
Decentralized CDN
for Video Streaming
Matias Correia
Mestrado Integrado em Segurança Informática
Departamento de Ciências de Computadores
2022

Orientador
Prof. Dr. Rolando Martins, Faculdade de Ciências

Coorientador
Prof. Dr. Luís Antunes, Faculdade de Ciências

Todas as correções determinadas

pelo júri, e só essas, foram efetuadas.

O Presidente do Júri,

Porto, / /

UNIVERSIDADE DO PORTO

MASTERS THESIS

Decentralized CDN for Video Streaming

Author:

Matias CORREIA

Supervisor:

Rolando MARTINS

A thesis submitted in fulfilment of the requirements

for the degree of MSc. Cyber Security

at the

Faculdade de Ciências da Universidade do Porto

Departamento de Ciências de Computadores

January 23, 2023

mailto:example@fc.up.pt
mailto:rmartins@fc.up.pt

“ I am and always will be the optimist, the hoper of far-flung hopes and the dreamer of

improbable dreams ”

Matt Smith as The Doctor, written by Matthew Graham

Acknowledgements

I want to take a moment to thank all the people who helped me through this journey.

First, I wish to thank my supervisor, Prof. Dr. Rolando Martins. Without his guidance

it would have been impossible.

A special thanks to Steven Allen, one of the lead developers in IPFS, who always

answered my emails helping me understand the core logic behind IPFS.

To my friends and girlfriend, which supported me through the dark times. We can

now be together without you having to ear me complaining about all the tests gone

wrong.

Finally to my family for their unconditional support, patience and understanding.

Without you believing in me, I never would have made it. This accomplishment is also a

bit yours.

UNIVERSIDADE DO PORTO

Abstract

Faculdade de Ciências da Universidade do Porto

Departamento de Ciências de Computadores

MSc. Cyber Security

Decentralized CDN for Video Streaming

by Matias CORREIA

The increase in video streaming consumption, representing a large portion of internet

global traffic, has risen the costs for this service providers Content Delivery Network

(CDN) infrastructures. This dissertation explores the option of using Peer-to-Peer (P2P)

to share cached video files and the future integration of this group with standard CDN

infrastructures, diminishing the costs associated with the bandwidth used by the servers.

We use InterPlanetary File System (IPFS)[1] which is a P2P hypermedia protocol that

aggregates different protocols creating a decentralized file sharing system. We applied

and tested some changes to IPFS in order to potentially improve its performance in video

file sharing since streaming is a delay sensitive task.

To test the changes made to IPFS we measured 3 key metrics: the delay between the

requested and the sending of a block, the delay between the sending and the reception of

a block and the number of duplicate blocks in each test.

As a result, the margins between tests were very slim. The reason for this could be

because of the random factor used, by default Bitswap and by our implementation, when

selecting the peers to provide blocks.

To have a better grasp of the impact of the changes made to IPFS more tests on each

scenario are necessary for a trend to be observable. Also tests that would be closer to real

world scenarios with more nodes could also lead to better conclusions. Nonetheless IPFS

is a viable option to form a P2P group for video streaming and sharing.

mailto:example@fc.up.pt

UNIVERSIDADE DO PORTO

Resumo

Faculdade de Ciências da Universidade do Porto

Departamento de Ciências de Computadores

Mestrado em Segurança Informática

Optimização de custo em streaming de vı́deo

por Matias CORREIA

O aumento no consumo de streaming de vı́deo, que representa uma larga porção do

tráfego global de internet, tem expandido os custos para as infraestruturas das Content

Delivery Network (CDN) destes provedores de serviços. A presente dissertação explora

a opção de utilizar Peer-to-Peer (P2P) para partilhar os ficherios de vı́deo guardados em

cache e a futura integração deste grupo com a infraestrutura de uma CDN standard dimi-

nuindo assim os custos associados com a largura de banda usada pelos servidores.

Usamos o InterPlanetary File System (IPFS)[1] que é um protocolo P2P de hypermedia

que agrega diferentes protocolos para criar um sistema de ficheiros descentralizado. Fo-

ram feitas e testadas mudanças ao IPFS para potencialmente melhorar a sua performance

no que toca à partilha de ficheiros de vı́deo, uma vez que o streaming é sensı́vel à latência.

Para testar as mudanças feitas ao IPFS medimos três métricas-chave: a latência en-

tre quando um block é pedido e enviado, a latência entre quando um block é enviado e

recebido e o número de blocos duplicados em cada teste.

Concluı́mos que as margens entre cada teste foram pequenas. Isto pode dever-se ao

fator aleatório usado, pelo Bitswap default e pela nossa implementação, na escolha do

próximo peer para fornecer os blocos.

Para perceber melhor o impacto das mudanças feitas ao IPFS seriam precisos mais

testes em cada cenário para criar uma tendência observável. Além disso, testes com mais

nós na rede, num cenário mais próximo de uma utilização real do protocolo, poderia

levar a que fossem tiradas melhores conclusões. Contudo, o IPFS é uma opção viável

para formar um grupo P2P para partilha e streaming de vı́deo.

mailto:example@fc.up.pt

Contents

Acknowledgements v

Abstract vii

Resumo ix

Contents xi

List of Figures xiii

1 Introduction 1

2 Related Work 5
2.1 Caching Methodology . 5
2.2 Flow optimization in CDNs . 8
2.3 Security . 11

3 Background 15
3.1 Standard CDN . 15

3.1.1 Cloudflare . 16
3.1.2 Akamai . 16

3.2 IPFS . 18
3.2.1 How does it work . 18
3.2.2 IPFS protocols . 20

3.3 IPFS Privacy . 24
3.3.1 Encryption . 25
3.3.2 Privacy Enhancements . 25

4 Architecture 29
4.1 Private IPFS network . 30
4.2 P2P . 31

4.2.1 Location Awareness . 33
4.3 Log Recording . 38
4.4 Export Command . 39

5 Test results and analysis 41
5.1 Setup . 41

xi

xii DECENTRALIZED CDN FOR VIDEO STREAMING

5.1.1 VM control . 41
5.1.2 Test Scenarios . 42
5.1.3 Data Processing . 42

5.2 Result Analysis . 44
5.3 Cost reduction . 47

6 Conclusion 49

A Github Repositories 51

Bibliography 53

List of Figures

3.1 I HAVE VALUE RPC . 19
3.2 BitSwap - Discovery . 22
3.3 IPFS Workflow . 24

4.1 CDN architecture with a P2P group . 30
4.2 Default Bitswap Flow diagram . 32
4.3 Bitswap Mode 2 Flow diagram . 34
4.4 Bitswap Mode 3 Flow diagram . 35
4.5 Database entry example . 39

5.1 Entry match to calculate delay between requesting and sending a block . . . 43
5.2 Entry match to calculate delay between sending and receiving a block . . . 43
5.3 Logging process on each message . 43
5.4 Request Delay Scenario 1 . 45
5.5 Send Delay Scenario 1 . 45
5.6 Duplicates Scenario 1 . 45
5.7 Request Delay Scenario 2 . 45
5.8 Send Delay Scenario 2 . 45
5.9 Duplicates Scenario 2 . 45
5.10 Request Delay Scenario 3 . 46
5.11 Send Delay Scenario 3 . 46
5.12 Duplicates Scenario 3 . 46

xiii

Chapter 1

Introduction

Cloud computing, an extremely popular solution based on centralization of computation

and storage, has recently been threatened by the large growth of devices with internet

access. With the development of Internet of Things (IoT), the introduction of new gadgets

to the market and the continuous rise of smartphones, cloud services infrastructure has

been pushed to the limit in order to provide the Quality of Service (QoS) required to real

time applications.

Nowadays, video consumption is at an all time high. The growth and development

of mobile devices alongside with apps like Youtube and Netflix, which have seen a big

influx of new users in the past years, have contributed to the exponential growth in the

amount of video streaming internet traffic. For example, in February 2020, Youtube was

estimated to have 500h of video uploaded every minute [2] and Cisco estimates that in

2022 82% of internet traffic will be video streaming [3].

With currently large amounts of traffic being generated on a wide range of devices,

connections to cloud data centers need to be larger and faster and thus more expensive

in order to provide adequate latency to maintain QoS. A number of technologies, such

as Cloudlet [4],[5], Mobile Edge Computing (MEC) [6], Fog computing [7] and Mobile

edge-clouds [8], have emerged to bring the cloud closer to the end user, aiming to pro-

vide a reduced delay between requests and also to reduce the burden on centralized cloud

servers, distributing the traffic by placing more servers on the edge of the network. The

adoption of these technologies comes with the rise of more demanding real time appli-

cations requiring a better latency to provide good Quality of Experience (QoE) to their

users.

1

2 DECENTRALIZED CDN FOR VIDEO STREAMING

With an even more distributed approach in mind, Peer-to-Peer (P2P) provides a way

of distributing furthermore this traffic amongst the service users reducing the backhaul

burden on cloud servers, reducing latency, providing a cheaper service and possibly even

with less delays.

Cyber security is a big concern in modern world technology and users want to be safe

with their data. As cloud services protect their user data, decentralized solutions also

have to do too. A P2P technology have to ensure that users do not have access to their

peers private info, such as IP and data they are downloading/sharing.

In this thesis we want to provide a solution of a P2P group of untrusted nodes that

could easily be integrated with a standard Content Delivery Network (CDN), as well as

test its performance while sharing a mp4 file amongst nodes. We believe that a P2P group

is better suited to be used in conjunction with a cloud solution rather than aiming to re-

place it. To do so, we used an emerging and already deployed P2P technology, InterPlan-

etary File System (IPFS), since it has already a HTTP API and could easily be integrated

with a CDN and browser utilization.

We use IPFS [1] with a few changes in order to try to optimize it to video stream-

ing. This is done by changing the way IPFS chooses the next peer to provide set block.

Currently IPFS randomizes this choice with a bigger probability for peers that have pre-

viously provided blocks. We wanted to give a bigger probability for peers with the least

latency possible.

A review of the main investigation was done to reduce CDN costs, either by using

different caching methodologies or by optimizing its flow. Also, we will go through some

research regarding the integration of CDNs with P2P groups and regarding the safety of

CDNs and P2P file sharing systems.

To provide important background for this thesis, we describe how IPFS, the main tech-

nology used in this thesis, works. We also study in depth its modules, emphasising the

ones that we changed in this thesis as well as the key points that provide an improvement

when comparing with other P2P file sharing systems.

Also, we address the architecture chosen for this work explaining how the P2P works

and how we provided location awareness with the changes made to the IPFS algorithm

used.

As the changes made had to be tested, we explain how the tests were set up to evaluate

these changes and compare them to the previous iteration of IPFS. Lastly the results were

1. INTRODUCTION 3

also analyzed.

Finally we take conclusions about the results and talked about the possible future

work.

Chapter 2

Related Work

In this section we go through the two main research topics aiming to reduce CDNs overall

cost, caching methodology (2.1) and flow optimization (2.2). We also discuss the security

(2.3) research related to CDN and Edge Computing to bring security solutions to CDN

cost optimization.

2.1 Caching Methodology

Cache servers aim to reduce the burden on the backhaul link to the CDN server and

provide a service with less delays and buffer times therefore avoiding fetching multiple

times the same video, that is otherwise stored at the cache server near the edge of the

network. There is a latent trade-off between achieving the best Cache Hit Ratio (CHR)

possible and the cheapest CDN infrastructure.

Auto-scalable caching [9] services reduce costs while providing the best possible per-

formance for the CDN. By using an auto-scaling cache method with machine learning,

each cache node should determine the optimal Time-To-Live (TTL) for each piece of con-

tent getting the best CHR for the best optimized cost. They do so by monitoring how

many requests did each piece of content get in each cache node and then a TTL is set

based on the content popularity (more requests means that a specific piece of content is

more popular). This TTL value is updated according to user requests as well as the cached

content itself, if a requested piece is not on the cache node, the request is forwarded to the

main server caching it afterwards with an assigned TTL.

Proactive Caching [10, 11] is a method where content demand is predicted and pop-

ular content is prefetched into the cache servers. By doing so, it is possible to achieve a

5

6 DECENTRALIZED CDN FOR VIDEO STREAMING

better CHR and less delay on first demands for the video. In [10] user patterns related

to video watching are studied, so that only the watched video chunks are cached in edge

servers instead of caching the entire video. In another study [11], the proactive caching

approach is done by analysing content popularity through a big data platform and pre-

cache it onto the edger servers.

Probabilistic cache [12] placement in wireless Device-to-Device (D2D) networks aims

to maximize CHR and throughput. In this type of wireless networks, the cached content

can either be stored at the network devices or the edge base stations causing this network

topology to have a special case of cache hit when the requested file is within the requester

itself.

Whenever a device requests a file and there is more than one device which has that file

near to the requester, the closest node is the one that transmits the file. If no close node

has the file, it will be transferred from the closest base station.

In this article the probabilistic cache placement refers to the probability of an occur-

rence of a cache hit inside the edge network with another device having the requested

file.

In [13] GridCast (a P2P Video on demand (VOD) system) is explored, evaluating per-

formance and user experience. Authors try to optimize GridCast by doing more aggres-

sive caching and prefetching. To reduce seek latency and improve user experience, an

anchor prefetching algorithm was implemented as a way to deal with random seeks.

Before this research GridCast was only locally caching the current video. This pa-

per proposes a more aggressive approach by suggesting that multiple recently watched

videos should be cached using more user resources. By doing so, the probability that a

peer has the content that a user is requesting drastically increases, reducing the backhaul

link burden.

Cache deployment cost optimization [14] focuses on the cache deployment process.

This research focuses on optimizing cache deployment in internet core by analysing a

set of metrics, such as end users traffic, and matching it with the most acceptable per-

formance from an autonomous systems. Their Cache Deployment Operation (CaDeOp)

system aims to plan the CDN deployment in a longer term enabling updates that optimize

the deployment under expected future conditions.

Device Caching is used in hybrid CDN-P2P topologies leading to the use of CDN

mobile nodes as a way to offload the burden on CDN and edge cache servers. This can

2. RELATED WORK 7

also be a way of reducing costs by reducing the edge cache server resource requirements

or potentially even completely removing it. This topologies are a CDN with different

clusters where users inside a cluster share content via D2D communication whilst under

cluster head coordination. Content can be cached in either the base station (BS) or the

users themselves meaning that upon receiving a request, the cluster head either delivers

it itself or forwards the request to another node or to the BS. This article also proposes

a reward system for users who share content instead of assuming that users will do it

without any kind of incentive. Lastly, authors make an analysis on the trade-offs between

costs and stability of a CDN with edge caching and D2D content sharing.

Research [15] focuses on crowded environments proposing a different approach to

wireless video streaming consumption and developing a secure method of D2D content

sharing. Iris supports Multicast, Unicast, Retransmission, Scheduling/Multipath, For-

ward Error Correction (FEC), Mobile Data usage, Security features, such as authentica-

tion, authorization, forward secrecy, stream integrity and P2P while being a Full System

solution. The results of the study in this article show that there are advantages to this

environments.

Another popular solution regarding Device Caching providing the option for a de-

centralized CDN solution, is IPFS which is a completely decentralized P2P file sharing

method [1]. IPFS is an already implemented solution that uses Kademlia Distributed

Hash Table (DHT) overlay. In Kademlia, content is stored under a (Key,Value) pair, the

Value being the content itself and the Key its hash. The pair is then stored in the nodes

with the closest ID to the Key. This brings a massive draw back as we are consuming stor-

age and bandwidth from nodes which potentially do not need that specific file and also

we are ignoring the far away nodes that already had the file. Facing this challenge, IPFS

uses a merge between Kademlia and Coral DSHT [16] extending Kademlia to store refer-

ences to nodes which have each data block. Small sized files (1KB) are stored directly on

the DHT whereas with larger files the DHT stores references to node IDs of peers which

have that file and can transmit it. Additionally, it uses Merkle DAG which are a merge

of merkle trees [17] and Directed Acyclic Graphs (DAG) in order to provide content ad-

dressing, tamper resistance and deduplication optimizing storage.

In [18] D2D caching and communication is explored, proposing a caching placement

with mobility of users in mind.

8 DECENTRALIZED CDN FOR VIDEO STREAMING

2.2 Flow optimization in CDNs

Flow optimizations consist in defining the best routes from CDN server to edge nodes in

order to achieve the best QoE possible and performance out of the CDN, while hopefully

minimizing the overall cost in the process. CDN flow optimization can be done by dy-

namically changing traffic routes mainly exploring on the fly optimization using Software

Defined Networks (SDNs) alongside CDNs to observe network status and adapt routing

path and server selection. Alternatively, this dynamic routes management can also be

done by managing the CDN replicas.

Another option explored is the merging of the two most popular video delivery solu-

tion, CDNs and P2P networks, with the purpose of creating a hybrid CDN-P2P network

having the content cached in the edge nodes which share it with each other providing a

lower delay time, better QoE and ultimately a less costly edge cache server infrastructure.

Dynamic Routing is a solution based on the implementation of SDN applications

which monitor the network state and adapt traffic routes according to the network state.

One author [19] makes use of MPLS to change routing paths whereas in [20] authors pro-

pose an approach where they combine both optimal server selection and optimal rout-

ing path selection by centralizing network management in a intelligent SDN platform.

Moreover, an algorithm to assign user requests considering mainly response time and

bandwidth to optimized simultaneously server assignment and routing path selection is

proposed.

Another approach that is taken into account to optimize CDN flow is by managing its

replicas. The authors of [21–23] developed ways to integrate Kubernetes fog computing

with flow optimization providing the best QoE possible for the user.

Replica Management aims to optimize CDN flow as well as related costs by dynam-

ically adding replicas in high traffic areas and removing them when few traffic occurs.

Additionally, it can also be done by optimizing replica routing policies as discribed in [21]

where a Kubernetes plugin, Proxy-mity, is proposed to be used in the other two solutions,

that adds proximity awareness to Kubernetes traffic routing. The system administrators

have to define parameter α that expresses the desired trade-off between load balancing

and lower latency (closer to end user) therefore controlling the imbalance of their system.

This plugin uses Serf [24] that implements Vivaldi coordinates [25] to monitor network

latency between worker nodes. When Proxy-mity detects a change in the service set of

pods it recomputes routing routes and injects them in Linux using iptables.

2. RELATED WORK 9

In [23] another Kubernetes plugin is proposed, Voilà. This plugin aims to provide a

replica autoscaler that takes into consideration network tail-latency. By monitoring all

the request workload produced by all potential traffic sources in the system, it is able to

add or remove replicas as well as change their location to maintain defined application

QoS. Similar to Proxy-mity, it also uses Serf to implement Vivaldi to estimate latency be-

tween nodes. Voilà also uses Proxy-mity itself to ensure that requests are received by

nearby pods. The main trade-off here is between having the least possible pods to reduce

the overall cost while maintaining the QoS. A round trip latency threshold is defined for

each application and a request above the set threshold is flagged as slow. The number of

flagged requests is used as a parameter in future replica adjustments.

Lastly, in [22] authors propose Hona, a replica scheduler which takes into consider-

ation tail-latency. Similarly to the other two solutions, Hona also integrates with Ku-

bernetes. The main three resources used by Hona are Vivaldi coordinates to estimate

network latency between nodes, Proxy-mity to manage routing path from end-users to

nearby replicas and the Kubernetes structure itself to monitor systems resources avail-

ability. After the initial placement whenever the end-user workload changes, Hona can

replace replicas to meet the defined QoS metrics.

Papers [21–23] are the main components of a PhD thesis [26] that aggregates those

three algorithms to develop a replica management system on fog computing platforms

but with proximity awareness. This thesis integrates the algorithms together with Proxy-

mity being responsible for routing the traffic for the closest replica, Hona monitors the

network to be aware of any changes to be made in the replica geo-distribution to meet

the QoS requirements. Both Hona and Voilà are capable of placing/replacing replicas

however Voilà presents an improvement in handling load imbalance since Hona does

not take replica capacity into consideration and manages the load imbalance observing

deviations from standard number of requests in each replica. On the other hand, Voilà

defines a metric that calculates the maximum number of requests that a replica can handle

in a time span being able to deploy new replicas to avoid saturation, whereas Hona is only

able to fix proximity issues and not scale up the replica set. Lastly on top of the stack is

Voilà dealing with the replica set auto scaling.

Hybrid CDN-P2P is an architecture that enables the caching of content in edge nodes

allowing to reduce costs in edge cache servers and providing less delay and better QoE

having close peers transfer the content.

10 DECENTRALIZED CDN FOR VIDEO STREAMING

Authors of [27] propose a hybrid CDN-P2P architecture managed by edge data centers

over on a SDN platform. In these solutions users are put into groups managed by the

edge data centers and both CDN access and peer-to-peer video streaming between users

are also managed by the edge data center of each access domain. Each access network is

composed of multiple nodes connected to a multi-access edge data center.

Each edge data center has a compute node which runs the SDN controller. Some SDN

apps are CDN app, responsible to manage the CDN access, and P2P app. P2P app ag-

gregates users into group making sure the groups are formed with users near each other

(location aware group forming). It also does pseudo-central chunk scheduling withing

each group. The app is also responsible to manage user churn making groups dynamic.

In this solution chunk scheduling is done centrally and then communicated to the peers

contrary to standard P2P networks. The purpose of this procedure is to achieve a fairer

network adapting to peer buffer status and incentive points as well as keeping network

resource usage effective. Incentive points are a way of encouraging users to upload con-

tent.

This solution security relies on the assumption that the data channels used (WebRTC)

are secure and that the sending of a video request to the CDN app pass through a authen-

tication process.

LiveSky [28] also implements a hybrid CDN-P2P system, although, to do so it does

not use a SDN. The three major components of its architecture are a Management Cen-

ter (MC), cache servers and end users. The Management Center includes a DNS-based

Global Server Load Balance (GSLB) system (this system is responsible by the redirection

of incoming user requests to the nearest lightly loaded edge cache server), the content

management and configuration system and the monitor and billing systems. The cache

servers make the connection between content providers and end users. The end users

can be legacy users that will only use the CDN structure obtaining the video from edge

cache servers and the LiveSky users that will benefit from higher quality streams using

the hybrid CDN-P2P structure.

Server nodes (SN), cache servers, are organized into tiers with the lowest tier being

the closest to content source. When SN boot up, they send an alive message to the MC

which then broadcasts the message to the other server nodes. In order to a SN to establish

a TCP connection with other SN the first one has to require information (IP address and

Port) about the second from the MC. Nodes can establish a connection with the ones on

2. RELATED WORK 11

a higher or the same hierarchical level, except with edge nodes. Since these nodes are

heavily loaded from user connections they can only connect with higher hierarchy nodes.

2.3 Security

While reducing CDN overall cost, it is imperative to make sure that secure CDN opera-

tions are not left out. Edge Computing technology has some inherent security concerns.

An edge server must be secure from privacy leakage, denial of service, privilege escala-

tion, service manipulation, rogue data center and physical attacks. The Edge Network

may be vulnerable to denial of service attacks, rogue gateway and man-in-the-middle at-

tacks. It is also possible for an attacker to control edge devices injecting false information

onto the network in order to disrupt or control services [29].

CDN missconfiguration is studied in [30] where authors explore the failure to verify

the ownership of the origin domain (a domain or IP address to which a CDN will forward

requests to and pull resources from) given by the costumer. In 2018, this was a configu-

ration option that introduced vulnerabilities in top 8 CDN providers. This failure led to a

number of vulnerabilities discussed by in this article, however authors also propose miti-

gations to the flaws discovered. Since the main reason for this to be possible is the lack of

validation for costumer-supplied information, to validate this, the user could be required

to upload a specific file to the origin to verify its ownership. The constant monitoring of

any changes in the origin could also help mitigating this flaw.

There has been some research focused on security in D2D caching methods. Although

most of them are theoretical [31, 32], and fail to cover with practical questions such as

data integrity, authenticity, confidentiality, among others. as well as secure authenticated

node join. [31] focuses on a scenario where an eavesdropper tries to eavesdrop the content

sharing between two nodes whereas [32] focuses on a secure caching making so no forged

files are propagated between users.

Secure D2D communication is a key component to take note in hybrid CDN-P2P

architectures. For a system like this to be adopted customers need to have trust in the

security solutions applied.

The usage of secure tokens [15] enable communication between nodes in the edge

cloud bringing Security-as-a-Service for Mobile Edge Clouds. Tokens are sent from the

server to edge nodes and used to establish connection either via Bluetooth or Wifi Di-

rect. Video chunks are digitally signed by the trusted server who is the creator of all

12 DECENTRALIZED CDN FOR VIDEO STREAMING

chunks and, on its turn the packet containing the signed video chunk is then signed by

the sender, ensuring data authenticity and integrity since the sender can be verified and

video chunks can only be signed by the trusted server. Key Rotation is also implemented

in this solution.

Secure D2D communications have to be ensured in order to have a secure D2D caching

system. This type of communication does not have any central authority, for example an

access point in a traditional wireless network, to manage user authentication. Peer discov-

ery is done by broadcasting over wireless channels being susceptible to an attacker listen-

ing to the communication and tracking down user thus violation location privacy. These

are some of the security challenges in D2D communication identified and addressed in

[33]. The authors provide definitions to security and privacy requirements on D2D net-

works and show solutions on key management, authentication, confidentiality and in-

tegrity, availability and dependability, and secure routing and transmission. For each of

the main solution topics, they review the existing bibliography. The same process is done

for the privacy solution main topics (Access Control, Obfuscation, Anonymity, Cryptog-

raphy and Application-Oriented Privacy). Finally, the author identifies the open problems

that need further research.

Internet users can have their traffic eavesdropped and even if the communications are

encrypted the attackers can monitor the traffic to track user patterns and infer what ser-

vices, sites, etc is the user using/visiting [34, 35]. In P2P Networks the same can be done.

Even if the nodes are anonymous and the communications between them encrypted, the

information published to the DHT is still public, making it possible to know which nodes

are retrieving and/or reproviding which data. Additionally, could be possible to match

a node ID to an IP address, particularly if the node is always running from the same ma-

chine as demonstrated in the Bitcoin network [36]. Every node has a set of peers to which

it is connected to, when an attacker, using a botnet, manages to control all the peer it is

connected to, the victim node is excluded from the actual network activity. In the Eclipse

attack [37] the attacker can manipulate the isolated node by sending false information.

This was also tested in the Bitcoin P2P network [38]. To prevent this type of attacks, ran-

dom node selection in P2P connection and an increased number of peers each node is

connected to, increases the number of nodes an attacker has to control thus increasing the

cost of such attack. Another popular attack in P2P networks is the Sybil attack [39] where

an attacker uses a single node with many active fake identities (IDs) simultaneously and

2. RELATED WORK 13

thus influence the network. To prevent this, measures like S-Kademlia [40] which adds

measures to prevent attacks like this and Eclipse on the Kademlia overlay. The goal is to

make node ID generation (Sybil attack) and choosing the ID freely (Eclipse attack) hard

for the attacker. This is done by hashing together the IP address and port or by hashing a

public key [41] to authenticate the node with his ID, since the IP can change dynamically

this comes with a drawback making it better to hash the public key.

A low cost IDS/IPS [42] is proposed by implementing a dynamic software-based se-

curity system that reacts, in a dynamic and autonomous way, to observed and analysed

traffic which is marked as a possible threat to protect CDN edge servers. This represents

a significant improvement from existing work since previously developed solutions had

a static approach to attacks such as DDoS, requiring manual intervention to be stopped

or based on hardware such as traditional firewalls and IDSs. This constitutes an increase

in expenses for the CDN edge server. The main goal of this research was to develop a

solution with low overhead and that automatically reacts to threats recovering legitimate

traffic throughput. This goal is achieved by adapting the security services overhead to

the state of the CDN services, dynamically creating, modifying and removing security

services. The operator specifies security policies that are used to orchestrate the security

services and their response.

Secure Data Storage as a ciphertext in untrusted edge servers is a topic of research

having methods like identity-based encryption [43], attribute-based encryption [44], proxy

re-encryption [45] and homomorphic encryption [46] gaining traction in order to provide

data confidentiality.

HoneyBot [47] is an adaptation of the traditional HoneyPot for mobile edge platforms

D2D communication. HoneyBot was built to detect, track and isolate malicious device-to-

device communication insider attacks. In detection phase, it logs the messages exchanged

across its interfaces and analyses them searching for malicious activity. The next phase is

called Tracking phase where HoneyBot tracks the source of the attack by following the

path from which the malicious messages where sent. Lastly, the Isolation phase where

the malicious node is physically identified and isolated from the network.

Chapter 3

Background

In this chapter we go over technologies that are directly related to this thesis like conven-

tional CDNs and the main component of this thesis, IPFS. We explain how does it work

and we will go more in depth in the modules we changed more actively.

We have chosen IPFS because, from our research, it was the best decentralized option

of optimizing the cache using the network nodes and is an open source already deployed

technology that was proven to work well when serving as a decentralized file system.

Also, from the research made on ways to reduce CDN overall cost, using P2P seemed

to be the solution with the most inpact and the least usage already in real world scenar-

ios. There is a lot of documentation and repositories about IPFS and it has already been

adopted by a respectable range of companies and other technologies.

3.1 Standard CDN

A CDN is a network of servers that are deployed in multiple geographical locations near

end users in order to reduce delays when accessing content. This network of servers

around the world replicate content from the origin server by caching it. By doing this

replication users instead of fetching content directly from the origin server will get it from

the closest CDN server. Standard CDNs try to be as close as possible to end users interact-

ing with Internet Service Providers (ISPs). Both CDN providers (deploying their servers

closer to end user) and ISPs (avoiding having to route traffic outside their network) ben-

efits from this partnership providing better QoS and reducing costs respectively.

15

16 DECENTRALIZED CDN FOR VIDEO STREAMING

Good examples of widely used standard CDNs are Cloudflare and Akamai with both

adding their own mechanisms to make their implementation faster and safer for their

clients.

3.1.1 Cloudflare

Cloudflare works as a reverse proxy using anycast routing. This means that geo-routing

is done by using the shortest path to the same IP through the common internet protocol

in BGP (Border Gateway Protocol) allowing an easier and faster connection to the closest

CDN server. In other words, Cloudflare servers have the same IP, so when an user connect

to the IP the routing protocols selects the server that is closer. The other option would be

using DNS servers to route the traffic for a close server. Using anycast Cloudflare ensures

immediate failover instead of having to wait for DNS cache to reset as well as preventing

DDoS attacks since the traffic would be split across the network automatically.

Static content caching is dependent on the proximity of caching servers to the end user

but with dynamic content, for example a website that updates a chart with database data.

This piece of information cannot be cached and has to be required from the origin server.

What Cloudflare does is it uses its own protocol called Railgun. Railgun accelerates

connection between Cloudflare data centers and the origin server, speeding up any con-

tent request that cannot be served by the edge cache. It tracks changes to content down

to the byte and upon request received, it only sends back the bytes that have changed.

Railgun connections are secured by TLS and compressed into a binary chunk.

3.1.2 Akamai

Akamai is one of the biggest CDNs, serving companies like Airbnb, Lufthansa, Youtube

(integrated with Google Cloud) and many other big brands.

It uses a standard multi tier CDN infrastructure with tens of thousands of globally

deployed servers being subdivided into multiple sub delivery networks, each serving

a different purpose ranging from static content caching to streaming media. Instead of

deploying massive server farms in few data centers, here the approach is to decentralize

as much as possible with server clusters of a variety of sizes deployed in a multitude of

locations. They take this approach since they consider it is the one which provides the

best efficacy in being closer to end users.

3. BACKGROUND 17

Akamai uses a mapping system that takes the URL introduced on the browser and

directs the request to the edge server. This mapping system select the edge server using

historical and current data regarding network and server conditions.

To provide the best streaming service possible, alongside a big number of servers dis-

tributed worldwide, Akamai uses tiered caching. Whenever an edge server does not have

the content requested, instead of asking the origin server, it asks its parent cluste, which

leads to the origin server only having to manage a few dozen parent clusters.

Once encoded, live streams in particular are then routed to an entrypoint, an Akamai

server cluster. Additionally, copies should be sent to other entrypoints in order to create

redundancy and thus avoid creating a single point of failure. The system works in a

publish-subscribe model where each entrypoint publishes the streams that it has available

and each edge cluster subscribes to streams that it requires. To make this process scalable,

a subset of servers called reflectors are used. Reflectors work as intermediaries between

entrypoints and edge server and can to receive one or more streams from the entrypoints,

copy them, if necessary, and can then send the same stream or different streams to one or

multiple edge clusters.

The communication between edge clusters and parent clusters are optimized using

the following techniques:

Path Optimization: As stated above, Akamai’s mapping system gathers internet topol-

ogy and performance data. This data is then used to select intermediate nodes for a

specific path. Also, Akamai can send communications over multiple paths to add re-

silience. Contrary to Cloudflare, Akamai does not use BGP since it often chooses sub

optimal paths.

Packet Loss Reduction: By sending communications over multiple paths and applying

FEC (Forward Error Correction) Akamai is able to offer significant packet loss reduction

with minimal overhead and without increasing latency.

Transport Protocol Optimizations: A proprietary transport-layer protocol is used be-

tween its servers using pools of persistent connections, using optimal TCP window siz-

ing based on knowledge of real-time network latency conditions and enabling intelligent

retransmission after packet loss by leveraging network latency information, rather than

relying on the standard TCP timeout and retransmission protocols.

Application optimization: Akamai uses application-level techniques to boost Web Ap-

plication responsiveness for example content compression, prefetch content that might be

18 DECENTRALIZED CDN FOR VIDEO STREAMING

requested in the future and so on.

The key to Akamai´s success is its highly distributed nature having its endpoints lo-

cated very close to the origin server and the end user.

3.2 IPFS

Web can, sometimes, be inefficient with users having to download content from a single

server. IPFS was created with efficiency in mind making users download pieces from

multiple nodes enabling substantial bandwidth savings. Due to its decentralized nature,

it provides better connectivity for all users as well as no single point of failure.

InterPlanetary File System (IPFS) is a Peer-to-Peer hypermedia protocol used to run a

decentralized file system amongst the nodes running IPFS protocol.

IPFS gathers different well known protocols such has Kademlia, BitTorrent, Git ver-

sion control and Self-Certified Filesystems (SFS) to create a fully distributed Peer-to-Peer

file sharing system where nodes do not have to trust each other.

It is worth to note that IPFS paper [1] is theoretical and that some of its features are

either not yet implemented or do not function exactly how it is stated.

3.2.1 How does it work

Nodes that run IPFS protocol interact with each other in order to share IPFS objects on the

network. These objects are stored on its nodes local storage.

Files added to the IPFS network are split in smaller chunks. Each chunk is called a

block, has a CID (Content Identifier) and each CID is unique, so it acts as a way of locating

that specific chunk or any of its replicas.

It intends to be user friendly by minimising the downsides of Kademlia, such as nodes

having to store files if their ID is close to the file key, therefore wasting storage on possibly

unintended files and thus ignoring the nodes that already have the file. This is done

by integrating Coral [16] DHT with Kademlia. With this adaptation only small files are

directly stored on the nodes closer to its Key whereas for larger files only a reference to the

nodes that can provide those files is stored on the nodes closer to each file Key. On larger

files, node N first sends a ProvideValue message that propagates like a normal search for

an ID, but instead tells the K closest nodes to that ID that N can provide the file with the

announced Key. The closest nodes to the file Key then store a reference to each node that

3. BACKGROUND 19

can provide the announced CID. Once a search is performed, these nodes will respond

with the full list of providers to that Key instead of sending the requested file.

FIGURE 3.1: I HAVE VALUE RPC

Whenever a node searches and downloads a CID from its peer, it will also become a

provider for that block until the cache gets cleared.

In case of a new version of a specific file is uploaded, its hash will be different making

it resistant to tampering. However, same chunks will remain with the same CID, therefore

allowing their reuse and saving storage.

IPFS has its own name system, IPNS, meaning that instead of having to remember

long strings of random numbers and letters (CIDs), files have human readable names

that, when searched, IPNS converts to the CID of the last version of that file. By having

this system, IPFS does not search for a specific source, for example when typing a link on

a browser, but rather searches for a specific object being served by a group of nodes that

have such designated object.

Additionally IPFS network has a cryptocurrency attached to it, Filecoin (FIL) [48], that

instead of using Proof-of-Work or Proof-of-Stake, as its consensus method, it uses Proof-

of-Storage allowing nodes to pay the miners to store their objects on the network to make

them available forever or just to increase their replication.

20 DECENTRALIZED CDN FOR VIDEO STREAMING

3.2.2 IPFS protocols

IPFS is subdivided into a stack of sub-protocols, Identities, Network, Routing, Exchange,

Object, Files, Naming. In this section we will go over each of those sub-protocols and will

emphasise the modules where we will make changes.

Identities

This sub-protocol is responsible for managing node identity generation and verification

of other node identities. Each node is identified by a node ID generated by S/Kademlia

which is the hash of its public key. Both public and private keys are stored and encrypted

with users‘ passphrase. Nodes are incentivized to keep their identity to preserve network

stability instead of changing it on every launch. When connecting to a peer, its ID is

compared to its announced public-key. If they do not match, the connection is terminated.

Network

Network subset of protocols is responsible to establish and manage connections between

peers. This subset includes many transport protocols that define which transport protocol

to use in each connection, although IPFS works best with uTP or WebRTC DataChannels.

This subset also provides options regarding connectivity offering NAT Traversal tech-

niques, like ICE NAT [49], to allow peers behind a NAT to be reached. Integrity and

Authenticity are also managed by the Network sub-protocols.

IPFS uses multiaddr formatted byte strings instead of conventional IP addresses. An

example for a multiaddr byte string is: /ip4/10.20.30.40/sctp/1234/

In addition to the IP address version, it also points which protocols and port to be

used when establishing a connection to set node.

Routing

Routing protocols encompass DHT protocols, managing information on how to find peers

and peers that can serve a specific object. IPFS uses a secure DHT based on S/Kademlia

and Coral making a storage distinction based on size as explained in 3.2.

3. BACKGROUND 21

Exchange

To exchange blocks, IPFS defines Bitswap, a new protocol based on BitTorrent. The

changes made for this thesis are mainly done in Bitswap module, since we aim to op-

timize block exchange by prioritizing nodes physically closer.

BitSwap

In this subsection we go throught Bitswap in more detail since it is heavily related with

the changes we propose in this thesis.

As mentioned before, Bitswap is a protocol designed to manage block exchange be-

tween nodes. Some key concepts in Bitswap are: peers, which are IPFS nodes that will

actively be trading blocks with each other; a want list which is a list containing informa-

tion about the blocks a node wants and has, this list is shared amongst peers; and a session

which is a group of peers that answered with a have message to a search broadcast. For

example requests to fetch all the blocks in a file would be made within a single session.

Bitswap protocol uses a mechanism where peers send a want-have message with de-

tails about the blocks they are locking for and the blocks they own. Each peer keeps a list

(want list) of which blocks their peers are looking for. If they acquire any of those blocks,

a message will be sent asking the peer if they want them to send that block.

To discover which peers have a block/file, Bitswap broadcasts a want-have message

to all peers it is connected to asking if they have the CID for that block or the CID root for

that file. Any peers that have the block respond with a have message and are added to a

session.

Then it sends a want-block message to a pseudo random peer in the session. On the

other hand, if the peer does not have the block, it responds with a dont have message and

Bitswap send another want-block message to another peer.

This selection is pseudo random because peers that have served blocks before have a

higher chance of being selected.

If no peers in the session have a specific block, the node queries the peers it is con-

nected to. If none of them have the block, Bitswap queries the DHT to find providers for

that block.

Bitswap block transfers could be recorded on the Filecoin ledger creating a system

where blocks would be paid for. This is not implemented, however the option is presented

in IPFS paper [1] and the Filecoin ledger is already deployed. Alternatively, a ledger is

22 DECENTRALIZED CDN FOR VIDEO STREAMING

FIGURE 3.2: BitSwap - Discovery

kept on Bitswap recording block transactions and creating the knowledge of how much

each block were asked and served.

Going deeper on how the code works, IPFS is coded mainly in Golang and JS. For this

work we used the Go version.

Bitswap module uses as its arguments a Bitswap network, a blockstore and a set of

options to initialize the block exchange. Once initialized, it spawns workers to handle

incoming requests from other nodes, send out provide messages and deal with incoming

blocks.

Whenever Bitswap receives a request from another node, it is handled and then stored

on a PeerRequestQueue, pulled by the engine and then passed to the workers to forward it.

Anytime a IPFS user requests a file a session is created with peers that can provide blocks

for that file. Each session has: a sessionWants that keeps track of what Wants were sent

but not yet received; the order they were sent and a queue for the next Wants being sent;

a latencyTracker that tracks the average latency between sending a want a receiving the

response; a sessionWantSender who´s responsible for choosing which peer to send a Want

to; and a PeerManager to manage the peers in a session.

On a lower level, messages are sent using Bitswap Network and allowing for latency

to be measured. A message can contain a block, a want list, Haves and some control infor-

mation.

3. BACKGROUND 23

Object

Object sub-protocol uses Merkle DAG (Directed Acyclic Graphs) [50] of content-addressed

to represent arbitrary data structures following Git data structures and linking object in

the network with cryptographic hashes.

This data structure system allows IPFS to have content uniquely identified by its mul-

tihash checksum making it tamper resistant, since all content can be verified against its

checksum. Since objects with the exact same multihash are equal only one should be

stored preventing content duplication and waste of storage. For example, a path to an

object should look like this:

/ipfs/<hash-of-object>/<name-path-to-object>

The ipfs prefix works as a mounting point on an existing system. The second part of

the path is the hash of the object. Since there is no root object (that would imply the im-

possible task of handling consistency of millions of objects in a distributed environment),

the root is simulated with content addressing, meaning that every object can be accessed

by its hash. In the example bellow, the last object (baz) can be accessed by the ones above

it.

/ipfs/<hash-of-foo>/bar/baz

/ipfs/<hash-of-bar>/baz

/ipfs/<hash-of-baz>

Files

Files is a set of protocols inspired on Git to define a versioned hierarchical file system

model:

1. block: a variable-size block of data.

2. list: a collection of blocks or other lists.

3. tree: a collection of blocks, lists, or other trees.

4. commit: a snapshot in the version history of a tree.

Naming is a self-certifying mutable name system that works almost as a DNS.

Every user is assigned a namespace at:

/ipns/<NodeId>

24 DECENTRALIZED CDN FOR VIDEO STREAMING

The user can then publish an object to his namespace by signing the path with his

private key, therefore, when another user retrieves the object, he can verify if the signature

matches the public key and node ID.

This is called InterPlanetary NameSpace (IPNS) and is used to assigned mutable paths

whereas IPFS has immutable paths.

Long array of random bytes is not the most user friendly way of calling an object. To

counter that, IPNS allows nodes to link peer files in their own namespace and shortens

the link like DNS and Urls do.

FIGURE 3.3: IPFS Workflow

Figure 3.3 shows the interaction between IPFS modules. We will work directly on

Bitswap and its interaction with the DHT, blockstore and the providers interface.

All these protocols come together to form a distributed file sharing system. The first

priority of IPFS is to be reliable and user friendly. Since it is designed to be a file system,

delays are not the main priority. With this thesis we want to shift that priority to provide

a version of IPFS capable of being integrated with a normal CDN to provide for example

video streaming while providing the required QoE for the end user.

3.3 IPFS Privacy

To share files, nodes have to publicly advertise the CIDs of the files they have or want

through a Distributed Hash Table. Making so that the metadata published to the DHT

3. BACKGROUND 25

associated with the exchange of each block is public, despite the communication between

each node being encrypted.

IPFS developers argue that key principles of the protocol’s highly modular design

require it not to have a built-in privacy layer, so that different uses can have different

privacy solutions.

Some suggested additional measures to ensure more privacy are disabling reprovid-

ing, encrypting sensitive content or running a private IPFS network.

Node Identifiers are public, such as the CIDs, and therefore it is possible to make

a DHT lookup for a specific node ID. If consistently running the node from the same

physical location, the IP address can be found. Although being possible to change and

reset the node ID, it comes with extra cost for the network.

With CIDs and Node IDs being public and with long term monitoring of the network,

it is possible to gather information on which blocks is a specific IP requesting, sending

and when.

3.3.1 Encryption

IPFS uses transport encryption assuring that anyone eavesdropping cannot read what

is being sent from one node to another, whereas it does not encrypt the content itself

causing that a hacker that accesses anyone’s IPFS node can read stored files in both cache

and system. Moreover, anyone that has a specific file CID can download it through IPFS

as long as it is available on any network node.

Once again, this is an option by IPFS developer to keep it lightweight and allow de-

velopers to choose the best encryption method for their project.

3.3.2 Privacy Enhancements

As stated above, IPFS developers took a modular approach meaning that privacy was,

by default, left aside. Although depending on the usage intended, some suggestions are

made to enhance privacy either by changing the IPFS config file or making some changes

on top of IPFS.

Share Control

By default, every IPFS node is a provider, meaning that every block received is able to

be reprovided to other nodes. This, however, can be changed in IPFS config file to only

26 DECENTRALIZED CDN FOR VIDEO STREAMING

announce itself as a provider for pinned CIDs that are in its cache. This way, the node

can be used to provide for content that it cares about and that it wants to continue to be

available on IPFS.

Using this, you have to make sure to specifically pin the content you want to reprovide

and keep in your node cache.

Public Gateway

Public IPFS gateway is a ”bridge” that allows users to request IPFS-hosted content via

HTTP. With this method, the gateway is participating in the network on your behalf al-

lowing you to get IPFS-hosted content without revealing any information about your local

node.

Actually, it is not that advantageous. Using a gateway will introduce delay and DHT

users will still be able to see content requested through a gateway, but not be capable of

knowing who requested it.

Trusting the gateway operator is key here, since technically they could be collecting

data, such as tracking the IP addresses that use a gateway, and correlating those with

what CIDs are requested.

Another way to proxy your IPFS traffic could be running IPFS over Tor. Comparing

with the public gateway this method will avoid the trust issue with the operator but will

add significant delay. If your application is not delay sensitive, then this should be a great

option.

Encrypted files

To mitigate the fact the IPFS does not encrypt content as explained above, one quick fix

would be to encrypt the content before adding it to the IPFS network.

This in conjunction with the usage of IPFS over Tor would ensure that your identity

and file content are both kept private at the expense of some additional delay.

Private Network

As described in section 4.1, it is possible to create a private IPFS network providing full

protection against public monitoring without any added measures.

3. BACKGROUND 27

Only nodes that have the same swarm key are allowed to take part in that network.

However, this can lack the scale benefits such as geographic resiliency and speedy re-

trieval of high-demand content. It can be a great alternative for corporate implementa-

tions of IPFS allowing each company to define the intended network topology.

Chapter 4

Architecture

In this section we go over our proposed architecture and the changes made to IPFS-

Bitswap. The scope of this work is to build a system capable to deliver a more cost-efficient

video delivery service. We suggest this approach with the intent that it be applied either

as a full hybrid P2P-CDN multi-tier infrastructure or just as a P2P group with tools for

the content owner to control and grow its distribution.

It can be used in conjunction with a full institutional multi-tier fog CDN structure,

with only the cloud structure and P2P group or by only deploying the P2P group.

In the multi-tier hybrid CDN approach preferably the user gets the desired content

from the closest peers. If it is not available in the P2P group a request is sent to the closest

edge server. Lastly if no other option is suited it will be served by the cloud CDN or by

the closest edge server (after being served by the cloud CDN).

We want to maintain each user’s rights to engage as a provider in the network in either

the approaches. Although, making this choice could come with drawbacks. Either they

can be monetary, with companies deciding to give financial bonuses to users who opt to

provide the whole network with their blocks, or in the form of drawbacks in latency and

priority when being served by the other peers on the network. This way it is possible to

give the best QoE to users who provide blocks. This financial study and incentives given

to the user is not the scope of this thesis and is set as a future work.

For this, as explained above, we used IPFS as our baseline and modified its BitSwap

module to further optimize the block exchange for video consumption and record in a

database the interactions between nodes so that we can later analyze the results and take

a conclusion.

29

30 DECENTRALIZED CDN FOR VIDEO STREAMING

FIGURE 4.1: CDN architecture with a P2P group

4.1 Private IPFS network

In order to build a private IPFS network, after cloning our IPFS Github repository and

installing IPFS, we generated a swarm key that was saved to ”.ipfs” folder and copied to

every node that we wanted in this private network.

Secondly, we removed all the default bootstrap addresses and added only the address

of our bootstrap node and we set an environment variable LIBP2P FORCE PNET to 1.

Lastly, in the config folder under the address section the API address is set to localhost

by default. To enable our nodes to “see” each other, we needed to change this to each

node private IP since Google cloud nodes on the same account have access to each other‘s

private ip. To emulate this in a real-world scenario where almost every node is behind a

NAT router we would have to change this localhost to every node public IP.

4. ARCHITECTURE 31

4.2 P2P

This subsection is dedicated to explain how the P2P group works. IPFS uses Kademlia

which is the most broadly used P2P overlay and provides fast look ups with a low main-

tenance cost. In this work we aim to provide the best QoE possible at the lowest cost and

for that Kademlia content replication and storage brings a disadvantage.

In standard Kademlia each file is stored as a (key,value) pair in nodes which have a

closer NodeID to the key of such file. This not only brings the disadvantage of having

nodes waste storage with a not requested file but also potentially causing searches to hit

faraway nodes when could have requested the file from geographically closer peers. The

objective of this work is to take advantage of nodes that already had a file because they

needed it before rather than having nodes store content for the sake of replication. IPFS

already provides optimization in this part by integrating Kademlia with Coral for his

DHT as explained in section 3.2.1.

Whenever an IPFS node receives a block, it sends a message to the nodes with IDs

closer to the received file Key announcing it is ready to provide that block. Those nodes,

then, add the Node ID of the block that sent them a provide message to the list of providers

for that block.

When an IPFS node wants a block, Bitswap is used as the protocol that manages block-

/file exchanges. Bitswap will then query the DHT for nodes that can provide that specific

block/file. With the list of providers, Bitswap connects to those providers and if they

respond affirmatively to the want have RPC then adds them to a session. The method of

choosing a peer to serve a block inside a session is pseudo random. However, peers that

have previously served more blocks are more likely to be selected.

32 DECENTRALIZED CDN FOR VIDEO STREAMING

FIGURE 4.2: Default Bitswap Flow diagram

Algorithm 1 Choose Peer To Serve Block

1: procedure CHOOSE . Input: peers . Output: peer

2: peers← array of peer IDs

3: peer← ID of the chosen peer

4: rnd← Random Float64

5: total← 0

6: counted← 0.0

7: if len(peers) = 0 then return Ø

8: for every p in peers do

9: total ← total + blocksServed(p).

10: for every p in peers do

11: counted← counted + Float64(blocksServed(p)/Float64(total)).

12: if counted > rnd then return p

4. ARCHITECTURE 33

Algorithm 1 depicts the Bitswap behavior when choosing a peer to serve a block. It

takes a list of peers as input, for each peer in the list calculates the blocks served before

adding it to a total of blocks served by those peers in the list. With this information, it

then selects the peers to serve the next block in a pseudo random way where the peers

that have served more blocks before have a higher chance of being chosen.

4.2.1 Location Awareness

To bring Location Awareness to our P2P mesh we had two options.

The first one being very light was to alter the way IPFS bitswap protocol selects which

peers would send us the required blocks. Default Bitswap prioritizes peers in the session

which had previously sent blocks. Our idea was to prioritize peers with the least latency,

maintaining still a small amount of randomness to this process to avoid overloading the

closest peer and to maintain the core logic of Bitswap choice process.

Since we believe that every provider in our implementation will be able to send their

blocks whenever necessary, we are able to make this change. As a result, the system will

benefit from a slight optimization in this area since blocks will likely be sent from the

physically closer peers in the session, reducing latency and consequently delays.

Because of how IPFS operates, and since we are focusing in video consumption, the

blocks requested will exceed the size limit defined by IPFS for block to be stored in the

peer with closer ID to the blocks Key. Therefore when requesting a block a list of all the

providers will be returned making it possible to chose the physically closer peers.

We first thought that when queried the DHT would return only a small number of

providers for a block. With that in mind we thought of a second solution taking a more

passive approach where each node measures the latency with peers whenever a commu-

nication takes place and stores the K peers with the least latency in an extra bucket. This

bucket would be updated when a connection received from a closer node than the ones on

the list or if any node on the list did not reply to the regular PING messages. In that case

it would be dropped from the list. In short would be maintained as a normal Kademlia

bucket.

Peers would be added both to the regular Kademlia buckets and to this extra bucket,

in case it is a peer with lower latency than the ones already in there.

Generally speaking, we intended to add another KBucket on top of Kademlia to keep

track of the K physically closer nodes.

34 DECENTRALIZED CDN FOR VIDEO STREAMING

The point of this extra bucket would be to prioritize these nodes over the regular DHT

search. This could be used, for example, in conjunction with Bloom Filters [51] to optimize

the search process in the closer nodes.

However, since we IPFS sends all the providers for a block this second solution be-

comes redundant over the first one and probably less efficient for the extra cost of main-

taining that bucket and search effort if there was no node able to provide from the K closer

nodes bucket.

Following this train of thought, we decided to implement Bitswap with 4 modes of

operation to compare them and analyze the results. These modes of operation are defined

using the IPFS options file. We have changed Bitswap options to accommodate a provider

selection mode, to select how Bitswap chooses next peer to provide a specific block, a

server address that is used to tell Bitswap where to send the logs of operation to and an

Integer to define the threshold for a session latency average.

FIGURE 4.3: Bitswap Mode 2 Flow diagram

4. ARCHITECTURE 35

FIGURE 4.4: Bitswap Mode 3 Flow diagram

Figure 4.3 depicts the flow of Bitswap second mode with the changes implemented

by us. Figure 4.4 depicts Bitswap third mode which is similar to the fourth. The fourth

mode, however, uses the second mode core logic to choose the next provider whenever

the session latency threshold is not reached.

The default mode of operation is 1, and it functions as Bitswap did before we made

our changes. The second mode of operation instead of prioritizing peers that have served

more blocks before prioritizes based on their latency. The thresholds defined are be-

low 50ms, below 100ms, below 250ms, below 500ms are based on [52]. The exponential

growth intends to give a much higher priority if the peer has a lower latency. If any peer

has no latency measures yet, it will be given the least priority level. We use the same

36 DECENTRALIZED CDN FOR VIDEO STREAMING

pseudo random method used by Default in Bitswap but instead of adding up the total

blocks served by the list of peers we attribute each peer a priority Integer according to

their latency, we sum it up and then use this sum to choose a peer with a chance propor-

tional to its latency level.

The third and fourth modes of operation will act like the first and second respectively

with a little twist. Whenever a session receives blocks from a peer, the handleReceive

method is called and the total latency for fetching each block is measured. From there

we calculate the average latency in that session and, if it is above our session threshold

defined in the config file, the session calls a function on its sessionWantSender changing

the sessionAvgLatThreshold boolean to true. Whenever the choose method from peerrespon-

setracker is called, it checks whether the sessionAvgLatThreshold is set to true or false. If it is

true, and either the third or fourth modes of operation is set in the config file, it will prior-

itize the least possible latency peer for the maximum of 4 blocks in a row and then switch

to the next least latency peer. We switch to the second least latency peer after the fourth

successive query to avoid overloading the same peer over and over, as well as optimize

the block fetching if done concurrently. This way, we can reduce the session average la-

tency with a more aggressive approach and if it goes bellow our average threshold again

it will set sessionAvgLatThreshold to false returning to the normal operating mode which is

the mode used in first and second modes respectively for third and fourth modes.

The logic behind Bitswap modes 3 and 4 could be used in a hybrid P2P CDN to man-

age when the peers should request blocks from the edge servers and when to request

them from peers.

The Algorithm 2 illustrates the changes made to the choose procedure, the choose

procedure operates according to the operation mode and the chooseClosest and getLatency-

Count procedures are used as for operation modes 2 and 4.

Algorithm 2 Choose Peer To Serve Block

1: procedure CHOOSE . Input: peers, sessionAvgLatThreshold . Output: peer

2: peers← array of peer IDs

3: sessionAvgLatThreshold← bool True if Threashold was reached false if not

4: peer← ID of the chosen peer

5: providerSMode ← int identifies BitSwap operation mode

6: rnd← Random Float64

7: total← 0

4. ARCHITECTURE 37

8: counted← 0.0

9: if providerSMode = 2 then return chooseClosest(peers)

10: else if providerSMode = 3 OR providerSMode = 4 then

11: if sessionAvgLatThreshold = true then

12: closestPeer ← leastLatencyPeer(peers)

13: if closestPeerQueried = closestPeer & successiveQueries < 4 then

14: successiveQueries← successiveQueries + 1

15: return closestPeer

16: else if closestPeerQueried = closestPeer & successiveQueries >= 4 then

17: successiveQueries← 1

18: closestPeerQueried← nextLeastLatencyPeer(peers, closestPeer)

19: return← closestPeerQueried

20: else

21: closestPeerQueried← closestPeer

22: successiveQueries← 1

23: return← closestPeer

24: else if providerSMode = 4 then

25: return← chooseClosest(peers)

26: else

27: return← chooseDe f ault(peers)

28: else

29: return← chooseDe f ault(peers)

30: procedure CHOOSECLOSEST . Input: peers . Output: peer

31: peers← array of peer IDs

32: peer← ID of the chosen peer

33: rnd← Random Float64

34: total← 0

35: counted← 0.0

36: if len(peers) = 0 then return Ø

37: j← patlen

38: for every p in peers do

38 DECENTRALIZED CDN FOR VIDEO STREAMING

39: total ← total + getLatencyCount(p).

40: for every p in peers do

41: counted← counted + Float64(getLatencyCount(p)/Float64(total)).

42: if counted > rnd then return p

43: procedure GETLATENCYCOUNT . Input: peer . Output: int

44: peer← ID of a peer

45: latency← Latency(peer)

46: bottomLevel← 50ms

47: middleLevel← 100ms

48: topLevel← 250ms

49: avoidLevel← 500ms

50: if latency < bottomLevel then return 8

51: if latency < middleLevel then return 4

52: if latency < topLevel then return 2

53: if latency < avoidLevel then return 1

return 1

4.3 Log Recording

For us to be able to later evaluate the impact of set changes we needed to record the

sending and receiving of blocks as well as their timestamps to later calculate the latency

between when the block was asked and then sent and between when the block was send

then received. We set up a GRPC server in Golang that is going to receive GRPC calls

from a worker inside Bitswap. For this change to have the least impact possible, the

worker is running on its own goroutine receiving information through a go channel. The

information passed through this channel contains a rpcType that identifies the type of

operation that we want to save regarding the blocks exchanged by IPFS peers. These

operations can refer to a block Want, a Receive, a Send or an Over. The rpcType Over is

only received when the IPFS command export is executed, meaning that the test is over,

and it is safe to export all the gathered operations to the database without compromising

IPFS performance.

4. ARCHITECTURE 39

Upon exporting the data to the GRPC server, the server then saves the logs in the

database with every database entry having information regarding the CID of the block

which it refers to, the ID of the peer sending the message, the ID of the peer receiving it

and finally a timestamp referring to the moment where the Want was sent, the block was

sent or the block was received depending on the type or message we are logging.

Each database entry looks like this:

FIGURE 4.5: Database entry example

4.4 Export Command

In order to export the logs from each node to the database we first had every node export

the logs during the execution of the get file command. Although this was done in a sep-

arate goroutine, after the first testing it was clear to us that something was delaying the

retrieving of the file. After some debugging, we found out that for some reason, either

due to the disk writing capacity on the server VM or due to the number of GRPC connec-

tions made to the server, this sending of rpc calls by the nodes to the server was massively

delaying the acquisition of the file by every node.

To keep it simple and guarantee that sending the logs to the database did not affect

IPFS performance during the tests, this process was separated from the acquisition of

blocks.

To do this, we kept sending the info about each block transfer to the rpc worker, on

a separate goroutine, through a go channel, but instead of immediately processing it and

sending it to the server/database this information was kept in memory on an array.

To export this data to the database we created a new command on IPFS, called export.

This command, when issued, sends a ”message” to our rpc worker through the open go

channel signaling that the test has ended and that it is safe to export the saved logs to the

database.

This way we made sure to export the logs with no interference to the acquisition of

block during the get file command.

Chapter 5

Test results and analysis

5.1 Setup

To test the proposed implementation of IPFS, we used Google Cloud VMs to create a

private IPFS network, first with ten nodes then with fifty. Alongside the IPFS nodes we

also had two additional VMs, one serving as bootstrap for this network and another as the

server/database to receive and save the information about the blocks being exchanged.

Both the bootstrap and server VMs were running in the European data center whereas

the network nodes were generated randomly with a python script that for every node

being created would randomly pick a data center from the ones available on Google Cloud

Compute Engine. These nodes were created based on a snapshot with our version of IPFS

and a swarm key installed. Then, using a shell script run through ssh from a python script

on the recently created VM, IPFS was initialized, booted and the config file was changed

to have the correct bootstrap and server address so that each node could join our private

network and send the logging info recorded during Bitswap execution to our server.

After setting up the nodes properly and after running the IPFS daemon on all of them,

all the nodes which did not had the file, sent a request at the same time. When all the

nodes had acquired the file, the export command, introduced by us on IPFS, was executed

on all the machines in order to safely export the logs to the database without affecting the

IPFS performance.

5.1.1 VM control

The interaction with Google Compute Engine was made through python scripting using

Apache Libcloud library to manage VMs and ssh to run shell scripts on the VMs.

41

42 DECENTRALIZED CDN FOR VIDEO STREAMING

We used threading to assure the scripts were run in all the VMs as closely as at the

same time as possible, we used python scripts to create new VMs and to run shell scritps

on all the VM which included: starting an IPFS daemon; getting a file; exporting the block

exchange logs and changing IPFS config file. For this last one, and since the config file

was a JSON, we used jq which is a command-line JSON processor that was already pre-

installed on the snapshot we used to create the VMs.

5.1.2 Test Scenarios

Our testing consisted in three scenarios where nodes would share a mp4 file with 339MB.

For each scenario we did two tests, one for each mode of Bitswap being tested (Default

and our implementation).

The first scenario had ten nodes where one of them had the file and the other nine

would request it at the same time. The second scenario had fifty nodes, with only one

having the file and all the other ones requesting it at the same time. Lastly, the third

scenario was done with fifty nodes once more but this time with four nodes owning the

file. These nodes were spread across the different Google Compute Engine data centers

namely one in Europe, one in the United States, one in Asia and one in Australia. Again,

all the nodes, rather than these four, would request the file at the same time. This scenario

had the goal to, in a small scale, emulate a real-world utilization of IPFS where near each

region a set of nodes would have a specific file and the other ones would be requesting it.

In every scenario nodes were using the same setup between tests. This way we made

sure that location was kept the same for every node and that we did not add another vari-

able by using different node locations. In each scenario two tests were made, one using

Bitswap mode 1 with the default IPFS solution and a second using mode 2 of Bitswap

with our solution. Between tests the IPFS cache and repository were cleared as well as

our database.

In section 4.2.1 we proposed two additional Bitswap modes, however, when testing

these modes with the first scenario we quickly realized that these would massively de-

crease performance as further explained in the end of section 5.2 below.

5.1.3 Data Processing

To analyze the results obtained in each test, we exported the database to a backup SQL file

and ran a python script to cross the database entries with each other and find matching

5. TEST RESULTS AND ANALYSIS 43

entries for each block and thus get the delay between requesting and sending a block

and between sending a receiving a block. Two matching entries consist of two entries

with the same BlockId and a relation between LocalPeer and RemotePeer. For example,

when looking for a match to generate the delay between requesting and sending a block,

a match would be two entries with the same BlockId and inverse match in LocalPeer and

RemotePeer with one entry having the RequestedAt timestamp different from NULL and

the other the SentAt timestamp as shown in figure 5.1.

FIGURE 5.1: Entry match to calculate delay between requesting and sending a block

Else, if we are looking for a match to generate the delay between sending and receiv-

ing a block we need two entries that have the same BlockId, same LocalPeer and same

RemotePeer but one of them has the SentAt timestamp different from NULL and the

other has the ReceivedAt timestamp as shown in figure 5.2.

FIGURE 5.2: Entry match to calculate delay between sending and receiving a block

FIGURE 5.3: Logging process on each message

This entry matching is done because when saving the information about block trans-

fers during Bitswap execution the LocalPeer ID corresponds to the node sending the mes-

sage and the RemotePeer ID to the one receiving it, therefore when saving a transmission

44 DECENTRALIZED CDN FOR VIDEO STREAMING

and a reception of a block, the message is the same thus the LocalPeer and RemotePeer

will also be the same like shown in figure 5.3.

During this process the script is saving the analyzed results to four arrays: one for re-

quest delays; one for send delays; one for duplicate requests and one for duplicate sends.

Every time a new match is found, the script checks if there is already an entry with the

same peers and Block Id either in the requests array or sends array depending on what

match it is looking for. If there is, then proceeds to check which of the two was first and

saves the second to the respective duplicates array. For the sends delay array, specifically,

it also checks if the receiver has received the same block from other peers and if it has,

then checks which peer was first to deliver the block thus saving the other results to the

sends duplicate array.

After crossing every database entry with all the other entries and with all the informa-

tion gathered, the data is stored temporarily in arrays is then saved to 4 excel files, one for

each array, with 5 columns (BlockID, Sender ID, Receiver ID, Timestamp, Lantecy).

Lastly, another python script is run to generate another excel file with the requests

that actually were sent to the block provider. This is done by checking for rows in the

recently generated requests delay excel file that match the ones on sends delays excel file.

By doing, this we get a better grasp on the request delay.

5.2 Result Analysis

To analyze our results, we compared the average request and send delays, the standard

deviation and the number of duplicate blocks being sent for both tests in each scenario.

To lower the amplitude, we used confidence interval at 95%.

More duplicates mean more network overhead and a longer delay means that the

blocks take longer to arrive.

5. TEST RESULTS AND ANALYSIS 45

In the first scenario there is a very slim margin in every metric apart from the duplicate

blocks being sent which shows a decrease of 16% from mode 1 to mode 2 and the stan-

dard deviation in the send delay with a 11% increase. The request delay average was the

same and the standard deviation decreased 3% whereas the send delay average improved

around 1%.

FIGURE 5.4: Request
Delay Scenario 1

FIGURE 5.5: Send De-
lay Scenario 1

FIGURE 5.6: Dupli-
cates Scenario 1

The second scenario with more VMs keeps the tendency of a lower send delay average

with an improve of 3%. The rest of the metrics brought some entropy with the duplicates

getting 52% worse from the first mode to the second. The request delay average increased

16% and the standard deviation 31%. The send delay standard deviation improved 4%.

These results may be due to some inconsistency in the network since such results like

the increased overhead introduced by the increased amount of duplicates is not expected.

Also, the increase delay on the requests is not expected but can be justified by the random

aspect of Bitswap which still has the possibility of choosing one of the worst peers.

FIGURE 5.7: Request
Delay Scenario 2

FIGURE 5.8: Send De-
lay Scenario 2

FIGURE 5.9: Dupli-
cates Scenario 2

The results from the first and second scenarios show mild improvements on the send

delay metric but proving inconclusive about the request delay and duplicate blocks met-

rics without a clear trend in both tests. Therefore, it is difficult to extrapolate the outcome

of a broader scenario with more nodes or even to a real-world usage of IPFS.

46 DECENTRALIZED CDN FOR VIDEO STREAMING

In the third scenario depicted in figures 5.9/5.10/5.11 the request delay average show

a minor increase of 2% and a decrease of 4% in its standard deviation between mode 1

and mode 2 of Bitswap. The send delay increased in both average and standard deviation

with a 4% and 5% increase respectively. The duplicates comparatively with scenario 2

only show a 7% increase.

This last scenario tried to emulate a real-world utilization of IPFS where multiple users

had the same file and multiple users where seeking that same file. However, the results

do not show a clear advantage for the proposed change in Bitswap´s way of choosing the

next peer to serve a block.

FIGURE 5.10: Request
Delay Scenario 3

FIGURE 5.11: Send De-
lay Scenario 3

FIGURE 5.12: Dupli-
cates Scenario 3

With such small margins, apart from the second scenario, the reduced sample size of

VMs did not lead to a clear conclusion for a real-world scenario with millions of users

which is the aim of this alteration. In general, more tests for each scenario would be

required to establish a clear trend in all the metrics and subsequently make it easier to

extrapolate to real-world scenarios because these two modes of Bitswap operation have a

random element to it with regard to how the next peer is selected to provide a block.

One limitation we had during these tests was the Google Cloud overall cost and the

time it took to export the block exchange logs (the more time it took the longer the VMs

had to stay on and therefore higher costs per test). while the individual cost per VM is

relatively cheap, when scaling the experiments it quickly becomes prohibitively expensive

About Bitswap modes 3 and 4, as stated above, after a few tests it was clear that these

two modes were hugely affecting IPFS performance, as suggested by us in section 4.2.1.

This was probably due to the extra comparisons and loops, and the overloading of a few

set of nodes (the closer ones to each peer) not taking full advantage of the concurrency

implemented in IPFS. As a consequence of this probably bad coding, we decided not to

5. TEST RESULTS AND ANALYSIS 47

go all the way with testing these two scenarios that brought a massive disadvantage to

the IPFS performance.

5.3 Cost reduction

The integration of P2P at the edge of a CDN infrastructure can help a video streaming

company reduce its operational costs.

By redistributing its traffic from their edge servers to nodes that have a specific file

cached on the P2P group, video streaming providers can juggle their traffic, following

what was proposed on Bitswap operation modes 3 and 4, to maintain a desired QoE, yet

still reduce its operational costs.

For example, when no peer has the desired block the node would request them from

the edge servers, but if its peers are able to provide the wanted blocks they will be prior-

itized as providers as long as they can maintain the session latency threshold ensuring a

good QoE.

This methodology would allow the company to save as much as the video popularity.

With more popularity more the video would be propagated and less bandwidth from the

edge server would be required.

It is also an option to deploy additional nodes on the network with the content that a

company wants to replicate, in strategic points, to increase resource availability and avoid

fetching from edge servers. For this specific option we can estimate the costs reduction by

comparing Akamai 1TB of bandwidth ($350) and the monthly cost of one simple Google

Cloud VM ($10-$40). This nodes would be controlled by the video streaming company

and used to replicate content in order to reduce requests from the CDN infrastructure. In

the case of a smaller company, the comparison can be made between the cost of having a

CDN versus having a small number of Google Cloud VMs taking part in the P2P mesh.

Additionally, each company could develop incentives to their users for them to par-

ticipate in the P2P group and even go a step forward and use this incentives so that they

can do some proactive caching in their users.

Chapter 6

Conclusion

In order to fully determine the true impact of these improvements and whether or not

they give IPFS a performance advantage for video streaming, further extensive testing

would be required.

Regarding what was proposed for Bitswap modes 3 and 4, which did end up affecting

IPFS performance instead of enhancing it, a solution could be, instead of exhausting the

node with the least latency with requests, create a reduced list of peers with lower laten-

cies and select the next block providers from there. These two modes could represent the

integration of a P2P mesh with standard CDN infrastructure where peers would exchange

blocks amongst themselves but if the average session latency reaches a threshold, blocks

would be requested from the edge server in order to maintain QoE.

Aside from that, IPFS is a state of the art P2P file sharing system that provides scal-

ability and performing better with a higher amount of users, perfectly capable of being

integrated with a standard CDN infrastructure whilst providing good QoE for its users.

Looking back, and knowing the potential of IPFS, the best we could have made would

have been to test the direct integration of IPFS with a CDN like structure and measure, in

percentage, how much bandwidth could be saved with the propagation of blocks amongst

network users.

With video streaming at an all-time high and continuing to increase, big companies

like Youtube, Netflix and Amazon could greatly decrease their server bandwidth usage

and therefore saving a lot of money by integrating a P2P group at the edge of their infras-

tructure.

For further work, it would be interesting to study the particular impact of using a hy-

brid CDN-P2P on the saving of server bandwidth, and the financial advantages to video

49

50 DECENTRALIZED CDN FOR VIDEO STREAMING

streaming companies alongside with incentives to their users towards participating in the

P2P group and sharing their cached files.

Appendix A

Github Repositories

Go IPFS - https://github.com/Matias-Correia/go-ipfs

Go Bitswap - https://github.com/Matias-Correia/go-bitswap

Go IPFS Config - https://github.com/Matias-Correia/go-ipfs-config

Test Server - https://github.com/Matias-Correia/go-test server

Test Management Scripts - https://github.com/Matias-Correia/test-management-scripts

51

https://github.com/Matias-Correia/go-ipfs
https://github.com/Matias-Correia/go-bitswap
https://github.com/Matias-Correia/go-ipfs-config
https://github.com/Matias-Correia/go-test_server
https://github.com/Matias-Correia/test-management-scripts

Bibliography

[1] J. Benet, “Ipfs-content addressed, versioned, p2p file system,” arXiv preprint

arXiv:1407.3561, 2014. [Cited on pages vii, ix, 2, 7, 18, and 21.]

[2] L. Ceci. (2022) Hours of video uploaded to youtube every minute as of february

2020. [Online]. Available: https://www.statista.com/statistics/259477/hours-of-

video-uploaded-to-youtube-every-minute/ [Cited on page 1.]

[3] U. Cisco, “Cisco annual internet report (2018–2023) white paper,” Cisco: San Jose, CA,

USA, 2020. [Cited on page 1.]

[4] U. Shaukat, E. Ahmed, Z. Anwar, and F. Xia, “Cloudlet deployment in local wireless

networks: Motivation, architectures, applications, and open challenges,” Journal of

Network and Computer Applications, vol. 62, pp. 18–40, 2016. [Cited on page 1.]

[5] M. Jia, J. Cao, and W. Liang, “Optimal cloudlet placement and user to cloudlet alloca-

tion in wireless metropolitan area networks,” IEEE Transactions on Cloud Computing,

vol. 5, no. 4, pp. 725–737, 2015. [Cited on page 1.]

[6] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey on mobile edge

computing: The communication perspective,” IEEE communications surveys & tutori-

als, vol. 19, no. 4, pp. 2322–2358, 2017. [Cited on page 1.]

[7] S. Yi, Z. Hao, Z. Qin, and Q. Li, “Fog computing: Platform and applications,” in 2015

Third IEEE workshop on hot topics in web systems and technologies (HotWeb). IEEE, 2015,

pp. 73–78. [Cited on page 1.]

[8] A. Ceselli, M. Premoli, and S. Secci, “Mobile edge cloud network design optimiza-

tion,” IEEE/ACM Transactions on Networking, vol. 25, no. 3, pp. 1818–1831, 2017.

[Cited on page 1.]

53

https://www.statista.com/statistics/259477/hours-of-video-uploaded-to-youtube-every-minute/
https://www.statista.com/statistics/259477/hours-of-video-uploaded-to-youtube-every-minute/

54 DECENTRALIZED CDN FOR VIDEO STREAMING

[9] D. F. de Almeida, J. Yen, and M. Aibin, “Content delivery networks-q-learning ap-

proach for optimization of the network cost and the cache hit ratio,” in 2020 IEEE

Canadian Conference on Electrical and Computer Engineering (CCECE). IEEE, 2020, pp.

1–5. [Cited on page 5.]

[10] E. Baccour, A. Erbad, K. Bilal, A. Mohamed, and M. Guizani, “Pccp: Proactive video

chunks caching and processing in edge networks,” Future Generation Computer Sys-

tems, vol. 105, pp. 44–60, 2020. [Cited on pages 5 and 6.]

[11] M. A. Kader, E. Bastug, M. Bennis, E. Zeydan, A. Karatepe, A. S. Er, and M. Debbah,

“Leveraging big data analytics for cache-enabled wireless networks,” in 2015 IEEE

Globecom Workshops (GC Wkshps). IEEE, 2015, pp. 1–6. [Cited on pages 5 and 6.]

[12] Z. Chen, N. Pappas, and M. Kountouris, “Probabilistic caching in wireless d2d net-

works: Cache hit optimal versus throughput optimal,” IEEE Communications Letters,

vol. 21, no. 3, pp. 584–587, 2016. [Cited on page 6.]

[13] B. Cheng, X. Liu, Z. Zhang, H. Jin, L. Stein, and X. Liao, “Evaluation and optimization

of a peer-to-peer video-on-demand system,” Journal of Systems Architecture, vol. 54,

no. 7, pp. 651–663, 2008. [Cited on page 6.]

[14] S. Hasan, S. Gorinsky, C. Dovrolis, and R. K. Sitaraman, “Trade-offs in optimizing

the cache deployments of cdns,” in IEEE INFOCOM 2014-IEEE conference on computer

communications. IEEE, 2014, pp. 460–468. [Cited on page 6.]

[15] R. Martins, M. E. Correia, L. Antunes, and F. Silva, “Iris: Secure reliable live-

streaming with opportunistic mobile edge cloud offloading,” Future Generation Com-

puter Systems, vol. 101, pp. 272–292, 2019. [Cited on pages 7 and 11.]

[16] M. J. Freedman, E. Freudenthal, and D. Mazieres, “Democratizing content publica-

tion with coral.” in NSDI, vol. 4, 2004, pp. 18–18. [Cited on pages 7 and 18.]

[17] R. C. Merkle, “A digital signature based on a conventional encryption function,” in

Conference on the theory and application of cryptographic techniques. Springer, 1987, pp.

369–378. [Cited on page 7.]

[18] R. Wang, J. Zhang, S. Song, and K. B. Letaief, “Mobility-aware caching in d2d net-

works,” IEEE Transactions on Wireless Communications, vol. 16, no. 8, pp. 5001–5015,

2017. [Cited on page 7.]

BIBLIOGRAPHY 55

[19] H. Nam, K.-H. Kim, J. Y. Kim, and H. Schulzrinne, “Towards qoe-aware video

streaming using sdn,” in 2014 IEEE global communications conference. IEEE, 2014,

pp. 1317–1322. [Cited on page 8.]

[20] F. Qin, Z. Zhao, and H. Zhang, “Optimizing routing and server selection in intelli-

gent sdn-based cdn,” in 2016 8th International Conference on Wireless Communications

& Signal Processing (WCSP). IEEE, 2016, pp. 1–5. [Cited on page 8.]

[21] A. J. Fahs and G. Pierre, “Proximity-aware traffic routing in distributed fog comput-

ing platforms,” in 2019 19th IEEE/ACM International Symposium on Cluster, Cloud and

Grid Computing (CCGRID). IEEE, 2019, pp. 478–487. [Cited on pages 8 and 9.]

[22] ——, “Tail-latency-aware fog application replica placement,” in International Confer-

ence on Service-Oriented Computing. Springer, 2020, pp. 508–524. [Cited on page 9.]

[23] A. J. Fahs, G. Pierre, and E. Elmroth, “Voilà: Tail-latency-aware fog application repli-

cas autoscaler,” in 2020 28th International Symposium on Modeling, Analysis, and Simu-

lation of Computer and Telecommunication Systems (MASCOTS). IEEE, 2020, pp. 1–8.

[Cited on pages 8 and 9.]

[24] HashiCorp. Serf: Decentralized cluster membership, failure detection, and

orchestration. [Online]. Available: https://www.serf.io/ [Cited on page 8.]

[25] F. Dabek, R. Cox, F. Kaashoek, and R. Morris, “Vivaldi: A decentralized network

coordinate system,” ACM SIGCOMM Computer Communication Review, vol. 34, no. 4,

pp. 15–26, 2004. [Cited on page 8.]

[26] A. Fahs, “Proximity-aware replicas management in geo-distributed fog computing

platforms,” Ph.D. dissertation, Université de Rennes 1, 2020. [Cited on page 9.]

[27] S. Nacakli and A. M. Tekalp, “Controlling p2p-cdn live streaming services at sdn-

enabled multi-access edge datacenters,” IEEE Transactions on Multimedia, vol. 23, pp.

3805–3816, 2020. [Cited on page 10.]

[28] H. Yin, X. Liu, T. Zhan, V. Sekar, F. Qiu, C. Lin, H. Zhang, and B. Li, “Design and

deployment of a hybrid cdn-p2p system for live video streaming: experiences with

livesky,” in Proceedings of the 17th ACM international conference on Multimedia, 2009,

pp. 25–34. [Cited on page 10.]

https://www.serf.io/

56 DECENTRALIZED CDN FOR VIDEO STREAMING

[29] J. Zhang, B. Chen, Y. Zhao, X. Cheng, and F. Hu, “Data security and privacy-

preserving in edge computing paradigm: Survey and open issues,” IEEE access,

vol. 6, pp. 18 209–18 237, 2018. [Cited on page 11.]

[30] R. Guo, J. Chen, B. Liu, J. Zhang, C. Zhang, H. Duan, T. Wan, J. Jiang, S. Hao, and

Y. Jia, “Abusing cdns for fun and profit: Security issues in cdns’ origin validation,”

in 2018 IEEE 37th Symposium on Reliable Distributed Systems (SRDS). IEEE, 2018, pp.

1–10. [Cited on page 11.]

[31] J. Qu, L. Zhou, G. Zhang, D. Wu, J. Zheng, and Y. Cai, “Secure caching in d2d con-

tent sharing,” in 2018 IEEE International Conference on Communications Workshops (ICC

Workshops). IEEE, 2018, pp. 1–6. [Cited on page 11.]

[32] A. A. Zewail and A. Yener, “Device-to-device secure coded caching,” IEEE Trans-

actions on Information Forensics and Security, vol. 15, pp. 1513–1524, 2019. [Cited on

page 11.]

[33] M. Haus, M. Waqas, A. Y. Ding, Y. Li, S. Tarkoma, and J. Ott, “Security and privacy

in device-to-device (d2d) communication: A review,” IEEE Communications Surveys

& Tutorials, vol. 19, no. 2, pp. 1054–1079, 2017. [Cited on page 12.]

[34] F. Zhang, W. He, X. Liu, and P. G. Bridges, “Inferring users’ online activities through

traffic analysis,” in Proceedings of the fourth ACM conference on Wireless network security,

2011, pp. 59–70. [Cited on page 12.]

[35] S. Englehardt, D. Reisman, C. Eubank, P. Zimmerman, J. Mayer, A. Narayanan, and

E. W. Felten, “Cookies that give you away: The surveillance implications of web

tracking,” in Proceedings of the 24th International Conference on World Wide Web, 2015,

pp. 289–299. [Cited on page 12.]

[36] P. Koshy, D. Koshy, and P. McDaniel, “An analysis of anonymity in bitcoin using

p2p network traffic,” in International Conference on Financial Cryptography and Data

Security. Springer, 2014, pp. 469–485. [Cited on page 12.]

[37] A. Singh et al., “Eclipse attacks on overlay networks: Threats and defenses,” in In

IEEE INFOCOM. Citeseer, 2006. [Cited on page 12.]

BIBLIOGRAPHY 57

[38] E. Heilman, A. Kendler, A. Zohar, and S. Goldberg, “Eclipse attacks on

{Bitcoin’s}{peer-to-peer} network,” in 24th USENIX Security Symposium (USENIX

Security 15), 2015, pp. 129–144. [Cited on page 12.]

[39] J. R. Douceur, “The sybil attack,” in International workshop on peer-to-peer systems.

Springer, 2002, pp. 251–260. [Cited on page 12.]

[40] I. Baumgart and S. Mies, “S/kademlia: A practicable approach towards secure key-

based routing,” in 2007 International conference on parallel and distributed systems.

IEEE, 2007, pp. 1–8. [Cited on page 13.]

[41] A. Salomaa, “Public-key cryptography,” 1996. [Cited on page 13.]

[42] E. Jalalpour, M. Ghaznavi, D. Migault, S. Preda, M. Pourzandi, and R. Boutaba, “A

security orchestration system for cdn edge servers,” in 2018 4th IEEE Conference on

Network Softwarization and Workshops (NetSoft). IEEE, 2018, pp. 46–54. [Cited on

page 13.]

[43] D. Boneh and M. Franklin, “Identity-based encryption from the weil pairing,” in

Annual international cryptology conference. Springer, 2001, pp. 213–229. [Cited on

page 13.]

[44] S. Wang, J. Zhou, J. K. Liu, J. Yu, J. Chen, and W. Xie, “An efficient file hierarchy

attribute-based encryption scheme in cloud computing,” IEEE Transactions on Infor-

mation Forensics and Security, vol. 11, no. 6, pp. 1265–1277, 2016. [Cited on page 13.]

[45] K. Liang, M. H. Au, J. K. Liu, W. Susilo, D. S. Wong, G. Yang, Y. Yu, and A. Yang, “A

secure and efficient ciphertext-policy attribute-based proxy re-encryption for cloud

data sharing,” Future Generation Computer Systems, vol. 52, pp. 95–108, 2015. [Cited

on page 13.]

[46] M. R. Baharon, Q. Shi, and D. Llewellyn-Jones, “A new lightweight homomorphic

encryption scheme for mobile cloud computing,” in 2015 IEEE International Confer-

ence on Computer and Information Technology; Ubiquitous Computing and Communica-

tions; Dependable, Autonomic and Secure Computing; Pervasive Intelligence and Comput-

ing. IEEE, 2015, pp. 618–625. [Cited on page 13.]

[47] A. Mtibaa, K. Harras, and H. Alnuweiri, “Friend or foe? detecting and isolating

malicious nodes in mobile edge computing platforms,” in 2015 IEEE 7th International

58 DECENTRALIZED CDN FOR VIDEO STREAMING

Conference on Cloud Computing Technology and Science (CloudCom). IEEE, 2015, pp.

42–49. [Cited on page 13.]

[48] R. Kothari, B. Jakheliya, and V. Sawant, “A distributed peer-to-peer storage net-

work,” in 2019 International Conference on Smart Systems and Inventive Technology (IC-

SSIT). IEEE, 2019, pp. 576–582. [Cited on page 19.]

[49] J. Rosenberg, “Interactive connectivity establishment (ice): A protocol for network

address translator (nat) traversal for offer/answer protocols,” Tech. Rep., 2010.

[Cited on page 20.]

[50] K. Thulasiraman and M. Swamy, “5.7 acyclic directed graphs,” Graphs: theory and

algorithms, vol. 118, 1992. [Cited on page 23.]

[51] B. H. Bloom, “Space/time trade-offs in hash coding with allowable errors,” Commu-

nications of the ACM, vol. 13, no. 7, pp. 422–426, 1970. [Cited on page 34.]

[52] N. D. Mickulicz, U. Drolia, P. Narasimhan, and R. Gandhi, “Zephyr: First-Person

Wireless Analytics from High-Density In-Stadium Deployments,” in 2016 IEEE 17th

International Symposium on A World of Wireless, Mobile and Multimedia Networks (WoW-

MoM), June 2016, pp. 1–10. [Cited on page 35.]

	Acknowledgements
	Abstract
	Resumo
	Contents
	List of Figures
	1 Introduction
	2 Related Work
	2.1 Caching Methodology
	2.2 Flow optimization in CDNs
	2.3 Security

	3 Background
	3.1 Standard CDN
	3.1.1 Cloudflare
	3.1.2 Akamai

	3.2 IPFS
	3.2.1 How does it work
	3.2.2 IPFS protocols

	3.3 IPFS Privacy
	3.3.1 Encryption
	3.3.2 Privacy Enhancements

	4 Architecture
	4.1 Private IPFS network
	4.2 P2P
	4.2.1 Location Awareness

	4.3 Log Recording
	4.4 Export Command

	5 Test results and analysis
	5.1 Setup
	5.1.1 VM control
	5.1.2 Test Scenarios
	5.1.3 Data Processing

	5.2 Result Analysis
	5.3 Cost reduction

	6 Conclusion
	A Github Repositories
	Bibliography

