84,053 research outputs found

    Searching for Protein Classification Features

    Get PDF
    A genetic algorithm is used to search for a set of classification features for a protein superfamily which is as unique as possible to the superfamily. These features may then be used for very fast classification of a query sequence into a protein superfamily. The features are based on windows onto modified consensus sequences of multiple aligned members of a training set for the protein superfamily. The efficacy of the method is demonstrated using receiver operating characteristic (ROC) values and the performance of resulting algorithm is compared with other database search algorithms

    Protein sequence classification using feature hashing

    Get PDF
    Recent advances in next-generation sequencing technologies have resulted in an exponential increase in the rate at which protein sequence data are being acquired. The k-gram feature representation, commonly used for protein sequence classification, usually results in prohibitively high dimensional input spaces, for large values of k. Applying data mining algorithms to these input spaces may be intractable due to the large number of dimensions. Hence, using dimensionality reduction techniques can be crucial for the performance and the complexity of the learning algorithms. In this paper, we study the applicability of feature hashing to protein sequence classification, where the original high-dimensional space is "reduced" by hashing the features into a low-dimensional space, using a hash function, i.e., by mapping features into hash keys, where multiple features can be mapped (at random) to the same hash key, and "aggregating" their counts. We compare feature hashing with the "bag of k-grams" approach. Our results show that feature hashing is an effective approach to reducing dimensionality on protein sequence classification tasks

    Machine Learning and Integrative Analysis of Biomedical Big Data.

    Get PDF
    Recent developments in high-throughput technologies have accelerated the accumulation of massive amounts of omics data from multiple sources: genome, epigenome, transcriptome, proteome, metabolome, etc. Traditionally, data from each source (e.g., genome) is analyzed in isolation using statistical and machine learning (ML) methods. Integrative analysis of multi-omics and clinical data is key to new biomedical discoveries and advancements in precision medicine. However, data integration poses new computational challenges as well as exacerbates the ones associated with single-omics studies. Specialized computational approaches are required to effectively and efficiently perform integrative analysis of biomedical data acquired from diverse modalities. In this review, we discuss state-of-the-art ML-based approaches for tackling five specific computational challenges associated with integrative analysis: curse of dimensionality, data heterogeneity, missing data, class imbalance and scalability issues

    Jeeva: Enterprise Grid-enabled Web Portal for Protein Secondary Structure Prediction

    Get PDF
    This paper presents a Grid portal for protein secondary structure prediction developed by using services of Aneka, a .NET-based enterprise Grid technology. The portal is used by research scientists to discover new prediction structures in a parallel manner. An SVM (Support Vector Machine)-based prediction algorithm is used with 64 sample protein sequences as a case study to demonstrate the potential of enterprise Grids.Comment: 7 page

    Multiple instance learning for sequence data with across bag dependencies

    Full text link
    In Multiple Instance Learning (MIL) problem for sequence data, the instances inside the bags are sequences. In some real world applications such as bioinformatics, comparing a random couple of sequences makes no sense. In fact, each instance may have structural and/or functional relations with instances of other bags. Thus, the classification task should take into account this across bag relation. In this work, we present two novel MIL approaches for sequence data classification named ABClass and ABSim. ABClass extracts motifs from related instances and use them to encode sequences. A discriminative classifier is then applied to compute a partial classification result for each set of related sequences. ABSim uses a similarity measure to discriminate the related instances and to compute a scores matrix. For both approaches, an aggregation method is applied in order to generate the final classification result. We applied both approaches to solve the problem of bacterial Ionizing Radiation Resistance prediction. The experimental results of the presented approaches are satisfactory

    Multi-task Deep Neural Networks in Automated Protein Function Prediction

    Full text link
    In recent years, deep learning algorithms have outperformed the state-of-the art methods in several areas thanks to the efficient methods for training and for preventing overfitting, advancement in computer hardware, the availability of vast amount data. The high performance of multi-task deep neural networks in drug discovery has attracted the attention to deep learning algorithms in bioinformatics area. Here, we proposed a hierarchical multi-task deep neural network architecture based on Gene Ontology (GO) terms as a solution to protein function prediction problem and investigated various aspects of the proposed architecture by performing several experiments. First, we showed that there is a positive correlation between performance of the system and the size of training datasets. Second, we investigated whether the level of GO terms on GO hierarchy related to their performance. We showed that there is no relation between the depth of GO terms on GO hierarchy and their performance. In addition, we included all annotations to the training of a set of GO terms to investigate whether including noisy data to the training datasets change the performance of the system. The results showed that including less reliable annotations in training of deep neural networks increased the performance of the low performed GO terms, significantly. We evaluated the performance of the system using hierarchical evaluation method. Mathews correlation coefficient was calculated as 0.75, 0.49 and 0.63 for molecular function, biological process and cellular component categories, respectively. We showed that deep learning algorithms have a great potential in protein function prediction area. We plan to further improve the DEEPred by including other types of annotations from various biological data sources. We plan to construct DEEPred as an open access online tool.Comment: 19 pages, 4 figures, 4 table

    Protein Secondary Structure Prediction Using Support Vector Machines, Nueral Networks and Genetic Algorithms

    Get PDF
    Bioinformatics techniques to protein secondary structure prediction mostly depend on the information available in amino acid sequence. Support vector machines (SVM) have shown strong generalization ability in a number of application areas, including protein structure prediction. In this study, a new sliding window scheme is introduced with multiple windows to form the protein data for training and testing SVM. Orthogonal encoding scheme coupled with BLOSUM62 matrix is used to make the prediction. First the prediction of binary classifiers using multiple windows is compared with single window scheme, the results shows single window not to be good in all cases. Two new classifiers are introduced for effective tertiary classification. This new classifiers use neural networks and genetic algorithms to optimize the accuracy of the tertiary classifier. The accuracy level of the new architectures are determined and compared with other studies. The tertiary architecture is better than most available techniques
    corecore