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Abstract- A genetic algorithm is used to search for a
set of classification features for a protein superfamily
which is as unique as possible to the superfamily.
These features may then be used for very fast
classification of a query sequence into a protein
superfamily. The features are based on windows onto
modified consensus sequences of multiple aligned
members of a training set for the protein superfamily.
The efficacy of the method is demonstrated using
receiver operating characteristic (ROC) values and
the performance of resulting algorithm is compared
with other database search algorithms.

1 Introduction

The need for faster sequence classification algorithms has
been demonstrated by (Cameron et al 2004). They note
that search times for the GenBank (Benson et al 2004)
sequence database have increased by seven fold over the
period 1999 to 2003 due to the exponential increase in the
number of available sequences. This seven-fold increase
would have been even greater if not for the increase in
speed of available processors over the same period. This
trend is expected to continue.

In this paper, we attempt to increase the speed of
database search algorithms by finding features in the
sequences of a protein superfamily which are as unique as
possible. The discovered features will then be used for
ungapped matching to a query sequence. These features
will be defined as subsequences of a modified version of
the consensus sequence of the multiple alignment of the
sequences used to train for a superfamily.

In order to determine how well the superfamily
classification works, a set of superfamily classifications
will be used that are determined independently of the
protein primary sequence. This can be done for those
proteins that have known three dimensional structure.
Such a classification is available in the form of the
ASTRAL Compendium for Sequence Structure Analysis
database (Chandonia et al 2004). ASTRAL contains
sequences annotated with superfamily classification
(among other things) for those proteins represented in the
Protein Data Bank (Berman et al 2000). Superfamily
classifications correspond to those used by the Structural
Classification of Proteins (SCOP) database (Andreeva et
al 2004). Version 1.67 of ASTRAL is used with

sequences containing more than 40% sequence identity
eliminated. Sequence redundancy elimination to 40%
identity is done automatically by the ASTRAL web
server.

The metric used for classification accuracy
determination is the receiver operating characteristic
(ROC). This value summarizes the sensitivity and
specificity of the algorithm in a single value between 0
and 1, where higher values are better. The use of the
ROC to measure search accuracy is discussed in
(Gribskov and Robinson 1996).

Comparisons of the speed of a protein classification
algorithm based on the classification features is compared
with the Smith-Waterman (Smith and Waterman 1981),
Fasta (Pearson and Lipman 1985), and BLAST (Altschul
et al 1997) scoring methods and the proposed algorithm is
found to be faster. The speed improvement comes from
the small number of ungapped comparisons that are
required.

The form of the features used is discussed in Section 2.
The use of evolutionary computation to search the very
large space of possible features for a good feature set is
shown in Section 3. In Section 4, an algorithm for
scoring possible superfamily membership of a query
string is introduced. The effectiveness of the algorithm in
terms of ROC scores for the ASTRAL database is shown
in Section 5. Section 6 discusses the speed of the
algorithm and Section 7 concludes.

2 Definition of Features

The usual definition of a consensus sequence is a
sequence which has the symbol that occurs most
frequently at each position of a multiple alignment. The
definition of a consensus sequence which is used in this
paper will instead be a sample sequence drawn from a
population of sequences with the probability of a
particular symbol at each position equal to the observed
frequency of that symbol in the multiple alignment. This
can also be thought of as a sample from the position-
specific scoring matrix (PSSM) of the multiple alignment
(Mount 2001, pp. 192-198). The mode of the consensus
sequence definition in this paper is therefore the usual
definition of consensus sequence.
A feature set for a particular protein family will be

defined by a particular consensus sequence draw as
defined above in combination with a binary window
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function which selects which ranges of the consensus
sequence to include and which to omit. The window
function will contain one or more groups of ones which
represent regions of the consensus sequence which must
be matched in an ungapped manner when producing the
score for a query sequence.

The number of combinations of possible consensus
sequences and window functions is very large and there is
no hope of trying them all. The measure of fitness of a
given combination of consensus sequence and window
function will be the ROC score for protein classification
taken using the training set for a protein superfamily.
Calculation of this ROC score is itself not trivial, making
exhaustive search completely infeasible.

3 Method for Searching for Good Features

A genetic algorithm is used to find good features. An
individual consists of a consensus sequence and a binary
window function. A mutation in the consensus sequence
takes the form of redrawing a representative residue at a
randomly selected multiple alignment position from the
observed frequency of residues at that position in the
training set. A mutation in the window function takes the
form of changing a 0 to a 1 or vice versa, where the
change is constrained to take place at one of the two
positions adjacent to a change location in the initial
window function. This is equivalent to allowing a group
of ones to lengthen or shorten by one position. It also
allows groups to merge and to disappear. Insertions and
deletions are also allowed to take place in the window
function by changing a contiguous range of positions all
to ones or all to zeros.

An initial population of size N is created by generating
N consensus sequences from the observed distribution of
residues at each multiple alignment position in the
training set for the superfamily. The window functions
for each member of the initial population are generated by
randomly selecting one, two, or three groups of length
uniformly distributed between three and ten positions to
be set to one and all other positions remain zero.

At each generation, each individual is scored against
every sequence in the database and a ROC value
calculated. The scores are found using the BLOSUM62
substitution matrix (Henikoff and Henikoff 1993) and
matching the consensus sequence groups determined by
the window function to the query sequence in an
ungapped fashion. The consensus sequence group is
paired with every possible remaining substring of the
query sequence with the same length and the maximum-
valued pairing selected. A remaining substring is part of
the database sequence starting at a higher position number
than the last position number which generated the
maximum value for the previous feature. The partial
score determined from each feature is summed to get the
final score.

Figure 1 shows the ranges used for ungapped
alignment for the partial score associated with each

feature. In the figure "Feature #1 Range" is shown to
cover all the residue positions in the entire query
sequence. If the range for feature #1 is residue positions
1 through M and feature #1 is labeled with residue
positions 1 through K, then feature #1 positions will first
be paired with query sequence positions 1 through K, then
2 though K+1, and so on until feature #1 positions 1
through K are finally paired with query sequence
positions M-K+l through M. Over the M-K-l pairings,
the maximum valued pairing is found and is shown in
Figure 1 as "Feature #1 Max." The range for feature #2
then starts one residue toward the C-terminal end of the
query sequence and goes to the end of the sequence
(protein sequences are conventionally written starting at
the N-terminal end of the protein and ending with the C-
terminal end).

MFeature#lMax]

Feature #1 Range

Full Query Sequence

Feature #2 Range

Figure 1: Scoring of a Database Sequence

The ROC value is found using the equation

ROCn =1 u
n

nL<F<n

where n is a false-positive cutoff (with n - 50 used in this
study) and L is the number of true positives found before
n false positives are found. The value UF is the number of
true positives ranked before false positive number F. A
ROC50 value of 1.0 means that all 50 false positives rank
below all of the true positives (up to the cutoff) and a
score of 0.0 means that 50 false positives are ranked at the
top of the list.

The population size used to generate the results of this
paper is N = 101. At each new generation, the best
individual was retained and five copies each of the twenty
best individuals were generated and subjected to possible
mutation. The consensus sequences of each individual
were mutated by redrawing the consensus residue from
the observed distribution with probability 0.001 per
residue position. The window functions were then
mutated with the following five operations in the order
stated: crossover, delete group, insert group, lengthen
group, shorten group. With probability 0.02 per
individual, the window function of an individual was
crossed with another individual with crossover point
uniformly distributed over the length of the window
function (which is the same for all individuals). With
probability 0.02 per individual, one group of contiguous
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Is was changed to Os within the individual with the group
deleted selected uniformly. If an individual only had one
group, the delete operation was skipped. With probability
0.02 per individual, a range of window function positions
was set to 1 where the length of the range was uniformly
distributed between three and ten and the start position
uniformly distributed along the window function length.
This group insertion operation may or may not increase
the number of groups depending on whether the inserted
group ends in the middle of an existing group or not.
With probability 0.2 per group end (0 to 1 or 1 to 0
transition), the 0 adjacent to the group end was changed
to 1 (group lengthening operation). With probability 0.2
per group end, the 1 adjacent to a group end was changed
to a 0 (group shortening operation). The GA was iterated
for twenty generations and the best individual from
generation twenty taken as the solution.

4 Search Algorithm Based on the Features

one-time preprocessing of the database to find the
features.

5 Efficacy of the Search Algorithm

The effectiveness of the feature-based search algorithm
for finding members of a superfamily in the ASTRAL
1.67 database limited to 40% sequence identity is shown
in Table 1. All superfamilies in the database with at least
40 members are shown. This was done so that 20
superfamily members could be used to estimate the
features and at least 20 superfamily members would be
left as possible true positives when finding ROC values.
The superfamily members used to estimate features were
removed from the database so that the training set and test
set would be independent. In actual application of the
algorithm all known members of a superfamily would be
used to estimate the features. The column labeled N is the
number of superfamily members in the database.

Searching for a superfamily similar to a query string is a
two step process. In the first step, a database of
sequences annotated with superfamily information is used
to find a set of good features for each superfamily in the
database. This step needs to be done only once for the
database and can therefore be rather computationally
expensive, as long as it is not so expensive as to be
infeasible. The second step needs to be repeated for every
query sequence. In this step, the set of features for each
superfamily must be scored against the query sequence.
This step needs to be fast.

The second step is done exactly as the scoring was
done in the feature search of step one. The features for a
given superfamily are an ordered set. The first feature is
compared to every possible overlap range of the full
query sequence. The highest valued comparison is taken
as the partial score for feature #1. The comparisons are
done as an ungapped alignment using any standard
substitution matrix. The location in the query sequence is
noted and feature #2 is compared using ungapped
alignment in the portion of the query sequence starting
one position beyond the C-terminal end of the feature #1
location. This process is continued for all features of the
superfamily. If any feature does not fit into the remaining
query sequence range it and all higher numbered
sequences receive a partial score of zero. The overall
score is the sum of the partial scores.
A large speed advantage is expected from the

algorithm since the number of residues in the feature sets
for each superfamily will be much less than the total
number of residues in the database and the matching is an
ungapped alignment. The number of residues is much
smaller than the database since the sum of the lengths of
the features will generally be less than the average length
of the sequences in the superfamily and there is only one
set of features covering all the sequences in the
superfamily. The cost of this speed advantage will be a

TABLE 1
ROCso FOR SUPERFAMILIES WITH AT LEAST 40 MEMBERS
Super
family
a.4.1
a.4.5
a.39.1
b.l.l
b.1.18
b.1.2
b.29.1
b.40.4
c.1.8
c.2.1
c.3.1
c.37.1
c.47.1
c.66.1
c.67.1
c.69.1
Mean:

N
43
84
41
122
49
52
45
65
77
132
53
158
64
53
43
61

SW
ROC5o
0.640
0.560
0.930
0.573
0.787
0.505
0.833
0.895
0.880
0.903
0.340
0.000
0.834
0.723
0.887
0.820
0.694

BLAST
ROCso
0.850
0.610
0.837
0.518
0.000
0.660
0.925
0.210
0.646
0.820
0.570
0.405
0.500
0.797
0.885
0.482
0.607

Query
Seq.
dlhlva2
dlpp7u_
dlhqva_
dlcid 2
dlsoxal
dlf42a2
dldypa_
dlpyba_
dlug6a_
dlvjOa2
dllqtal
dl qhxa_
dleejal
dlfpld2
dluula_
dlrlda

Feat.
ROC50
0.800
0.800
0.942
0.806
0.000
0.630
0.440
0.320
0.740
0.473
0.685
0.678
0.984
0.748
0.470
0.540
0.629

# of
Feat.
1
2
1
3
1
2

1
1

4
3
3
1
2
3
2

The ability of the proposed algorithm to find
superfamily members is compared with that of the Smith-
Waterman and BLAST algorithms. One superfamily
member was chosen at random from each superfamily to
be a query sequence for the Smith-Waterman and BLAST
searches. The ASTRAL database name for this sequence
is given in the "Query Seq." column of Table 1 for the
sake of reproducibility. The ASTRAL database was then
searched using the SSEARCH and BLAST programs and
ROC values calculated from the results. These ROC
values are listed in the "SW ROC50" and "BLAST
ROC50" columns of Table 1. The mean ROC value over
the sixteen superfamilies is 0.694 using Smith-Waterman
and 0.607 using BLAST.

The ROC values for the proposed algorithm were
calculated by searching the ASTRAL database (with the
20 superfamilies used to estimate the features excluded)
with the set of features for that superfamily. The resulting
ROC values are shown in the Features ROC5o column of
Table 1. The mean ROC value using the proposed
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algorithm is 0.629, which is not very much less than the
Smith-Waterman value and slightly more than the
BLAST value. The ROC value difference of 0.065
between Smith-Waterman and the proposed algorithm is
equivalent to moving the true positives in a ranked list
including all true positives and fifty false positives down
an average of a little more than three positions.

TABLE 2
FEATURE #1 FOR EACH SUPERFAMILY

Super- Feature #1
family
a.4.1 VWFQNRR
a.4.5 LDAEEFKLLTLISIIEEGELTVKEIAEAL
a.39.1 AEVDEMFKELDTNGDGEIDFEEFLRLV
b.1.1 SLLVKEGETVTLSC
bi. 18 VGAASTIGGNVITVLGKGDVKASALLYFG
b. 1.2 NSTITGYRVTYVPKN
b.29.1 IVNGPWHNVGWGREERSVVLPFDSGK
b.40.4 GKEAEVVAELLLKE
c. 1.8 VVGADPDKAVTFVDNH
c.2. 1 GPGGSVVVVGAAGAVGLVAVQIAKALG
c.3.1 IIVGAGLSGLAAAYRLSEAGKNVLLVE
c.37.1 RIVIEGPPGAGKST
c.47. 1 PWCGPCKAAKP
c.66.1 ALFLLLPLNADARLLKDVLLEAFDDDKLSALVKK

L DL
c.67.1 PNNPTGLVPPLELGEDIVDHAATKGINGHSDAAYG

GFAAG
c.69.1 SYDGDYLAAGENVIVV

TABLE 3
FEATURE #2 FOR EACH SUPERFAMILY THAT HAS ONE

Super- Feature #2
family
a.4.5 AVVRAIKKLEDKGLISR
b. 1.1 STLTITSAQPEDSATYYC
b.1.2 YEVSVIALNGRGES
c.2.1 VDFALDTVG
c.3. 1 LVGAKLAAAGREILSVARKEDQEIQSLR
c.37. 1 LLRDAEEIGKDLGFPAARYLDGDMIIADLLLELAL

LK
c.66. 1 LNGKGLLSILPMRRAIDATAREDDGAREIKLSKEA

GF
c.67.1 AVLSAFSKAFGLRG
c.69. 1 GLEDQLAALEWLKENAAAFGGDPKRITIFGESAG

GLSVAALLLLPLDK

TABLE 4
FEATURE #3/#4 FOR EACH SUPERFAMILY THAT HAS THEM
Super- Feature #3
family
b. 1.1 DKLIFGQG
c.2.1 VGAPGGALTAP
c.3.1 IQTADGSKGANIVVSADGTF
c.37.1 FPRRARQAEALDEAL
c.67. 1 LRISVGIEDLDDLLADLEAAL

Feature #4
c.2.1 NKSKFEEALDFLAQG

The discovered features for each superfamily are
shown in Table 2 (first feature), Table3 (second feature),
and Table 4 (third and fourth features). None of the
sixteen cases resulted in more than four features and only
one case had a fourth feature. The average number of
residues in a feature is 19.1 and the average number of

features is just under 2. The features tend to come from
positions in the multiple alignment which are highly
conserved. That is, features tend to come from portions
with few gaps and where substitution matrix values are
generally large and positive.

The multiple alignments of the twenty training
sequences from each superfamily were found using
CLUSTALW (Higgins and Sharp 1988).

6 Performance of the Search Algorithm

The inner loop of the proposed search algorithm involves
taking a sum of substitution matrix values and then
comparing the sum to a previous maximum sum. For an
average length feature, this means looking up 19
substitution matrix values, summing the values, and
comparing the sum to the maximum sum generated at all
preceding N-terminal positions. The 19 table look-ups
and additions dominate the computation.

The Smith-Waterman algorithm also requires a
substitution matrix value look-up and an addition for each
amino-acid match investigated as well as many additional
computations at each attempted match. As a result,
counting the number of compared amino acids in each
algorithm should give an indication of the relative speed
of the two algorithms which underestimates the
computation time of Smith-Waterman relative to the
proposed algorithm. The equations used by the Smith-
Waterman algorithm are:

Iij= max {Ii Ij - c, Mi,j- g}

Dij = max {Di,, - c, Mij-1 - g}

Mij = max {Iij1I + d(ai,bj), Di-,j-1
+ d(ai,bj), Mi-I>1l + d(ai,bj), 0}.

I is the score if the current sub-alignment ends with an
insert, D is the core if the sub-alignment ends with a
delete, andM is the score if the sub-alignment ends with a
match or mutation. The penalty for initiating a gap is g
and for continuing a gap is c.

The value d(a1,bj) is the substitution matrix lookup-
value which is added to three different values. Four
additional subtractions, a four-way maximum, and two
two-way maximums are also performed. All of these
operations are done every time two amino acids are
compared. The single maximum done in the proposed
algorithm is done once for every sum (an average of once
per 19 amino acid comparisons).

The number of amino acid comparisons for the Smith-
Waterman algorithm is relatively easy to estimate. Smith-
Waterman does a compare for every possible pair of
residues in the query string versus the database string.
For an average case we expect this algorithm to do a
number of amino acid compares equal to the square of
average length of a protein sequence. This is actually an
underestimate since the square of an expected value is
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less than the expected value of the square of the same
random variable that produces values greater than one.

The number of amino acid comparisons done by the
proposed algorithm is harder to estimate since the number
of comparisons done for feature #2 or higher depends on
where the best match was found for feature #1. In order
to continue overestimating the compute time of the
proposed algorithm relative to Smith-Waterman, we shall
assume that the best match is at the first (N-terminal)
position of the query sequence. For an average length
feature this means 19*(L-19) comparisons for feature #1,
where L is the length of the query string. For feature #2,
there would be 19*(L-2*19) comparisons when the best
match for feature #1 was N-terminal. For feature #n, the
number of matches is 19*(L-n*19) for average length
features.

The average sequence length in the ASTRAL 1.67
database limited to no more than 40% sequence identity is
181 (L = 181). There are 6600 sequences in the database
representing 1445 superfamilies. The average number of
discovered features in the sixteen cases examined above
was two, so the number of amino acid comparisons for a
typical case using the proposed algorithm is estimated to
be 19*(181-19) + 19*(181-38) = 5795. For the Smith-
Waterman algorithm, the estimated number of
comparisons is L2 = 32,761. In addition to a more than
five-fold decrease in the number of amino acid
comparisons for each score generated, the number of
times that the query sequence needs to be scored is
reduced. With Smith-Waterman, the query string is
scored against every database sequence (with multiple
sequences existing for most superfamilies). With the
proposed algorithm, the query string is scored once
against one set of features for each superfamily. For the
ASTRAL database figures above, this means that 6600 /
1445 = 4.57 times as many scores are generated with
Smith-Waterman. Since most sequence databases with
superfamily annotation include far more sequences per
superfamily, this advantage of the proposed algorithm is
being underestimated here. For example, the Pfam
database (Bateman et al 2004) has thousands of members
associated with many of its classifications. The overall
result in this study is that the Smith-Waterman algorithm
does 4.57 * (32,761 / 5795) = 25.8 times as many amino
acid comparisons. It is likely that the additional
computation time for Smith-Waterman is much more that
25.8 times as great.

Table 5 shows the relative execution times of the
proposed algorithm as well as several popular pair-wise
database search algorithms. The relative speed of the
proposed algorithm ("Features") and the Smith-Waterman
algorithm were determined above. The speed of two
flavors of Fasta and of BLAST relative to Smith-
Waterman are from (Brenner et al 1998).

TABLE 5
RELATIVE EXECUTION TIMES

Features 1.0*
Smith-Waterman 25.5
Fasta (ktup = 1) 3.9
Fasta (ktup = 2) 1.4
BLAST 1.0

* Very conservative estimate. Expected to be much lower in practice.

7 Conclusions

A new algorithm for classifying a query sequence into a
protein superfamily has been introduced. The algorithm
is faster than the Smith-Waterman algorithm at the
expense of significant one-time processing of the database
to find superfamily features which can be used for
ungapped alignment during query sequence scoring. The
algorithm has been found to be only slightly less effective
at superfamily classification than the Smith-Waterman
algorithm. Determination of a good set of features for a
superfamily during the preprocessing phase is
accomplished using a genetic algorithm.

Future work on this algorithm will examine ways to
make the preprocessing step converge more rapidly on a
solution either by altering the way the initial population is
chosen or changing the way new generations are selected
and modified. Also, the fitness function may be modified
to favor shorter and fewer features in an attempt to further
reduce the time required for scoring at a hopefully small
penalty in reduced ROC value.
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