10 research outputs found

    Protein-driven inference of miRNA-disease associations

    Get PDF
    Motivation: MicroRNAs (miRNAs) are a highly abundant class of non-coding RNA genes involved in cellular regulation and thus also diseases. Despite miRNAs being important disease factors, miRNA–disease associations remain low in number and of variable reliability. Furthermore, existing databases and prediction methods do not explicitly facilitate forming hypotheses about the possible molecular causes of the association, thereby making the path to experimental follow-up longer. Results: Here we present miRPD in which miRNA–Protein–Disease associations are explicitly inferred. Besides linking miRNAs to diseases, it directly suggests the underlying proteins involved, which can be used to form hypotheses that can be experimentally tested. The inference of miRNAs and diseases is made by coupling known and predicted miRNA–protein associations with protein–disease associations text mined from the literature. We present scoring schemes that allow us to rank miRNA–disease associations inferred from both curated and predicted miRNA targets by reliability and thereby to create high- and medium-confidence sets of associations. Analyzing these, we find statistically significant enrichment for proteins involved in pathways related to cancer and type I diabetes mellitus, suggesting either a literature bias or a genuine biological trend. We show by example how the associations can be used to extract proteins for disease hypothesis. Availability and implementation: All datasets, software and a searchable Web site are available at http://mirpd.jensenlab.org. Contact: [email protected] or [email protected]

    Can We Assume the Gene Expression Profile as a Proxy for Signaling Network Activity?

    Get PDF
    Studying relationships among gene products by expression profile analysis is a common approach in systems biology. Many studies have generalized the outcomes to the different levels of central dogma information flow and assumed a correlation of transcript and protein expression levels. However, the relation between the various types of interaction (i.e., activation and inhibition) of gene products to their expression profiles has not been widely studied. In fact, looking for any perturbation according to differentially expressed genes is the common approach, while analyzing the effects of altered expression on the activity of signaling pathways is often ignored. In this study, we examine whether significant changes in gene expression necessarily lead to dysregulated signaling pathways. Using four commonly used and comprehensive databases, we extracted all relevant gene expression data and all relationships among directly linked gene pairs. We aimed to evaluate the ratio of coherency or sign consistency between the expression level as well as the causal relationships among the gene pairs. Through a comparison with random unconnected gene pairs, we illustrate that the signaling network is incoherent, and inconsistent with the recorded expression profile. Finally, we demonstrate that, to infer perturbed signaling pathways, we need to consider the type of relationships in addition to gene-product expression data, especially at the transcript level. We assert that identifying enriched biological processes via differentially expressed genes is limited when attempting to infer dysregulated pathways.Peer reviewe

    Inferring Disease-Associated MicroRNAs Using Semi-supervised Multi-Label Graph Convolutional Networks

    Get PDF
    Disease; Gene Network; Biocomputational Method; Computer ModelingMicroRNAs (miRNAs) play crucial roles in biological processes involved in diseases. The associations between diseases and protein-coding genes (PCGs) have been well investigated, and miRNAs interact with PCGs to trigger them to be functional. We present a computational method, DimiG, to infer miRNA-associated diseases using a semi-supervised Graph Convolutional Network model (GCN). DimiG uses a multi-label framework to integrate PCG-PCG interactions, PCG-miRNA interactions, PCG-disease associations, and tissue expression profiles. DimiG is trained on disease-PCG associations and an interaction network using a GCN, which is further used to score associations between diseases and miRNAs. We evaluate DimiG on a benchmark set from verified disease-miRNA associations. Our results demonstrate that DimiG outperforms the best unsupervised method and is comparable to two supervised methods. Three case studies of prostate cancer, lung cancer, and inflammatory bowel disease further demonstrate the efficacy of DimiG, where top miRNAs predicted by DimiG are supported by literature

    LLCMDA: A Novel Method for Predicting miRNA Gene and Disease Relationship Based on Locality-Constrained Linear Coding

    Get PDF
    MiRNAs are small non-coding regulatory RNAs which are associated with multiple diseases. Increasing evidence has shown that miRNAs play important roles in various biological and physiological processes. Therefore, the identification of potential miRNA-disease associations could provide new clues to understanding the mechanism of pathogenesis. Although many traditional methods have been successfully applied to discover part of the associations, they are in general time-consuming and expensive. Consequently, computational-based methods are urgently needed to predict the potential miRNA-disease associations in a more efficient and resources-saving way. In this paper, we propose a novel method to predict miRNA-disease associations based on Locality-constrained Linear Coding (LLC). Specifically, we first reconstruct similarity networks for both miRNAs and diseases using LLC and then apply label propagation on the similarity networks to get relevant scores. To comprehensively verify the performance of the proposed method, we compare our method with several state-of-the-art methods under different evaluation metrics. Moreover, two types of case studies conducted on two common diseases further demonstrate the validity and utility of our method. Extensive experimental results indicate that our method can effectively predict potential associations between miRNAs and diseases

    TLHNMDA: Triple Layer Heterogeneous Network Based Inference for MiRNA-Disease Association Prediction

    Get PDF
    In recent years, microRNAs (miRNAs) have been confirmed to be involved in many important biological processes and associated with various kinds of human complex diseases. Therefore, predicting potential associations between miRNAs and diseases with the huge number of verified heterogeneous biological datasets will provide a new perspective for disease therapy. In this article, we developed a novel computational model of Triple Layer Heterogeneous Network based inference for MiRNA-Disease Association prediction (TLHNMDA) by using the experimentally verified miRNA-disease associations, miRNA-long noncoding RNA (lncRNA) interactions, miRNA function similarity information, disease semantic similarity information and Gaussian interaction profile kernel similarity for lncRNAs into an triple layer heterogeneous network to predict new miRNA-disease associations. As a result, the AUCs of TLHNMDA are 0.8795 and 0.8795 ± 0.0010 based on leave-one-out cross validation (LOOCV) and 5-fold cross validation, respectively. Furthermore, TLHNMDA was implemented on three complex human diseases to evaluate predictive ability. As a result, 84% (kidney neoplasms), 78% (lymphoma) and 76% (prostate neoplasms) of top 50 predicted miRNAs for the three complex diseases can be verified by biological experiments. In addition, based on the HMDD v1.0 database, 98% of top 50 potential esophageal neoplasms-associated miRNAs were confirmed by experimental reports. It is expected that TLHNMDA could be a useful model to predict potential miRNA-disease associations with high prediction accuracy and stability

    A Novel Computational Method for the Identification of Potential miRNA-Disease Association Based on Symmetric Non-negative Matrix Factorization and Kronecker Regularized Least Square

    No full text
    Increasing evidence has indicated that microRNAs (miRNAs) are associated with numerous human diseases. Studying the associations between miRNAs and diseases contributes to the exploration of effective diagnostic and treatment approaches for diseases. Unfortunately, the use of biological experiments to reveal the potential associations between miRNAs and diseases is time consuming and costly. Therefore, it is very necessary to use simple and efficient calculation models to predict potential disease-related miRNAs. Considering the limitations of other previous methods, we proposed a novel computational model of Symmetric Nonnegative Matrix Factorization for MiRNA-Disease Association prediction (SNMFMDA) to reveal the relation of miRNA-disease pairs. SNMFMDA could be applied to predict miRNAs associated with new diseases. Compared to the direct use of the integrated similarity in previous computational models, the integrated similarity need to be interpolated by symmetric non-negative matrix factorization (SymNMF) before application in SNMFMDA, and the relevant probability of disease-miRNA was obtained mainly through Kronecker regularized least square (KronRLS) method in our model. What's more, the AUC of global leave-one-out cross validation (LOOCV) reached 0.9007, and the AUC based on local LOOCV was 0.8426. Besides, the mean and the standard deviation of AUCs achieved 0.8830 and 0.0017 respectively in 5-fold cross validation. All of the above results demonstrated the superior prediction performance of SNMFMDA. We also conducted three different case studies on Esophageal Neoplasms, Breast Neoplasms and Lung Neoplasms, and 49, 49, and 48 of the top 50 of their predicted miRNAs respectively were confirmed by databases or related literatures. It could be expected that SNMFMDA would be a model with the ability to predict disease-related miRNAs efficiently and accurately
    corecore