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MiRNAs are small non-coding regulatory RNAs which are associated with multiple

diseases. Increasing evidence has shown that miRNAs play important roles in

various biological and physiological processes. Therefore, the identification of potential

miRNA-disease associations could provide new clues to understanding the mechanism

of pathogenesis. Although many traditional methods have been successfully applied to

discover part of the associations, they are in general time-consuming and expensive.

Consequently, computational-based methods are urgently needed to predict the

potential miRNA-disease associations in a more efficient and resources-saving way. In

this paper, we propose a novel method to predict miRNA-disease associations based

on Locality-constrained Linear Coding (LLC). Specifically, we first reconstruct similarity

networks for both miRNAs and diseases using LLC and then apply label propagation on

the similarity networks to get relevant scores. To comprehensively verify the performance

of the proposed method, we compare our method with several state-of-the-art methods

under different evaluation metrics. Moreover, two types of case studies conducted

on two common diseases further demonstrate the validity and utility of our method.

Extensive experimental results indicate that our method can effectively predict potential

associations between miRNAs and diseases.

Keywords: miRNA gene–disease relationship, similarity measure, association prediction, locality-constrained

linear coding, label propagation

INTRODUCTION

MiRNAs are small non-coding regulatory RNAs. Since the first miRNA lin-4 (Lee et al., 1993) was
found, a plenty of miRNAs have been discovered. Accumulating evidence has shown that miRNAs
play a critical role in many biological processes, such as cell proliferation, differentiation, aging,
and apoptosis (Ambros, 2004; Xu et al., 2004; Cheng et al., 2005; Miska, 2005; Huang et al., 2016).
With the deepening of the research, researchers found that the dysfunctions of miRNAs are closely
related to various diseases (Mei et al., 2016; Zou et al., 2016; Liao et al., 2018; Qu et al., 2018b; Tang
et al., 2018), which sent an important signal to scientists from all around the world that exploring
the associations betweenmiRNAs and diseases is of great significance. Some experimental methods,
such as PCR and Microarray (Thomson et al., 2007; Mohammadi-Yeganeh et al., 2013), have been
able to successfully identify certain miRNAs related with diseases. However, it is unrealistic to
use these traditional experimental methods to predict miRNA-disease associations at a large scale
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for their limitations of being time-consuming and expensive.
To resolve this situation, multiple computational methods
were proposed to efficiently uncover the potential associations
between miRNAs and diseases.

Based on the assumption that miRNAs with similar functions
are usually related to similar diseases (Zeng et al., 2016;
Chen et al., 2017c), Jiang et al. (2010) proposed a network-
based method to predict miRNA-disease associations using a
hypergeometric distribution scoring system by constructing a
miRNA functional similarity network and a human phenome-
microRNAome network. Xuan et al. (2013) developed a method
namedHDMP based on weighted kmost similar neighbors. They
calculated miRNA functional similarity according to disease
terms and disease phenotype similarity. In addition, the miRNAs
within same families or clusters were assigned higher weights. Shi
et al. (2013) performed random walk to predict miRNA-disease
associations on protein–protein interaction (PPI) networks
and achieved a satisfactory performance. Mørk et al. (2014)
proposed a novel protein-driven method named miRPD to
predict potential associations between miRNAs and diseases,
where they presented a scoring scheme to efficiently predict
and rank miRNA-disease associations. Considering that the
global network-based methods could achieve better performance
than local network-based methods, Chen et al. (2012) proposed
a global similarity measure named RWRMDA. They applied
random walk with restart to uncover miRNAs related with
diseases on miRNA–miRNA functional similarity network.
However, RWRMDA could not predict for diseases without
any known related miRNAs. Li et al. (2017) proposed another
method namedMCMDA. In this method, they applied thematrix
completion algorithm to update the known miRNA-disease
associations matrix and predict the potential associations. Liu
et al. (2017) also applied random walk to predict miRNA-disease
associations on a heterogeneous network which was constructed
by integrating multiple data sources. Similarly, Luo and Xiao
(2017) used an imbalanced bi-random walk to predict miRNA-
disease associations on a heterogeneous network consisting
of miRNA functional similarity network, disease semantic
network and known miRNA-disease association network. Chen
et al. (2016a) presented another method WBSMDA to identify
the associations between miRNAs and diseases by calculating
Gaussian interaction profile kernel similarity for both miRNAs
and diseases. Specifically, a within-score and a between-score
were calculated and combined to gain a prediction score for each
miRNA-disease pair. Using the same data, Chen et al. (2016b)
presented HGIMDA which iteratively update an optimization
function to uncover potential relations between miRNAs and
diseases. Zeng et al. (2018) used structural consistency as
an indicator to estimate the link predictability of the bilayer
network and further predicted the potential associations between
miRNAs and diseases based on Structural Perturbation Method
(SPM). According to the lengths of different walks, Zou et al.
(2015) introduced a path-based method using KATZ model and
obtained reliable results. Similarly, You et al. (2017) proposed
another effective path-based method named PBMDA. PBMDA
also constructed a heterogeneous network and applied depth-
first search algorithm to predict miRNA-disease associations.

Although effective, the length of the paths in the searching
process is limited to three. Qu et al. (2018a) presented a novel
method SNMDA to identify potential diseases-related miRNAs
based on sparse neighborhood and achieved comparable results.
In recent years, several models based on machine learning have
also been developed to predict the relationships betweenmiRNAs
and diseases (Chen et al., 2017b, 2018a,d). Based on semi-
supervised learning framework, a model of Regularized Least
Squares for MiRNA-Disease Association (RLSMDA) prediction
was proposed by Chen and Yan (2014). Xiao et al. (2018)
utilized graph-regularized non-negative matrix factorization to
effectively predict for diseases without any related miRNAs
based on heterogeneous omics data. Chen et al. (Zou et al.,
2017) proposed an effective method ELLPMDA based on
ensemble learning and link prediction. They integrated the
results given by three classical similarity-based algorithms using
ensemble learning. Li et al. (2018) presented a Kronecker kernel
matrix dimension reduction (KMDR) model to predict miRNA-
disease associations which integrates miRNA space and disease
space into a larger miRNA-disease associations space. Chen
et al. (2017a) proposed another model called MKRMDA that
automatically optimizes the combination of multiple kernels.
Recently, Chen et al. (2018b) presented EGBMMDA based
on the model of extreme gradient boosting machine. Notably,
EGBMMDA was the first decision tree learning-based model
to uncover disease-related miRNAs and achieved favorable
performance.

Although great efforts have been made to reliably predict
miRNA-disease associations, there is still room for improvement.
In this paper, we propose a novel method called LLCMDA
for predicting miRNA-disease associations based on Locality-
constrained Linear Coding (LLC). We apply four different
cross-validation frameworks to comprehensively evaluate
the performance of our method. The comparison results
between LLCMDA and five state-of-the-art computational
models demonstrate the utility of the proposed method.
Besides, case studies on two common neoplasms further prove
the effectiveness of our method. In summary, LLCMDA is
an effective model for predicting potential miRNA–disease
associations.

MATERIALS AND METHODS

Known miRNA-Disease Associations
HMDD (Li et al., 2014) is a database that records known
experimentally-verified miRNA-disease associations, which
contains 5,430 associations between 383 diseases and 495
miRNAs. For simplicity, an adjacency matrix A of dimension
495 ∗ 383 is defined to describe the known miRNA-disease
associations used in this paper. If miRNA m(i) has been
confirmed to be related to d(j), A (i, j)= 1; otherwise A (i, j)= 0.

MiRNA Functional Similarity
Wang et al. (2010b) proposed an informative measure to
calculate miRNA functional similarities. Benefitting from
previous researches, we downloaded miRNA similarity scores
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directly from http://www.cuilab.cn/files/images/cuilab/misim.
zip. Similarly, we constructed a miRNA functional similarity
matrix FMS to represent similarity scores, where FMS (i, j)
represents the similarity score between miRNA i and miRNA
j. A larger value indicates more similar function between two
miRNAs.

Disease Semantic Similarity
According to the Mesh descriptor, each disease can be described
as a corresponding Directed Acyclic Network (DAG) (Wang
et al., 2010a), i.e., DAG(A) = (A, T(A), E(A)), where T(A) is the
node set including itself as well as its ancestor nodes, and E(A)
represents the link set of A. Suppose disease t belongs to T(A),
then the contribution of disease t to A can be calculated by:

{

DA (t) = 1 if t = A

DA (t) = max
{

0.5 ∗ DA

(

t′
) ∣

∣t′ ∈ child of t
}

if t 6= A
(1)

Besides, the semantic of A can be calculated by:

DV (A) =
∑

t∈T(A)

DA (t) (2)

For disease A and B, the semantic similarity is calculated through
the following formula:

S (A,B) =

∑

t∈T(A)∩T(B) (DA (t) + DB (t))

DV (A) + DV (B)
(3)

where t is a common disease both in T(A) and T(B). DA(T)and
DB(T)represent the contribution of disease t to the disease A
and B, respectively. Therefore, for each disease pair, we can
calculate their semantic similarity according to Equation (3).
For convenience, we use an adjacency matrix DSS to denote the
obtained semantic similarities for all disease pairs.

Methods
In this paper, we predict potential associations between miRNAs
and diseases based on LLC and label propagation. Specifically, the
LLC algorithm is first used to reconstruct similarity networks for
both miRNAs and diseases and then label propagation is applied
on the similarity networks to obtain reliable predicted labels. An
overall workflow of LLCMDA is illustrated in Figure 1.

Locality-Constrained Liner Coding
Locality-constrained linear coding was first proposed by Wang
et al. (2010b) and has been successfully applied to image
classification. Compared with sparse representation, LLC is more
computationally efficient and can preserve local information
during the coding process (Saffari and Ebrahimi-Moghadam,
2015; Zhu et al., 2018). The objective function of LLC algorithm
is defined as:

argmin
wi

‖xi − Dwi‖
2
2 + λ1 ‖Pi ⊙ wi‖

2
2 s.t. ITwi = 1 (4)

Where xi is the i-th sample, D represents a dictionary matrix and
Pi is a local adapter vector representing the distances between

the i-th sample and the other samples. λ1 is a regularization
parameter. The sign of ⊙ denotes element-wise multiplication.
Our goal is to find the optimized reconstructed similarities wi for
each sample xi. The Lagrangian function of Equation (4) can be
obtained as follows:

argmin
wi

‖xi − Dwi‖
2
2 + λ1 ‖Pi ⊙ wi‖

2
2 + λ2

(

ITwi − 1
)

(5)

Where λ2 is the Lagrange multiplier. With simple algebra, the
above equation can be further transformed into:

L (wi; η) = wT
i Cwi + λ1w

T
i

{

diag (Pi)
}2
wi + λ2

(

ITwi − 1
)

(6)

where C =
(

xiI
T − D

) (

xiI
T − D

)

and diag (Pi) is a diagonal
matrix whose (j,j)-th diagonal elements equals to the j-th element
of vector Pi. Specifically, we use the following formula to calculate
the local distances between samples for Pi:

Pi =
{

Pij
}

j= 1,...,n
=

{

exp

(
∥

∥xi − xj
∥

∥

2

γ

)}

j= 1,...,n

(7)

Where γ is a positive parameter controlling the bandwidth.
By taking the derivative of Equation (6) with respect to wi and

setting it to zero, we have:

∂

∂wi
L (wi; η) = 0 ⇒ Swi + λ21 = 0 (8)

where S = 2
(

C + λ1
{

diag (Pi)
}2
)

. By multiplying both sides of

Equation (8) by 1TS−1 and considering the LLC constraint 1Twi

= 1, we can derive the optimal solution for wi as follows:

{

wi =

(

C +
{(

diag(Pi)
)}2
)

\I

wi = wi/I
Twi

(9)

To obtain feature vectors as the input for LLC algorithm,
we applied interaction profile to construct the feature vectors
for miRNAs and diseases according to the known miRNA-
disease associations (Zang and Zhang, 2012; Zhang et al.,
2017).Specifically, the i-th row of adjacency matrix A represents
the feature vector of miRNA i and the j-th column represents
the feature vector of disease j. As a result, we can obtain two
reconstructed similarity networks RMS and RDS for miRNAs and
diseases according to Equation (9), respectively.

Label Propagation
In this section, we adopt label propagation to obtain relevant
scores of miRNA-disease pairs. In the process of label
propagation, the known miRNA-disease associations are
regarded as initial labels and label propagation is used to
iteratively update labels (Zhang et al., 2018). Each point receives
information not only from its neighbors but also its initial
information. Here, we set a parameter α to control the rate.
Therefore, the iteration equation onmiRNA functional similarity
network can be written as follows:

FM (t + 1) = α ∗ FMS ∗ FM (t) + (1− α) ∗ Y (10)
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FIGURE 1 | An overall workflow of LLCMDA to predict novel miRNA-disease associations.

Here, FMS represents miRNA similarity network while Y
represents the initial labels and FM (0) = Y. We used Equation
(10) to update the label information.When the iteration equation
converges, FM(t+1) is regarded as the relevant score matrix.
Therefore, we can sort the miRNAs by relevant scores for each
disease. According to previous studies (Zhou et al., 2003), FMS is
guaranteed to converge if it is properly normalized as follows:

FMS = D−1/2 ∗ FMS ∗ D1/2 (11)

where D is a diagonal matrix, the values on the diagonal
correspond to the sum of all elements in each row. Similarly, we
apply label propagation on the other three similarity networks
RMS, DSS, and RDS to obtain three relevant score matrixes FRM ,
FD, and FRD. At last, we integrate the four prediction results and
take the average as the final output F.

F =
(

FM + FRM + F′D + F′RD
)

/4 (12)

Implementation Details
LLCMDA is implemented in MATLAB under the MATLAB
R2016b programming environment. All the experiments are

performed on a desktop with an i7-6700 3.40 GHz CPU and 16G
RAM. The source code of LLCMDA is freely available at: https://
github.com/misitequ/LLCMDA.

RESULTS

Evaluation
In this section, three cross-validation frameworks are applied
to test the performance of our algorithm: global LOOCV, local
LOOCV, and five-fold cross-validation. In the framework of
global LOOCV, each known miRNA-disease association is left
out in turn as a test sample, and the other associations are
regarded as training samples. After prediction, each miRNA-
disease pair would obtain a score accordingly. If its ranking
is higher than a given threshold, the prediction is regarded as
a successful prediction. In the framework of local LOOCV, a
disease is given in advance and then each miRNA associated with
this disease is left out in turn as a test sample while the rest
of miRNAs associated with the disease are set as seed samples.
The only difference between global LOOCV and local LOOCV
is that whether we simultaneously consider the candidates from
all diseases (Chen et al., 2018a,c). Five-fold cross validation is
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FIGURE 2 | The comparison results between LLCMDA and other four

methods (SPM, HGIMDA, EGBMMDA, PBMDA, MKRMDA) in terms of global

LOOCV.

FIGURE 3 | The comparison results between LLCMDA and other four

methods (SPM, HGIMDA, EGBMMDA, PBMDA, MKRMDA) in terms of local

LOOCV.

also implemented to verify the utility of our method. Concretely,
the 5,430 known associations are randomly divided into five
subsets, each subset is taken as test samples in turn and the
others are considered as training samples. To avoid the bias
caused by random division of samples, we repeat five-fold cross-
validation 20 times and take the average as the final result.
Receiver-Operating Characteristics (ROC) curves are plotted
by calculating True Positive Rate (TPR) and False Positive
Rate (FPR) at varying thresholds. We then calculate the Area
Under the ROC Curve (AUC) to quantitatively evaluate the
performance of prediction models. AUC = 1 means the model
is perfect while AUC= 0.5 denotes a random prediction.

As a result, LLCMDA obtained the AUCs of 0.924, 0.870,
and 0.919 in global LOOCV, local LOOCV, and five-fold cross-
validation, respectively. To further illustrate the effectiveness

FIGURE 4 | The comparison results between LLCMDA and other four

methods (SPM, HGIMDA, EGBMMDA, PBMDA, MKRMDA) in terms of

five-fold cross-validation.

FIGURE 5 | The comparison results between LLCMDA, SPM and HGIMDA in

terms of LODOCV.

of our algorithm, we compared LLCMDA with five state-of-
the-art methods, i.e., SPM, HGIMDA, PBMDA, MKRMDA,
EGBMMDA. In the framework of global LOOCV, SPM,
HGIMDA, PBMDA, MKRMDA, and EGBMMDA achieved
AUCs of 0.942,0.875, 0.922, 0.904, and 0.912 (Figure 2). In
local LOOCV, the AUCs obtained by SPM, HGIMDA, PBMDA,
MKRMDA, and EGBMDA were 0.814, 0.823, 0.853, 0.827, and
0.807 (Figure 3). In addition, they obtained AUC-values of
0.865, 0.867, 0.916, 0.884, and 0.904 in five-fold cross-validation
(Figure 4), respectively. As can be seen from the results, the
AUCs of LLCMDAwere higher than that of the other methods in
all three cross-validation frameworks except the global LOOCV.
In conclusion, our method is reliable to predict the potential
miRNA-disease associations.

To further test the performance of our method in predicting
new associations for diseases without any known related
miRNAs, we adopted another evaluation metric called Leave
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FIGURE 6 | The parameter effects on the prediction performance in: (A) five-fold cross-validation; (B) LODOCV.

One Disease Out Cross Validation (LODOCV) (Fu and Peng,
2017). In particular, we removed all the associated miRNAs for
a given disease and then prioritized all the candidate miRNAs
based on the known associations of other diseases. LODOCV
is considerably more stringent than the afore mentioned cross-
validation frameworks since there is no prior association
information available for the given disease. We also compared
LLCMDA with the five state-of-the-art methods in terms of
the AUC-values. As shown in Figure 5, LLCMDA achieved the
highest AUC-value of 0.822 in LODOCV framework. Here, we
only demonstrate the performances of LLCMDA, SPM, and
HGIMDA in the figure as the AUC-values obtained by the
other three methods were lower than 0.6. The experimental
results indicate that LLCMDA has better generalization ability in
predicting new miRNA-disease associations.

Parameter Analysis
Parameter α was used to control the rate of the initial labels on
the prediction results for miRNA in Equation (10). Similarly,
we used another parameter β to control the effects of initial
labels for diseases. To explore the impact of the two parameters,
we set different values (0.1–0.9) for both parameters to obtain
the prediction results in five-fold cross-validation and LODOCV
frameworks (Figure 6). It can be seen that parameter α and β

only have minor effects on the final prediction accuracies. Similar
trends were also observed in global LOOCV and local LOOCV.
Consequently, both parameters were set to 0.5.

Case Study
In recent years, substantial evidence suggests that miRNAs are
associated with various neoplasms, such as breast neoplasms,
lung neoplasms, and etc. Here, we conducted two types
of case studies to validate the utility of LLCMDA on two
common neoplasms, lung neoplasms and lymphomas.
The case studies on other diseases can be found at

TABLE 1 | Top 50 predicted miRNAs associated with Lung Neoplasms based on

known associations in HMDD.

miRNA (1–25) Evidence miRNA (26–50) Evidence

hsa-mir-16 I;II;III; hsa-mir-488 I;

hsa-mir-106b I; hsa-mir-376c I;III;

hsa-mir-429 I;II; hsa-mir-451 I;II;

hsa-mir-195 I;II; hsa-mir-302d I;

hsa-mir-141 I;II;III; hsa-mir-449a I;

hsa-mir-130a I;II; hsa-mir-520b I;

hsa-mir-15a I;II;III; hsa-mir-139 I;II;

hsa-mir-151 unconfirmed; hsa-mir-193b I;

hsa-mir-302a I; hsa-mir-383 I;

hsa-mir-373 I; hsa-mir-194 I;III;

hsa-mir-20b I; hsa-mir-149 I;

hsa-mir-296 unconfirmed; hsa-mir-10a I;III;

hsa-mir-302c I; hsa-mir-452 I;III;

hsa-mir-92b I; hsa-mir-491 I;

hsa-mir-339 I;II; hsa-mir-144 I;III;

hsa-mir-372 I;II; hsa-mir-520c unconfirmed;

hsa-mir-28 I; hsa-mir-449b I;

hsa-mir-23b I; hsa-mir-484 I;

hsa-mir-367 I; hsa-mir-299 unconfirmed;

hsa-mir-99b I; hsa-mir-204 I;II;

hsa-mir-130b I; hsa-mir-382 I;

hsa-mir-15b I;II; hsa-mir-129 I;

hsa-mir-99a I;II;III; hsa-mir-432 I;

hsa-mir-215 I; hsa-mir-301b I;

hsa-mir-342 I; hsa-mir-423 II;

I, II and, III represent dbDEMC, miR2Disease, and miRwayDB, respectively. The first and

third columns record the 1–25 and 26–50 related miRNAs, respectively.

https://github.com/misitequ/LLCMDA. We selected the top
50 miRNAs predicted by our model for each disease. The
prediction results were then verified by another three databases,
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TABLE 2 | Top 50 predicted miRNAs associated with Lymphomas based on

known associations in the older version of HMDD.

miRNA (1–25) Evidence miRNA (26–50) Evidence

hsa-mir-21 HMDDv2.0;I;II;III; hsa-mir-668 HMDD;I;

hsa-mir-155 HMDDv2.0;I;II;III; hsa-mir-339 I;

hsa-mir-221 HMDDv2.0;I;II; hsa-mir-143 HMDDv2.0;I;

hsa-mir-146a HMDDv2.0 hsa-mir-10a HMDDv2.0

hsa-mir-222 HMDDv2.0;I; hsa-mir-30d I;II;

hsa-let-7e HMDDv2.0;I;II; hsa-mir-187 I;

hsa-let-7d HMDDv2.0;I; hsa-mir-205 I;

hsa-mir-34a HMDDv2.0;I; hsa-mir-93 HMDDv2.0;I;

hsa-let-7g HMDDv2.0;I; hsa-mir-34c HMDDv2.0;I;

hsa-mir-200b HMDDv2.0;I; hsa-mir-15b unconfirmed;

hsa-let-7b HMDDv2.0;I; hsa-mir-429 I;

hsa-mir-223 HMDDv2.0;I; hsa-mir-142 unconfirmed;

hsa-mir-29a HMDDv2.0;I; hsa-mir-25 HMDDv2.0;III;

hsa-mir-29c HMDDv2.0;I; hsa-mir-106a I;

hsa-mir-145 HMDDv2.0;I;II;III; hsa-mir-373 I;II;

hsa-let-7c HMDDv2.0;I;II; hsa-mir-200c HMDDv2.0;I;

hsa-let-7i HMDDv2.0;I; hsa-mir-302c HMDDv2.0;I;III;

hsa-mir-146b I; hsa-mir-34b I;

hsa-mir-127 HMDDv2.0;II; hsa-mir-302d I;II;

hsa-mir-106b I;III;IV; hsa-mir-191 I;

hsa-mir-200a HMDDv2.0;I;II; hsa-mir-150 I;

hsa-mir-126 HMDDv2.0;I; hsa-mir-30e HMDDv2.0;I;II;III;

hsa-mir-141 I; hsa-mir-367 HMDDv2.0;I;

hsa-mir-135b HMDDv2.0;I;III; hsa-mir-215 I;

hsa-mir-125a HMDDv2.0;I;II;III; hsa-mir-19b I;

I, II, and III represent dbDEMC, miR2Disease, and miRwayDB, respectively. The first and

third columns record the 1–25 and 26–50 related miRNAs, respectively.

i.e., mir2disease (Jiang et al., 2009), dbDEMC (Yang et al.,
2017), and miRwayDB (Das et al., 2018), which all record
experimentally-validated miRNA-disease associations.

Lung neoplasms is one of the malignant tumors with the
fastest increase in morbidity andmortality and the greatest threat
to human health and life (Yanaihara et al., 2006). Therefore, there
is an urgent need to identify prognostic and predictive markers
for early detection. We used our method to uncover the potential
miRNAs and listed the top 50 predicted candidate miRNAs. As
a result (Table 1), 46 out of the top 50 miRNAs were verified to
be associated with lung neoplasms by at least one database from
Mir2disease, dbDEMC, and miRwayDB. For instance, studies
have shown that hsa-mir-16(1st in Table 1) and hsa-mir-429 (3rd
in Table 1) are closely related to the diagnosis and treatment of
lung cancer (Reid et al., 2013; Ren et al., 2016).

To verify the potency of our method on real datasets,
we conducted the second type of case study where we used
older version of HMDD (v 1.0) as input to predict potential
associations and test whether LLCMDA could uncover the newly-
added ones in the latest version of HMDD (v 2.0). Specifically,
HMDD v 1.0 contains 1,395 associations between 271 miRNAs
and 137 diseases (Zhao et al., 2018). Here, we chose Lymphomas
for validation. As shown inTable 2, 48 out of the top 50 candidate

miRNAs have been confirmed by dbDEMC, miR2Disease or/and
miRwayDB. In particular, 31 miRNAs were found in HMDD
2.0. Taken together, these evidence further showed that our
prediction method can effectively predict potential associations
between miRNAs and diseases.

DISCUSSION

Nowadays, identifying potential disease-associated miRNAs
could provide new insights into the role of miRNA as valuable
biomarkers for clinical measure, diagnosis and treatment.
However, it is impossible to predict the associations between
miRNA-disease relying on traditional experimental-based
methods. Consequently, great numbers of computational
methods have been proposed to solve this challenging problem
in recent years. In this paper, we presented a novel method
to predict potential miRNA-disease associations based on
locality-constrained liner coding. We first applied LLC algorithm
to reconstruct similarity networks for miRNAs and diseases.
The label propagation was then applied on the similarity
networks to retrieve relevant scores for each miRNA-disease
association. The final results were calculated as the average of
the predicted results from both miRNA space and disease space,
respectively. To comprehensively verify the performance of
our method, we compared LLCMDA with five state-of-the-art
computational model under four different cross-validation
frameworks. The experimental results demonstrated powerful
evidence that our method could effectively predict miRNA-
disease associations. In addition, case studies on two common
diseases also gave a strong confirmation to the prediction ability
of our method.

The success of our method is mainly due to the following
two reasons. First, the reconstructed similarity networks for both
miRNAs and diseases are more robust as the LLC algorithm
regards the local information in the coding process. Second,
we applied label propagation on the reconstructed similarity
networks as well as the original similarity networks to calculate
reliable relevant scores for the final output. Nonetheless, more
informative data sources should be integrated into our model to
further improve the prediction performance. Besides, the final
outcome was simply taken as the average from the prediction
scores from different similarity networks, which may lead to sub-
optimal results. Therefore, amore appropriate way to incorporate
the prediction results needs to be put forward.

AUTHOR CONTRIBUTIONS

YQ and CLi conceived the study and planned experiments. YQ
and HZ designed the algorithm and implemented. CLy and HZ
performed data analysis. YQ and CLi drafted the manuscript. All
authors read and approved the final manuscript.

ACKNOWLEDGMENTS

CLi was supported by the National Natural Science Foundation
of China (No. 61602283) and the Natural Science Foundation

Frontiers in Genetics | www.frontiersin.org 7 November 2018 | Volume 9 | Article 576

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Qu et al. Semi-supervised miRNA Gene–Disease Relationship Prediction

of Shandong (No. ZR2016FB10). HZ was supported by
the National Natural Science Foundation of China under
Grant Nos. 61572298, 61772322, 61601268, the Key Research
and Development Foundation of Shandong Province (No.

2016GGX101009), and the Natural Science Foundation of
Shandong (No. 2017GGX10117, 2017CXGC0703). CLy was
supported by the Natural Science Foundation of Shandong (No.
ZR2016FB13).

REFERENCES

Ambros, V. (2004). The functions of animal microRNAs. Nature 431, 350–355.

doi: 10.1038/nature02871

Chen, X., Gong, Y., Zhang, D. H., You, Z. H., and Li, Z. W. (2018a). DRMDA: deep

representations-based miRNA-disease association prediction. J. Cell. Mol. Med.

22, 472–485. doi: 10.1111/jcmm.13336

Chen, X., Huang, L., Xie, D., and Zhao, Q. (2018b). EGBMMDA: extreme gradient

boosting machine for MiRNA-disease association prediction. Cell Death Dis.

9:3. doi: 10.1038/s41419-017-0003-x

Chen, X., Liu, M. X., and Yan, G. Y. (2012). RWRMDA: predicting

novel human microRNA-disease associations. Mol. Biosyst. 8, 2792–2798.

doi: 10.1039/c2mb25180a

Chen, X., Niu, Y. W., Wang, G. H., and Yan, G. Y. (2017a). MKRMDA: multiple

kernel learning-based Kronecker regularized least squares for MiRNA-disease

association prediction. J. Transl. Med. 15:251. doi: 10.1186/s12967-017-1340-3

Chen, X., Qu, J., and Yin, J. (2018c). TLHNMDA: triple layer heterogeneous

network based inference for MiRNA-disease association prediction. Front.

Genet. 9:234. doi: 10.3389/fgene.2018.00234

Chen, X., Wu, Q. F., and Yan, G. Y. (2017b). RKNNMDA: ranking-based

KNN for MiRNA-disease association prediction. RNA Biol. 14, 952–962.

doi: 10.1080/15476286.2017.1312226

Chen, X., Xie, D., Wang, L., Zhao, Q., You, Z. H., and Liu, H. (2018d). BNPMDA:

bipartite network projection for MiRNA-disease association prediction.

Bioinformatics 34, 3178–3186. doi: 10.1093/bioinformatics/bty333

Chen, X., Xie, D., Zhao, Q., and You, Z. H. (2017c). MicroRNAs and complex

diseases: from experimental results to computational models. Brief. Bioinform.

doi: 10.1093/bib/bbx130. [Epub ahead of print].

Chen, X., Yan, C. C., Zhang, X., You, Z. H., Deng, L., Liu, Y., et al.

(2016a). WBSMDA: within and between score for MiRNA-disease association

prediction. Sci. Rep. 6:21106. doi: 10.1038/srep21106

Chen, X., Yan, C. C., Zhang, X., You, Z. H., Huang, Y. A., and Yan, G. Y. (2016b).

HGIMDA: heterogeneous graph inference for miRNA-disease association

prediction. Oncotarget 7, 65257–65269. doi: 10.18632/oncotarget.11251

Chen, X., and Yan, G. Y. (2014). Semi-supervised learning for potential

human microRNA-disease associations inference. Sci. Rep. 4:5501.

doi: 10.1038/srep05501

Cheng, A. M., Byrom, M. W., Shelton, J., and Ford, L. P. (2005). Antisense

inhibition of human miRNAs and indications for an involvement of

miRNA in cell growth and apoptosis. Nucleic Acids Res. 33, 1290–1297.

doi: 10.1093/nar/gki200

Das, S. S., Saha, P., and Chakravorty, N. (2018). miRwayDB: a database

for experimentally validated microRNA-pathway associations in

pathophysiological conditions. Database. doi: 10.1093/database/bay023

Fu, L., and Peng, Q. (2017). A deep ensemble model to predict miRNA-disease

association. Sci. Rep. 7:14482. doi: 10.1038/s41598-017-15235-6

Huang, T., Li, B. Q., and Cai, Y. D. (2016). The integrative network

of gene expression, microrna, methylation and copy number

variation in colon and rectal cancer. Curr. Bioinformat. 11, 59–65.

doi: 10.2174/1574893611666151119215823

Jiang, Q., Hao, Y., Wang, G., Juan, L., Zhang, T., Teng, M., et al.

(2010). Prioritization of disease microRNAs through a human

phenome-microRNAome network. BMC Syst. Biol. 4 (Suppl. 1):S2.

doi: 10.1186/1752-0509-4-S1-S2

Jiang, Q., Wang, Y., Hao, Y., Juan, L., Teng, M., Zhang, X., et al. (2009).

miR2Disease: a manually curated database for microRNA deregulation in

human disease. Nucleic Acids Res. 37, D98–104. doi: 10.1093/nar/gkn714

Lee, R. C., Feinbaum, R. L., and Ambros, V. (1993). The C. elegans heterochronic

gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell

75, 843–854. doi: 10.1016/0092-8674(93)90529-Y

Li, G. H., Luo, J. W., Xiao, Q., Liang, C., and Ding, P. J. (2018). Prediction

of microRNA-disease associations with a Kronecker kernel matrix dimension

reduction model. RSC Adv. 8, 4377–4385. doi: 10.1039/C7RA12491K

Li, J. Q., Rong, Z. H., Chen, X., Yan, G. Y., and You, Z. H. (2017). MCMDA:

Matrix completion for MiRNA-disease association prediction. Oncotarget 8,

21187–21199. doi: 10.18632/oncotarget.15061

Li, Y., Qiu, C. X., Tu, J., Geng, B., Yang, J. C., Jiang, T. Z., et al. (2014). HMDD

v2.0: a database for experimentally supported human microRNA and disease

associations. Nucleic Acids Res. 42, D1070–D1074. doi: 10.1093/nar/gkt1023

Liao, Z. J., Li, D. P., Wang, X. R., Li, L. S., and Zou, Q. (2018). Cancer diagnosis

through isomir expression with machine learning method. Curr. Bioinf. 13,

57–63. doi: 10.2174/1574893611666160609081155

Liu, Y. S., Zeng, X. X., He, Z. Y., and Zou, Q. (2017). Inferring MicroRNA-

disease associations by random walk on a heterogeneous network

with multiple data sources. IEEE Acm. T Comput. Biol. 14, 905–915.

doi: 10.1109/TCBB.2016.2550432

Luo, J. W., and Xiao, Q. (2017). A novel approach for predicting microRNA-

disease associations by unbalanced bi-randomwalk on heterogeneous network.

J. Biomed. Inform. 66, 194–203. doi: 10.1016/j.jbi.2017.01.008

Mei, Q. L., Zhang, H. X., and Liang, C. (2016). A discriminative feature extraction

approach for tumor classification using gene expression data. Curr. Bioinf. 11,

561–570. doi: 10.2174/1574893611666160728114747

Miska, E. A. (2005). How microRNAs control cell division, differentiation and

death. Curr. Opin. Genet. Dev. 15, 563–568. doi: 10.1016/j.gde.2005.08.005

Mohammadi-Yeganeh, S., Paryan, M., Samiee, S. M., Soleimani, M., Arefian, E.,

Azadmanesh, K., et al. (2013). Development of a robust, low cost stem-loop

real-time quantification PCR technique for miRNA expression analysis. Mol.

Biol. Rep. 40, 3665–3674. doi: 10.1007/s11033-012-2442-x

Mørk, S., Pletscher-Frankild, S., Palleja Caro, A., Gorodkin, J., and Jensen, L. J.

(2014). Protein-driven inference of miRNA-disease associations, Bioinformatics

30, 392–397. doi: 10.1093/bioinformatics/btt677

Qu, Y., Zhang, H., Liang, C., Ding, P., and Luo, J. (2018a). SNMDA: a novel method

for predicting microRNA-disease associations based on sparse neighbourhood.

J. Cell. Mol. Med. 22, 5109–5120. doi: 10.1111/jcmm.13799

Qu, Y., Zhang, H. X., Liang, C., and Dong, X. (2018b). KATZMDA: prediction of

miRNA-disease associations based on KATZModel. IEEE Access 6, 3943–3950.

doi: 10.1109/ACCESS.2017.2754409

Reid, G., Pel, M. E., Kirschner, M. B., Cheng, Y. Y., Mugridge, N., Weiss,

J., et al. (2013). Restoring expression of miR-16: a novel approach to

therapy for malignant pleural mesothelioma. Ann. Oncol. 24, 3128–3135.

doi: 10.1093/annonc/mdt412

Ren, Z., Tong, H. W., Chen, L., Yao, Y. F., Huang, S. C., Zhu, F. J., et al. (2016).

miR-211 and miR-429 are involved in Emodin’s anti-proliferative effects on

lung cancer. Int. J. Clin. Exp. Med. 9, 2085–2093.

Saffari, S. A., and Ebrahimi-Moghadam, A. (2015). Label propagation

based on local information with adaptive determination of number

and degree of neighbor’s similarity. Neurocomputing 153, 41–53.

doi: 10.1016/j.neucom.2014.11.053

Shi, H., Xu, J., Zhang, G., Xu, L., Li, C., Wang, L., et al. (2013). Walking

the interactome to identify human miRNA-disease associations through the

functional link between miRNA targets and disease genes. BMC Syst. Biol.

7:101. doi: 10.1186/1752-0509-7-101

Tang, W., Wan, S. X., Yang, Z., Teschendorff, A. E., and Zou, Q. (2018). Tumor

origin detection with tissue-specific miRNA and DNA methylation markers.

Bioinformatics 34, 398–406. doi: 10.1093/bioinformatics/btx622

Thomson, J. M., Parker, J. S., and Hammond, S. M. (2007). Microarray

analysis of miRNA gene expression. Methods Enzymol. 427, 107–122.

doi: 10.1016/S0076-6879(07)27006-5

Wang, D., Wang, J., Lu, M., Song, F., and Cui, Q. (2010a). Inferring

the human microRNA functional similarity and functional network

Frontiers in Genetics | www.frontiersin.org 8 November 2018 | Volume 9 | Article 576

https://doi.org/10.1038/nature02871
https://doi.org/10.1111/jcmm.13336
https://doi.org/10.1038/s41419-017-0003-x
https://doi.org/10.1039/c2mb25180a
https://doi.org/10.1186/s12967-017-1340-3
https://doi.org/10.3389/fgene.2018.00234
https://doi.org/10.1080/15476286.2017.1312226
https://doi.org/10.1093/bioinformatics/bty333
https://doi.org/10.1093/bib/bbx130
https://doi.org/10.1038/srep21106
https://doi.org/10.18632/oncotarget.11251
https://doi.org/10.1038/srep05501
https://doi.org/10.1093/nar/gki200
https://doi.org/10.1093/database/bay023
https://doi.org/10.1038/s41598-017-15235-6
https://doi.org/10.2174/1574893611666151119215823
https://doi.org/10.1186/1752-0509-4-S1-S2
https://doi.org/10.1093/nar/gkn714
https://doi.org/10.1016/0092-8674(93)90529-Y
https://doi.org/10.1039/C7RA12491K
https://doi.org/10.18632/oncotarget.15061
https://doi.org/10.1093/nar/gkt1023
https://doi.org/10.2174/1574893611666160609081155
https://doi.org/10.1109/TCBB.2016.2550432
https://doi.org/10.1016/j.jbi.2017.01.008
https://doi.org/10.2174/1574893611666160728114747
https://doi.org/10.1016/j.gde.2005.08.005
https://doi.org/10.1007/s11033-012-2442-x
https://doi.org/10.1093/bioinformatics/btt677
https://doi.org/10.1111/jcmm.13799
https://doi.org/10.1109/ACCESS.2017.2754409
https://doi.org/10.1093/annonc/mdt412
https://doi.org/10.1016/j.neucom.2014.11.053
https://doi.org/10.1186/1752-0509-7-101
https://doi.org/10.1093/bioinformatics/btx622
https://doi.org/10.1016/S0076-6879(07)27006-5
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Qu et al. Semi-supervised miRNA Gene–Disease Relationship Prediction

based on microRNA-associated diseases. Bioinformatics 26, 1644–1650.

doi: 10.1093/bioinformatics/btq241

Wang, J., Yang, J., Yu, K., Lv, F., Huang, T., and Gong, Y. (2010b). “Locality-

constrained Linear Coding for image classification”, in IEEE Computer Society

Conference on Computer Vision and Pattern Recognition IEEE Computer Society

Conference on CVPRW (San Francisco, CA), 3360–3367.

Xiao, Q., Luo, J. W., Liang, C., Cai, J., and Ding, P. J. (2018). A graph regularized

non-negative matrix factorization method for identifying microRNA-disease

associations. Bioinformatics 34, 239–248. doi: 10.1093/bioinformatics/btx545

Xu, P., Guo,M., andHay, B. A. (2004). MicroRNAs and the regulation of cell death.

Trends Genet. 20, 617–624. doi: 10.1016/j.tig.2004.09.010

Xuan, P., Han, K., Guo, M., Guo, Y., Li, J., Ding, J., et al. (2013). Prediction of

microRNAs associated with human diseases based on weighted k most similar

neighbors. PLoS ONE 8:e70204. doi: 10.1371/journal.pone.0070204

Yanaihara, N., Caplen, N., Bowman, E., Seike, M., Kumamoto, K., Yi, M., et al.

(2006). Unique microRNA molecular profiles in lung cancer diagnosis and

prognosis. Cancer Cell. 9, 189–198. doi: 10.1016/j.ccr.2006.01.025

Yang, Z., Wu, L., Wang, A., Tang, W., Zhao, Y., Zhao, H., et al. (2017). dbDEMC

2.0: updated database of differentially expressed miRNAs in human cancers.

Nucleic Acids Res. 45, D812–D818. doi: 10.1093/nar/gkw1079

You, Z. H., Huang, Z. A., Zhu, Z., Yan, G. Y., Li, Z. W., Wen, Z., et al.

(2017). PBMDA: a novel and effective path-based computational model

for miRNA-disease association prediction. PLoS Comput. Biol. 13:e1005455.

doi: 10.1371/journal.pcbi.1005455

Zang, F., and Zhang, J. S. (2012). Label propagation through sparse

neighborhood and its applications. Neurocomputing 97, 267–277.

doi: 10.1016/j.neucom.2012.03.017

Zeng, X., Liu, L., Lu, L., and Zou, Q. (2018). Prediction of potential disease-

associated microRNAs using structural perturbation method. Bioinformatics

34, 2425–2432. doi: 10.1093/bioinformatics/bty112

Zeng, X., Zhang, X., and Zou, Q. (2016). Integrative approaches for

predicting microRNA function and prioritizing disease-related microRNA

using biological interaction networks. Brief. Bioinform. 17, 193–203.

doi: 10.1093/bib/bbv033

Zhang, W., Chen, Y. L., and Li, D. F. (2017). Drug-target interaction prediction

through label propagation with linear neighborhood information. Molecules

22:E2056. doi: 10.3390/molecules22122056

Zhang,W., Qu, Q. L., Zhang, Y. Q., andWang,W. (2018). The linear neighborhood

propagation method for predicting long non-coding RNA-protein

interactions. Neurocomputing 273, 526–534. doi: 10.1016/j.neucom.2017.

07.065

Zhao, Y., Chen, X., and Yin, J. (2018). A novel computational method for the

identification of potential miRNA-disease association based on symmetric non-

negative matrix factorization and kronecker regularized least square. Front.

Genet. 9:324. doi: 10.3389/fgene.2018.00324

Zhou, D., Bousquet, O., Lal, T. N., andWeston, J. (2003). “Learning with local and

global consistency,” in NIPS’03 Proceedings of the 16th International Conference

on Neural Information Processing Systems (Whistler, BC), 321–328.

Zhu, L., Huang, Z., Li, Z., Xie, L., and Shen, H. T. (2018). Exploring

auxiliary context: discrete semantic transfer hashing for scalable

image retrieval. IEEE Trans. Neural Netw. Learn. Syst. 29, 5264–5276.

doi: 10.1109/TNNLS.2018.2797248

Zou, Q., Chen, L., Huang, T., Zhang, Z., and Xu, Y. (2017). Machine learning

and graph analytics in computational biomedicine. Arti. Intell. Med. 83:1.

doi: 10.1016/j.artmed.2017.09.003

Zou, Q., Li, J., Hong, Q., Lin, Z., Wu, Y., Shi, H., et al. (2015).

Prediction of MicroRNA-disease associations based on social network

analysis methods. Biomed. Res. Int. 2015:810514. doi: 10.1155/2015/8

10514

Zou, Q., Li, J. J., Song, L., Zeng, X. X., and Wang, G. H. (2016). Similarity

computation strategies in themicroRNA-disease network: a survey. Brief Funct.

Genomics. 15, 55–64. doi: 10.1093/bfgp/elv024

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2018 Qu, Zhang, Lyu and Liang. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Genetics | www.frontiersin.org 9 November 2018 | Volume 9 | Article 576

https://doi.org/10.1093/bioinformatics/btq241
https://doi.org/10.1093/bioinformatics/btx545
https://doi.org/10.1016/j.tig.2004.09.010
https://doi.org/10.1371/journal.pone.0070204
https://doi.org/10.1016/j.ccr.2006.01.025
https://doi.org/10.1093/nar/gkw1079
https://doi.org/10.1371/journal.pcbi.1005455
https://doi.org/10.1016/j.neucom.2012.03.017
https://doi.org/10.1093/bioinformatics/bty112
https://doi.org/10.1093/bib/bbv033
https://doi.org/10.3390/molecules22122056
https://doi.org/10.1016/j.neucom.2017.07.065
https://doi.org/10.3389/fgene.2018.00324
https://doi.org/10.1109/TNNLS.2018.2797248
https://doi.org/10.1016/j.artmed.2017.09.003
https://doi.org/10.1155/2015/810514
https://doi.org/10.1093/bfgp/elv024
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

	LLCMDA: A Novel Method for Predicting miRNA Gene and Disease Relationship Based on Locality-Constrained Linear Coding
	Introduction
	Materials and Methods
	Known miRNA-Disease Associations
	MiRNA Functional Similarity
	Disease Semantic Similarity
	Methods
	Locality-Constrained Liner Coding
	Label Propagation
	Implementation Details


	Results
	Evaluation
	Parameter Analysis
	Case Study

	Discussion
	Author Contributions
	Acknowledgments
	References


