952 research outputs found

    SmartSantander: IoT experimentation over a smart city testbed

    Get PDF
    This paper describes the deployment and experimentation architecture of the Internet of Things experimentation facility being deployed at Santander city. The facility is implemented within the SmartSantander project, one of the projects of the Future Internet Research and Experimentation initiative of the European Commission and represents a unique in the world city-scale experimental research facility. Additionally, this facility supports typical applications and services of a smart city. Tangible results are expected to influence the definition and specification of Future Internet architecture design from viewpoints of Internet of Things and Internet of Services. The facility comprises a large number of Internet of Things devices deployed in several urban scenarios which will be federated into a single testbed. In this paper the deployment being carried out at the main location, namely Santander city, is described. Besides presenting the current deployment, in this article the main insights in terms of the architectural design of a large-scale IoT testbed are presented as well. Furthermore, solutions adopted for implementation of the different components addressing the required testbed functionalities are also sketched out. The IoT experimentation facility described in this paper is conceived to provide a suitable platform for large scale experimentation and evaluation of IoT concepts under real-life conditions.This work is funded by research project SmartSantander, under FP7-ICT-2009-5 of the 7th Framework Programme of the European Community. Authors would like to acknowledge the collaboration with the rest of partners within the consortium leading to the results presented in this paper

    Middleware Technologies for Cloud of Things - a survey

    Get PDF
    The next wave of communication and applications rely on the new services provided by Internet of Things which is becoming an important aspect in human and machines future. The IoT services are a key solution for providing smart environments in homes, buildings and cities. In the era of a massive number of connected things and objects with a high grow rate, several challenges have been raised such as management, aggregation and storage for big produced data. In order to tackle some of these issues, cloud computing emerged to IoT as Cloud of Things (CoT) which provides virtually unlimited cloud services to enhance the large scale IoT platforms. There are several factors to be considered in design and implementation of a CoT platform. One of the most important and challenging problems is the heterogeneity of different objects. This problem can be addressed by deploying suitable "Middleware". Middleware sits between things and applications that make a reliable platform for communication among things with different interfaces, operating systems, and architectures. The main aim of this paper is to study the middleware technologies for CoT. Toward this end, we first present the main features and characteristics of middlewares. Next we study different architecture styles and service domains. Then we presents several middlewares that are suitable for CoT based platforms and lastly a list of current challenges and issues in design of CoT based middlewares is discussed.Comment: http://www.sciencedirect.com/science/article/pii/S2352864817301268, Digital Communications and Networks, Elsevier (2017

    Middleware Technologies for Cloud of Things - a survey

    Full text link
    The next wave of communication and applications rely on the new services provided by Internet of Things which is becoming an important aspect in human and machines future. The IoT services are a key solution for providing smart environments in homes, buildings and cities. In the era of a massive number of connected things and objects with a high grow rate, several challenges have been raised such as management, aggregation and storage for big produced data. In order to tackle some of these issues, cloud computing emerged to IoT as Cloud of Things (CoT) which provides virtually unlimited cloud services to enhance the large scale IoT platforms. There are several factors to be considered in design and implementation of a CoT platform. One of the most important and challenging problems is the heterogeneity of different objects. This problem can be addressed by deploying suitable "Middleware". Middleware sits between things and applications that make a reliable platform for communication among things with different interfaces, operating systems, and architectures. The main aim of this paper is to study the middleware technologies for CoT. Toward this end, we first present the main features and characteristics of middlewares. Next we study different architecture styles and service domains. Then we presents several middlewares that are suitable for CoT based platforms and lastly a list of current challenges and issues in design of CoT based middlewares is discussed.Comment: http://www.sciencedirect.com/science/article/pii/S2352864817301268, Digital Communications and Networks, Elsevier (2017

    A unifying orchestration operating platform for 5G

    Get PDF
    5G will revolutionize the way ICT and Telecommunications infrastructures work. Indeed, businesses can greatly benefit from innovation introduced by 5G and exploit the new deep integration between ICT and networking capabilities to generate new value-added services. Although a plethora of solutions for virtual resources and infrastructures management and orchestration already exists (e.g., OpenDaylight, ONOS, OpenStack, Apache Mesos, Open Source MANO, Docker Swarm, LXD/LXC, etc.), they are still not properly integrated to match the 5G requirements. In this paper, we present the 5G Operating Platform (5G-OP) which has been conceived to fill in this gap and integrate management, control and orchestration of computing, storage and networking resources down to the end-user devices and terminals (e.g., smart phone, machines, robots, drones, autonomous vehicles, etc.). The 5G-OP is an overarching framework capable to provide agnostic interfaces and a universal set of abstractions in order to implement seamless 5G infrastructure control and orchestration. The functional structure of the 5G-OP, including the horizontal and vertical interworking of functions in it, has been designed to allow Network Operators and Service Providers to exploit diverse roles and business strategies. Moreover, the functional decoupling of the 5G-OP from the underneath management, control and orchestration solutions allows pursuing faster innovation cycles, being ready for the emergence of new service models

    Edge Computing for Extreme Reliability and Scalability

    Get PDF
    The massive number of Internet of Things (IoT) devices and their continuous data collection will lead to a rapid increase in the scale of collected data. Processing all these collected data at the central cloud server is inefficient, and even is unfeasible or unnecessary. Hence, the task of processing the data is pushed to the network edges introducing the concept of Edge Computing. Processing the information closer to the source of data (e.g., on gateways and on edge micro-servers) not only reduces the huge workload of central cloud, also decreases the latency for real-time applications by avoiding the unreliable and unpredictable network latency to communicate with the central cloud

    Measuring the Business Value of Cloud Computing

    Get PDF
    The importance of demonstrating the value achieved from IT investments is long established in the Computer Science (CS) and Information Systems (IS) literature. However, emerging technologies such as the ever-changing complex area of cloud computing present new challenges and opportunities for demonstrating how IT investments lead to business value. Recent reviews of extant literature highlights the need for multi-disciplinary research. This research should explore and further develops the conceptualization of value in cloud computing research. In addition, there is a need for research which investigates how IT value manifests itself across the chain of service provision and in inter-organizational scenarios. This open access book will review the state of the art from an IS, Computer Science and Accounting perspective, will introduce and discuss the main techniques for measuring business value for cloud computing in a variety of scenarios, and illustrate these with mini-case studies

    Algorithms for advance bandwidth reservation in media production networks

    Get PDF
    Media production generally requires many geographically distributed actors (e.g., production houses, broadcasters, advertisers) to exchange huge amounts of raw video and audio data. Traditional distribution techniques, such as dedicated point-to-point optical links, are highly inefficient in terms of installation time and cost. To improve efficiency, shared media production networks that connect all involved actors over a large geographical area, are currently being deployed. The traffic in such networks is often predictable, as the timing and bandwidth requirements of data transfers are generally known hours or even days in advance. As such, the use of advance bandwidth reservation (AR) can greatly increase resource utilization and cost efficiency. In this paper, we propose an Integer Linear Programming formulation of the bandwidth scheduling problem, which takes into account the specific characteristics of media production networks, is presented. Two novel optimization algorithms based on this model are thoroughly evaluated and compared by means of in-depth simulation results

    A Platform as a Service for Concurrency-based Applications Provisioning in Internet of Things

    Get PDF
    The Internet of Things (IoT) is becoming ubiquitous with sensor nodes getting more intelligent and capable of transmitting their processed data to a cloud. Concurrency-based applications play a vital role in the rise of the IoT. A concurrency-based application has multiple processes running independently and interacting with each other. An example of the concurrency-based application in IoT is wildfire management application. In a forest, various sensor devices are deployed in the different areas. The processes of the wildfire management application are running on the sensor devices of different areas independently. The process of a particular area monitors the temperature and interacts with the processes in the neighboring areas. This interaction is based on the fire contour algorithm, which allows the application to provide the real-time direction and evolution of the fire in case of the fire incident. Cloud computing is a paradigm for swiftly provisioning a shared pool of configurable resources (e.g., services, applications, network, and storage) on demand. Cloud computing can help to tackle the challenges of IoT-based applications provisioning by offering the Platform as a Service (PaaS). Therefore, developers of such concurrency-based applications can use cloud's PaaS for faster development as well as cost efficiency. However, the PaaS faces several challenges at the time of provisioning of concurrency-based application (i.e., development, deployment, and management). For the concurrency-based application development phase, PaaS should support the various API and frameworks for the development of multiple processes of the concurrency-based application, which helps to start development quickly. For the deployment of the concurrency-based application, the PaaS must offer the facility of hosting of different processes in an isolated environment and enable process's edges to allow inter-process communication. In management phase of the concurrency-based application, PaaS should be able to orchestrate the chain of processes defined during the development phase. The main intent of this dissertation is to provide a PaaS solution for concurrency-based applications provisioning in IoT to solve the challenges as mentioned above. The major contributions of the thesis are in twofold. First, we propose a PaaS architecture for concurrency-based applications provisioning in IoT. Second, we provide a proof of concept in which a prototype is built using as basis Cloud Foundry, an existing PaaS platform, and TelosB as the IoT Infrastructure devices. The performance measurements have also been made to validate the results claimed
    • …
    corecore