
Research Article
An Intelligent Strategy for Tactical Movements of
UAVs in Disaster Scenarios

J. Sánchez-García, J. M. García-Campos, S. L. Toral, D. G. Reina, and F. Barrero

Electronic Engineering Department, University of Seville, Camino de los Descubrimientos, S/N, 41092 Seville, Spain

Correspondence should be addressed to S. L. Toral; storal@us.es

Received 25 September 2015; Revised 15 January 2016; Accepted 11 February 2016

Academic Editor: Pascal Lorenz
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Unmanned Aerial Vehicles (UAVs) are envisioned as flexible and fast-deploying communication network for disaster scenarios,
where the typical communication infrastructure is likely to be malfunctioning. A few works propose UAVs for building
communication links autonomously between rescue team’s members in disaster scenarios. The techniques used are usually based
on navigation, positioning, and signal strength processing. However, these techniques may not be enough if the objective is to
provide communication services to the maximum number of victims and rescuers and not only to a few rescuers. In this situation,
dissimilarity metrics, like the Jaccard distance, can provide information about whether the communication service provided to
victims is efficient or not (e.g., providing a better distribution of the victims assigned to each UAV acting as service provider).
We propose an intelligent strategy that allows UAVs to perform tactical movements in a disaster scenario, combining the Jaccard
distance and artificial intelligence algorithms like hill climbing and simulated annealing. Our strategy maximizes the number of
victims that are serviced by the UAVs while avoiding network disconnections. Also, a mobility model specifically developed for
modelling the victims’ movements within the incident site of a disaster scenario is proposed.

1. Introduction

UAVs are envisioned to be used in tactical missions, of either
rescue ormilitary nature, that typically involve search for vic-
tims or other targets [1–4]. Specifically, in disaster scenarios,
emergency crewmembers that arrive first at the disaster area,
also known as first responders, perform rescue tasks against
the clock.The reason is that the first 12–24 hours after the dis-
aster occurs is the most critical [5] and consequently a rapid
and efficient rescue mission could save an important number
of lives or reduce damage. When a group of UAVs is used
as a communication network, it usually receives the name
of Flying Ad Hoc Networks (FANET) [6] or Aerial Ad Hoc
Network (AANET) [2] or simply UAV networks [7].

Several works present mobility models for victims and
first responders in disaster areas [8, 9]. These works not
only model the incident site, which is the region where the
disaster actually occurred. They also model other regions
such as patient’s treatment area, transport area, and others.
Thesemobilitymodels are focusedmainly on the transport of

patients from the incident site to other regions but do not
model in detail the incident site. Victims’ movements within
the incident site usually are modelled by using the random
waypoint mobility model [10, 11]. We propose a more com-
plete and detailed victims’ mobility model for the incident
site, which is composed of different elements found in urban
disaster scenarios, such as roads, buildings, wreckage, and
others. The proposed victims’ mobility model in this paper
specifically focuses on urban scenarios. The proposed mobil-
ity model for victims will serve us for simulating a FANET
self-deployment based on the Jaccard distance and artificial
intelligence algorithms.

In disaster scenarios and specifically in the incident site,
UAVs networks can be of paramount help for victims and
crew members involved in rescue operations. FANET could
provide different types of services to victims and first respon-
ders. One possible service is to perform search and discovery
tasks to collect information about the victims’ locations,
the scenario features after the disaster, and the potential
risks that may arise during the rescue missions [12–14]. This
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information is very important for the first responders to plan
the rescue missions and to select the tactical movements to
follow. Another service that UAVs may provide is to deploy
communication links between emergency crew members
[15]. In this situation, the UAVs play the role of a flexible
and rapidly deployed communication infrastructure, which
becomes crucial as the normal communications infrastruc-
tures may be damaged and nonworking because of the
disaster.

In order to provide these services, the UAVs composing
FANET are usually equipped with hardware and software
elements that make them capable of sensing and acting
autonomously. It is also possible for theUAVs to include some
artificial intelligence algorithms to plan an intelligent strategy
about the best actions to be taken at each time. Often, these
actions are related to decide whether an UAV should hover at
its current position or to calculate a better location to fly to for
providing a better service.

The most common technologies that UAVs are equipped
with are navigation and positioning systems, signal process-
ing, and computer vision. Navigation and positioning sys-
tems are extensively used for defining the UAVs positions [2,
16, 17]. For example, it is possible to force the UAVs to main-
tain a specific Euclidean distance between each other, thus
covering a regular area. Although navigation and positioning
systems are a must for any standard UAV application, work-
ing only on the basis of the UAVs positions and the Euclidean
distance might not be very efficient. The main reason is that
disaster scenario features may change rapidly over time (in
many cases victims are moving continuously) and the only
consideration of positioning techniques does not provide an
adaptive response to this situation.

Signal strength processing combined with positioning
techniques might yield good results when used in UAVs self-
deployment problems [3]. This technique could allow the
UAVs to adapt to some scenario conditions and other UAVs
proximity, adapting their position to the place where the sig-
nal strength is maximized. However, by using only this tech-
nique it is not possible to infer information about whether
someUAVs are servicing the same victims of the scenario and
if other UAVs positions would be allowed to reach a better
distribution of victims serviced per drones, thus maximizing
the total number of victims serviced.

Imaging and computer vision techniques are usually
very accurate for analyzing different types of scenarios and
their features [18, 19]. These techniques can be suitable for
analyzing the victims’ presence and their movements in dis-
aster scenarios; however computer vision techniques usually
are resource-consuming (both hardware and software) and
might affect considerably the flying autonomy of small UAVs.

We propose an innovative approach to accomplish the
self-deployment of a group of UAVs by using the Jaccard
dissimilaritymetric [20] and artificial intelligence algorithms.
The Jaccard distance between two UAVs is calculated from
the number of victims that they share, and it is proposed in
this paper as a useful parameter to consider when calculating
the tactical movements of the UAVs in a FANET. As a
difference from other methods based only on the Euclidean
distance, the Jaccard distance contains updated information

about the scenario and the victims’ movements. Depending
on its value, twoUAVs canmake decisions about approaching
or moving away from each other, and these decisions may
vary over time as victims are also changing their position.
For instance, the FANET may detect whether its UAVs are
sharing a large number of victims andwhether there are other
positions that they could occupy to service the maximum
number of victims while maintaining their connectivity.
However, it is not easy to set a specific value for the Jaccard
distance for the UAVs to decide about the best movement to
make.

Selecting only one value as the target Jaccard distance to
be used for the UAVs at the beginning of a simulation is not
efficient at all. Moreover, with the changing conditions of the
scenario, the optimal Jaccard value could be varying. For this
reason we implement artificial intelligence algorithms to pro-
vide an autonomous selection of the target Jaccard distance
to be used for the tactical movement of the UAVs along the
entire simulation. The objectives of the proposed approach
are twofold: (i) to service the largest number of victims being
adaptive to the victims’ movements and (ii) to maintain the
network connectivity.

The main contributions of this paper are

(i) a more realistic mobility model for victims’ move-
ments within the incident site of an urban disaster
scenario,

(ii) Jaccard-based movement rules to define the UAVs
best positions for providing the best communication
service to the victims,

(iii) a comparison among several local search computa-
tional intelligence algorithms implemented such as
simulated annealing, hill climbing, and random walk
for deciding the best tactical UAV movements.

This paper is organized as follows. Section 2 reviews the
related work victims’ mobility models for disaster scenarios
and on Flying Ad Hoc Networks. Section 3 presents the
proposed victims’mobilitymodel simulating the incident site
of a disaster area scenario. Section 4 describes the tactical
movement rules that allow the UAVs self-deployment based
on the Jaccard distance and artificial intelligence algorithms.
Section 5 describes the artificial intelligence algorithms
implemented in the software simulator tool developed. Sec-
tion 6 describes the simulation settings and the main results
obtained. Finally, Section 7 concludes the paper.

2. Related Work

2.1. Modelling Victims’ Mobility in Disaster Scenarios. Mobil-
ity models for disaster scenarios have been a common
research topic in the last decade. There are several works
focusing on mobility models to simulate the victims and
rescue teams movements in disaster scenarios [8, 9, 21].

The authors in [8] model the disaster scenarios dividing
the simulation area according to several sites, namely, the
incident site or incident location (where the catastrophe
actually occurred and the victims should be rescued), the
treatment area (where victims receive first aid care), transport
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zone (including ambulance parking point and helicopter
landing site), and hospital zone.The focus in [8] is put on civil
protection units and therefore it presents a mobility model
reproducing theirmovements in search of victims operations.
Two types of nodes are modelled, pedestrians and trans-
port nodes. Regarding the incident site, the mobility model
proposed in [8] considers only the presence of transport
nodes. The reason is that it is only modelling the behavior
of a transport vehicle picking up a patient from the incident
location and carrying him or her to another area of themodel
called patients waiting for treatment area. In fact, the locations
to which transport nodes pick up patients within the incident
location are selected randomly. Thus, there is not a real
mobility model representing the victims’ behavior within the
incident site.

BonnMotion [21] is a software tool for generating and
analyzing mobility models. BonnMotion allows the gen-
eration of disaster scenarios, under the name of Disaster
Area Model, mobility models according to the description
provided in [8]. In this model, the incident site is modelled by
following either the randomwaypoint model, which was first
introduced in [22], or a slight variation of it.

The authors in [9] present the Human Behavior for
Disaster Areas (HBDA) mobility model. HBDA simulates
the behavior of rescue teams performing search-for-victims
operations.This behavior is represented by a set of algorithms
thatmimics the operation of a group of people scouting unex-
plored areas, spreading out over the scenario but maintaining
the line of sight with other members involved in the search
operation.

The Composite Mobility Model (CoM) is presented in
[23] as a mobility model for disaster scenarios that consists
of the combination of more basic mobility models. Its main
characteristic is the possibility of representing groupmobility
by using the Reference Point Group Mobility Model [24].
Also, it replaces the random waypoint mobility model by
the Levy-Walk model proposed in [25] for obtaining more
realistic simulations without the nodes concentration usually
showed by the randomwaypoint model. Althoughmore real-
istic than other mobility models, the CoM bases its behavior
on the fact of knowing the scenario characteristics in advance,
which may be available in some situations but not in disaster
areas where the presence of building wreckage and debris
might be present.

Although there are several mobility models for disaster
scenarios, it is clear that they mainly focus on modelling the
mobility of the rescueworkers; they do notmodel the victims’
movements within the incident site in a detailed manner. In
the works that also include the victims’ mobility, they model
it in a very simple way, such as the Disaster Area Model [8],
where the victims’ mobility is represented by one squared
area (the incident site) where victimsmove using the random
waypoint mobility model. Moreover, in those works in which
victims’ mobility is simulated within the incident location,
themodels used are the randomwaypointmodel or the Levy-
Walk model, which provide a distribution of victims all over
the incident location (more distributed in the case of the
Levy-Walk model).

Current research trends on modelling generic human
mobility are based on analyzing real traces of human move-
ments in order to infer new mobility models [26]. Other
research efforts are put in validating existing mobility models
through the usage of such real mobility traces [27, 28]. These
trends are both promising research approaches for designing
and analyzing new mobility models representing normal
mobility situations (e.g., the mobility of persons during a
normal working day and a normal weekend day) and also
for studying the routing protocols performance with these
mobility models [29, 30]. However, it is important to notice
that there are neither other works nor information about real
movements of victims in a disaster-like situation. It is unfea-
sible to make preparations to record the mobility of humans
in a disaster scenario because it is not possible to predict in
advance when and where a disaster will occur. Also, some of
the techniques used for acquiring data of humanmovements’
real traces may not function in a disaster scenario, due to
damage in the technologies used and the corresponding
infrastructure, making the real traces more difficult to gather.

The focus of this paper is the area defined as the incident
site in [15], because this is the area where the UAVs are going
to be deployed for providing communication services to
victims. Therefore, a victim’s mobility model more complete
than the ones previously mentioned is needed. For this rea-
son, amobilitymodel for victimswithin the incident site of an
urban disaster scenario will be first proposed.

2.2. UAVs Applications in Disaster Scenarios. Regarding
UAVs, there are several works in the area which presents
results and applications that are directly or indirectly appli-
cable to disaster scenarios.

UAVNet [3] proposes a mesh network using UAVs with
the aim of providing communication services between two
ground nodes which are not able to communicate by them-
selves. Although it is not presented for disaster scenarios
it could be applicable to some emergency scenarios. The
algorithm developed for UAVNet firstly makes the UAVs
localize the first end system position of the entities that want
to communicate; then it searches the second end system and
calculates the best position for the UAV to be located in order
to communicate the end systems. The algorithm bases the
best position calculation on Euclidean distance and signal
strength processing. It also presents the possibility to use
more than one UAV, with some of them playing the role of
relaying nodes in the communication bridge between the two
end systems. Despite the UAVs having a search operation
mode, UAVNet works on the basis that the UAVs know in
advance one of the end systems positions, and usually the first
end system provides the position of the second end system
to the UAVs. This approach addresses the problem of build-
ing one communication link with UAVs between two end
systems. Therefore, the problem of maximizing the number
of victims that are provided with communication services is
not addressed.

AirShield [17] proposes an aerial network, consisting of a
swarm of micro-UAVs (MUAVs), to establish a communica-
tionnetwork in situations of emergencies of gases, explosions,
and chemical clouds. AirShield is provided with components
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that act as an intelligent agent; these are a Decision Support
System that measures the chemical cloud trend values and a
cloud propagation simulation on which the UAVs based the
calculation of their next positions to occupy. Although the
AirShield application presented is on chemical clouds, the
evaluation focus of the authors in [17] is on the performance
of several wireless access technologies implemented on the
MUAVs network (mainly evaluating the Round Trip Time
of messages exchanged). The solution proposed by AirShield
is applicable to disaster scenarios but is mainly focused on
tropospheric telemetry for providing this information to the
mission control center, which is located on the ground. Pro-
viding communication services to the victims on the ground
that might be affected by the catastrophe is not addressed.

The authors in [15] propose a swarm of microair vehicles,
called SMAVNET, for creating a communication network on
a disaster area. The SMAVNET uses fixed-wing UAVs (not
quadcopters-like UAVs) which must be moving constantly;
therefore, rather than calculating the best positions to serve
as a communication network, the UAVs have to calculate
flying routes.The technology used in SMAVNET for steering
the UAVs only uses communication hardware (WiFi or
radio modules) and magnetic compass instead of GPS-like
positioning systems. The fixed-wing UAVs in SMAVNET are
launched at regular intervals and self-organize themselves
to search for other rescuers positions. Rescuers send “hello”
messages at a given rate and, when the UAVs detect the
reception of these messages at a rate close to the one used by
the rescuer, the discovery of a new rescuer is finished. Then
the UAVs maintain the communication links between the
rescuers by creating a chain between the rescuers’ positions.
Two artificial intelligence algorithms were implemented on
SMAVNET simulation, an artificial evolution controller and
a second one based on ant colony foraging and pheromone
trails. The approach described in [15] uses artificial intelli-
gence for the self-organization of a FANET on a disaster area
providing communication links between rescuers. However,
the presence of many victims in this approach is not consid-
ered andmainly the SMAVNEThas been simulated only with
a few rescuers.

Search-for-target missions have been found in the litera-
ture together with the use of artificial intelligence techniques
for controlling the UAVs behavior [13, 14]. In [13] an agent-
based simulation tool is developed for collaborative search
task of a group of UAVs. The search controller is based on a
controllermixing central control and pheromone-based tech-
niques. The scenario is divided into cells on which the UAVs
leave pheromones when they visited them or are marked as
“visited” by the central controller when the cells are under
the coverage of the UAVs.The aim is to perform a search task
of a target, not to provide coverage to it. In [14], two types of
controllers are designed for a nonhelicopters model of UAV
groups. The mission for the UAVs is to navigate through an
unknown environment, reach a target, and detonate it. The
first controller proposed uses a neural network consisting
of 7 input neurons (1 encoding for the distance to the
target, 3 for the angle, and 3 for the distance to the closest
obstacle); additionally, 15 neurons are forming the neural
network core, and 2 output neurons are used. The second

controller implements a genetic algorithm using a fitness for-
mula depending on the target position and movement. Both
controllers implement a multiagent system for four UAVs
that collaborate in the search and destroy mission.

Although the use ofUAVs and FANEThas been proposed
recently in the literature, there are no other works addressing
the problem of providing communication services to victims
during the rescue mission, but only to rescue crew members.
Moreover, there are no other works following the approach of
using dissimilarity metrics, such as the Jaccard distance, and
artificial intelligence algorithms for the calculation of UAVs
tactical movements. Then we propose intelligent strategy
based on the Jaccard distance and artificial intelligence algo-
rithms for enabling the UAVs self-deployment on a disaster
scenario. The main objectives sought with the strategy pro-
posed are (i) to maximize the number of victims and rescue
workers that are serviced by theUAVs and (ii) tomaintain the
network always connected.

3. Disaster Scenario and Victims
Mobility Model

This paper is focused on the incident site within an urban
disaster scenario [8].The victims’ movements within an inci-
dent site can be very heterogeneous and difficult to categorize.
Random movements are very likely to be found on victims
within the incident site. However, architectural features of the
disaster area affect the victims’ movements. As an example,
victims could move along a road trying to escape from the
danger but they cannot jump over a building or they might
find a blocked street due to building wreckage.

There is not much information in the literature about
victims’ movement traces within the incident site. Previous
works ondisastermobilitymodels aremainly focusing on res-
cue workers mobility [8, 9, 21, 23].The few of themmodelling
victims’ mobility, as, for example, [8], describe the incident
site as a squared scenario in which victims moved all over
the space following the randomwaypointmobilitymodel.We
propose amore detailed and complete urbandisaster scenario
model, withmore features than previousmodels.The victims’
mobilitymodel proposed in this paper has the followingmain
features:

(i) The disaster scenario modelled has two dimensions
(2D) and is composed of different regions.

(ii) We defined several regions types, each of these rep-
resenting typical elements that are found in common
urban scenarios, such as roads and building blocks.
Each region type is characterized by specific con-
straints associated with its shape and the movement
that the victims are allowed to perform within the
region. The main region types are (i) streets, (ii)
building blocks, (iii) open areas such as parks, and (iv)
prohibited areas, in which the victims movement is
not allowed due to structural features (e.g., fences and
walls) or dangers (e.g., fires andwreckage). Other spe-
cific regions typical of disaster scenarios are defined in
the next bullet.
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(iii) Building wreckage or debris usually appears in disas-
ter scenarios.Thus, we define other regions such as (i)
blocked roads and (ii) buildings traps. Blocked roads
are roads with specific points in which victims only
have two possible movements, to stop at that point or
to move away from it in the opposite direction. Build-
ings traps are buildings or other architectural struc-
tures that keep some victims trapped and they cannot
escape from them without the help of rescue teams.

In the proposed mobility model, victims are moving within
the aforementioned regions according to the following con-
siderations:

(i) Victims may move randomly, changing their speed
and direction at any time, but only within a region.
The mobility model used to model victims move-
ments is based on the random waypoint mobility
model improved with some movement constraints
that are associated with each region defined (e.g.,
victims move in a street region using only a linear
movement).

(ii) Victims’ speed varies between 0.5ms−1 and 3ms−1.
Also, victims may be static during a specific time
frame, that is, not moving at all. The highest speed
represents victims running around, looking for help,
escaping from a potential danger, or acting under the
influence of nervous breakdown. Static victims and
those moving at the lowest speeds represent victims
that might have difficulties tomove, probably because
of the injuries suffered during the disaster.

(iii) Sudden changes are also likely to occur in disaster
scenarios, such as a building collapse or an explosion.
We have modelled these types of changes on the
scenario by making some victims groups disappear
from the disaster area.

An example of the disaster scenario proposed with the differ-
ent regions (marked with the colored rectangles) is depicted
in Figure 1.The different regions defined before are described
in Figure 1 legend. This is the urban disaster scenario model
that we have used for running our simulations. The situation
of several victims groups disappearing from the disaster
scenario is shown in Figure 2.

We present in Figure 3 the urban disaster scenario
proposed in this paper against a digital map picture of a real
city (Madrid, Spain; coordinates: 40.39,−3.69). In Figure 3 we
can appreciate that though both are not exactly equal, there
are important similarities between the model proposed and a
real city scenario.

4. UAVs Self-Deployment

The UAVs self-deployment is given by two main elements:
(i) the tactical movement generation rules based on the
Jaccard distance and (ii) artificial intelligence algorithms that
maximize the number of serviced victims without losing net-
work connectivity. Also, being adaptive to scenario variable
conditions, that is, the movement of victims, is considered a
goal.

Victims moving around a building block 
Victims moving along a street that is blocked at the right side 
Victims moving in an open area, for example, a park
Victims trapped within a building-like wreckage
Victims moving along a street which connects two building blocks 
Prohibited areas for victims (e.g., dangers and
structural elements that cannot be crossed)

Figure 1: Victims moving on the disaster scenario model proposed
and regions descriptions.

4.1. MainAssumptions. In the proposed approach the follow-
ing assumptions have been done:

(i) We consider helicopter-like UAVs that can hover over
a specific position the time that is needed for provid-
ing communication services to the victims that are
located within their range.

(ii) We consider two types of wireless links: (i) UAV-
UAVwhen the wireless link is stablished between two
UAVs and (ii) UAV-victimwhen the wireless links are
set between an UAV and a victim.

(iii) The UAVs composing the FANET are able to detect
the victims and other UAVs within their range by
using any wireless access technologies. Potential can-
didates for these technologies could be anyone allow-
ing ad hoc communications mode such as the com-
mon 802.11b/g/n or 802.11p which is used in Vehicular
Ad Hoc Networks (VANETs). We have developed
our work assuming that the UAVs of the FANET are
equipped with these technologies. However the pro-
posed approach is not limited to them and could be
adapted to others.

(iv) Several works present potential solutions that could
be used to know the victims that are within range
[3, 15]. Also, Mobile Ad Hoc Networks approaches as
the ones proposed in [31–33] could be used among
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(a) Disaster scenario with all victims (b) Two groups of victims disappeared (marked with
the blue rectangle)

Figure 2: Disaster scenario: (a) before a sudden change and (b) after the change that occurred.

(a) Disaster scenario proposed

6.9607 cm

Map data © 2016 Google

(b) Real city scenario

Figure 3: (a) Disaster scenario model proposed against (b) a real city urban scenario with the layout of our disaster scenario model on top.

the UAVs and the victims so the UAVs could “sense”
the victims’ mobile phones. It is assumed that the
UAVs are aware of the victims that are located within
their range because of the usage of any of these
network techniques.

For the sake of clarity, other considerations have beenmade in
order to reduce the number of variables affecting the problem
modelled. With these considerations we reduce complexity
but not validity of the solution proposed:

(i) The UAVs are ideally flying at a specific height that
allows them to service the victims that are located
within a communication range of 250m (centered in

the UAV). The coverage area of each UAV is consid-
ered to be circular as it has been usually modelled in
other works, as it is mentioned in [34].

(ii) TheUAVsmaximum speed is selected at 10ms−1.This
is a value which highly depends on the type of the
UAV and its flying equipment and for this reason has
been set to the average speed of a standard UAV.

(iii) The UAVs dynamics has been simplified and is
supposed to move only in a 2-dimensional plane.
This consideration has been done in order to avoid
complexities (such as UAV’s acceleration, attitude,
twists, and vertical oscillations) which may overload
the software simulator developed.
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Victims serviced by both UAVs

Victims serviced only by the green UAV
Victims serviced only by the blue UAV

Victims with no service from any of the UAVs

j

i

a2

a1
a3

UAVs “i” and “j”

Figure 4: Jaccard distance between two UAVs.

(iv) Each UAV shares a list of the victims that are within
range with its UAVs neighbors in a distributed man-
ner, so the entire FANET is aware of the serviced
victims.

4.2. Jaccard-Based Tactical Movement Rules. The Jaccard-
based tactical movement rules are an innovative approach for
generating UAVs’ movements that takes as inputs the current
situation on the scenario, that is, the victims’ locations and the
current positions of the UAVs. As previously mentioned, it is
assumed that the UAVs are aware of the victims that are on
range through the usage of any wireless technology working
on ad hoc mode.

Although the Jaccard distance and the Euclidean distance
are different concepts, it has been shown that there exists a
correlation between the two of them [20]. The main reason
for selecting the Jaccard distance as a parameter to generate
mobility is that it provides information not only about the
physical proximity of a pair of UAVs, but also about whether a
pair of UAVs have many victims located on the region where
their coverage areas overlap; that is, they are sharing many
victims. Two UAVs that service almost the same victims are
not a desired solution as there might be other areas and vic-
tims unattended.This is likely to occur in the case of a FANET
that decides the UAVs positions only based on positioning
systems, that is, only using the Euclidean distance between
the UAVs. This situation is depicted in Figure 4, where the
group of victims on the left of the figure could not be serviced
if the UAVs are configured to maintain a fixed Euclidean
distance between them. By using the Jaccard-based tactical
movement rules proposed in our work, we make the UAVs
notice when they are sharing many victims with other UAVs,
and thus they calculate new positions to servicemore victims,
share fewer, and maintain connectivity.

4.2.1. Jaccard Distance. The Jaccard distance is a metric
which measures the dissimilarity between sample sets. In
the Jaccard-based movement rules proposed, each pair of
UAVs has a Jaccard distance based on the distribution of
victims under them. We define the Jaccard coefficient for a
pair of UAVs as the number of victims located within the
region where the UAVs coverage areas overlap, divided by the
number of victimswithin the range provided by both of them.

Based on the situation depicted in Figure 2, the Jaccard
coefficient (represented by 𝐽

𝑖𝑗

) may be calculated with the
following expression:

𝐽

𝑖𝑗

=

𝑎

1

𝑎

1

+ 𝑎
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+ 𝑎

3

, (1)

where 𝐽

𝑖𝑗

∈ [0, 1] and the terms 𝑎

1

, 𝑎
2

, and 𝑎

3

are defined as
follows:

(i) 𝑎

1

is the number of shared victims for two different
UAVs 𝑖 and 𝑗. This is represented by the red dots in
Figure 4.

(ii) 𝑎

2

is the number of neighbors (victims) of the UAV 𝑖

but not neighbors of the UAV 𝑗.This is represented by
the blue dots in Figure 4.

(iii) 𝑎

3

represents the number of neighbors (victims)
which are neighbors of the UAV 𝑗 but are not neigh-
bors of the UAV 𝑖. This is represented by the green
dots in Figure 4.

Based on the previous definition of the Jaccard coefficient, the
Jaccard distance (represented also by 𝐽𝑑) can be calculated
from (1) with the following expression:

𝐽𝑑

𝑖𝑗

= 1 − 𝐽

𝑖𝑗

. (2)

4.2.2. Movement Rules. We describe in this section the UAVs
movements calculations based on a given Jaccard distance
value that the UAVs should maintain among them. This
Jaccard distance value, which we name after target Jaccard,
is given by artificial intelligence algorithms. The algorithm
implementing these movement rules calculates the difference
between the existing Jaccard distances of each pair of UAVs
and the target Jaccard and decides for each pair of UAVs if
these should move with respect to each other as follows:

(i) In the case where two UAVs have at a specific time a
Jaccard distance between them which is bigger than
the target Jaccard, they are affected by an attraction
force; thus they will move closer to each other.

(ii) In the case where two UAVs have a Jaccard distance
smaller than the target Jaccard, they are affected by a
repulsion force; thus they will move away from each
other.

The terms “attraction” and “repulsion forces” are used to
represent the influence of one UAV on others. These forces
are equivalent to velocity vectors that will be applied in the
next movement to be performed by each UAV.

The intensity of these attraction and repulsion forces is
given by a relationship between the Jaccard distance and
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Jd
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Figure 5: Relationship between the Jaccard distance of two UAVs and the speed of their next move.

the speed at which the UAVs will perform the next move.
This relationship is shown in Figure 5, where 𝐽𝑑 is the Jaccard
distance between the UAVs and 𝑤 represent the different
values of the target Jaccard.

As shown in Figure 5, a specific Jaccard-speed function is
defined in our algorithm for each value of the target Jaccard.
The red and green lines are examples to represent the cases
when the target Jaccard is close to its minimum or maximum
value; in these cases the relationship between the Jaccard
distances and the speed is modulated by a factor in order to
diminish themaximumspeed atwhich theUAVs couldmove.
This avoids having theUAVsmovewith high speedwhen they
are too close to each other or too far.

When a pair of UAVs has a Jaccard distance of a specific
value (𝐽𝑑

𝑖𝑗

), this value is selected from the 𝑥-axis of Figure 5;
then the intersection with the line defined by the target Jac-
card provides the𝑦-axis valuewhich corresponds to the speed
to be applied in the next movement. It is clear that the bigger
the difference between the Jaccard distance and the target
Jaccard is, the bigger the magnitude of the UAVs velocity will
be.

The movement direction of a pair of UAVs will be
determined by a virtual line that connects their positions. In
the case of a network with more than two UAVs, every UAV
creates attraction or repulsion forces on the rest of the UAVs.
As an example, in a network with 5 UAVs, each UAV will be
influenced by 4 forces from the rest of the UAVs, that is, 4
velocity vectors. Consequently, the velocity vector resulting
from the addition of all the velocity vectors affectingUAVwill
determine its next movement.

This situation is depicted in Figure 6 for 3 UAVs and a
target Jaccard of 0.5. In this example, theUAVs 𝑑

1

and 𝑑

2

have
a Jaccard distance with respect to the UAV 𝑑

0

of values 0.2
and 0.4, respectively. The effect of 𝑑

1

and 𝑑

2

over 𝑑

0

will be
repulsion forces, which are represented by the red vectors V

01

and V
02

. The resulting vector of adding V
01

and V
02

will be the
velocity applied to 𝑑

0

.Thus, 𝑑
0

next position will be the result
of applying this velocity during one unit of the simulation
time step.

The movement rules as they have been described so far
will not allow the UAVs to spread enough during the self-
deployment. The reason is that each UAV has an attraction

Case: target Jaccard w = 0.5

di: UAVs
Jdij: Jaccard distance between UAVs i and j

�ij: velocity calculated from a pair of UAVs’ Jaccard distance Jdij
Vi,t=T+1: velocity calculated from the addition of

velocity �ij vectors for each pair of UAVs

V0,t=
T+

1� 0
1

�02

d0

Jd01,t=T = 0.2

Jd 0
2,
t=
T
=
0.
4

d1

d2

Figure 6: Velocity vectors addition: the effect of several UAVs
Jaccard distances.

or repulsion force from every UAV of the network (except by
itself). Then, any UAV will have lower Jaccard distances with
closer UAVs and higher ones with further UAVs. This will
create a set of repulsion forces (from the closer UAVs) and
other sets of attraction forces (from the further UAVs), then
resulting in velocity vectors cancelation and thus a network
that does not spread enough. This situation is depicted in
Figure 7.

Velocity vectors cancelation is an undesired effect. In
order to overcome this limitation we add another parameter
to ourmovement rules.We define the term Jaccard neighbors
for each UAV of the network. The Jaccard neighbors of UAV
are the UAVs on the network that have the lowest Jaccard
distances with respect to it. This is a parameter that can
be set to one value at the beginning of the simulation and
remains constant for the entire simulation. As an example, for
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Figure 7: Attraction and repulsion velocities vectors cancelation.
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Figure 8: UAV 𝑑

0

Jaccard neighbors (red) and their velocity vectors;
UAV 𝑑

3

(green) is not a Jaccard neighbor of 𝑑
0

and it does not affect
it.

a simulation with Jaccard neighbors set to the value 2, each
UAV will be only affected by the forces created by the 2
UAVs that have the lowest Jaccard distances with respect to
it. Consequently, each UAV will have a couple of Jaccard
neighbors. We can consider the Jaccard neighbors parameter
a similar concept to the degree of the nodes of the network, so
in our example if the Jaccard neighbors parameter is set to 2,
every UAV in the network will have degree 2.

As a result of this new consideration each UAV will focus
on the most similar UAVs to it (equivalent to the UAVs with
the lowest Jaccard distances) to calculate its attraction or
repulsion forces. This will allow the FANET to spread more
and provide communication services to more victims. This
situation is depicted in Figure 8.

As the last addition to the movement rules, we include
a disconnection avoidance procedure. We consider that the
UAVs network is disconnected when the network is split in
two or more groups of UAVs that have no wireless connec-
tivity among them. Examples of connected and disconnected
UAVs networks are provided in Figure 9, where the blue lines
represent the wireless connections between two UAVs. We

define the disconnection security distance as the distance
(in meters) from the coverage area perimeter of each UAV
and measured towards the center of the coverage area. The
disconnection security distance then defines a ring area for
each UAV, which is shown in Figure 10.

When one UAV has one of its Jaccard neighbors within
the security distance ring area, then this Jaccard neighbor
is considered to be at risk of disconnection in the next
movement. For this reason, a UAV at risk of disconnection
is affected by additional attraction force towards its Jaccard
neighbors, which keeps them away from being disconnected
in the nextmovement. In Figure 10we can notice that with the
absence of the velocity vector 𝑉

𝑑02

, which is generated by the
disconnection avoidance procedure, the UAV 𝑑

0

would have
a resulting velocity vector pointing in the opposite direction
from the UAV 𝑑

2

and it would likely lose connectivity with
this UAV in the next movement. With the disconnection
avoidance procedure the UAV 𝑑

0

will not be out of the
coverage area of UAV 𝑑

2

.

5. Artificial Intelligence Algorithms for
Optimizing the Number of Serviced Victims

5.1. Algorithm Execution Procedure. A disaster scenario has
a dynamic and varying nature. One of the main components
of the changing nature of disaster scenarios is that victims are
not motionless. Victims may move following very different
trajectories, at different speeds, may hold still for a few
seconds, and then resume their movements, and so on. We
represented some of these features in the proposed scenario
of Section 3.

Then the Jaccard-based movement rules that we propose
for the UAVs have to be adaptive to those scenario dynamics.
For this reason, we implement several artificial intelligence
algorithms in our model. The algorithms implemented are
simulated annealing and hill climbing. We also implemented
an algorithm based on the random walk concept for compar-
ison purposes.

The aim of the artificial intelligence algorithms is to max-
imize the number of victims serviced by the UAVs and then
calculate the target Jaccard and the target UAVs positions
associated with this optimal behavior.The algorithms are not
executed continuously but periodically. As an example, for a
simulation with a period for the algorithms of 30 seconds,
an entire execution of the algorithms is carried out every
30 seconds. During the time when the artificial intelligence
algorithms are not being executed, the UAVs keep moving
to the target positions calculated by the algorithms. This
procedure is shown in Figure 11.

One reason for following this procedure is that during
the time when the artificial intelligence algorithms are not
executed, the UAVs have time to share information about
the victims they are servicing and thus calculate their Jaccard
distances for the next execution of the artificial intelligence
algorithms.

These algorithms may be time-consuming; however, we
have implemented them with a maximum number of cycles



10 International Journal of Distributed Sensor Networks

(a) Connected UAVs network (b) Disconnected UAVs network

Figure 9: Examples of a connected network (a) and a disconnected network (b).
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or iterations in order to avoid excessive computation or time
demands. A number of 10 cycles were shown to be a valid
value for the algorithms convergence as shown in Figure 12.

5.2. Fitness Function. The same fitness function has been
used for both the simulated annealing and the hill climbing

algorithms. The main objectives of our movement rules are
to service the maximum number of victims and to avoid the
network disconnection. These objectives are represented in
the fitness function as parameters. A simplified definition of
the fitness function proposed is represented by the following
expression:

𝑓 (𝐽𝑑) =

{

{

{

0.8 ⋅ serviced − 0.2 ⋅ distance to Jaccard neighbors, if not disconnected

−1, if disconnected,
(3)
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Figure 12: Simulated annealing and hill climbing convergence.

where 𝐽𝑑 is the Jaccard distance that is evaluated as the Jac-
card target of the movement rules described in Section 4.2.2.
The other terms that appear in expression (3) are defined as
follows:

(i) Serviced: it is the number of victims that are serviced
(i.e., that are under the coverage area) by the entire
UAVs network at any time step. Each victim is
counted only once in this parameter.

(ii) Distance to Jaccard neighbors: eachUAVon the net-
work should be connected to its Jaccard neighbors;
however, at some point when the network is not
spread enough, they may be close to other UAVs as
well. This is not a desired situation as we aim to max-
imize the fact of the UAVs spreading over the disaster
area.This parameter measures the difference between
the Jaccard neighbors that a UAV should have and the
number of UAVs that are actually within connection

range. As a result, this parameter penalizes when the
network is not spread enough. It also penalizes the
cases when a UAV is disconnected to all of its Jaccard
neighbors.

(iii) Disconnected: flag is activated on the software when
a disconnection is detected on the FANET and the
network is split into several groups. A generic con-
nected components algorithm has been implemented
to measure network disconnections.

The fitness function defined in expression (3) maximizes the
number of victims serviced by the UAVs network with a
weight of the 80% of the total weight of the function. We
penalize the possible solutions that do not comply with the
connectivity of each UAV with its Jaccard neighbors with
the second term, which is weighted to the 20% of the total
weight of the function. As an addition we strongly penalize
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the solutions that present the FANET network with discon-
nections or divided into several groups of UAVs.

The fitness function defined in (3) does not have the
target Jaccard value (𝐽𝑑) directly represented in any of its
components. This is because the terms serviced, distance
to Jaccard neighbors, and disconnected are the ones that
depend on the target Jaccard. These terms are obtained after
the target Jaccard is evaluated by providing it as an input
to the Jaccard-based movement rules. The output of the
movement rules provides new virtual positions for the UAVs
and then the terms serviced, distance to Jaccard neighbors,
and disconnected can be calculated.

If we define the Jaccard-based movement rules as a
mathematical function 𝑀(𝐽𝑑), we can formally complete the
previous definition of the fitness function with the following
expressions, where the terms serviced, distance to Jaccard
neighbors, and disconnected are defined as a function of the
Jaccard-based movement rules function. This is represented
by the following expressions and in Figure 13:

Jaccard-based movement rules: 𝑀(𝐽

𝑑

) ,

serviced = 𝑀(target Jaccard) ,

distance to Jaccard neighbors = 𝑀(target Jaccard) ,

disconnected = 𝑀(target Jaccard) .

(4)

5.3. Random Walk. Random walk algorithms are based on a
selection of random steps consecutively. Although they can
be considered as a completemethod in the area of local search
algorithms, they do not put any pressure on maximizing a
fitness function so their efficiency is compromised [35]. We
have implemented an algorithmwith a randomwalk behavior
in order to demonstrate that other algorithms perform better
than this.

Our random walk implementation shown in Figure 14
randomly selects a value for the target Jaccard that it is then
used in the Jaccard-based movement rules described in Sec-
tion 4.2.Themovement rules provide then a position for each
UAV in the scenario. This is considered as the target posi-
tion, and thus the UAVs will move towards these positions
during the time before the next execution of the algorithm
starts. As previously mentioned in Section 5.1, this algorithm
is executed periodically. The same procedure is applied
to all the algorithms in order to compare them afterwards.

5.4. Hill Climbing. Hill climbing algorithm is a simple
local search algorithm guided towards finding one of the
maximum values of a fitness function. The initial value of
hill climbing is selected randomly at the beginning of the
algorithm.Then hill climbing evaluates the fitness function in
every possible direction and accepts the one that maximizes
it (in its uphill version). This procedure is repeated either a
fixed number of iterations or until the evaluation of the fitness
function does not provide better values, that is, new optima
values.

The problem with hill climbing algorithm is that its final
result, that is, the maximum value found, could be a local
maximum and not a global maximum. Also, this algorithm

could get stuck in flat regions. For this reason, hill climbing
is not considered a complete optimization problem [35] as it
cannot reach the global maximum always.

For each algorithm execution, the algorithm randomly
generates an initial value that is considered as the target
Jaccard. In the first iteration, this value is provided as an input
for the Jaccard-based movement rules, which calculates the
UAVs next positions on the basis of the target Jaccard. The
output of the Jaccard-based movement rules is then consid-
ered the initial accepted solution.Then, in the next iterations,
two possible values for the target Jaccard are generated, the
previous accepted target Jaccard plus 0.1 and minus 0.1. Both
values are evaluated in the Jaccard-basedmovement rules and
their fitness function values are compared.The target Jaccard
that produces the bigger fitness function value is selected
as the accepted solution. Then, the next iteration starts. A
simplified algorithm implementation is depicted in Figure 15.

In Figure 15 we use the terms target Jaccard plus and
target Jaccard minus to represent the two potential solutions
evaluated. Target Jaccard plus stores the value of the previ-
ously accepted target Jaccard (current target Jaccard) plus 0.1
and target Jaccard minus stores the value of the previously
accepted target Jaccard (current target Jaccard) minus 0.1.

5.5. Simulated Annealing. Simulated annealing is an artificial
intelligence algorithm that can be classified as a local search
algorithm with probabilistic features [35]. This algorithm
was first formulated in 1953 and known as the Metropolis
algorithm [36], which mimics the annealing of solids. In the
metallurgy industry, the annealing process decreases the tem-
perature of ametallicmaterial gradually, keeping thematerial
on each temperature for specific amount of time to allow the
material’s atoms to reach the lowest energy states possible
for each temperature. When used as an artificial intelligence
algorithm, simulated annealing is an algorithm that finds a
global optimum from a cost function or fitness function.

Simulated annealing uses several parameters according to
[37]. These parameters are shown in Table 1 together with
the values selected for our implementation. The reason for
selecting these values is later explained in this section.

The main idea behind simulated annealing is that it gen-
erates randomly possible candidate solutions. If the candidate
is better than the previous accepted solution, then the new
candidate replaces the accepted solution. If the candidate is
worse, a random number is generated. In the case where the
random number is smaller than the Boltzmann probability,
then the candidate is accepted despite being a worse solution
than the previously accepted one; otherwise the candidate is
rejected.

The original Boltzmann probability equation for the
annealing of solids is used for this algorithm but with
slight changes. The Boltzmann probability for the simulated
annealing algorithm is defined by the following expression:

𝑝 = 𝑒

(−Δ𝐸/Δ𝐸avg𝑇)
.

(5)

This probability depends on the following terms:

(i) 𝑇: it represents the temperature. Initial and final
temperature values are selected as design parameters.
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Table 1: Simulated annealing algorithm parameters.

Parameter Symbol Value Description

Initial probability 𝑃

𝑠

0.5
The initial value of the probability for accepting a worse solution as a
valid one. This is a value that we select for the algorithm
implementation at the design stage.

Final probability 𝑃

𝑓

0.0001
The final value of the probability for accepting a worse solution as a
valid one. This is a value that we select for the algorithm
implementation at the design stage.

Initial temperature 𝑇

𝑠

1.44 The initial value of the temperature parameter.
Final temperature 𝑇

𝑓

0,10 The final value of the temperature parameter.

Temperature factor 𝐹 0.75 The factor that reduces the temperature in each cycle with respect to
the previous cycle temperature.

Number of cycles 𝑁 10 Number of times the simulated annealing algorithm is executed. Each
cycle corresponds with one value for the temperature.

Number of trials 𝑀 10
Number of times the simulated annealing inner loop is executed. The
inner loop corresponds to the execution of simulated annealing
algorithm for one specific value of the temperature.

Jaccard -based
movement rules 

function:

Serviced

Distance_Jaccard_neighb.

Disconnected

Initial Jaccard
Initial UAV positions

Target Jaccard 
Target UAV positions

Artificial intelligence 
algorithm:

Fitness
function:M(Jd)
f(Jd)

Figure 13: Jaccard-based movement rules as a mathematical formula (𝑀(𝐽

𝑑

)) as part of the execution procedure.

The effect of the temperature on the algorithm is that
with every cycle of the algorithm the temperature
decreases and thus is more difficult to have worse
solutions accepted as candidates.

(ii) Δ𝐸: it represents the difference between the previ-
ously accepted solution and the current candidate,
that is, the difference between the fitness function
values of each one.

(iii) Δ𝐸avg: it represents the average of all the accepted
solutions so far. It is used to normalize the change in
the fitness difference Δ𝐸.

The simulated annealing implementation developed consists
of two loops.The outer loop represents the cycles or iterations
of the algorithm; there is only one value of temperature per
each cycle and the temperature is decreased between cycles by
multiplying the current cycle temperature by the temperature
factor shown in Table 1.The inner loop follows the procedure
shown in Figure 16 with the specific temperature value of
the cycle. This inner loop represents the behavior of the
solid’s atomswhenmoving towards the lowest energy state for

a specific temperature value. In our implementation, this
represents the search for the best UAVs positions for a specific
value of the Jaccard.

For the simulated annealing implementation, values for
the initial probability (𝑃

𝑠

), the final probability (𝑃
𝑓

), and the
number of cycles of the algorithm (𝑁) must be selected.
In our implementation we assumed some initial values and
considerations proposed in [37]; however, different values
were tested for these parameters. The values presented in
Table 1 showed an expected behavior of convergence and
also the expected overall behavior ofmaximizing the serviced
victims. We have been using them as a result of an empirical
fine tuning of the algorithm. However, there might be other
combinations of values that could also provide overall good
results. These values are used for the calculation of the
temperature parameters by using the following expressions:

𝑇

𝑠

=

−1

ln (𝑃

𝑠

)

,

𝑇

𝑓

=

−1

ln (𝑃

𝑓

)

,
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𝐹 = (

𝑇

𝑓

𝑇

𝑠

)

1/(𝑁−1)

,

𝑇

𝑛+1

= 𝐹 ⋅ 𝑇

𝑛

.

(6)

6. Simulation Results

We present in this section the settings used for the sim-
ulations of the UAVs self-deployment over the disaster
scenario. Also, we provide the results obtained by the different
algorithms related to the number of victims serviced and the
network connectivity. Finally we present some images show-
ing the UAVs positions on the disaster scenario at different
simulation time steps.

6.1. Environment Settings. In this section we present several
details about the settings we have used for running the
simulations of the proposed UAVs self-deployment over the
disaster scenario. We have set the disaster scenario according
to the following considerations:

(i) The simulated incident site consists of a square shaped
area with sides equal to 1000m, with 295 victims
located in different regions.

(ii) There are two groups of victims that disappear from
the scenario suddenly, at 𝑡 = 200 and at 𝑡 = 400

seconds.

(iii) The victims’ mobility model works with a discrete
time basis.Theminimum time step for the simulation
of victims’ movements is set to 1 second.

(iv) For generating the disaster scenarios models we have
used the tool BonnMotion [17]. The mobility models
used for generating different scenario regions are the
random waypoint model [8], the Manhattan Grid
model [29], and the Disaster AreaModel [6].We have
created our own software tools based on Java and
Python programming languages in order to combine
the regions and generate the disaster scenario and the
victims’ mobility as a whole.

Regarding the UAVs tactical movement rules, we have made
the following considerations:

(i) The UAVs initial positions are distributed over a vir-
tual small region centered in the disaster area center.
This initial distribution positions theUAVs uniformly
keeping them at the same distance of their closer
UAVs.

(ii) We have run simulations with Jaccard neighbors
values equal to 2 and 1. When each UAV has a couple
of Jaccard neighbors the UAVs disconnection from
their Jaccard neighbors ismore unlikely, as if oneUAV
suffers from a failure there is another one to keep the
connection. When there is only 1 Jaccard neighbor
per UAV the FANET spreads out even more but the
disconnections are more likely to happen.

(iii) We have developed a software simulator that takes as
inputs (i) the disaster scenario file with the victims
mobility traces, (ii) the amount of victims within the
disaster area, (iii) the duration of the simulation, (iv)
the number of UAVs composing the FANET, and (v)
the artificial intelligence algorithm parameters. This
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Figure 17: Serviced victims by the different computational intelli-
gence algorithms.

software simulates the UAVs self-deployment in the
disaster scenario and generates as outputs a text file
with the mobility traces of the UAVs and related
information about the network conditions such as
distance between the UAVs and Jaccard distances.

(iv) The simulations carried out have a duration of 600
seconds.

(v) Theproblemmodelled has a randomnature due to the
victims’ movements. Also the artificial intelligence
algorithms implemented are probabilistic heuristics,
with random behaviors.Thus, the results presented in
this section are averaged from sets of simulations
runs.

6.2. ServicedVictims. In Figure 17 the serviced victims during
the entire simulation are shown for each of the algorithms
described in Section 5. As we can observe, the random walk-
based algorithm is the one producing the worst performance.
This is obvious as this algorithm does not actually search for
the best solution for servicing as many victims as possible.

By comparing the simulated annealing and the hill
climbing algorithms shown in Figure 17, we can observe that
there is a slight difference between both of them (for the
particular case shown in the figure). At some points of the
simulation, the simulated annealing algorithm shows a better
performance than the hill climbing and at some other points
the situation is the opposite. Both of them perform similarly
with a small difference: the hill climbing algorithm is servic-
ing 10 victims more than the simulated annealing algorithm
after the first stage of the simulation. As it is known for the hill
climbing algorithm, this could get stuck in local maxima.The
behavior shown in the results by the hill climbing algorithm
makes us think that there are no local maxima in our fitness
function and so the hill climbing algorithm performs similar
to the simulated annealing algorithm and slightly better for

this particular case. The fact of the simulated annealing
algorithm being slightly below the hill climbing algorithm
could be due to the fact that the simulated annealing, per def-
inition, accepts worse candidate solutions in order to escape
local maxima.

As we can see in Figure 17, the scenario has two sudden
changes where groups of victims disappear from the scenario.
These changes occur at 𝑡 = 200 seconds and 𝑡 = 400 seconds.
As we can observe, both algorithms show a decrease of the
number of serviced victims. Also, the randomwalk algorithm
is affected by the first group of victims that disappear
considerably; however the second one affects it slightly. This
is due to the fact that theUAVs network is less spreadwith the
random walk algorithm and the second group of victims dis-
appearing is not serviced entirely at the time they disappear.

There is also a common behavior shown by both the
simulated annealing and the hill climbing that is worth
mentioning. Both algorithms actually spread out the UAVs
network and in this process they present twomain behaviors:
(i) a tendency for increasing the number of serviced victims
and (ii) slight oscillations around some values.We notice that
in Figure 17 in the time frame between 0 seconds and 200 sec-
onds there is a clear tendency to increase the serviced nodes,
as a result of the FANET initial self-deployment. Within this
time frame the network reaches its highest value of serviced
nodes which is between 160 and 180 (between 54% and 61%
of victims are serviced with respect to the total number of
victims in the scenario, which is 295). From the instant of 200
seconds up to the instant of 400 seconds the algorithms have
slight oscillations around the numbers of 150–160 serviced
nodes (around 56% of victims are serviced, when the total
number of victims is 275, after the first 20 victims disappeared
from the scenario). Finally, from the instant of 400 seconds
up to the end of the simulation there is an increase tendency
that ends up in servicing between 150 and 160 victims (around
60% of victims are serviced from a total amount of 255
victims, after the second group of 20 victims disappeared).

As we have described in previous sections, the disaster
scenario has a random nature and the artificial intelligence
algorithms implemented as well. It is logical then to find
oscillations around specific values, which may be due to the
fact of victims entering and going out of the UAVs coverage
area. Despite these oscillations, the strategy proposed shows
that the UAVs network actually spreads out and responds to
the scenario changes.

6.3. Network Connectivity. The second objective for the tacti-
cal movement rules proposed is to keep the UAVs network
always connected. As described in Section 5.2 the fitness
function has a component that penalizes the network discon-
nections by giving this function a value of −1 when there is
a network disconnection. In Figure 18 we show the artificial
intelligence algorithms together with their respective fitness
functions values. As we can observe in Figure 18 at no point
of the simulation the fitness function takes the value −1.
This is a signal that the UAVs network does not suffer from
disconnections.

Although the random walk-based algorithm does not
need the fitness function in order to optimize it, we have also



International Journal of Distributed Sensor Networks 17

Sim. annealing

180

160

140

Se
rv

ic
ed

 n
od

es

120

100

80

60

40
200 300

Time (s)
4000 100 500 600

Fitness
(a)

200

180

160

140

Se
rv

ic
ed

 n
od

es

120

100

80

60

40

Hill climbing

200 300

Time (s)
4000 100 500 600

Fitness
(b)

Se
rv

ic
ed

 n
od

es

200 300

Time (s)
4000 100 500 600

85

80

75

70

65

60

55

50

45

40

Random walk
Fitness

(c)

Figure 18: Computational intelligence algorithms and fitness (blue dashed line).

evaluated it to see if there are disconnections for this algo-
rithm. There are not disconnections for this algorithm as the
disconnection avoidance procedure also applies to it.

6.4. UAVs Locations. In Figures 19, 20, and 21, the UAVs
positions are shown for different time steps of the simulation
where the dashed red lines represent theUAVs coverage areas.
These figures correspond to a specific simulation using the
simulated annealing algorithm. In Figure 19, we can see how
the UAVs are close to each other at the beginning of the
simulation. In Figure 20 we can observe how the network has
been spreading out during the first part of the simulation and
thus the area covered by the UAVs network is bigger. This
corresponds to a larger number of victims serviced by the
FANET. Finally, in Figure 21 we can see the UAVs positions

at the end of the simulation. We can notice that the changes
from Figures 20 and 21 are slighter than the ones observed
from Figures 19 and 20.The reason is because when the UAVs
are starting to spread out the UAVs move faster and change
their positions to the optimal locations in order to service the
maximum number of victims while maintaining the network
connected. When the UAVs are already spread out, they
change their positions more slightly in order to avoid having
UAVsdisconnections, as theymay be located already closer to
the limit of their Jaccard neighbor’s coverage areas. Although
themovements are smaller, we cannotice fromFigures 20 and
21 that there are changes in the locations of the UAVs black
and pink with respect to the scenario layout. We can also see
these small changes in the coverage areas of Figure 21, which
are displaced towards the lower part of the scenario where
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Figure 19: UAVs positions at simulation time equal to 2 seconds.

Figure 20: UAVs positions at simulation time equal to 43 seconds.

the major accumulation of victims is located (the bottom-left
corner).

As we can see in Figures 19, 20, and 21, there are victims
that have not been discovered during the AANET self-
deployment. With this scenario and the selected simulation
settings (number of UAVs, coverage area, etc.), it is not fea-
sible to cover the entire scenario area without disconnecting
the AANET. As a future work, we plan to include new behav-
iors to the UAVs in order to allow them to explore unknown
areas. This could be implemented as an additional algorithm
for selecting periodically some “explorer UAVs” from those
flying close to the AANET border. An “explorer UAV” would
have the role of periodically leaving the AANET in order to
explore unknown areas. This type of UAVs would remember
the latest position when they were part of the AANET
in order to return to it. These UAVs could bring valuable
information to theAANETabout new victims discovered and
their positions and feed the artificial intelligence algorithms
for the self-deployment. Such idea has been used in other
works such as exploring behavior of the UAVs described in
[38].

Figure 21: UAVs positions at simulation time equal to 589 seconds.

7. Conclusions

Wehave addressed the problemofmodelling aUAVsnetwork
self-deployment on a disaster scenario. The main aim of
the UAVs network is to provide communication services to
the victims and rescue workers within the incident site of
a disaster area. This is translated in more specific objectives
which are to maximize the number of victims serviced
by the FANET and maintain the network connectivity. We
have proposed an innovative approach to perform the self-
deployment calculating theUAVsmovements as a basis of the
Jaccard distance among the UAVs and artificial intelligence
algorithms that optimize the number of victims serviced by
the network. As there are no realisticmobilitymodels for rep-
resenting the victims’ movements within the incident site of a
disaster area, we have proposed our ownmodel as a combina-
tion of regionswith differentmobility features.TheUAVsnet-
work self-deployment and the victims’ mobility model were
simulated jointly on software built specifically for this pur-
pose. We have analyzed the results provided by the different
artificial intelligence algorithms implemented, showing that
the simulated annealing and hill climbing algorithms really
carry out the UAVs self-deployment and aim tomaximize the
total number of serviced victims.The results obtained showed
that for a network of 6 UAVs and 295 victims the percentage
of victims serviced is around 60% of the total. As future work,
we plan tomake improvements in the disaster scenariomodel
by including more detailed urban features and also creating
more complex victims’ mobility models. Also, we plan to
include additional behaviors to the UAVs that allow them
to be more efficient in their self-deployment, for example,
including an exploring behavior so they are able to discover
unknown areas of the scenario.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.



International Journal of Distributed Sensor Networks 19

Acknowledgments

This work was supported in part by the University of
Seville under the Ph.D. Grant PIF (Personal Investigador en
Formación) ofD.G. Reina andby the Junta deAndalućıaCon-
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