertice V1, Event e, Transaction1 tx,int N) throws FileNotFoundException {
Simulator sim = new Simulator();
long timestamp = e.time;
String location = e.location;

for (Vertice temp : V1.connectedVertices) {
if (!temp.hashCodesRecieved.containsKey(tx.hash))// hash has not
// been recieved
// before
{
// System.out.println("Propogating tx with txHash "+tx.hash+
// " from "+ V1.data +" to "+ temp.data);
temp.hashCodesRecieved.put(tx.hash, true);
int node = temp.data; // Get the node in order to refer an event
// for it

double NormalDistribution=Distribution.NormalDist();
long Latency = (long) (timestamp + NormalDistribution);
long TotalLatency = Latency * 3;
sim.queue.add(new Event(TotalLatency, "Forward Transaction",
node, location, tx)); // For each node annonces the
// transaction, refer even for
// it with the type (forward
// transaction)

System.out.println("Transaction" + tx.hash + " "
+ " has been propagated to " + " " + node + " "
+ "at time" + " " + timestamp);
// System.out.println(" inserting in to hashmap "+
// this.hashCode()+ " for node "+ temp.data);
// count++;
// System.out.println("---------"+ count);
// PropogateTransaction(temp);
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timestamp = timestamp + 100;
}
}
long Time=timestamp+400;

int k=check(N);
if(k==1)
{
sim.queue.add(new Event(Time, "RemoveNode",

0, location, tx));
}
else
{
sim.queue.add(new Event(Time, "AddNode",

0, location, tx));
}

}

public static void PropogateTransaction1(Vertice V1, Event e, Transaction1 tx,int N) throws FileNotFoundException {
Simulator sim = new Simulator();
long timestamp = e.time;
String location = e.location;

for (Vertice temp : V1.connectedVertices) {
if (!temp.hashCodesRecieved.containsKey(tx.hash))// hash has not
// been recieved
// before
{
// System.out.println("Propogating tx with txHash "+tx.hash+
// " from "+ V1.data +" to "+ temp.data);
temp.hashCodesRecieved.put(tx.hash, true);
int node = temp.data; // Get the node in order to refer an event
// for it

double NormalDistribution=Distribution.NormalDist();

long Latency = (long) (timestamp + NormalDistribution); // just assume that each transaction needs 2
// millisecode to be propagated between two
// nodes.

long TotalLatency = Latency * 3;
sim.queue.add(new Event(TotalLatency, "Forward Transaction",
node, location, tx)); // For each node annonces the
// transaction, refer even for
// it with the type (forward
// transaction)

System.out.println("Transaction" + tx.hash + " "
+ " has been propagated to " + " " + node + " "
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+ "at time" + " " + timestamp);
// System.out.println(" inserting in to hashmap "+
// this.hashCode()+ " for node "+ temp.data);
// count++;
// System.out.println("---------"+ count);
// PropogateTransaction(temp);
//timestamp = timestamp + 100;
break;
}
}
}
}
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