327 research outputs found

    Programming MPSoC platforms: Road works ahead

    Get PDF
    This paper summarizes a special session on multicore/multi-processor system-on-chip (MPSoC) programming challenges. The current trend towards MPSoC platforms in most computing domains does not only mean a radical change in computer architecture. Even more important from a SW developer´s viewpoint, at the same time the classical sequential von Neumann programming model needs to be overcome. Efficient utilization of the MPSoC HW resources demands for radically new models and corresponding SW development tools, capable of exploiting the available parallelism and guaranteeing bug-free parallel SW. While several standards are established in the high-performance computing domain (e.g. OpenMP), it is clear that more innovations are required for successful\ud deployment of heterogeneous embedded MPSoC. On the other hand, at least for coming years, the freedom for disruptive programming technologies is limited by the huge amount of certified sequential code that demands for a more pragmatic, gradual tool and code replacement strategy

    The potential of programmable logic in the middle: cache bleaching

    Full text link
    Consolidating hard real-time systems onto modern multi-core Systems-on-Chip (SoC) is an open challenge. The extensive sharing of hardware resources at the memory hierarchy raises important unpredictability concerns. The problem is exacerbated as more computationally demanding workload is expected to be handled with real-time guarantees in next-generation Cyber-Physical Systems (CPS). A large body of works has approached the problem by proposing novel hardware re-designs, and by proposing software-only solutions to mitigate performance interference. Strong from the observation that unpredictability arises from a lack of fine-grained control over the behavior of shared hardware components, we outline a promising new resource management approach. We demonstrate that it is possible to introduce Programmable Logic In-the-Middle (PLIM) between a traditional multi-core processor and main memory. This provides the unique capability of manipulating individual memory transactions. We propose a proof-of-concept system implementation of PLIM modules on a commercial multi-core SoC. The PLIM approach is then leveraged to solve long-standing issues with cache coloring. Thanks to PLIM, colored sparse addresses can be re-compacted in main memory. This is the base principle behind the technique we call Cache Bleaching. We evaluate our design on real applications and propose hypervisor-level adaptations to showcase the potential of the PLIM approach.Accepted manuscrip

    Instruction-set architecture synthesis for VLIW processors

    Get PDF

    Enabling Shared Memory Communication in Networks of MPSoCs

    Get PDF
    Ongoing transistor scaling and the growing complexity of embedded system designs has led to the rise of MPSoCs (Multi‐Processor System‐on‐Chip), combining multiple hard‐core CPUs and accelerators (FPGA, GPU) on the same physical die. These devices are of great interest to the supercomputing community, who are increasingly reliant on heterogeneity to achieve power and performance goals in these closing stages of the race to exascale. In this paper, we present a network interface architecture and networking infrastructure, designed to sit inside the FPGA fabric of a cutting‐edge MPSoC device, enabling networks of these devices to communicate within both a distributed and shared memory context, with reduced need for costly software networking system calls. We will present our implementation and prototype system and discuss the main design decisions relevant to the use of the Xilinx Zynq Ultrascale+, a state‐of‐the‐art MPSoC, and the challenges to be overcome given the device's limitations and constraints. We demonstrate the working prototype system connecting two MPSoCs, with communication between processor and remote memory region and accelerator. We then discuss the limitations of the current implementation and highlight areas of improvement to make this solution production‐ready

    A comprehensive approach to MPSoC security: achieving network-on-chip security : a hierarchical, multi-agent approach

    Get PDF
    Multiprocessor Systems-on-Chip (MPSoCs) are pervading our lives, acquiring ever increasing relevance in a large number of applications, including even safety-critical ones. MPSoCs, are becoming increasingly complex and heterogeneous; the Networks on Chip (NoC paradigm has been introduced to support scalable on-chip communication, and (in some cases) even with reconfigurability support. The increased complexity as well as the networking approach in turn make security aspects more critical. In this work we propose and implement a hierarchical multi-agent approach providing solutions to secure NoC based MPSoCs at different levels of design. We develop a flexible, scalable and modular structure that integrates protection of different elements in the MPSoC (e.g. memory, processors) from different attack scenarios. Rather than focusing on protection strategies specifically devised for an individual attack or a particular core, this work aims at providing a comprehensive, system-level protection strategy: this constitutes its main methodological contribution. We prove feasibility of the concepts via prototype realization in FPGA technology
    • …
    corecore