43 research outputs found

    Improved Internet Security Protocols Using Cryptographic One-Way Hash Chains

    Get PDF
    In this dissertation, new approaches that utilize the one-way cryptographic hash functions in designing improved network security protocols are investigated. The proposed approaches are designed to be scalable and easy to implement in modern technology. The first contribution explores session cookies with emphasis on the threat of session hijacking attacks resulting from session cookie theft or sniffing. In the proposed scheme, these cookies are replaced by easily computed authentication credentials using Lamport\u27s well-known one-time passwords. The basic idea in this scheme revolves around utilizing sparse caching units, where authentication credentials pertaining to cookies are stored and fetched once needed, thereby, mitigating computational overhead generally associated with one-way hash constructions. The second and third proposed schemes rely on dividing the one-way hash construction into a hierarchical two-tier construction. Each tier component is responsible for some aspect of authentication generated by using two different hash functions. By utilizing different cryptographic hash functions arranged in two tiers, the hierarchical two-tier protocol (our second contribution) gives significant performance improvement over previously proposed solutions for securing Internet cookies. Through indexing authentication credentials by their position within the hash chain in a multi-dimensional chain, the third contribution achieves improved performance. In the fourth proposed scheme, an attempt is made to apply the one-way hash construction to achieve user and broadcast authentication in wireless sensor networks. Due to known energy and memory constraints, the one-way hash scheme is modified to mitigate computational overhead so it can be easily applied in this particular setting. The fifth scheme tries to reap the benefits of the sparse cache-supported scheme and the hierarchical scheme. The resulting hybrid approach achieves efficient performance at the lowest cost of caching possible. In the sixth proposal, an authentication scheme tailored for the multi-server single sign-on (SSO) environment is presented. The scheme utilizes the one-way hash construction in a Merkle Hash Tree and a hash calendar to avoid impersonation and session hijacking attacks. The scheme also explores the optimal configuration of the one-way hash chain in this particular environment. All the proposed protocols are validated by extensive experimental analyses. These analyses are obtained by running simulations depicting the many scenarios envisioned. Additionally, these simulations are supported by relevant analytical models derived by mathematical formulas taking into consideration the environment under investigation

    The Web SSO Standard OpenID Connect: In-Depth Formal Security Analysis and Security Guidelines

    Full text link
    Web-based single sign-on (SSO) services such as Google Sign-In and Log In with Paypal are based on the OpenID Connect protocol. This protocol enables so-called relying parties to delegate user authentication to so-called identity providers. OpenID Connect is one of the newest and most widely deployed single sign-on protocols on the web. Despite its importance, it has not received much attention from security researchers so far, and in particular, has not undergone any rigorous security analysis. In this paper, we carry out the first in-depth security analysis of OpenID Connect. To this end, we use a comprehensive generic model of the web to develop a detailed formal model of OpenID Connect. Based on this model, we then precisely formalize and prove central security properties for OpenID Connect, including authentication, authorization, and session integrity properties. In our modeling of OpenID Connect, we employ security measures in order to avoid attacks on OpenID Connect that have been discovered previously and new attack variants that we document for the first time in this paper. Based on these security measures, we propose security guidelines for implementors of OpenID Connect. Our formal analysis demonstrates that these guidelines are in fact effective and sufficient.Comment: An abridged version appears in CSF 2017. Parts of this work extend the web model presented in arXiv:1411.7210, arXiv:1403.1866, arXiv:1508.01719, and arXiv:1601.0122

    Quantum information in security protocols

    Get PDF
    Information security deals with the protection of our digital infrastructure. Achieving meaningful real-world security requires powerful cryptographic models that can give strong security guarantees and it requires accuracy of the model. Substantial engineering effort is required to ensure that a deployment meets the requirements imposed by the model. Quantum information impacts the field of security in two major ways. First, it allows more efficient cryptanalysis of currently widely deployed systems. New "post-quantum" cryptographic algorithms are designed to be secure against quantum attacks, but do not require quantum technology to be implemented. Since post-quantum algorithms have different properties, substantial effort is required to integrate these in the existing infrastructure. Second, quantum cryptography leverages quantum-mechanical properties to build new cryptographic systems with potential advantages, however these require a more substantial overhaul of the infrastructure. In this thesis I highlight the necessity of both the mathematical rigour and the engineering efforts that go into security protocols in the context of quantum information. This is done in three different contexts. First, I analyze the impact of key exhaustion attacks against quantum key distribution, showing that they can lead to substantial loss of security. I also provide two mitigations that thwart such key exhaustion attacks by computationally bounded adversaries, without compromising the information theoretically secure properties of the protocol output. I give various security considerations for secure implementation of the mitigations. Second, I consider how quantum adversaries can successfully attack quantum distance bounding protocols that had previously been claimed to be secure by informal reasoning. This highlights the need for mathematical rigour in the analysis of quantum adversaries. Third, I propose a post-quantum replacement for the socialist millionaire protocol in secure messaging. The protocol prevents some of the usability problems that have been observed in other key authentication ceremonies. The post-quantum replacement utilizes techniques from private set intersection to build a protocol from primitives that have seen much scrutiny from the cryptographic community

    Privacy-preserving and secure location authentication

    Get PDF
    With the advent of Location-Based-Systems, positioning systems must face new security requirements: how to guarantee the authenticity of the geographical positon announced by a user before granting him access to location-restricted! resources. In this thesis, we are interested in the study of ! security ! protocols that can ensure autheniticity of the position announced by a user without the prior availability of any form of trusted architecture. A first result of our study is the proposal for a distance-bounding protocol based on asymmetric cryptography which allows a node knowing a public key to authenticate the holder of the associated private key, while establishing confidence in the distance between them. The distance measurement procedure is sufficently secure to resist to well-known attacks such as relay attacks, distance-, mafia- and terrorist-attacks. We then use such distance-bounding protocol to define an architecture for gathering privacy friendly location proofs. We define a location proof as a digital certificate attesting of presence of an individual at a location at a given time. The privacy properties we garanty through the use of our system are: the anonymity of users, un-linkability of their actions within the system and a strong binding between each user ! and the localization proof it is associated. on last property of our system is the possibility to use the same location proof to demonstrate different granularity of the associated position

    Analysing the behaviour of a smart card based model for secure communication with remote computers over the internet

    Get PDF
    This dissertation presents the findings of a generic model aimed at providing secure communication with remote computers via the Internet, based on smart cards. The results and findings are analysed and presented in great detail, in particular the behaviour and performance of smart cards when used to provide the cryptographic functionality. Two implemented models are presented. The first model uses SSL to secure the communication channel over the Internet while using smart cards for user authentication and storage of cryptographic keys. The second model presents the SSH for channel security and smart cards for user authentication, key storage and actual encryption and decryption of data. The model presented is modular and generic by nature, meaning that it can easily be modified to accept the newer protocol by simply including the protocols in a library and with a minor or no modification to both server and client application software. For example, any new algorithm for encryption, key exchange, signature, or message digest, can be easily accommodated into the system, which proves that the model is generic and can easily be integrated into newer technologies. Similarly, smart cards are used for cryptography. Two options are presented: first the smart cards only store the algorithm keys and user authentication, and secondly, smart cards are used for storing the algorithm keys, user authentication, and actual data encryption or decryption, as the requirement may dictate. This is very useful, for example, if data to be transferred is limited to a few bytes, then actual data encryption and decryption is performed using smart cards. On the other hand, if a great deal of data is to be transferred, then only authentication and key storage are performed with smart cards. The model currently uses 3DES with smart card encryption and decryption, because this is faster and consumes fewer resources when compared to RSA. Once again, the model design is flexible to accommodate new algorithms such as AES or IDEA. Important aspects of the dissertation are the study and analysis of the security attacks on smart card use. Several smart card attack scenarios are presented in CHAPTER 3, and their possible prevention is also discussed in detail. AFRIKAANS : Hierdie verhandeling bied die bevindinge van 'n generiese model wat daarop gemik is om veilige kommunikasie te voorsien met 'n afstandsrekenaar via die Internet en op slimkaarte gebaseer. Die resultate en bevindings word ontleed en breedvoerig aangebied, veral die gedrag en werkverrigting van slimkaarte wanneer hulle gebruik word om die kriptografiese funksionaliteit te voorsien. Daar word twee geïmplementeerde modelle aangebied. Die eerste model gebruik SSL om die kommunikasiekanaal oor die Internet te beveilig terwyl slimkaarte vir gebruikerbekragtiging en stoor van kriptografiese sleutels gebruik word. Die tweede model bied die SSH vir kanaalsekuriteit en slimkaarte vir gebruikergeldigheidvasstelling, sleutelstoor en werklike kodering en dekodering van data. Die model wat aangebied word, is modulêr en generies van aard, wat beteken dat dit maklik gewysig kan word om die jongste protokolle te aanvaar deur bloot die protokolle by 'n programbiblioteek met geringe of geen wysiging van beide die bediener- en kliënttoepassingsagteware in te sluit. Byvoorbeeld, enige nuwe algoritme vir kodering, sleuteluitruiling, handtekening of boodskapbondeling kan maklik in die stelsel gehuisves word, wat bewys dat die model generies is en maklik in jonger tegnologieë geïntegreer kan word. Slimkaarte word op soortgelyke wyse vir kriptografie gebruik. Daar word twee keuses aangebied: eerstens stoor die slimkaarte slegs die algoritmesleutels en gebruikergeldigheidvasstelling en tweedens word slimkaarte gebruik om die algoritmesleutels, gebruikergeldigheidvasstelling en werklike datakodering en –dekodering te stoor na gelang van wat vereis word. Dit is baie nuttig, byvoorbeeld, wanneer data wat oorgedra moet word, tot 'n paar grepe beperk is, word die eintlike datakodering en – dekodering uitgevoer deur slimkaarte te gebruik. Andersyds, indien 'n groot hoeveelheid data oorgedra moet word, word slegs geldigheidvasstelling en stoor met slimkaarte uitgevoer. Die model gebruik tans 3DES met slimkaartkodering en –dekodering omdat dit vinniger is en minder hulpbronne gebruik vergeleke met RSA. Die modelontwerp is weer eens buigsaam om nuwe algoritmes soos AES of IDEA te huisves. Nog 'n belangrike aspek van die verhandeling is om die sekuriteitaanvalle op slimkaartgebruik te ondersoek en te ontleed. Verskeie slimkaartaanvalscenario's word in Hoofstuk 3 aangebied en die moontlike voorkoming daarvan word ook breedvoerig bespreek.Dissertation (MEng)--University of Pretoria, 2011.Electrical, Electronic and Computer Engineeringunrestricte

    Security protocols suite for machine-to-machine systems

    Get PDF
    Nowadays, the great diffusion of advanced devices, such as smart-phones, has shown that there is a growing trend to rely on new technologies to generate and/or support progress; the society is clearly ready to trust on next-generation communication systems to face today’s concerns on economic and social fields. The reason for this sociological change is represented by the fact that the technologies have been open to all users, even if the latter do not necessarily have a specific knowledge in this field, and therefore the introduction of new user-friendly applications has now appeared as a business opportunity and a key factor to increase the general cohesion among all citizens. Within the actors of this technological evolution, wireless machine-to-machine (M2M) networks are becoming of great importance. These wireless networks are made up of interconnected low-power devices that are able to provide a great variety of services with little or even no user intervention. Examples of these services can be fleet management, fire detection, utilities consumption (water and energy distribution, etc.) or patients monitoring. However, since any arising technology goes together with its security threats, which have to be faced, further studies are necessary to secure wireless M2M technology. In this context, main threats are those related to attacks to the services availability and to the privacy of both the subscribers’ and the services providers’ data. Taking into account the often limited resources of the M2M devices at the hardware level, ensuring the availability and privacy requirements in the range of M2M applications while minimizing the waste of valuable resources is even more challenging. Based on the above facts, this Ph. D. thesis is aimed at providing efficient security solutions for wireless M2M networks that effectively reduce energy consumption of the network while not affecting the overall security services of the system. With this goal, we first propose a coherent taxonomy of M2M network that allows us to identify which security topics deserve special attention and which entities or specific services are particularly threatened. Second, we define an efficient, secure-data aggregation scheme that is able to increase the network lifetime by optimizing the energy consumption of the devices. Third, we propose a novel physical authenticator or frame checker that minimizes the communication costs in wireless channels and that successfully faces exhaustion attacks. Fourth, we study specific aspects of typical key management schemes to provide a novel protocol which ensures the distribution of secret keys for all the cryptographic methods used in this system. Fifth, we describe the collaboration with the WAVE2M community in order to define a proper frame format actually able to support the necessary security services, including the ones that we have already proposed; WAVE2M was funded to promote the global use of an emerging wireless communication technology for ultra-low and long-range services. And finally sixth, we provide with an accurate analysis of privacy solutions that actually fit M2M-networks services’ requirements. All the analyses along this thesis are corroborated by simulations that confirm significant improvements in terms of efficiency while supporting the necessary security requirements for M2M networks

    Internet Authentication for Remote Access

    Get PDF
    It is expected that future IP devices will employ a variety of different network access technologies to gain ubiquitous connectivity. Currently there are no authentication protocols available that are lightweight, can be carried over arbitrary access networks, and are flexible enough to be re-used in the many different contexts that are likely to arise in future Internet remote access. Furthermore, existing access procedures need to be enhanced to offer protection against Denial-of-Service (DoS) attacks, and do not provide non-repudiation. In addition to being limited to specific access media, some of these protocols are limited to specific network topologies and are not scalable. This thesis reviews the authentication infrastructure challenges for future Internet remote access supporting ubiquitous client mobility, and proposes a series of solutions obtained by adapting and reinforcing security techniques arising from a variety of different sources. The focus is on entity authentication protocols that can be carried both by the IETF PANA authentication carrier and by the EAP mechanisms, and possibly making use of an AAA infrastructure. The core idea is to adapt authentication protocols arising from the mobile telecommunications sphere to Internet remote access. A proposal is also given for Internet access using a public key based authentication protocol. The subsequent security analysis of the proposed authentication protocols covers a variety of aspects, including: key freshness, DoS-resistance, and "false-entity-in-the-middle" attacks, in addition to identity privacy of users accessing the Internet via mobile devices. This work aims primarily at contributing to ongoing research on the authentication infrastructure for the Internet remote access environment, and at reviewing and adapting authentication solutions implemented in other spheres, for instance in mobile telecommunications systems, for use in Internet remote access networks supporting ubiquitous mobilit

    Mobile user authentication system (MUAS) for e-commerce applications.

    Get PDF
    The rapid growth of e-commerce has many associated security concerns. Thus, several studies to develop secure online authentication systems have emerged. Most studies begin with the premise that the intermediate network is the primary point of compromise. In this thesis, we assume that the point of compromise lies within the end-host or browser; this security threat is called the man-in-the-browser (MITB) attack. MITB attacks can bypass security measures of public key infrastructures (PKI), as well as encryption mechanisms for secure socket layers and transport layer security (SSL/TLS) protocol. This thesis focuses on developing a system that can circumvent MITB attacks using a two-phase secure-user authentication system, with phases that include challenge and response generation. The proposed system represents the first step in conducting an online business transaction.The proposed authentication system design contributes to protect the confidentiality of the initiating client by requesting minimal and non-confidential information to bypass the MITB attack and transition the authentication mechanism from the infected browser to a mobile-based system via a challenge/response mechanism. The challenge and response generation process depends on validating the submitted information and ensuring the mobile phone legitimacy. Both phases within the MUAS context mitigate the denial-of-service (DOS) attack via registration information, which includes the client’s mobile number and the International Mobile Equipment Identity (IMEI) of the client’s mobile phone.This novel authentication scheme circumvents the MITB attack by utilising the legitimate client’s personal mobile phone as a detached platform to generate the challenge response and conduct business transactions. Although the MITB attacker may have taken over the challenge generation phase by failing to satisfy the required security properties, the response generation phase generates a secure response from the registered legitimate mobile phone by employing security attributes from both phases. Thus, the detached challenge- and response generation phases are logically linked
    corecore