20 research outputs found

    Formation Control Algorithms for Multi-UAV Systems with Unstable Topologies and Hybrid Delays

    Get PDF
    Multi-UAV systems rely on the communication network to exchange mission-critical data for their coordination and deployment, while communication delays could cause significant challenges to both tasks. The impact of the delays becomes even more severe if the delay, network structure and formation are all time-varying, a common challenge faced by real-world multiUAV systems. To address this challenge, we consider time-varying delays that exist in multiple channels caused by transmitting information and internal delays that exist in UAVs themselves caused by obtaining and processing their own data. We design an effective distributed formation control protocol for a multiUAV system to achieve time-varying formation; this protocol is particularly useful for dealing with time-varying multi-UAV network topologies as well. We provide rigorous convergence analysis for different scenarios with or without hybrid delays and obtain sufficient conditions for achieving the time-varying formation. Furthermore, we propose an algorithm for quantifying the maximum delay allowed by the system. Based on the designed formation algorithm, a deployment strategy is proposed to coordinate multi-UAV systems in a practical environment. Numerical analysis and UAV hardware experiments are conducted to evaluate the performance of the theoretical results and investigate the feasibility of generated flight trajectories

    Uav-assisted data collection in wireless sensor networks: A comprehensive survey

    Get PDF
    Wireless sensor networks (WSNs) are usually deployed to different areas of interest to sense phenomena, process sensed data, and take actions accordingly. The networks are integrated with many advanced technologies to be able to fulfill their tasks that is becoming more and more complicated. These networks tend to connect to multimedia networks and to process huge data over long distances. Due to the limited resources of static sensor nodes, WSNs need to cooperate with mobile robots such as unmanned ground vehicles (UGVs), or unmanned aerial vehicles (UAVs) in their developments. The mobile devices show their maneuverability, computational and energystorage abilities to support WSNs in multimedia networks. This paper addresses a comprehensive survey of almost scenarios utilizing UAVs and UGVs with strogly emphasising on UAVs for data collection in WSNs. Either UGVs or UAVs can collect data from static sensor nodes in the monitoring fields. UAVs can either work alone to collect data or can cooperate with other UAVs to increase their coverage in their working fields. Different techniques to support the UAVs are addressed in this survey. Communication links, control algorithms, network structures and different mechanisms are provided and compared. Energy consumption or transportation cost for such scenarios are considered. Opening issues and challenges are provided and suggested for the future developments

    Resource Scheduling for UAVs-aided D2D Networks: A Multi-objective Optimization Approach

    Full text link
    Unmanned aerial vehicles (UAVs)-aided device-todevice (D2D) networks have attracted great interests with the development of 5G/6G communications, while there are several challenges about resource scheduling in UAVs-aided D2D networks. In this work, we formulate a UAVs-aided D2D network resource scheduling optimization problem (NetResSOP) to comprehensively consider the number of deployed UAVs, UAV positions, UAV transmission powers, UAV flight velocities, communication channels, and UAV-device pair assignment so as to maximize the D2D network capacity, minimize the number of deployed UAVs, and minimize the average energy consumption over all UAVs simultaneously. The formulated NetResSOP is a mixed-integer programming problem (MIPP) and an NP-hard problem, which means that it is difficult to be solved in polynomial time. Moreover, there are trade-offs between the optimization objectives, and hence it is also difficult to find an optimal solution that can simultaneously make all objectives be optimal. Thus, we propose a non-dominated sorting genetic algorithm-III with a Flexible solution dimension mechanism, a Discrete part generation mechanism, and a UAV number adjustment mechanism (NSGA-III-FDU) for solving the problem comprehensively. Simulation results demonstrate the effectiveness and the stability of the proposed NSGA-III-FDU under different scales and settings of the D2D networks

    An intelligent strategy for tactical movements of UAVs in disaster scenarios

    Get PDF
    Unmanned Aerial Vehicles (UAVs) are envisioned as flexible and fast-deploying communication network for disaster scenarios, where the typical communication infrastructure is likely to be malfunctioning. A few works propose UAVs for building communication links autonomously between rescue team’s members in disaster scenarios. The techniques used are usually based on navigation, positioning, and signal strength processing. However, these techniques may not be enough if the objective is to provide communication services to the maximum number of victims and rescuers and not only to a few rescuers. In this situation, dissimilarity metrics, like the Jaccard distance, can provide information about whether the communication service provided to victims is efficient or not (e.g., providing a better distribution of the victims assigned to each UAV acting as service provider). We propose an intelligent strategy that allows UAVs to perform tactical movements in a disaster scenario, combining the Jaccard distance and artificial intelligence algorithms like hill climbing and simulated annealing. Our strategy maximizes the number of victims that are serviced by the UAVs while avoiding network disconnections. Also, a mobility model specifically developed for modelling the victims’ movements within the incident site of a disaster scenario is propose

    Flight coordination solutions for multirotor unmanned aerial vehicles

    Full text link
    [EN] As the popularity and the number of Unmanned Aerial Vehicles (UAVs) increases, new protocols are needed to coordinate them when flying without direct human control, and to avoid that these UAVs collide with each other. Testing such novel protocols on real UAVs is a complex procedure that requires investing much time, money and research efforts. Hence, it becomes necessary to first test the developed solutions using simulation. Unfortunately, existing tools present significant limitations: some of them only simulate accurately the flight behavior of a single UAV, while some other simulators can manage several UAVs simultaneously, but not in real time, thus losing accuracy regarding the mobility pattern of the UAV. In this work we address such problem by introducing Arducopter Simulator (ArduSim), a novel simulation platform that allows controlling in soft real-time the flight and communications of multiple UAVs, being the developed protocols directly portable to real devices. Moreover, ArduSim includes a realistic model for the WiFi communications link between UAVs, which was proposed based on real experiments. The chances that two UAVs get close to each other during their flights is increasing as more and more of them populate our skies, causing concerns regarding potential collisions. Therefore, this thesis also proposes the Mission Based Collision Avoidance Protocol (MBCAP), a novel UAV collision avoidance protocol applicable to all types of multicopters flying autonomously. It relies on wireless communications in order to detect nearby UAVs, and to negotiate the procedure to avoid any potential collision. Experimental and simulation results demonstrate the validity and effectiveness of the proposed solution, which typically introduces a small overhead in the range of 15 to 42 seconds for each risky situation successfully handled. The previous solution aims at UAVs performing independent flights, but they can also form a swarm, where more constraints have to be met to avoid collisions among them, and to allow them to complete their task efficiently. Deploying an UAV swarm instead of a single UAV can provide additional benefits when, for example, cargo carrying requirements exceed the lifting power of a single UAV, or when the deployment of several UAVs simultaneously can accelerate the accomplishment of the mission, and broaden the covered area. To this aim, in this work we present the Mission-based UAV Swarm Coordination Protocol (MUSCOP), a solution that allows multiple UAVs to perfectly coordinate their flight when performing planned missions. Experimental results show that the proposed protocol is able to achieve a high degree of swarm cohesion independently of the flight formation adopted, and even in the presence of very lossy channels, achieving minimal synchronization delays and very low position offsets with regard to the ideal case. Currently, there are some other scenarios, such as search and rescue operations, where the deployment of manually guided swarms of UAVs can be necessary. In such cases, the pilot's commands are unknown a priori (unpredictable), meaning that the UAVs must respond in near real-time to the movements of the leader UAV in order to maintain swarm consistency. Hence, in this thesis we also propose the FollowMe protocol for the coordination of UAVs in a swarm where the swarm leader is controlled by a real pilot, and the other UAVs must follow it in real-time to maintain swarm cohesion. Simulation results show the validity of the proposed swarm coordination protocol, detailing the responsiveness limits of our solution, and finding the minimum distances between UAVs to avoid collisions.[ES] A medida que la popularidad de los Vehículos Aéreos No Tripulados (VANTs) se incrementa, también se hacen necesarios nuevos protocolos para coordinarlos en vuelos sin control humano directo, y para evitar que colisionen entre sí. Probar estos nuevos protocolos en VANTs reales es un proceso complejo que requiere invertir mucho tiempo, dinero y esfuerzo investigador. Por lo tanto, es necesario probar en simulación las soluciones previamente implementadas. Lamentablemente, las herramientas actuales tienen importantes limitaciones: algunas simulan con precisión el vuelo de un único VANT, mientras que otros simuladores pueden gestionar varios VANTs simultáneamente aunque no en tiempo real, perdiendo por lo tanto precisión en el patrón de movilidad del VANT. En este trabajo abordamos este problema introduciendo Arducopter Simulator (ArduSim), una nueva plataforma de simulación que permite controlar en tiempo real el vuelo y la comunicación entre múltiples VANTs, permitiendo llevar los protocolos desarrollados a dispositivos reales con facilidad. Además, ArduSim incluye un modelo realista de un enlace de comunicaciones WiFi entre VANTs, el cual está basado en el resultado obtenido de experimentos con VANTs reales. La posibilidad de que dos VANTs se aproximen entre sí durante el vuelo se incrementa a medida que hay más aeronaves de este tipo surcando los cielos, introduciendo peligro por posibles colisiones. Por ello, esta tesis propone Mission Based Collision Avoidance Protocol (MBCAP), un nuevo protocolo de evitación de colisiones para VANTs aplicable a todo tipo de multicópteros mientras vuelan autónomamente. MBCAP utiliza comunicaciones inalámbricas para detectar VANTs cercanos y para negociar el proceso de evitación de la colisión. Los resultados de simulaciones y experimentos reales demuestran la validez y efectividad de la solución propuesta, que introduce un pequeño aumento del tiempo de vuelo de entre 15 y 42 segundos por cada situación de riesgo correctamente resuelta. La solución anterior está orientada a VANTs que realizan vuelos independientes, pero también pueden formar un enjambre, donde hay que cumplir más restricciones para evitar que colisionen entre sí, y para que completen la tarea de forma eficiente. Desplegar un enjambre de VANTs en vez de uno solo proporciona beneficios adicionales cuando, por ejemplo, la necesidad de carga excede la capacidad de elevación de un único VANT, o cuando al desplegar varios VANTs simultáneamente se acelera la misión y se cubre un área mayor. Con esta finalidad, en este trabajo presentamos el protocolo Mission-based UAV Swarm Coordination Protocol (MUSCOP), una solución que permite a varios VANTs coordinar perfectamente el vuelo mientras realizan misiones planificadas. Los resultados experimentales muestran que el protocolo propuesto permite al enjambre alcanzar un grado de cohesión elevado independientemente de la formación de vuelo adoptada, e incluso en presencia de un canal de comunicación con muchas pérdidas, consiguiendo retardos en la sincronización insignificantes y desfases mínimos en la posición con respecto al caso ideal. Actualmente hay otros escenarios, como las operaciones de búsqueda y rescate, donde el despliegue de enjambres de VANTs guiados manualmente puede ser necesario. En estos casos, las órdenes del piloto son desconocidas a priori (impredecibles), lo que significa que los VANTs deben responder prácticamente en tiempo real a los movimientos del VANT líder para mantener la consistencia del enjambre. Por ello, en esta tesis proponemos el protocolo FollowMe para la coordinación de VANTs en un enjambre donde el líder es controlado por un piloto, y el resto de VANTs lo siguen en tiempo real para mantener la cohesión del enjambre. Las simulaciones muestran la validez del protocolo de coordinación de enjambres propuesto, detallando los límites de la solución, y definiendo la distancia mínima entre VANTs para evita[CA] A mesura que la popularitat dels Vehicles Aeris No Tripulats (VANTs) s'incrementa, també es fan necessaris nous protocols per a coordinar-los en vols sense control humà directe, i per a evitar que col·lisionen entre si. Provar aquests nous protocols en VANTs reals és un procés complex que requereix invertir molt de temps, diners i esforç investigador. Per tant, és necessari provar en simulació les solucions prèviament implementades. Lamentablement, les eines actuals tenen importants limitacions: algunes simulen amb precisió el vol d'un únic VANT, mentre que altres simuladors poden gestionar diversos VANTs simultàniament encara que no en temps real, perdent per tant precisió en el patró de mobilitat del VANT. En aquest treball abordem aquest problema introduint Arducopter Simulator (ArduSim), una nova plataforma de simulació que permet controlar en temps real el vol i la comunicació entre múltiples VANTs, permetent portar els protocols desenvolupats a dispositius reals amb facilitat. A més, ArduSim inclou un model realista d'un enllaç de comunicacions WiFi entre VANTs, que està basat en el resultat obtingut d'experiments amb VANTs reals. La possibilitat que dues VANTs s'aproximen entre si durant el vol s'incrementa a mesura que hi ha més aeronaus d'aquest tipus solcant els cels, introduint perill per possibles col·lisions. Per això, aquesta tesi proposa Mission Based Collision Avoidance Protocol (MBCAP), un nou protocol d'evitació de col·lisions per a VANTs aplicable a tota mena de multicòpters mentre volen autònomament. MBCAP utilitza comunicacions sense fils per a detectar VANTs pròxims i per a negociar el procés d'evitació de la col·lisió. Els resultats de simulacions i experiments reals demostren la validesa i efectivitat de la solució proposada, que introdueix un xicotet augment del temps de vol de entre 15 i 42 segons per cada situació de risc correctament resolta. La solució anterior està orientada a VANTs que realitzen vols independents, però també poden formar un eixam, on cal complir més restriccions per a evitar que col·lisionen entre si, i perquè completen la tasca de forma eficient. Desplegar un eixam de VANTs en comptes d'un només proporciona beneficis addicionals quan, per exemple, la necessitat de càrrega excedeix la capacitat d'elevació d'un únic VANT, o quan en desplegar diversos VANTs simultàniament s'accelera la missió i es cobreix una àrea major. Amb aquesta finalitat, en aquest treball presentem el protocol Mission-based UAV Swarm Coordination Protocol (MUSCOP), una solució que permet a diversos VANTs coordinar perfectament el vol mentre realitzen missions planificades. Els resultats experimentals mostren que el protocol proposat permet a l'eixam aconseguir un grau de cohesió elevat independentment de la formació de vol adoptada, i fins i tot en presència d'un canal de comunicació amb moltes pèrdues, aconseguint retards en la sincronització insignificants i desfasaments mínims en la posició respecte al cas ideal. Actualment hi ha altres escenaris, com les operacions de cerca i rescat, on el desplegament d'eixams de VANTs guiats manualment pot ser necessari. En aquests casos, les ordres del pilot són desconegudes a priori (impredictibles), el que significa que els VANTs han de respondre pràcticament en temps real als moviments del VANT líder per a mantindre la consistència de l'eixam. Per això, en aquesta tesi proposem el protocol FollowMe per a la coordinació de VANTs en un eixam on el líder és controlat per un pilot, i la resta de VANTs ho segueixen en temps real per a mantindre la cohesió de l'eixam. Les simulacions mostren la validesa del protocol de coordinació d'eixams proposat, detallant els límits de la solució, i definint la distància mínima entre VANTs per a evitar col·lisions.Fabra Collado, FJ. (2020). Flight coordination solutions for multirotor unmanned aerial vehicles [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/147857TESI

    Data collection of mobile sensor networks by drones

    Get PDF
    Data collection by autonomous mobile sensor arrays can be coupled with the use of drones which provide a low-cost, easily deployable backhauling solution. These means of collection can be used to organize temporary events (sporting or cultural) or to carry out operations in difficult or hostile terrain. The aim of this thesis is to propose effective solutions for communication between both mobile sensors on the ground and on the edge-to-ground link. For this purpose, we are interested in scheduling communications, routing and access control on the sensor / drone link, the mobile collector. We propose an architecture that meets the constraints of the network. The main ones are the intermittence of the links and therefore the lack of connectivity for which solutions adapted to the networks tolerant to the deadlines are adopted. Given the limited opportunities for communication with the drone and the significant variation in the physical data rate, we proposed scheduling solutions that take account of both the contact time and the physical flow rate. Opportunistic routing is also based on these two criteria both for the selection of relay nodes and for the management of queues. We wanted to limit the overhead and propose efficient and fair solutions between mobile sensors on the ground. The proposed solutions have proved superior to conventional scheduling and routing solutions. Finally, we proposed a method of access combining a random access with contention as well as an access with reservation taking into account the aforementioned criteria. This flexible solution allows a network of dense mobile sensors to get closer to the performance obtained in an oracle mode. The proposed solutions can be implemented and applied in different application contexts for which the ground nodes are mobile or easily adapted to the case where the nodes are static

    Mission-based mobility models for UAV networks

    Get PDF
    Las redes UAV han atraído la atención de los investigadores durante la última década. Las numerosas posibilidades que ofrecen los sistemas single-UAV aumentan considerablemente al usar múltiples UAV. Sin embargo, el gran potencial del sistema multi-UAV viene con un precio: la complejidad de controlar todos los aspectos necesarios para garantizar que los UAVs cumplen la misión que se les ha asignado. Ha habido numerosas investigaciones dedicadas a los sistemas multi-UAV en el campo de la robótica en las cuales se han utilizado grupos de UAVs para diferentes aplicaciones. Sin embargo, los aspectos relacionados con la red que forman estos sistemas han comenzado a reclamar un lugar entre la comunidad de investigación y han hecho que las redes de UAVs se consideren como un nuevo paradigma entre las redes multi-salto. La investigación de redes de UAVs, de manera similar a otras redes multi-salto, se divide principalmente en dos categorías: i) modelos de movilidad que capturan la movilidad de la red, y ii) algoritmos de enrutamiento. Ambas categorías han heredado muchos algoritmos que pertenecían a las redes MANET, que fueron el primer paradigma de redes multi-salto que atrajo la atención de los investigadores. Aunque hay esfuerzos de investigación en curso que proponen soluciones para ambas categorías, el número de modelos de movilidad y algoritmos de enrutamiento específicos para redes UAV es limitado. Además, en el caso de los modelos de movilidad, las soluciones existentes propuestas son simplistas y apenas representan la movilidad real de un equipo de UAVs, los cuales se utilizan principalmente en operaciones orientadas a misiones, en la que cada UAV tiene asignados movimientos específicos. Esta tesis propone dos modelos de movilidad basados en misiones para una red de UAVs que realiza dos operaciones diferentes. El escenario elegido en el que se desarrollan las misiones corresponde con una región en la que ha ocurrido, por ejemplo, un desastre natural. La elección de este tipo de escenario se debe a que en zonas de desastre, la infraestructura de comunicaciones comúnmente está dañada o totalmente destruida. En este tipo de situaciones, una red de UAVs ofrece la posibilidad de desplegar rápidamente una red de comunicaciones. El primer modelo de movilidad, llamado dPSO-U, ha sido diseñado para capturar la movilidad de una red UAV en una misión con dos objetivos principales: i) explorar el área del escenario para descubrir las ubicaciones de los nodos terrestres, y ii) hacer que los UAVs converjan de manera autónoma a los grupos en los que se organizan los nodos terrestres (también conocidos como clusters). El modelo de movilidad dPSO-U se basa en el conocido algoritmo particle swarm optimization (PSO), considerando los UAV como las partículas del algoritmo, y también utilizando el concepto de valores dinámicos para la inercia, el local best y el neighbour best de manera que el modelo de movilidad tenga ambas capacidades: la de exploración y la de convergencia. El segundo modelo, denominado modelo de movilidad Jaccard-based, captura la movilidad de una red UAV que tiene asignada la misión de proporcionar servicios de comunicación inalámbrica en un escenario de mediano tamaño. En este modelo de movilidad se ha utilizado una combinación del virtual forces algorithm (VFA), de la distancia Jaccard entre cada par de UAVs y metaheurísticas como hill climbing y simulated annealing, para cumplir los dos objetivos de la misión: i) maximizar el número de nodos terrestres (víctimas) que se encuentran bajo el área de cobertura inalámbrica de la red UAV, y ii) mantener la red UAV como una red conectada, es decir, evitando las desconexiones entre UAV. Se han realizado simulaciones exhaustivas con herramientas software específicamente desarrolladas para los modelos de movilidad propuestos. También se ha definido un conjunto de métricas para cada modelo de movilidad. Estas métricas se han utilizado para validar la capacidad de los modelos de movilidad propuestos de emular los movimientos de una red UAV en cada misión.UAV networks have attracted the attention of the research community in the last decade. The numerous capabilities of single-UAV systems increase considerably by using multiple UAVs. The great potential of a multi-UAV system comes with a price though: the complexity of controlling all the aspects required to guarantee that the UAV team accomplish the mission that it has been assigned. There have been numerous research works devoted to multi-UAV systems in the field of robotics using UAV teams for different applications. However, the networking aspects of multi-UAV systems started to claim a place among the research community and have made UAV networks to be considered as a new paradigm among the multihop ad hoc networks. UAV networks research, in a similar manner to other multihop ad hoc networks, is mainly divided into two categories: i) mobility models that capture the network mobility, and ii) routing algorithms. Both categories have inherited previous algorithms mechanisms that originally belong to MANETs, being these the first multihop networking paradigm attracting the attention of researchers. Although there are ongoing research efforts proposing solutions for the aforementioned categories, the number of UAV networks-specific mobility models and routing algorithms is limited. In addition, in the case of the mobility models, the existing solutions proposed are simplistic and barely represent the real mobility of a UAV team, which are mainly used in missions-oriented operations. This thesis proposes two mission-based mobility models for a UAV network carrying out two different operations over a disaster-like scenario. The reason for selecting a disaster scenario is because, usually, the common communication infrastructure is malfunctioning or completely destroyed. In these cases, a UAV network allows building a support communication network which is rapidly deployed. The first mobility model, called dPSO-U, has been designed for capturing the mobility of a UAV network in a mission with two main objectives: i) exploring the scenario area for discovering the location of ground nodes, and ii) making the UAVs to autonomously converge to the groups in which the nodes are organized (also referred to as clusters). The dPSO-U mobility model is based on the well-known particle swarm optimization algorithm (PSO), considering the UAVs as the particles of the algorithm, and also using the concept of dynamic inertia, local best and neighbour best weights so the mobility model can have both abilities: exploration and convergence. The second one, called Jaccard-based mobility model, captures the mobility of a UAV network that has been assigned with the mission of providing wireless communication services in a medium-scale scenario. A combination of the virtual forces algorithm (VFA), the Jaccard distance between each pair of UAVs and metaheuristics such as hill climbing or simulated annealing have been used in this mobility model in order to meet the two mission objectives: i) to maximize the number of ground nodes (i.e. victims) under the UAV network wireless coverage area, and ii) to maintain the UAV network as a connected network, i.e. avoiding UAV disconnections. Extensive simulations have been performed with software tools that have been specifically developed for the proposed mobility models. Also, a set of metrics have been defined and measured for each mobility model. These metrics have been used for validating the ability of the proposed mobility models to emulate the movements of a UAV network in each mission

    Blockchain-based secure Unmanned Aerial Vehicles (UAV) in network design and optimization

    Get PDF
    Unmanned Aerial Vehicles (UAVs) have emerged as transformative technologies with wide ranging applications, including surveillance, mapping, remote sensing, search and rescue, and disaster management. As sophisticated Unmanned Aerial Vehicle (UAV) increasingly operate in collaborative swarms, joint optimization challenges arise, such as flight trajectories, scheduling, altitude, Aerial Base Stations (ABS), energy harvesting, power transfer, resource allocation, and power consumption. However, the widespread adoption of UAV networks has been hindered by challenges related to optimal Three-Dimensional (3D) deployment, trajectory optimization, wireless and computational resource allocation, and limited flight durations when operating as ABSs. Crucially, the broadcast nature of UAV-assisted wireless networks renders them susceptible to privacy and security threats such as Distributed Denial-of-Service (DDoS) replay, impersonation, message injection, spoofing, malware infection, eavesdropping, and line of-interference attacks. This study aims to address these privacy and security challenges by leveraging blockchain technology’s potential to secure data and delivery in UAV communication networks. With amalgamation of blockchain, this study seeks to harness its inherent immutability and cryptographic properties to ensure secure and tamper-proof data transmission, promote trust and transparency among stakeholders, enable automated Smart Contract (SC) for secure delivery, and facilitate standardization and interoperability across platforms. Specifically, blockchain can secure UAV network privacy and security through data privacy and integrity, secure delivery and tracking, access control, identity management, and resilience against cyber-attacks. Furthermore, this study explores the synergies among blockchain, UAV networks, and Federated Learning (FL) for privacy-preserving intelligent applications in healthcare and wireless networks. FL enables collaborative training of Machine Learning (ML) models without sharing raw data, ensuring data privacy. By integrating FL with blockchain-assisted UAV networks, this study aims to revolutionize future intelligent applications, particularly in time-sensitive and privacy-critical domains. Overall, this thesis contributes to the field by providing a comprehensive analysis of integrating blockchain, FL, and UAV networks, beyond Fifth-Generation (5G) communication networks. It addresses privacy and security concerns related to data and delivery, thereby enabling secure, reliable, and intelligent applications in various sectors

    Routing and video streaming in drone networks

    Get PDF
    PhDDrones can be used for several civil applications including search and rescue, coverage, and aerial imaging. Newer applications like construction and delivery of goods are also emerging. Performing tasks as a team of drones is often beneficial but requires coordination through communication. In this thesis, the communication requirements of video streaming drone applications based on existing works are studied. The existing communication technologies are then analyzed to understand if the communication requirements posed by these drone applications can be met by the available technologies. The shortcomings of existing technologies with respect to drone applications are identified and potential requirements for future technologies are suggested. The existing communication and routing protocols including ad-hoc on-demand distance vector (AODV), location-aided routing (LAR), and greedy perimeter stateless routing (GPSR) protocols are studied to identify their limitations in context to the drone networks. An application scenario where a team of drones covers multiple areas of interest is considered, where the drones follow known trajectories and transmit continuous streams of sensed traffic (images or video) to a ground station. A route switching (RS) algorithm is proposed that utilizes both the location and the trajectory information of the drones to schedule and update routes to overcome route discovery and route error overhead. Simulation results show that the RS scheme outperforms LAR and AODV by achieving higher network performance in terms of throughput and delay. Video streaming drone applications such as search and rescue, surveillance, and disaster management, benefit from multicast wireless video streaming to transmit identical data to multiple users. Video multicast streaming using IEEE 802.11 poses challenges of reliability, performance, and fairness under tight delay bounds. Because of the mobility of the video sources and the high data-rate of the videos, the transmission rate should be adapted based on receivers' link conditions. Rate-adaptive video multicast streaming in IEEE 802.11 requires wireless link estimation as well as frequent feedback from multiple receivers. A contribution to this thesis is an application-layer rate-adaptive video multicast streaming framework using an 802.11 ad-hoc network that is applicable when both the sender and the receiver nodes are mobile. The receiver nodes of a multicast group are assigned with roles dynamically based on their link conditions. An application layer video multicast gateway (ALVM-GW) adapts the transmission rate and the video encoding rate based on the received feedback. Role switching between multiple receiver nodes (designated nodes) cater for mobility and rate adaptation addresses the challenges of performance and fairness. The reliability challenge is addressed through re-transmission of lost packets while delays under given bounds are achieved through video encoding rate adaptation. Emulation and experimental results show that the proposed approach outperforms legacy multicast in terms of packet loss and video quality
    corecore