
En vue de l'obtention du

DOCTORAT DE L'UNIVERSITÉ DE TOULOUSE
Délivré par :

Institut National Polytechnique de Toulouse (INP Toulouse)
Discipline ou spécialité :

Réseaux, Télécommunications, Systèmes et Architecture

Présentée et soutenue par :
M. MOUSSA TRAORE
le mardi 7 juillet 2015

Titre :

Unité de recherche :

Ecole doctorale :

PROTOCOLES DE SECURITE POUR ETABLIR LES DISTANCES ET
AUTHENTIFIER LA POSITION POUR LES APPAREILS MOBILES

Mathématiques, Informatique, Télécommunications de Toulouse (MITT)

Laboratoire d'Analyse et d'Architecture des Systèmes (L.A.A.S.)
Directeur(s) de Thèse :

M. MARC-OLIVIER KILLIJIAN
M. MATTHIEU ROY

Rapporteurs :
M. PANOS PAPADIMITRATOS, KUNGLIGA TEKNISKA HOGSKOLAN STOKHOLM

M. SEBASTIEN CANARD, ORANGE LABS CAEN

Membre(s) du jury :
1 Mme ISABELLE GUERIN LASSOUS, UNIVERSITE LYON 1, Président
2 M. ABDELMALEK BENZEKRI, UNIVERSITE TOULOUSE 3, Membre
2 M. MATTHIEU ROY, LAAS TOULOUSE, Membre
2 M. PHILIPPE GABORIT, UNIVERSITE DE LIMOGES, Membre
2 M. SEBASTIEN GAMBS, UNIVERSITE RENNES 1, Membre

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Archive Toulouse Archive Ouverte

https://core.ac.uk/display/78385168?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

Contents

1 General introduction 3

2 Background 9
2.1 Introduction . 9
2.2 Positioning . 9

2.2.1 What is positioning? . 9
2.2.2 Positioning techniques . 10
2.2.3 Localization attacks . 12

2.3 Positioning systems . 14
2.3.1 Outdoor positioning systems . 14
2.3.2 Indoor positioning systems . 15
2.3.3 Hybrid positioning systems . 16

2.4 Location-based services . 16
2.5 Privacy and LBS . 18

2.5.1 Location privacy . 18
2.5.2 Privacy regulation . 20

2.6 Privacy solutions . 21
2.6.1 Anonymisation . 21
2.6.2 Cryptography . 21
2.6.3 Location granularity . 22

2.7 The secure location verification problem . 22
2.7.1 Distance-bounding protocol . 23
2.7.2 Location proof systems . 24

2.8 Conclusion . 25

3 Location proof systems 29
3.1 Introduction . 29
3.2 State-of-the-art . 29

3.2.1 Bipartite gathering approach . 30
3.2.2 Cooperative gathering approach . 33

3

3.2.3 Comparison . 37
3.3 Conclusion . 38

4 Security model for privacy-preserving location proof system 41
4.1 Introduction . 41
4.2 Preliminaries . 42

4.2.1 Modelling of users and their interactions 42
4.2.2 Definition of the algorithms . 43

4.3 Threat model . 44
4.3.1 Malicious prover . 45
4.3.2 Malicious witness . 45
4.3.3 Malicious verifier . 46

4.4 Privacy . 46
4.4.1 Anonymity . 46
4.4.2 Unlinkability . 47
4.4.3 Location granularity . 47
4.4.4 Location sovereignty . 48
4.4.5 Location privacy . 48

4.5 Security . 48
4.5.1 Ownership proof . 49
4.5.2 Unforgeability . 49
4.5.3 Resistance to localization attacks . 49
4.5.4 Collusion prover-prover . 50
4.5.5 Collusion prover-witness . 50

4.6 Analysis of previous work . 50
4.7 Conclusion . 50

5 Distance Bounding protocols 55
5.1 Introduction . 55
5.2 Overview of distance-bounding . 55
5.3 Security of distance bounding protocol . 57
5.4 Overview of the state-of-the-art . 60
5.5 Conclusion . 61

6 VSSDB: an asymmetric distance-bounding protocol resistant to terrorist
fraud 65
6.1 Introduction . 65
6.2 The distance-bounding proof of knowledge protocol 66

6.2.1 Presentation . 66
6.2.2 Attacks against DBPK-Log . 68

6.3 Verifiable secret sharing . 68

4

6.3.1 Feldman’s verifiable secret sharing 69
6.3.2 Application of verifiable secret-sharing to distance-bounding 70

6.4 Verifiable secret-sharing based distance-bounding protocol 72
6.4.1 Overview of the protocol . 72
6.4.2 Setup phase . 73
6.4.3 Registration phase . 73
6.4.4 Initialization phase . 74
6.4.5 Distance-bounding phase . 75
6.4.6 Verification . 75

6.5 Security analysis . 75
6.5.1 Resistance against distance fraud . 75
6.5.2 Resistance against Mafia Fraud . 77
6.5.3 Resistance against slow phase impersonation 78
6.5.4 Resistance against Terrorist fraud (KeyTF-security) 78
6.5.5 Introducing cheat modes to tackle terrorist fraud security (GameTF

security) . 80
6.6 Improving the response functions . 81
6.7 Conclusion . 85

7 PROPS: a PRivacy-preserving lOcation Proof System 89
7.1 Introduction . 89
7.2 Preliminaries . 89

7.2.1 User interactions . 90
7.2.2 Definition of the algorithms . 91
7.2.3 System Assumptions . 92

7.3 Building blocks . 92
7.3.1 Unique group signatures . 93
7.3.2 Commitment schemes . 94
7.3.3 Zero-knowledge proof . 94
7.3.4 Proximity testing protocol . 95
7.3.5 Hash chains . 96

7.4 Overview of PROPS . 97
7.4.1 Location proof gathering . 97
7.4.2 Location proof verification . 100

7.5 Protocol analysis . 101
7.5.1 Privacy . 101
7.5.2 Security . 102

7.6 Implementation . 103
7.6.1 Overview of the implementation . 103
7.6.2 Experimental evaluation . 104

7.7 Conclusion . 105

5

8 Conclusion and future work 107
8.1 Conclusion . 107
8.2 Perspectives . 110

6

Introduction générale

La géolocalisation consiste en la capacité d’un système de communication à déterminer
la position géographique d’un équipement (i.e. un téléphone portable par exemple). Ce
procédé est utilisé par les services géolocalisés afin de fournir à l’utilisateur des informations
utiles (intérêts de visite, plans, météo) relatives à sa position géographique.

Les applications de la géolocalisation sont nombreuses mais il a été démontré dans [GKdPC10]
qu’elles présentent un réel danger en matière de respect de la vie privée de l’utilisateur.
Différents textes de loi ont été adoptés dans le but de réglémenter l’usage des données lo-
calisation. Ainsi, la directive [PC] traite de la protection des personnes physiques à l’égard
du traitement des données à caractère personnel et à la libre circulation de ces données
au niveau de la communauté européenne. La directive 2002/58/CE vient préciser cette
dernière en posant des règles spécifiques sur les traitements des données à caractère per-
sonnel et la protection de la vie privée dans le secteur des communications électroniques.
En France, cette protection est assurée par la Loi n 78-17 du 6 Janvier 1978 relative à
l’informatique, aux fichiers et aux libertés.

Le but de cette thèse est donc d’apporter des primitives de géo-communication qui
permettent la construction d’applications géolocalisés respectueuses de la vie privée de
l’utilisateur. L’approche suivie est à la fois architecturale, algorithmique et cryptographique
afin de limiter la dissémination d’information d’ordre privé. Cette thèse est structurée
comme suit:

• Le Chapitre 2 introduit le cadre général des travaux présentés dans cette thèse,
c’est-à-dire la localisation et ses enjeux. Plus précisément, ce chapitre débute par
une présentation des principales techniques de localisation et les principales attaques
qui ont été développées contre elles. Ensuite, nous énonçons le problème de la véri-
fication de la localisation avant de décrire succintement les techniques de résolution
s’y afférant.

• Le Chapitre 3 introduit les systèmes de preuve de localisation suivit d’une discus-
sion sur les différentes architectures liés à ces services. Nous y proposons aussi une
catégorisation de ces services.

• Le Chapitre 4, introduit un modèle de sécurité pour les systèmes de preuves de

1

localisation.

• Le Chapitre 5, présente l’état de l’art des protocoles délimiteurs de distance.

• Le Chapitre 6, décrit VSSDB (Verifiable Secret-Sharing based Distance-Bounding
protocol) notre première contribution scientifique. Il s’agit d’un protocole délimiteur
de distance basé sur la cryptographie asymmétrique. Nous y analysons par la même
occasion les propriétés de sécurité de ce protocole.

• Le Chapitre 7, décrit PROPS (PRivacy-preserving lOcation Proof System) notre
deuxième contribution scientifique. Il s’agit d’un protocole de preuve de localisa-
tion respectueux de la vie privée conforme aux spécifications introduites dans le
Chapitre 4.

• Le Chapitre 8, conclut ces travaux et introduit les perspectives.

Les travaux présentés dans ce manuscript ont fait l’objet de trois publications scientifiques
à savoir: [GKaT12] qui introduit le locanyme comme primitive de base pour la protection
de la vie privée dans les applications géolocalisées; [GKRT14] qui présente PROPS, notre
système de preuve de localisation; [GKL+] qui décrit VSSDB notre protocole délimiteur
de distance.

2

Chapter 1

General introduction

Since the dawn of the Web, accessing the World Wide Web and the services it proposes,
has mainly be experienced through the use of personal computers (PC) connected to each
other with fixed wire connections. At these early times, the stationary nature of PC
combined to the fixed nature of the connections has limited the access to Internet to
customers present at their home or office only. Potential users away from these locations
were unable to benefit from the web and its associated services. With the recent advances
in the domain of positioning technologies such as Global Positioning System (GPS), Global
System for Mobile Communication (GSM), Radio Frequency IDentification (RFID), and
WiFi (802.11b/g/n) and the widespread deployment of wireless local area networks, we
have witnessed the introduction of mobile devices equipped with geolocated and wireless
communication capacities. One of the main advantage of this situation is the possibility
for people to access Internet form anywhere they are then getting more out of existing
web-based services in the form of Location-Based Services (LBS). Therefore, more and
more Internet based services are personalizing the experience of their users by moving to a
mobile setting, relying upon mobile networks and Wifi-enabled devices to deliver users with
personalized services that are tailored to the current location of the individual querying
the service.

LBS have been rapidly adopted by users because of the ubiquity and convenience they
offer. They provide mobile users with a wide range of useful information such as weather
forecasts, tourist attractions, landmarks, restaurants, gas stations, repair shops, public
transportation options (including schedules) and proximity services that inform users when
they are close to each other, are just a few examples of the types of information that would
be more appropriate if tailored by the user’s location. Using the location of users also
allows sophisticated services like security systems to grant access based on establishing a
user’s presence within a specific area. LBS can also be employed for mobile commerce
(m-commerce) and mobile advertisements. For example, a customer may query a specific
product, and ask for all businesses in the area selling it. If the database includes other

3

product information, such as prices and other terms, then real time comparison becomes
feasible. Also, in many e-commerce situations the buyer and seller need to meet before
validating the transaction, then the specific location of the buyer and seller becomes useful
to the transaction. More surprisingly, cellular operators are beginning to offer different
rates based on the location of callers, (e.g. in a designated home area).

Information regarding a user’s location can be gathered in two main ways: self-location
and remote-location. In the case of a self-location, the location data is supplied to the
service by the user himself. For example, the user can input his location as a postal code
but it is common that the user’s location is automatically determined by his device before
being transmitted to the LBS. One simple example in which self-location can be used is a
user asking for nearby cinemas or requesting weather forecast in his city. In this situation,
the user first provides the LBS with his location, then the server looks into its database for
cinemas nearby the desired location. There are many different techniques that can be used
for automatically determine the location of a user. Some are more appropriate for outdoor
environments while some others are better for indoors locations and some offer good results
in both environments. For more details about these positioning systems, we refer the reader
to Chapter 2. For self-location, as the location information is supplied directly by the user
or a device under his control, the information provided cannot be guaranteed to be accurate.
Therefore, the LBS cannot have high level of trust in such information. In fact, even if the
GPS device is contained within a Tamper-Resistant Module, the resulting location is not
guaranteed as GPS signals can also be interfered from outside the security module (spoofing
attack). These spoofed signals can lead to the computation of an incorrect location, leading
to the provision of a false location to the LBS. Also, remark there is not a mean to check
for the freshness of a GPS coordinates, so data can be replayed or transferred from one
device to another.

In the situation called remote-location, an external entity is responsible to position
the user, rather than the user providing its location directly to the service. The external
entity might not only be a single entity but a group of collaborating entities exchanging
information to determine with precision the position of the user. In order to accomplish
this, the user must carry a device that can be accessed by the entity. An example of such
a situation would be a mobile telephony network. Through the use of triangulation and
other techniques, mobile phone companies can compute the location of a user within their
network, provided that the user remains within the area of the network. This method of
locating a user is somewhat more difficult to tamper with, but some simple approaches
can be employed. An example of such an approach is the use of a Faraday cage to block
or restrict the signal emitted from the user’s device. However, this form of tampering
requires some form of physical interference with the device, which may not always be viable.
Therefore, while remote-location is vulnerable to interference, it is not as susceptible as
self-location. The primary weakness of remote location is its reliance on the infrastructure
to provide a location. This reliance limits the use of any remote location system to those
areas containing an infrastructure and restricts applicability of the system based on the

4

use of specific devices.
As self-location cannot be relied upon to provide trustworthy location information and

remote-location requires adherence to a specific device or area in which infrastructure ex-
ists, a new approach must be found. An alternative solution is to redefine the problem.
Rather than attempting to locate a user’s device, the user’s device makes a claim regarding
its location that can then be verified. By altering the approach taken, the problem of pro-
viding a trustworthy location becomes much more manageable. The issue of locating the
user is eliminated and the focus is placed on the veracity of the claim. More specifically,
rather than a system attempting to prove the location of the user, the user provides proof
of his claim. This approach prevents the need for special and costly hardware or an overly
complex solution. To date, similar to the case of remote location, the trend in localization
techniques relies upon a pre-existing infrastructure to provide trusted devices with which
claiming devices can interact. However, reliance upon a fixed or limited infrastructure re-
duces the applicability of localization technology. In addition to this, the cost of employing
the system increases dramatically. With mobile devices and mobile networks becoming a
staple of current technology, the need for a specific infrastructure of devices is no longer
present.

This thesis presents research on the development of a decentralized system for the verifi-
cation of location claims, designed without the requirement of a pre-existing infrastructure
for use as proof providers. Instead, our system relies on the collaboration of the users
present at the same location to generate proof shares as a testimony of their presence at
a geographical position. Then, a verification service can extract a location proof from the
location proof shares collected by a user.

The development of the location verification system presented here, namely PRivacy-
preserving lOcation Proof System (PROPS), is achieved through the combination of two
main approaches. The first approach presents a novel distance-bounding protocol [GKL+],
based on an asymmetric setting and offering resistance to last known localization attacks.
The second approach introduces a new security protocol designed to protect the gathering
of location proof by mobile device making a location claim.

The thesis is structured as follows:

• In Chapter 2, we introduce the issues of localization and location verification before
discussing existing approaches for solving this problem. In particular, we outline
several important localization techniques employed within the field. We discuss a
selection of existing schemes, provide context and background information for the
research presented in this thesis. We also identify the primary attacks existing on
localization techniques.

• In Chapter 3, we provide more details about location proof systems. More precisely,
we first introduce the location proof systems before categorizing the related work in
the field and then discussing the pros and cons of the two main approaches.

5

• In Chapter 4, we discuss the security properties that are desirable for such protocol
and outline the design process undertaken to achieve a protocol supporting these
properties.

• In Chapter 5, we present the state-of-the-art on distance-bounding protocols.

• In Chapter 6, we describe our first contribution to the area of private localization
services: VSSDB, a Verifiable Secret-Sharing based Distance-Bounding protocol.

• In Chapter 7, we present our proposal for a privacy-preserving location proof system
called PROPS for a PRivacy-preserving lOcation Proof System. We also analyze the
security of our protocol using the security framework introduced in Chapter 4.

• In Chapter 8, we conclude the present work and give future research direction.

The research presented in this work has been published in the proceedings of three in-
ternational conferences. [GKaT12] gives an early overview of the location verification sys-
tem. [GKRT14] presents PROPS and its extensions in an earlier form. It also briefly dis-
cusses the security properties of the protocol. Our work on distance-bounding is presented
in [GKL+], with discussion and analysis about the security it offers against localization
attacks.

6

Chapitre 2: État de l’art

Ce chapitre a pour but d’introduire le cadre général des travaux présentés dans cette thèse,
c’est-à-dire la géolocalisation, ses usages ainsi que les problématiques sous-jacentes liées à
la protection des données personnelles et à la vérification de la position annoncée par les
utilisateurs. Nous définissons la géolocalisation comme l’action permettant de déterminer
la position d’une personne, ou plus précisément d’un objet le caractérisant. Elle est, en
pratique, rendue possible grâce aux techniques de positionnement (positioning techniques)
telles que: la triangulation, latération ou le fingerprinting. Ces techniques permettent
d’obtenir les coordonnées d’un point par rapport à plusieurs autres connus sur une carte.

La géolocalisation était, il y encore quelques années, réservée aux professionnels et spé-
cialistes du transport maritime, terrestre et aérien. Aujourd’hui de nombreuses applications
y font appel, y compris pour les particuliers: ce sont les services basés sur la localisation.
Les services basés sur la localisation ont fait leur apparition depuis le milieu des années
2000 et ont très rapidement été adoptées par le grand public. Google est un des premiers
grands noms de l’informatique à avoir intégré la localisation dans ses applications pour
terminaux mobiles. Par exemple les résultats des recherches sont différents en fonction de
l’emplacement géographique du client. Plus encore, de nombreuses applications sportives
et de loisirs utilisent la localisation en temps réel de leurs utilisateurs afin de générer des
informations précises sur les lieux, les vitesses et les obstacles pour mieux se repérer.

Comme toute nouvelle technologie, la géolocalisation mais surtout les service qui en font
usage apportent leur lot d’inquiétudes. En effet, de nombreux services géolocalisés utilisent
les données de localisation recoltées de leurs utilisateurs à des fins commerciales, de profi-
lage, etc. De plus, toute entité pouvant accéder à ces informations peut alors les utiliser
pour déduire des informations personnelles sur les individus concernés par ces données. En
effet, grâce aux attaques par inférence, il est possible de déduire leur domicile ou lieu de
travail, prédire leurs possibles localisations futures, identifier leurs point d’intérêt (POI),
extraire la sémantique des POIs les plus fréquentés ou même de construire leur réseau
social, provoquant ainsi une violation de la vie privée des utilisateurs. Pour remédier à ce
problème, différentes techniques d’anonymisation des données personnelles ont été dévélop-
pées par la communauté scientifiques. Ces techniques bien qu’ayant été prouvé éfficaces,
ne sont aujourd’hui pas intégré dans la vaste majorité des applications géolicalisées. En
complément de ces initiatives techniques, des textes de lois ont été adoptés dans l’Union

7

Européenne et aux États-Unis afin de définir un cadre juridique et limiter l’usage qui est
fait des données personnelles de localisation des particuliers.

D’un point de vue sécurité, les services basés sur la localisation présentes des limites.
Ceci est d’autant plus important dans des applications basés sur l’authentification ou le
contrôle d’accès à distance. Pour remédier à ce problème, il existe deux grandes familles
de protocoles de sécurité proposées par la communauté scientifique. Il s’agit des protocoles
délimiteur de distance et les systèmes de preuves de localisation. Ces familles de protocoles
sont discutées dans le détail aux Chapitres 3 et 4.

8

Chapter 2

Background

2.1 Introduction

Recent advances in ubiquitous connectivity, as well as mobile and embedded systems, have
led to the development of a plethora of services that are personalizing the services they
deliver according to the location of the user querying the service. These services known as
Location-Based Services (LBS) offer many advantages to consumers. For instance, a LBS
can be used for resource discovery (e.g, finding the closest restroom from my position), path-
finding (e.g., computing the shortest route to a gas station), real-time social applications
(e.g., informing me about the presence of my friends in the vicinity) or location-based
gaming (e.g., playing with the nearest challenger). This chapter provides the context and
relevant background on the topic of localization and privacy. In the first part of the chapter
we define the concept of positioning (cf. Section 2.2) with the techniques used to compute
the position of a device. Next, we introduce positioning systems (cf. Section 2.3) and
location-based services (cf. Section 2.4). Afterwards, in Section 2.5, we discuss the notion
of privacy in general and how it should be handled in the context of localization. Thereafter,
we discuss technologies that can be used to protect privacy of user (cf. Section 2.6). Finally,
Section 2.7 introduces the main research topic presented in this work: the secure location
verification problem and the two major techniques that have been proposed in the literature
to resolve it, namely: distance bounding and location proof system.

2.2 Positioning

2.2.1 What is positioning?

Positioning is defined as the act of determining a user’s location, with user’s location taken
to mean a point on the earth’s surface, which could be absolute or relative. The absolute
location is designated using a geographical coordinates system (e.g., latitude, longitude and
altitude). In constrat, the relative location uses a place of reference to locate the desired

9

location (e.g., Toulouse is in the South-West of France, here Toulouse is located relative to
France). In the literature, many terms are used for positioning like localization, location
finding, position location, geolocalization or location sensing. Currently, users as physical
entities can only be located relative to the devices they carry due to the current limitations
of technology. Therefore, positioning is in fact the act of determining a device’s location,
under the assumption that a specific user is located in proximity to that device. In the
following, we present some localization techniques used to obtain the location of a user.

2.2.2 Positioning techniques

Localization of a node is estimated through communication between localized nodes (i.e:
anchors) and unlocalized node for determining their geometrical placement or position.
Location is determined by means of distance and angle between nodes. There are many
concepts used in positioning a node such as the following.

Fingerprinting technique.

Fingerprinting is a technique that uses location dependent characteristics of the radio signal
to estimate the distance separating the unlocalized nodes and the reference anchors. The set
of location dependent data is called the fingerprint. To better understand the logic behind
fingerprinting, let us consider a local area network equipped with Wi-Fi access points. For
each AP, the strength of the Wi-Fi signal emitted progressively decreases as we move away
from the emitting point. Therefore, measuring the received signal strength from an AP can
be used to estimate the distance to this access point. Location fingerprinting is composed
of two phases : the offline one and the online one. During the online phase, a radio map
is constructed by measuring the fingerprint on different points of the location site with
their location coordinates. Then, the map is recorded into a database. During the offline
phase, when the system receives a location query from an unlocalized node, an algorithm
tries to match the node’s recorded fingerprint values with the ones on the radio map that
was previously created to infer the exact location of the node. In practice, the accuracy
of fingerprinting can be enhanced by exploiting different methods such as: probabilistic
methods [RMT+02], k-Nearest-Neighbour [PVA00], neural networks [YLAU11], support
vector machine, and smallest M-vertex polygon [VJS+07], Bayesian inference [HPALP09]
and others [HPALP09].

Trilateration technique.

Trilateration is based on the measurement of the propagation time of a signal to estimate
the distance of an unlocalized node relative to at least three anchors. The relative positions
of the unlocalized node can be obtained by measuring either the Time of Arrival (ToA) or
the Round Trip Time (RTT) of the signal. With ToA, the anchor emits a time-stamped
signal towards the localization site. When the signal arrived at an unlocalized node, the

10

distance between the anchor and the node is calculated from the transmission time delay
and the corresponding speed of the signal. The knowledge of the ToA allows the node to
be situated on a circle (for simplicity, we confine the coordinates plan to two dimensions
and ideal transmission conditions) with the emitter at the center. By adding two trans-
mitters, the node can be located at the intersection point of the three circles. The "tri" in
trilateration is because we need at least three emitting anchors to obtain a precise position.

A derivation of ToA is the Round-Trip Time (RTT) or Round-Trip Time of Flight
(RToF). RTT measures the time of flight of the signal pulse travelling from the anchor to
the unlocalized node and back. While ToA requires two local clocks in both nodes, RTT
uses only one node namely the anchor to record the transmitting and arrival times. RTT
is usually used in the design of distance bounding protocols. We discuss distance bounding
and its role in secure localization in Section 2.7.

Trilateration is a highly accurate technique. However, it requires high processing ca-
pability and accurate synchronization between the nodes and the emitting anchors. The
Global Positioning System (GPS) uses such technique to position a device relative to a
constellation of satellites orbiting the earth.

Figure 2.1: Trilateration technique.

Multilateration technique

Multilateration is a localization technique based on the measurement of the difference in
distance to pair of anchors that broadcast signals at known times. The distance between
anchors of a pair is known and they are synchronized to exchange a signal. An unlocal-
ized node that listen to a pair exchanging messages, can measure the Time Difference of
Arrival (TDoA) of the signals at its position. TDoA allows to compute the difference in
distance to the two emitting anchors [FNI13]. Here, in the same spirit as trilateration, the
possible locations of the unlocalized node are found on a hyperbola (2D) or a hyperboloid
(3D). To locate the exact location along that curve, multilateration relies on at least four
measurements: a second measurement taken to a different pair of emitting anchors will

11

produce a second curve, which intersects with the first, etc. While the curves overlap, a
small number of possible locations are revealed, producing the position of the node.

Triangulation technique.

Triangulation allows a unlocalized node to calculate its position by measuring two directions
towards two reference anchors. Since the positions of the anchors are known, it is hence
possible to construct a triangle where one of the sides and two of the angles are known, with
the unlocalized node at the third point. This information is enough to define the triangle
completely and hence deduce the position of the node. Triangulation uses the Angle of
Arrival (AoA) of radio signal at the unlocalized node. AoA can be measured using several
antennas placed side by side (an array of antennas) or a directional antenna to measure
the phase difference between the signals received by the antennas. For better positioning
accuracy, the angles of incidence of at least three signals may be used for triangulation.

Figure 2.2: Trilateration technique.

2.2.3 Localization attacks

This attack denotes any action intended to defeat the correctness of the localization
process. This can be done for instance by influencing the outcome of a positioning device,
in fact if an adversary knows the positioning techniques used by his device, then he can
launch a specialized attack to influence the outcome of the positioning device. In the case
that the positioning device is used as a black-box by the adversary, he can try to directly
attack the LBS. In the following, we enumerate the six existing localisation attacks.

Denial of Service (DoS): The goal of a DoS attack [HHP03] is to prevent a specific
device or set of devices within an area from localizing others or being localized by the
system. This is generally achieved by interfering with the communication medium. For
example, with RF-based positioning systems the attacker tries to interfere with the targeted
devices ability to receive and send messages (signals), usually by flooding, injecting or
jamming the communication channel with messages of its own. This prevents those devices

12

present in the location targeted by the attacker from receiving or sending messages properly,
thus rendering them incapable of localizing themselves properly.

Emitter impersonation: This attack consists in impersonating a signal transmitter in
front of a targeted device [TRPČ09]. It exploits the fact that some fingerprinting-based
systems relies on access point MAC addresses for the identifications of the anchors. Such
an attack has been demonstrated as effective against the SkyHook’s localization system
in [TRPČ09].

Signal properties attacks: These are attacks targeted against the properties of the
signal used in the localization process. We can distinguish between attenuation and am-
plification attacks [CTM07]. In an attenuation attack, specialised equipment, such as an
absorbing barrier, is used to decrease the speed and strength at which a signal can prop-
agate. This makes appear as though the signal has travelled farther, thereby tricking the
unlocalized node into believing that the anchor is farther than it truly is. Inversely, in
an amplification attack, a malicious device may employ specialised equipment, such as a
directional antenna with an extended range, to achieve localization at a location closer to
the anchor devices than it truly is. Amplification attacks can impact localization results in
which the signal strength of the signal is employed (see for instance the fingerprinting based
localization technique 2.2.2). However, due to their time-based approaches, triangulation
and multilateration based systems are not as easily defrauded by such attacks.

Proxy attack: In this attack, a malicious node records messages generated within his
range (by the system), before "tunneling them" them to another area in which is located
either another node under its control or a colluding agent within the network [Mar12]. "Tun-
nelling" involves transmitting the recorded messages directly from one agent to another,
without forwarding through multiple nodes. Then the colluding agent while physically lo-
cated out of communication range from the localization anchors, can still communicate with
them and being localized as close. Remote-location systems are particularly vunlnerable
to such an attack.

Collusion attack: In this attack, a malicous device attempts to influence its own local-
ization results by having a colluding device masquerade as the device being localized and
transmit signals from a closer position to the receivers. The receivers therefore calculate
the location of the colluding device, rather than that of the device being localized, thus
providing a malicious device with a false location in closer proximity to the receivers. This
form of attack is effective primarily due to the fact that localization techniques localize the
source of a signal, not a specific device.

13

Sybil attack: This attack has a similar impact to the collusion attack, but with only
a single attacker involved. In this attack, a system believes itself to be employing several
different devices in a localization, when in reality it employs only one [SW07]. This is
achieved through an attacker creating multiple identities for itself and attempting to pass
them as individual devices, a simple task without the presence of some central authority
registering all devices. When a central authority is employed, an alternative method may
be used to circumvent this measure, in which the attacker steals the identity of another
device within the system. This approach may not be detected if the attacker prevents the
legitimate owner of that identity from communicating with the central authority, or if the
owner is not active at that point.

2.3 Positioning systems

A positioning system is a mechanism for determining the location of an object in space.
Technologies for this task exist ranging from worldwide coverage with meter accuracy
to workspace coverage with millimeter accuracy. Positioning systems can be grouped in
many different ways, including indoor versus outdoor systems or cellular versus sensor
network positioning. In this section, we categorize positioning systems depending of the
environment targeted. Indeed, we may distinguish: indoor localization systems [Dem03],
outdoor localization systems and hybrid localization systems.

2.3.1 Outdoor positioning systems

The most famous positioning system of this category is undeniably the Global Positioning
System (GPS). GPS employs trilateration to calculate the position of a device relative to
a constellation of satellites orbiting the Earth. Due to the fact that GPS coordinates can
be forged and signals spoofed, the United States military has created a similar system to
GPS known as the Precise Positioning Service (PPS) which encrypts all signals to prevent
spoofing. However this technology is unavailable to civilians. Galileo is the first public
alternative to GPS. The first stage of the Galileo programme was agreed upon officially on
26 May 2003 by the European Union and the European Space Agency. Galileo constitutes
a significant improvement compared to GPS. Indeed it has an increased level of resistance
to jamming and will include encryption within its signals to prevent spoofing attacks.
Another well known outdoor positioning system is the Assisted GPS (A-GPS). A-GPS was
introduced on request of the U.S. FCC’s 911 [DR01], to make location data of an emergency
caller available to the corresponding public safety service [DR01]. A-GPS is extensively
used with GPS-capable cellular phones with Internet connection. In practice, the accuracy
of outdoors positioning systems decrease significantly when employed within highly built
up areas. Therefore, alternative approaches to position in closed area are required. For
more details about existing outdoor positioning systems, we refer the reader to [BCKM04].

14

2.3.2 Indoor positioning systems

An indoor positioning system considers only indoor environments. Dempsey [Dem03] de-
fines it as a system that continuously and in real-time determines the position of something
or someone in a physical and closed space such as shopping mall, hospitals, airport, subway
and university campuses, etc. In general, many of those systems are based on short range
wireless technologies such as InfraRed (IR), UltraWideBand (UWB), Bluetooth, etc.

The first major indoor positioning system proposed was the ActiveBadge [WHFaG92],
created by researchers from AT&T Cambridge. The system was originally designed to
track objects within a specific area. It functions through the use of a wearable device that
periodically emits its unique identity over IR every fifteen seconds to a fixed infrastructure
of receivers. The beaconing message emitted by the device bounces off (but does not
escape) the walls bounding the room, thus ensuring the signal fills the room. The receiver
fixed within the room receives the message and can infer that the device is located within
its walls. ActiveBadge provides symbolic location information of each device such as the
room in which the active badge is.

Researchers at AT&T Cambridge provides 3-D position and orientation information for
tracked tags: the ActiveBat system [APR+99], an improved approach to ActiveBadge which
instead of IR employs UltraSound (US) and RF. Within ActiveBat, many slave anchors are
disseminated over the localization area with a master anchor capable of transmitting an
RF signal. When a node need to be localized, the master anchor transmits a RF signal to
the node as a signal to begin the localization process. Upon reception of the RF signal, the
unlocalized node responds with an US signal, which is heard by the surrounding slaves. The
nearby anchors, which have also received the initialisation signal sent by the master anchor,
record the TDoA between the RF signal and the US signal. From this difference, each slave
can extract the distance between their location and that of the unlocalized node and send
this information to the master. Finally, the master combines the TDoA from the slaves
at known locations and calculate the location of the node using multilateration. Despite
addressing some issues within the ActiveBadge system, ActiveBat is heavily dependant
on a centralized approach with a fixed infrastructure, thus limiting its applicability. The
system, as reported in 1999, can locate Bats to within 9 centimeters of their true position
for 95 percent of the measurements,

In contrast, the Cricket system [PCB00], has been developed to decentralize the local-
ization process and reduce overheads. Though Cricket also employs a combination of US
and RF signals. In particular, the system operates in the same spirit as the ActiveBat
at the difference that the node being localized is responsible to compute its own location.
More precisely, pairs of anchors regularly emit RF messages indicating their location along
with US signal. The node that is listening to the exchanges in his vicinity can measure
ToA and consequently calculate its location by itself using triangulation. For a complete
overview and comparison of indoor positioning system and their accuracy, we refer the
reader to [GLN09].

15

2.3.3 Hybrid positioning systems

Hybrid positioning systems are localization systems that can work both in indoor and out-
door environments. They usually combine different sources of metadata and signal such
as GPS data, cellular signal, WiFi signal, Bluetooth sensors, IP address, network environ-
ment data, etc. Hybrid positioning systems are useful for certain civilian and commercial
services that need to work well in urban areas in order to be commercially and practically
viable. These systems were specifically designed to overcome the limitations of GPS, which
is very exact in open spaces (precision from 1 centimeter to 100 meters [BCKM04]), but
works poorly indoors or between tall buildings because GPS signals get absorbed by the
buildings. By comparison, signals emitted by cellular tower are not hindered by build-
ings or bad weather, but they provide less precise position (between 250 meters and 35
kilometers [BCKM04]).

With the rapid growth of wireless access points in urban areas, exploiting those wireless
networks may give very exact positioning (between 10 meters and 100 meters in outdoor
and 3 meters in indoor [BCKM04]) provided that the localization area has high Wi-Fi
density and that a comprehensive database of the access points is available. The access
point database is created using a technique called wardriving. Wardriving refers to the
practice of searching a target area for Wi-Fi networks using a portable computer while
travelling by car (derivations are warwalking and warbiking). When the Personal Digital
Assistant (PDA) detects a wireless network, it collects the MAC address with the SSID
of the access point, and associates this with the location (usually determined by GPS)
and the signal strength of the detected network. Then, it uploads the entire record to
a database. When an unlocalized node wants to request its location, it submits (usually
via an encrypted channel) a list of the MAC addresses of Wi-Fi access point identified
in its range to the database, then the known positions of one or more of these access
points is retrieved, allowing the node to compute its location using fingerprinting. Hybrid
positioning systems include SkyHook’s, Google Maps and Navizon.

2.4 Location-based services

A Location-Based Service (LBS) is an application that tailors the service provided to the
current geolocated context. LBS uses the consumer’s location provided by a positioning
system to provide its service. The popularity of LBS is rapidly growing due in part to
the increased use of location-enabled devices like smartphones and tablets. LBS offers a
variety of services such as navigation tools to help one reach a destination (e.g., Google
Maps); local search to help you find nearby businesses or events (e.g., Yelp); friend-finders
and social networking (e.g., Tinder); applications that allow you to “check in” at certain
locations (e.g., Foursquare); and applications that can link your location to activities (e.g.,
Facebook and Twitter).

LBS can further be classified based on the functionality it provides. We distinguish

16

between four categories of LBS:

Geo-targeting applications: These are applications designed to respond to the
following question: “Where am I?” Given the position of a user, equipped with a device
with geolocated capabilities, this LBS shows on a map or in a social network application,
the location of the user or some of the content that he has posted, such as "Bob was at
Blagnac Airport". For instance, Picasa, Foursquares, Facebook places are examples of
geo-targeting services.

Recommendation services: They provide users with suggestions about products
or places near him. This type of LBS can be proactive or reactive. Examples of proactive
recommendation services include geo-advertising, which pushes information to users about
products or services when they reach a certain area, such as a coupon for a pizza when the
user is at Capitol square (e.g., PayPal Media Network or Twitter) or proposal to pedestrians
potential means of transportation in their neighbourhood whose destination match their
own destination [GKC+13]. In contrast, a reactive recommendation service queries about
the nearest place to find some service or product such as "where is the closest Peruvian
restaurant?".

Navigation system: This category of LBS includes application to compute a trajec-
tory to go from one point to another, (e.g., the best itinerary to go from the Charles-de-
Gaulle airport to the Eiffel tower). Google Maps and Waze are examples of such services.
Some navigation systems like in the AMORES project [ADG+12] and CooVIA 1 can notify
if there is friends of the user in the neighbourhood or itinerary to pick up passengers in
order to carpool.

Monitoring systems: They continuously record the movements of users in order
to report crowded zones in a city for statistics or to maintain the flow of road traffic.
Examples of such application are MapCity, Tom Tom, TeleNav and the density analyzers
like Skyhook or Sense Network.

Other LBS classifications exist such as the one presented by Andersen and Kjærjaard,
who divides monitoring category in crowd-sensing and city watch [AK12] or Sidney Shek
who classifies LBS depending on the target market, application type and technical capa-
bilities [She10]. Many users actually access LBS through mobile phones, but any location-
aware devices such as laptop, desktop computers, tablets, and in-car navigation systems
and assistance systems can also be used to access these services. However, this is not
without an impact on privacy.

1https://coovia.fr/

17

2.5 Privacy and LBS

Privacy taken as a single term cannot be formally defined as it means many things in
different contexts and culture. For example, opening a door without knocking might be
considered a serious privacy violation in one culture and yet permitted in another. In 1968,
Alan Westin defined privacy as being: “the claim of individuals, groups, or institutions
to determine for themselves when, how, and to what extent information about them is
communicated to others” [Wes68].

Currently, there is no consensus on a single definition of privacy; in fact, privacy varies
across domains and can therefore be considered as being a subjective notion. For example,
in computer security, privacy is related to the confidentiality of a message or a file, protected
in general through encryption. Thus, the attack will attempt to decrypt the ciphertext in
order to extract the information it contains. In secure multi-party computation [Gol98],
privacy is associated with the information one is able to infer besides the result of the
computation of some protocol. Therefore, the objective of the attack is to learn as much as
possible from the protocol, by reading the messages passing among the nodes, by having
a malicious behaviour, by implementing a man-in-the-middle attack or by colluding with
several nodes. In social network, privacy is defined by the amount of information (messages,
photos, applications, location, etc.) one shares with his friends. Therefore, the objective
of the inference attack is to profile members of the network based on their features by
extracting implicit information from the social graph.

In the new era of information technology, privacy can be defined as the right to keep
control over our sensitive information. Sensitive information corresponds to any data
related to our person like birth date, personal phone number, location and our religious
affiliation. Although privacy is considered a fundamental right, it is difficult to give a
precise definition of the term. The domain of privacy partially overlaps security, including
for instance the concepts of appropriate use, as well as protection of information.

However, one thing that everyone agrees to is that privacy is a fundamental building
block of a robust democracy; but protecting privacy, when personal data is shared, whether
voluntarily or not, is a difficult and complex task.

2.5.1 Location privacy

Location privacy [BS03] refers to the ability to prevent other parties from learning one’s
current or past location. Indeed, LBS requires to know the location of a user so they can
offer various useful services. However, each time a user transmits his location information
to the service for a single purpose, it may be stored or combined with other information
to produce a history of the user’s activities or a more detailed profile for advertising or
other purposes. Thus, it is necessary to extend the concept of privacy of an individual to
a spatio-temporal context; in other words the sensitive data to protect is the position at a
given time.

18

So far, few positioning systems have considered privacy as an initial design criterion.
That is for instance the case for the Active Badge system that detects the location of each
node and broadcasts the information to everyone in the building. The system was originally
deployed assuming anyone in the building was trustworthy. This inconvenient has been
addressed in the Cricket system in which the flow of information recorded by the unlocalized
node, can directly be used to compute its own location (self-positioning) without the system
notifying its presence thus location privacy is preserved. This approach is also used in
GPS.While application designer have a key role in the location privacy protection of users,
they are not the only responsible of privacy leakage; Indeed, some persons disseminate
publicly, almost in real-time, their current location via popular (geo)social application such
as Facebook places, Foursquare or Twitter. In turn, this data can be collected to predict
whether or not they are currently at home like with the website Please rob me2. Thus, there
are many players in the mobile space who have a contributing role to ensuring end-to-end
privacy, whether it is the device manufacturer, the operating system and platform developer,
network providers, application developers, data processors and even users themselves.

Cottrill [Cot11] proposed to allocate roles based on who is responsible for providing
protection to such a data. More precisely, the suggestions goes as follow: users should
establish their own privacy policy through the available privacy settings. They should refuse
to use an application without a declared privacy policy and, have the minimum amount of
location data if possible. Users should be conscious about the risks of location disclosure.
While companies have a privacy-by-disaster approach that is they only care about privacy
protection after a significant incident is made public [oNC11]; their developers should
be initiated to privacy-by-design. Privacy by Design is a concept developed back in the
’90s [Cav11]. It aims to identify and examine possible privacy breaches (i.e. data protection
problems, etc.) when designing a technology in order to incorporate privacy protection
mechanisms into the overall design, instead of having to come up with “patches” later on.
If systems are built without respect for user privacy, and adhere to only the most basic
requirements, companies may suffer when their systems get compromised or when a large
base of customers reacts negatively. Privacy by Design was unanimously recognized and
supported by the International Assembly of Data Protection and Privacy Commissioners,
and is a recommended approach in major U.S. and European regulatory efforts [oNC11].
Service providers are also responsible for setting up access controls to guarantee information
confidentiality and secure storage to prevent information leak. Telecom operators should
follow a self-regulatory approach in order to preserve the privacy of their clients. Finally,
public and private agencies should provide regulation and guidelines to the data processors
about how to manipulate location data in order to ensure location privacy protection. In
the following, we introduce some of the privacy regulations that have been introduced for
privacy protection.

2http://pleaserobme.com/

19

2.5.2 Privacy regulation

Privacy is recognized as a fundamental right by governments and organizations all over the
world. This situation has caused the adoption of new regulation laws in order to regulate
the transmission and sharing of user sensitive information. More precisely, in 1995, the
European Union has adopted the 95/46/CE Data Protection Directive [PC] to harmonize
the laws of members states on the protection of individuals with regard to the processing
of personal data and on the free movement of such data. This directive established several
basic principles for European citizens. These principles include the following rights:

• The right to know where the data originated,

• The right to have inaccurate data rectified,

• The right of recourse in the event of unlawful processing,

• The right to withhold permission to use data under some circumstances.

On January 2012, the European Commission unveiled a new draft legislative package to
establish a unified European data protection law [95412]. This regulation brings new
privacy rights, including data subject’s right of portability and the right to be forgotten,
for citizen in the EU. The right of portability will allow a transfer of all data from one
provider to another upon request, for example transfer of a social media profile or email,
whereas the right to be forgotten will allow people to wipe their history clean. The other
remarkable changes to the 95/46/CE Data Protection Directive are the following:

• the EU data protection regulation will also apply for all non-EU companies without
any establishment in the EU, provided that the processing of data is directed at EU
residents,

• any processing of personal data will require providing clear and simple information
to concerned individuals as well as obtaining specific and explicit consent by such
individuals for the processing of their data (Opt-in), other than in cases in which the
data protection regime explicitly allows the processing of personal data,

• the processing of data of individuals under the age of 13 will in general require
parental consent, which will make it more difficult for companies to conduct business
aiming at minors,

• all companies will be obligated to notify EU data protection authorities as well as the
individuals whose data are concerned by any breaches of data protection regulations
or data leaks without undue delay, that is within 24 hours,

• a harsh sanction regime will be established in case of breach of the unified EU data
protection law allowing data protection authorities to impose penalties of up to 2 %
of a company’s worldwide turnover in case of severe data protection breaches.

20

Moreover, some standards and privacy risk analysis related to privacy are currently
being put forward. For example, the ISO/IEC 29100 [ISO] about Information technology,
Security techniques and Privacy framework, the AICPA/CICA Privacy Risk Assessment
Tool, NIST Privacy Assessment, and the Methodology for Privacy Risk Management. In
U.S., the Location Privacy Protection Act of 2014 [Fra], introduced by Senator Al Franken,
targets those apps designed to maliciously track individuals without their knowledge. The
bill stipulates that each individual may give his explicit consent before using a service, the
collecting entities, the collectable data and its usage. The bill does not include location
data stored locally on the device (the user should be able to delete the contents of the
location data document periodically just as he would delete a log document). The bill
that was approved by the Senate Judiciary Committee, also requires mobile services to
disclose the names of the advertising networks or other third parties with which they share
consumers locations.

2.6 Privacy solutions

A number of technical solutions have been proposed to protect the privacy of LBS users.
In the sequel, we present the major ones to be used throughout the manuscript.

2.6.1 Anonymisation

The aim of anonymisation is to ensure that the LBS will not be able to link requests to
specific users. A mean to comply with this, is by using anonymiser. Anonymiser is an
intermediate trusted system that groups together k users requests before sending them to
LBS provider for process, and returns specific responses to users. The value of k can be
configured to ensure sufficient anonymity [Liu, 2009]. The main drawback to anonymisers
is that they rely on the anonymiser being a trusted system, thus it becomes a single point
of failure issue in the architecture.

2.6.2 Cryptography

Cryptography [Sch94] is the science of writing in secret code and is an ancient art; some
experts argue that cryptography appeared spontaneously sometime after writing was in-
vented, with applications ranging from diplomatic missives to war-time battle plans. Cryp-
tographic techniques such as encryption and hash chain are commonly applied to conceal
information and to hide user’s identities. These techniques may require more computational
power and sophisticated application code than other methods. Cryptographic techniques
would be useful for both identity-driven and pseudonym-driven applications. For exam-
ple, in [HWK04] authors propose blind signatures as a mean to protect the identity of a
user from his communications provider. Privacy-enhanced cryptographic primitives include

21

group signature [CS97, FZ12], zero-knowledge proof of knowledge protocol [FFS88], hash
chains [LMP11] and commitment schemes [BCC88].

2.6.3 Location granularity

Location information has a defined accuracy depending on the technology used. For exam-
ple, GPS may be able to resolve location down to 5-10 meters while GSM-based localization
resolve it to 250 meters to 35 kilometers [BCKM04]. While a high-accuracy technology
may be used, applications may not need such high resolution, so a client application can
reduce the accuracy of its location when sending requests to LBS provider thereby reduc-
ing the possibility that the LBS provider can identify the user’s exact location. Accuracy
filtering can be done by selecting the appropriate location technology via the smartphone’s
configuration parameters for accuracy, or by post-filtering of the location information. One
example of post-filtering was a technique described in [LMP11], in which hash chain is used
to certify the location information in such a way that the hashes of the chain correspond to
an increasing level of precision or in [LH10] in which five levels of granularity are encrypted
and inserted in the request, then LBS requests the corresponding key to the user to unveil
the granularity that it needs.

2.7 The secure location verification problem

LBS are services that take advantage of the position of users to deliver service tailored to
their geolocated context. By the use of a positioning device, a user can acquire his current
position and then transmits it to LBS for processes. However, as pointed in [SW09], a
malicious user can lie about his position, by having his device transmitting a location of
his choice and thus access services inadequately. This situation is critical for emerging
applications such as real-time traffic monitoring, location-based access control, discount
tied to the visit of a particular shop or local electronic election. Thus, the enforcement of
location-aware security policies (e.g., this laptop should not be taken out of this building,
this file should not be opened outside of a secure room, etc..) requires trusted location
information. So, one of the first question that naturally arises from this is how can we
convince others about our current position? Thereafter, we will refer to this problem as
the Secure Location Verification Problem. Secure location verification has been addressed
in the literature in two different ways: using time-based approaches, namely distance-
bounding protocols (DB) [BC93] and location proof systems [SW09]. DB is a timing-based
approach that allows an entity (the prover) to interact with a set of authorities (verifiers)
in order to prove his current position. Location proof system is an architecture that allows
a prover to prove his past position to a set of verifiers. Many location proof systems are
based on DB protocol to defeat proxy attacks and terrorist fraud attacks. In the following,
we review the state of the art in the domains of distance-bounding protocol and location
proof systems.

22

2.7.1 Distance-bounding protocol

Distance bounding protocols are cryptographic protocols that enable a verifier V to estab-
lish an upper bound on the physical distance to a prover P. They were originally introduced
by Brands and Chaum [BC93] to defeat relay attacks and are based on Round Trip Time
techniques (see Section 2.2.2) which measuring the delay between sending out a challenge
bits and receiving back the corresponding response bits. The delay time for receiving the
correct responses enables V to compute an upper-bound on the distance from the prover,
as the round trip delay time divided into twice the speed of the radio wave. Both ra-
dio frequency (RF) and ultrasound channels have been used in the design of secure and
lightweight distance bounding protocols. However, since the speed of sound is six order
of magnitude lower than the one of light (the propagation of RF in air approaches the
in-vacuum speed of light), it is established that RF is more secure.

There exists a significant literature on distance-bounding (DB) protocols. Usually, DB
protocols is ran in association with a lightweight authentication protocol. This authentica-
tion procedure can either be symmetric (i.e., based on a common secret shared between the
prover and the verifier [RNTS07, TP07, ALM11, KAK+09, BMV13b]) or asymmetric (i.e.,
dependent of a secret that is only known to the prover [BC93,BB05a]). DB protocols are
made of three main phases which are: the initialization phase (or first slow phase) during
which the prover and the verifier pre-computes the values that are needed to run the DB
protocol. Thereafter, the first slow phase is followed by the interactive phase (or fast bit
exchange phase) during which the prover and the verifier exchange bits at very high speed.
Finally, there is the verification phase (or final slow phase), that allows to determine if the
protocol succeeds or not.

The security level of these protocols can be evaluated according to their resistance to
five types of attack, namely: slow phase impersonation [AT09a], distance fraud [BC93],
mafia fraud [Des88], distance hijacking [CRSC12] and terrorist fraud [BBD+91]. Each of
these attacks targets a specific aspect of the protocol such as the authentication or the
distance estimated by the verifier. In an impersonation, the adversary tries to impersonate
a legitimate prover to the verifier but does not lie on its distance. In contrast, in a distance
fraud a legitimate but malicious prover attempts to lie on his distance to the prover. A
mafia fraud is an attack in which an adversary defeats a DB protocol using a man-in-
the-middle attack between the verifier and an honest prover located outside the area. In
a distance hijacking attack, a malicious prover takes advantage of a protocol executed
between a honest prover and the verifier. Finally, terrorist fraud denotes an attack in
which the adversary plays the man-in-the-middle between the verifier and a prover that
is not located in the vicinity. However in contrast to the mafia fraud, the prover is also
malicious and willingly cooperate with the adversary to help him achieve his objective of
defeating the DB protocol. However, the malicious prover only helps the adversary to the
extent that he does not have to give him his long term secret in the process.

Over the years, DB protocols have matured to the point that the MIFARE Plus RFID

23

tag [NXP11] is the first commercial product (at least up to our knowledge) implementing
distance bounding in a commercial product. Distance bounding can be used as a building
block for the design of other security systems like it is the case of location proof systems.

2.7.2 Location proof systems

A location proof system designates an architecture that allows a prover to obtain a certifi-
cate of his actual position as an evidence of his presence in this geolocated context [SW09].
We call the certificate obtained by the prover: the location proof (LP). In the same spirit
of real life alibi, a LP can be used by its owner to prove that he was located at position pos
at time time (as endorsed in the LP) to a remote service or to authority. We call the entity
that checks the validity of a location proof the verifier. A secure location proof verification
system requires the following two properties:

• Correctness: if the prover and the verifier behaves honestly, and the prover was indeed
at the location claimed then the verifier will accept the claimed position pos of the
prover using a location proof.

• Soundness: if V behaves honestly and accepts the position claimed by a prover, then
the prover or one of colluding party is located at the position accepted.

Location proofs systems are made of two main phases: the proof gathering phase and the
proof verification phase. The proof gathering phase is ran by the prover each time he needs
to collect a proof for the location in which he is physically present. The physical presence
of the prover at the claimed location can be established using distance-bounding protocol
with a node of the system (witness). Once the witness is convinced of the presence of the
prover in his proximity, it outputs a location proof to the latter containing the current
location and time informations.

The heart of any location proof system is the gathering process that can broadly be cat-
egorized into two classes depending on whether a user collects his location proof (1) through
an interaction with non-mobile and dedicated access points deployed by the system admin-
istrator, we call this the centralized gathering approach or (2) by directly interacting with
other users of the system which are located in his surrounding, we call this the collaborative
gathering approach. In the former approach, proof issuers are Wifi-Access points adver-
tising their presence by regularly broadcasting beacon signals to their surrounding area.
Afterwards, any nearby device can collect these beacons as a prerequisite to the process of
creation of the location proof by the Access Point. The benefits of a collaborative gathering
approach over a centralized gathering approach are multiples. In fact, the system is more
scalable, deployment/maintenance cost are reduced, pollution is also reduced and finally
it offers better resistance to DoS attacks.

The second main phase of location proof system is the verification phase. This phase
allows a location-based service (verifier) to be convinced of the provenance of the prover

24

before he can access the service. The goal of this phase is for the prover to provide the
verifier with location proof containing the correct spatio-temporal information (past or
present) as needed for the functioning of the location-based service.

2.8 Conclusion

In this chapter, we addressed the general concept of positioning, the techniques commonly
used by positioning systems and the attacks that can be launched against them. We also
described the functioning of location-based applications that are built on top of position-
ing systems and how their uses can rapidly becoming a threat against the privacy of users.
Then, we have briefly introduced the privacy regulations in Europe and USA. In addition,
we also described the techniques such as anonymisation, cryptography and location gran-
ularity that have been developed so that only minimal quality of location data needs to
be given to LBS providers. Then, we introduce the concept of secure location verification
and the two majors countermeasures developed in the literature to improve the security of
location-based services, namely location proof system and distance bounding protocols. In
the next chapters, we will give more details about such countermeasures and position our
contributions to location verification problem. More precisely, in the next chapter, we will
review in more detail the concept of location proof systems.

25

26

Les preuves de localisation

L’apparition de l’informatique mobile et la démocratisation des dispositifs de communi-
cations mobiles (GSM, PDA, smart gadgets...) amènent les organisations à ouvrir leurs
systèmes d’information afin de le rendre disponible n’importe où et n’importe quand. Ceci
ne peut se faire sans une prise en compte de la dimension mobile des utilisateurs dans le
modèle de sécurité des accès. Ainsi, un système d’information doit dorénavant être capable
de prendre en compte des caractéristiques contextuelles (telles que la position du requérant
et l’heure) pour garantir un contrôle d’accès fiable à certaines ressources protégées. Dans
ce chapitre, nous abordons la thématique des preuves de localisation. Une preuve de local-
isation désigne un certificat numérique attestant de la position géographique d’un individu
(le prouveur), plus précisément de son téléphone, à un instant donné. Les preuves de lo-
calisation sont obtenues par le biais d’une requête émanant du prouveur et à destination
d’un système de preuve de localisation.

Un système de preuve de localisation désigne une architecture logicielle permettant à un
prouveur d’obtenir des preuves de localisation. En pratique, chaque preuve de localisation
est émise par une tierce-partie agissant alors comme un témoin pour le prouveur.

De nombreux systèmes de preuves de localisation ont été proposées dans la litterature.
Nous les décrivons dans le détail à la Section, puis nous les catégorisons en deux grandes
familles. La première famille regroupe les système basée sur la présence d’une infrastructure
de points d’accès et la seconde famille regroupe les systèmes basées sur la coopération
entre les différents utilisateurs. La différence réside dans la manière dont les prouveurs
sont autorisés à récupérer des preuves de localisation. En effet, dans les systèmes basés
sur les points d’accès, chaque prouveur ne peut demander une preuve de localisation que
lorsqu’il se trouve à proximité de point d’accès spécifiques agréés par le système. Par contre,
dans les sytèmes basés sur la coopération, les utilisateurs présents dans une même zone
géographique peuvent directement communiquer et se générer mutuellement des preuves
de localisation.

Nous discutons aussi des impacts que peuvent avoir l’une ou l’autre ces deux architec-
tures. Il en ressort que les systèmes basés sur les points d’accès souffrent de leur dépendance
à une infrastructure spécifique. En effet, ils passent difficilement à l’échelle, nécessitent des
coûts d’entretien et d’administration. De plus, du point de vue de la vie privée, les util-
isateurs de tels systèmes ne sont pas à l’abri d’un traçage permanant. À l’inverse, les

27

systèmes basés sur la coopération exploitent les ressources grandissantes de nos smart-
phones. Cependant, elles nécessitent la mise en place de mécanismes strictes pour éviter
les abus liés aux collusions entre utilisateurs.

Dans le chapitre qui suit, nous discuterons des propriétés de sécurité et de vie privée
que nous jugeons indispensables aux systèmes de preuves de localisation en général et aux
systèmes basés sur la coopération en particulier. Nous verrons en particulier que la sécurité
de la phase de collecte des preuves de localisation peut être significativement améliorée en
faisant appels aux protocoles délimiteurs de distance.

28

Chapter 3

Location proof systems

3.1 Introduction

Location-Based Services (LBS) are a general class of services that use location data to
control features. Individuals can use it to find nearest interesting spots. Parents can
use it to locate their child at any time. Professionals can locate their vehicles, track
personnel, deliveries and detect any problem. Authorities can use it to manage suspect
alibis. However, as discussed in the previous chapter, LBS cannot rely solely on the user’s
devices to discover and transmit location information because they have an incentive to
cheat. Instead, such applications may require their users to prove their locations: location
proof system serves this purpose.

This chapter introduces the domain of location proof systems. We describe the related
work by grouping them according to the way location proof are collected by the users
before discussing the pros and cons of the different approaches.

3.2 State-of-the-art

A location proof system designates an architecture that allows its users to prove their
location to location-based services before they are authorized to access a service. A location
proof designates the piece of information that is actually used by the users to convince the
content provider about their current or past location.

To illustrate the importance of location proof systems, consider the scenario of a content
delivery server (i.e. a movie server). The movie server wants to restrict the content it
delivers to users depending on their locations due to some copyright laws. Before starting
a download, the server needs first to ensure that the recipient device is authorized to access
the downloadable content in accordance with the copyright laws. Thus, the mobile device
needs to obtain a location proof before requesting the hosted service. Therefore, one can
imagine that the mobile device transmits to the movie server the identifier of its nearest

29

communicating cell tower. Then, using the latter identifier and the help of the telephony
network, the movie server can infer the position of the mobile user by mapping the identifier
of the cell tower to its geographical location. The movie server can then verify the device’s
current location and then decide whether or not access to the content should be granted.
In another application, suppose a store wants to offer discounts to frequent customers. In
this context, making devices aware of their location is not sufficient; instead, users must
be able to show evidence of their repeated visits to the store.

In the sequel, we investigate the literature on location proof system by grouping them
according to the way users obtain location proof. Firstly, we enumerate system in which
users collect location proof by interacting with access point disseminated over the local-
ization area. We call such approach of implementing location proof system, the bipartie
gathering approach. Secondly, we consider systems in which users collect location proof by
collaborating together. We call this latter approach the collaborative gathering approach.

3.2.1 Bipartite gathering approach

This is the first class of location proof system introduced at a time when the wireless net-
works were becoming increasingly popular, and the first Wifi-enabled mobile devices were
introduced to the market. In such systems, user requests location proof from designated
Wifi Access-Point (AP) present over the localization area. The protocols were designed to
be expanded on-the-shelf to existing Wifi-networks. The expansion is done by a system ad-
ministrator, responsible to configure each AP of the network to run a simple program which
computes location proof transmitted to the requester devices. In the following, we propose
to describe the systems which have been developed on this idea [WF03,SW09,LH10].

Waters and Felten (2003)

Waters and Felten [WF03] turn their attention to equip small wireless network with mech-
anisms that can vouch for the presence of mobile devices within the small area they cover.

Here, the access-point responsible to issue location proof is called the LM (Location
Manager). To obtain a location proof, user convinces the LM that they are within prox-
imity. LM judges of their proximity to user by using RTT like techniques.

To start the process of obtaining location proof, user needs to know the public key of
the service he want to convince of his position. Once this condition is satisfied, the user
sends a location proof request to the nearest LM. A location proof request is a simple
message containing the user’s public key encrypted with the public key of the service the
user wants to convince of his position. The request is then transmitted encrypted with the
public key of the intended LM. Authors did not explicitly describe how user can obtain the
public key corresponding to the nearest LM.

After the reception of the proof request, the LM starts its clock and sends a nonce to
the user. At the reception of the nonce, the user must send back the nonce to the location

30

manager as soon as possible. When the LM receives the response from the user, it stops
its clock and computes the latency of the round-trip exchange with the user. Next, the
LM issues a location proof to the user. The proof contains two blocks of information. The
first block contains the public key of the LM, the latency computed by the LM, the current
date and time information and lastly the encryption of the user’s public key. The second
block contains a signature of the first block with the private key of the LM.

At the reception of the location proof, the user must immediately sends a message for
proving his location to the remote service, he has specified in the proof request. The mes-
sage contains two blocks of information, the first one contains the location proof received
from the LM concatenated with the LM’s public key concatenated with the user’s public
key. The second block contains a signature of the first block with the private key of the
user to express the consent of the user to prove his position to the service. The message is
then sent to the service encrypted with its corresponding public key for approval. Service
has access to a database mapping the public key of LM to their physical position. Then
by retrieving the latency of the communication between the LM and the user, the physical
position of the LM, the service can decide of the validity of the user’s location claim.

With respect to privacy, the main objective of this protocol is to hide the identity of the
device and the verifier from LM and potential eavesdroppers. This protocol is not secure
against attack in which a malicious prover transmits his public key and a well defined
location proof request to a colluder to masquerade as him in front of an AP. Another
limitation is that each location proof collected by the prover can be used with only one
verifier.

Saroiu and Wolman (2009)

Saroiu and Wolman [SW09] have proposed to include the latitude and longitude coordinates
of Wi-Fi access points into the beacon frames they periodically broadcast to announce their
presence. Then, a device capturing such beacon, can use it to explicitly request a location
proof from that respective AP. A location proof request contains the sequence number of
the last beacon captured from the AP and the public key of the user. The proof request is
also signed with the private key of the user before it is sent to the AP.

At the reception of a proof request, the AP checks two things. The first one is that the
sequence number included in the request matches well with a beacon it has broadcasted
a few times ago. The second thing is that the signature of the proof request corresponds
to the public key of the user. If those verifications succeed, the AP replies with a location
proof addressed to the user. The proof contains two blocks of information. The first block
contains in clear text: the access point’s public key, the device’s public key, the date and
time of the creation of the proof and the latitude and longitude coordinates of the AP. The
second block of information contains a digital signature of the first block made with the
secret key of the AP.

To prove his location to a service, a user signs his location proof and prepends to it his

31

public key. The resulting message is then transmitted to the service. Upon reception of
the message, the service performs two signature verification. Firstly, it checks the user’s
signature over the location proof using the public key of the user. Secondly, it checks that
signature included in the second part of the location proof is correct. Those verifications
ensure that the location proof has not been tampered while being transmitted to the service
and that the client has not tampered with the location proof created by the AP. If those
verifications succeed, then the service is convinced that the client is indeed the genuine
recipient of the location proof and that the location proof is legitimate.

Figure 3.1: Saroiu and Wolman Location proof System.

This protocol is not secure against an attack in which a malicious prover transmits
his public key and a well defined location proof request to a colluder to help the latter in
masquerading as him in front of an AP. However, the authors have also propose a number
of improvements to enforce privacy guarantees of their protocol and strong authentication.
From a privacy point of view, one of the main issue of this protocol is that prover needs
to publicly reveals his identity before obtaining a location proof.

VeriPlace (2010)

VeriPlace has been proposed by Luo and Hengartner in [LH10]. The system puts in relation
a number of trusted-third party that are the TTPU (Trusted Third Party for managing
User informations, the TTPL (Trusted Third Party for managing Location) and the CDA
(Cheating Detection Authority). The above mentioned trusted entities are run by different
parties to avoid collusion and to protect user’s privacy: each entity knows either a user’s
identity or her location, but not both of them.

Within VeriPlace, the first step is for users to request intermediate proof to AP present
in their vicinity. To obtain intermediate location proof from AP, user first sends a message
to the TTPU to obtain a token. The message contains the identity of the user and the
identity of the AP encrypted with the CDA public’s key. In response to this message,
the TTPU replies to the user with a nonce. At the same time, the TTPU registers in his
database the identity of the user, the encryption of the identity of the AP and the date
and time at which it has created the nonce for the user.

32

Afterwards, the user uses the token to obtain intermediate location proof from the AP.
An intermediate proof has two blocks. The first block contains the public identity of the
AP, the token from the TTPU and the time the access point received the proof request
from the user. The second block contains a digital signature of the first block with the
private key of the AP.

Later, to provide a service with a location proof, user first presents his intermediate
proof to the TTPL to obtain a final proof. The user also specifies a granularity for the
proof he wants to receive. User can choose among five levels of granularity for the location
they want to reveal. The TTPL creates a final location proof by replacing the AP identity
in an intermediate proof with the location of the AP at the granularity specified by the
user and the AP’s signature with its own signature.

When verifying a final location proof submitted by the user, the service submits the
identity of the user and the date and time information to the TTPU. The TTPU extracts
a list of encrypted access point identities from his database that match the user identity
and roughly the same date and time values. The list is then submitted to the CDA for
cheating detection.

After receiving the list of encrypted AP information from the TTPU, the CDA de-
crypts it and checks whether any two APs of the list are far apart, which is a sign of
cheating (because the same user can not request location proofs at two far-apart places
simultaneously). The CDA notifies the TTPU in case cheating is detected.

If all the steps above are passed successfully and no cheating is detected by the CDA
then the service accepts the proof.

3.2.2 Cooperative gathering approach

In the cooperative gathering approach, users obtain location proof not by communicating
with a dedicated infrastructure but by collaborating with other users present at the same
location. This approach assumes that the users can communicate with each other using
range communication technology, such as Bluetooth or Wi-Fi in Adhoc mode.

The SLVPGP system (2009)

SLVPGP stands for the Secure Location Verification Proof Gathering Protocol. Gra-
ham and Gray propose three versions of the protocol with increasing security properties
in [GG09]. In the following we describe the functionality of the third version that offers
the best security properties among the others. The protocol is based on the assumption
that there exists a central server knowing the identities and public keys related to all users
of the system. It is also assumed that for any location claim made by a user, the central
server knows the identity of some other devices present at the location.

At the beginning of the protocol, the user sends his location and his identity to the
central server for verification. The central server replies with a list of other users known

33

to be present in the same area. At the reception of the list, the user contacts each of the
device present in the list to obtain a proof of proximity from them. More precisely, the
user provides each device with a message containing their identity and two nonces: the
initiating nonce and the replying nonce. These nonces are used by both parties to compute
two registers: the register of challenges and the register of responses.

Next, each device sends to the user a message containing a value picked at random in the
register of challenges, the position of the value in the register and a nonce. Then the device
starts its clock. At the reception of the previous message, the user checks that the value
received exists at the position specified in the register of challenges. If the verification
succeeds, the user continues the protocol and replies with a message containing a value
picked at random in the register of responses, the position of the value in the register of
responses and the nonce received from the neighbouring device. Once the user’s response
is received, if the value received from the user is present within the register of response, the
neighbouring device sends to the user a proof of proximity message containing, its identity,
its position, the round-trip latency and the date and time information of the creation of
the message.

Finally, the user sends all the proximity messages to the central server. Based on those
informations, the central server computes a location proof for the user. The location proof
obtained from the central server can now be used to prove his location to other services.

APPLAUS

Zhu and Cao designed APPLAUS [ZC11] that stands for A Privacy-Preserving LocAtion
Updating System.

When joining the system, each user receives a set of public/private key pairs and the
corresponding public key certificates from an online trusted authority called the Certifica-
tion Authority (CA). The public part of each key pair is considered as a pseudonym for
the user, the private part serves to create location proofs for other users and the public
key certificate helps to authenticate the user. The table for mapping the pseudonyms of
users to their real identity is secret and managed by the CA.

To obtain a location proof, a mobile user broadcasts a proof request containing his
pseudonym at the given time (computed by a deterministic algorithm, see [ZC11] for more
details), to its surrounding devices. Each surrounding devices decides whether to accept
the location proof request according to its scheduling. In case of a positive response to the
location proof request, the neighbouring device creates a location proof for the user. The
location proof contains the public key of the device, the public key of the user, the current
date and time, the GPS coordinates of the device and a signature on all the previous using
the current secret key of the device. The location proof is then encrypted using the public
key of the location storage server and transmitted to the user.

Finally, the user sends the encrypted location proofs to the location proof storage server
using the Internet. During the verification process, the user announces to the verification

34

service the time at which he was at position posṪhen, the verification service queries the
CA for the location proofs of this specific prover. This query contains the real identity of
the user and a time interval. The CA first authenticates the verification service, and then
converts the real identity of the user to its corresponding pseudonyms during that time
period and retrieves their location proofs from the location storage server. The location
proof server only returns hashed location rather than the location in clear to the CA, who
then forwards it to the verification service. Finally, the verification service compares the
hashed location with the claimed location acquired from the user to decide if the claimed
location is authentic or not.

LINK (2012)

The Location verification through Immediate Neighbors Knowledge (LINK) has been pro-
posed by Talasila, Curtmola and Borcea. LINK uses a trusted centralized entity called
the Location Certification Authority (LCA), that is responsible to register user within the
system. During registration, each user receives a public and private key pair, and a default
trust score value. The LCA is responsible to update the trust scores associated to each user
of the system based on their interactions. More precisely, a user’s trust score is additively
increased when her claim is successfully authenticated and multiplicatively decreased oth-
erwise in order to discourage malicious behaviour. As a consequence, during the collection
of a proof, user prefer to interact with neighbouring users with high trust scores.

Before submitting a location proof to a verification service, the users must register
a proof request signed with his private key to the LCA. The proof request contains the
identity of the user, the location claimed by the user, a sequence number to identify the
request and the name of the service he wants to convince of his position. Then, the user
broadcasts a location certification request to his neighbouring users. The request contains
the identity of the user and the sequence number registered with the LCA. Next, each
neighbouring device sends a message signed with their respective private key to the LCA.
This message contains the identity of the neighbouring device, the location of this device
and the certification request received from the user. The certification request is included
to allow the LCA to match the user’s proof request with the certification messages received
from the neighbouring devices.

The LCA waits for a short period of time to receive enough certification messages
and then starts the decision process. The LCA decides the claim’s authenticity based on
spatio-temporal correlation between the users and the trust score associated with each
neighbouring users. Finally, the LCA informs the verification service about its decision,
causing the verification service to provide or deny service to the user.

35

Privacy-preserving Alibi system (2012)

Davis, Chen and Franklin introduced ALIBI [DCF12]. Location proof can be collected
from neighbouring users and from so-called public corraborator. A public corroborator acts
like an AP in the bipartite gathering approach: their identities and locations are publicly
known to the users of the system and they can vouch for the position claim by a user. At
the registration phase, each user and public corroborator receive a public/private key pair.

A user can opportunistically request the creation of a location proof whenever public
corroborators or other users are available in his neighbourhood. The user then creates an
OwnerStatement, which is included in the location proof request. The OwnerStatement
is tied to the identity of the user and his current location, but by itself cannot reveal
those informations unless the user reveals that link. At the reception of the OwnerState-
ment, a neighbouring user signs it using his private key and commits to this data using a
cryptographic string commitment scheme. Finally, the neighbouring user prepends to the
commitment his own location and time informations to form the location proof. At this
time, the only information that can be obtained from the location proof is the location of
the neighbouring user and the time at which the proof has been created. Other information
like the identity of the user, the identity of the neighbour and its signature, are hidden
within the proof.

During the verification of the location proof, the user first contacts the neighbouring
user to obtain the openings for the hidden part of the location proof and the public key
of the neighbouring user. Then the user sends those information to the verification service
along with the information needed to open the OwnerStatement. Finally, the verification
service uses the informations provided by the neighbouring user to obtain and check the
signature of the OwnerStatement. Then, the information provided by the user are used
to check that the OwnerStatement includes the real identity of the user. Finally, if the
location and time information provided by the user corresponds to the information included
in the location proof then the proof is accepted, otherwise the proof is rejected.

STAMP (2014)

Recently, Wang and co-authors propose STAMP [WZP+], in which co-located mobile de-
vices mutually generate location proof for each other using bluetooth or WiFi in ad-hoc
mode. Then the prover convince a verifier of his location by showing him the location proofs
he received. STAMP ensures the integrity of LPS (i.e, a prover cannot modify the data in-
cluded in a LPS once generated), the non-transferability, and the anonymity of prover and
witnesses generating the proof. Users have also the possibility to choose the granularity
to reveal to a verifier. However, in contrast to Props, the LPSs are encrypted under the
CA public key, thus the prover cannot check himself the validity of location information
endorsed by the witness. During the verification stage, the verifier needs to contact the
CA to validate a LP. The collusion detection algorithm is an entropy-based trust evalu-
ation approach like the one used in APPLAUS. STAMP incorporates the Bussard-Bagga

36

distance-bounding protocol [BB05a] as a countermeasure to the proxy attacks. The au-
thors also provide a prototype implementation on the Android platform with an averaging
running time of 8 seconds.

3.2.3 Comparison

We propose here to discuss the pros and cons for each of the approach that we have
enumerated early.

Recall that within a cooperative gathering approach, a user who needs a location proof
can request the other surrounding users to generate such location proof. At the beginning
of the 2000’s, with the low performance of cell phones, this was not the best choice for
implementing a location proof system. However, things have evolved, our smart phones
and tablets have now sufficient processor power and storage memory to run even complex
security protocols and store gigabytes of information. As mentioned in the literature, even
complex protocol such as STAMP can run within second on a smart phone. Therefore,
leveraging the creation of location proof to our mobile devices is now a perfectly viable and
feasible idea. However, when we give users the ability to create and store location proofs,
we also give them more possibilities to cheat the system. As pointed by many of the related
work, we can imagine situation in which users may deviate from the normal running of the
protocol, to create location proof for requester who are not physically present at the same
place for money or profit. Therefore, a location proof system based on a collaborative
gathering approach may also include mechanisms to detect collusion of users. We give
more details about this in the Chapter 4. In addition, this type of infrastructure does
not need to manage or monitor any of these mobile devices, thereby drastically reducing
management costs and privacy concerns.

Within a bipartite architecture, there is publicly known wifi-access point that can gen-
erate location proof for users. Here, the advantage is that all the proof providers are trusted
by default, so there is no risk of collusion between the proof issuers and the users. How-
ever attacks like distance fraud and terrorist fraud are still possible and we need to design
security mechanisms to counter these attacks. Here, the security of the whole system relies
on the Wifi-Access points side. In fact, these access points constitute the system’s central
point of failure and require attention of the system administrators. Each time the Access
point is relocated then it must be reconfigured to the new longitude and latitude to provide
the valid location proof to requester. Access-point located in outdoors environment can
be equipped with GPS capabilities to dynamic reconfiguration after movement. In the
case of indoor environment, the system can be equipped with a proper indoor or hybrid
localization system or reconfiguration can be done manually by the system administrator.
Due to the cost in the maintenance of Access-point, bipartite approach should be preferred
in applications which only require a small-scale deployment of infrastructure capable of
handing out locations proofs. For example, a coffee store can start running a promotion
promising a free drink to any customers that visited their store daily in the past week. A

37

Wi-Fi access point issuing location proofs is a simple and cheap way of implementing such
a promotion. Similarly, a teacher can offer rewards to those students who never miss a class
during the semester. With location proofs, students can collect them and submit them at
the end of the semester to receive their reward. A sensible consideration is making sure
that APs are configured with the correct location coordinates. While it is cheap to provi-
sion APs with GPS to routinely determine their location, most APs are situated in indoor
environments in which GPS does not work fine. One way to overcome this complexity is
to provide the AP with an additional configuration interface for administrators. To point
a location proof-enable AP, the administrator initially takes the AP outdoors and runs a
setup program using GPS to establish the AP’s location.

Independently of the chosen architecture, the system is subject to privacy issues. In a
cooperative approach, users interact with other users so they may have control over how
much information they disclose to their surrounding.

3.3 Conclusion

In this chapter, we introduced the notions of location proof, location proof system and
location proof architecture. We classified the state of the art to the nature of proof issuers.
In fact, we distinguish between systems in which users interact with dedicated access-
points and systems in which users collaborate together. In general, all these protocols acts
globally on a similar manner. That is, they consists of a series of exchange between the
mobile device and the proof issuers. Then the proof issuers generate a signature attesting
of the presence of the user in his neighbourhood. Location proof systems provide LBS
with a mean to verify the position claims of mobiles users before granting them access to
a service. In the next chapter, we analyse the security and privacy properties brought by
the aforementioned systems.

38

Chapitre 4: Un modèle de sécurité
et de vie privée pour les système
de preuves de localisation.

Arpès avoir parcouru l’état de l’art des systèmes de preuves de localisation, le but de ce
chapitre est d’étudier les propriétés de sécurité et de confidentialité des données nécessaires
à ces dits systèmes. Cette étude a abouti à l’identification de menaces à considérer lors
de la phase conception de futurs systèmes. Nous illustrons chacune de ces menaces par
des scénarios d’attaques précis. L’identification de ces menaces, nous a permis par le suite
d’énumérer les propriétés désirables à une preuve de localisation. En effet, une preuve de
localisation doit être garantir la non-transférabilité, la non-forgeabilité et la résistante aux
attaques de type MITM et ses dérivées. Côté vie privée, une preuve de localisation doit
pouvoir garantir l’anonymat de ses utilisateurs et la non-chaînabilité de leurs actions à
travers le système. Plus encore, nous montrons qu’il est nécessaire de protéger la phase
de vérification des preuves contre de potentiels vérifieurs malveillants dont l’objectif serait
d’établir un profil du prouveur, ou de ré-utiliser la preuve de localisation de ce dernier à des
fins personnels, etc. Ce dernier point, bien que s’inscrivant dans des scénarios d’attaques
possibles n’avait pas encore été abordé dans l’état de l’art. Nous encapsulons ensuite toutes
nos recommandations ansi que celles déjà présente dans l’état de l’art dans un modèle de
sécurité unique.

Finalement, ce chapitre se termine par une analyse détaillée des protocoles issus de
l’état de l’art dans ce nouveau modèle. Cette comparaison montre que l’ensemble des
systèmes de l’état de l’art sont vulnérables aux attaques de localisation de type MITM
et ses dérivées. À cet effet, le prochain chapitre introduira les protocoles délimiteurs de
distance qui peuvent être utilisés pour sécuriser le processus de collecte des preuves de
localisation.

39

40

Chapter 4

Security model for
privacy-preserving location proof
system

4.1 Introduction

There exists a plethora of location-proof systems that have been developed in the literature
during recent years (see Chapter 3). These systems aim at proposing infrastructure for the
gathering and the verification of location proof. Some are based on a bipartite gathering
approach in which users interact with publicly known access point to obtain location proof.
Other systems enable users to directly collaborate together to generate location proofs. The
purpose of location proof is to avoid situation in which a prover can lie about his position
to a verifier. Then location proof system may thwart attacks in which provers pretend
they are in a location where they are not. Unfortunately, there is no clean definition of
the properties which may fulfil a location proof system. In fact, each of the system we
found in the literature comes with its own terminology, definition and notion of security.
For example, with the system [ZC11], users privacy is preserved with respect to the final
verifier but witness can easily obtain the identity of the prover. In another one [WZP+],
user’s privacy means that user’s identity needs to be hidden from witnesses. So behind the
intuitive idea of what privacy and security needs, we have different interpretation of such
properties across environment.

This Chapter provides to provide a unified framework to ascertain the security and
privacy properties of location proof systems. In Section 4.2, we model location proof
systems in terms of their algorithms and the users interaction within the system. Then,
in Section 4.3, we introduce an adversary model qualifying the attackers of the system in
terms of their capabilities and objectives. Section 4.4 and Section 4.5 introduce the security
and privacy properties that must be provided by location proofs system. Finally, in the

41

Section 4.6, we give an analysis of the related work before concluding in Section 4.7.

4.2 Preliminaries

This section aims to describe our security model for location proof system. The model first
describes the users and their interactions, the algorithm and how the adversaries interact
to cheat the system. We also describe some oracles that can be used by an adversary to
obtain information about the system.

4.2.1 Modelling of users and their interactions

As introduced early, a location proof system is a set of mechanisms with which mobile
users can obtain location proofs from proof issuers and with which applications can verify
the location claimed by users.

To use the system, users need to be registered by a trusted entity that we call the
Certification Authority (CA). More precisely, the CA is responsible for setting the system
global parameters and creating credentials for the users of the system. Credentials are
substitutes for the real identity of the user within the system. The CA is therefore the
entity knowing the mapping between the real identity and the credentials for each user
of the system. Credentials are used to establish communications between users, to create
proof of their location and to tied location proofs to a particular user. Because of the central
role played by the credential, it must be protected in order not to be easily shared among
users. Otherwise it may be difficult to properly identify users and distinguish between their
actions within the system. One way to achieve this is to relate credentials to high sensitive
information of user like their account access number or their security social number. Thus,
deliberately revealing his credential may cause great damages to the user.

While caring about privacy, the role of the CA may be supported by a second entity
that we call the Anonymity Lifter (AL). While it is obvious that the AL may be part of the
CA, we strongly recommend to split the role among two different entities to avoid abuses
from the CA. The role of the AL is limited to the capacity of unveiling the user’s identity
from a proof of location to disambiguates situation. However, the complete process of
identifying a user based on his interaction within the system may always require active
collaboration between the AL to retrieve the credential and the CA to identify the real
owner of the credential.

The users of a location proof system may play different roles among prover, witness
and verifier. The role of prover is played by any user who wants either to obtain a location
proof for the position he is visiting at a given time or to prove his location to a verification
service. We do not require that the prover, at the moment he is collecting a location proof,
knows the identity of the verification service he will interact with. The only condition to
obtain a location proof is that the prover shares the same context with other users of the

42

system. In practice, sharing the same context means to be present at a location at the
same time and we use the term context to uniquely associate a location to the time.

A witness is a user of the system who shares the same context as the prover. Obviously,
a witness can either refer to an Access Point in the case of a bipartite gathering approach
or to a neighbouring user in the case of a collaborative approach. Witness reacts to
location proof request received from prover by generating a location share. A location
share designates a piece of contextual information that testifies the presence of the prover
nearby the corresponding witness. Location share acts like testimonials of witness telling
“I testify that I have been within proximity of such prover at such location at such time”.
In other words, a location share may uniquely associate a context as defined by the prover
to the prover and a witness. At this time, the prover may collect location shares from as
many witnesses as possible to strengthen his future location claim to verifier.

A verifier is an entity permitted by the user to verify his location claimed for some
purposes. When this situation occurs, the prover emits a location claim to verifier as his
approval to start the process of verification of his past or actual location with the verifier.
A location claim contains a location proof and additional information needed to check the
validity of the proof. A location proof is created using location shares corresponding to
the location claimed by the prover and can be checked by the intended verifier. Finally,
if the location proof is genuine and corresponds to the context that the prover and the
verifier have agreed on, then the verification process succeeds. Otherwise it is rejected by
the verifier.

4.2.2 Definition of the algorithms

Browsing the wide literature of location proof system, we can define a location proof system
as the following suite of algorithms (Setup, URegister, VRegister, LTestify, LProve, Vf). These
algorithms are the following.

• Setup(λ) This algorithm is ran only one time at the initialisation of the system by the
CA. It takes as input a security parameter λ which is related to the size of the secret
keys employed in the system. The algorithm’s output is a couple of keys spar, ppar)
with (spar representing the secret parameter of the system. This information will
be kept secret by the CA or splitted among the trusted parties like the AL if it
does exists, while ppar represents the public parameter of the system that is publicly
available to users. It may help them to interact each other, to verify a location proof,
etc.

• URegister(IDu, spar) → (sku, pku) When a user wants to join the system, he needs
to run this procedure together with the CA or an authorized Issuer to obtain his
credentials sku, pku in which sku represents his private key and pku represents his
public key. The algorithm takes as input the identity IDu of the user and spar the
the secret key of the CA.

43

• VRegister(IDv, spar) → (skv, pkv) This algorithm serves to register verifier to the sys-
tem. The algorithm takes as input IDv the public identity of the verifier and spar the
secret parameter of the CA. It outputs the tuple of keys (skv, pkv), which respectively
represent the secret key and public key functions of the verifier. This allows any
device to communicate over secure and authenticated channel with verifier once it
possesses that verifier’s identity.

• LTestify(L, T, skp, skw) → πi This is a distributed algorithm that is ran between a
prover and a witness to obtain a location proof. The prover initializes the session
using his secret key skp and the witness does the same with his secret key skw. L

represents the location data that the prover want to certify, T represents the time at
which the witness certify to have seen the prover at that location. The output is a
location proof share denoted as π.

• LProve({
∑

πi}, Li, Tj) → πL,T This algorithm is ran by the prover to generate a loca-
tion proof from the location shares he has collected. The algorithm takes as input
the location shares πi that corresponds to the claimed context. The values Li and Tj

represent the location and time respectively at granularity i and j that the prover
is willing to disclose to the verifier. The output is a fresh location proof πL,T to be
showed to the verifier.

• Vf(πL,T, Li, Tj) → {0, 1} This algorithm enables the verifier to check the validity of a
location proof received from the prover. The algorithm verifies that the location and
time granularity L and T corresponds indeed to the data enclosed in the location proof
πL,T. It is possible to envision that if the procedure outputs Reject, the verification
has failed so the verifier suspects a cheating attempt from the current prover, then it
may forwards the fraud evidence (i.e. πL,T) to the Anonymity Lifter (AL) who has
the capacity to reveal the identity of the cheater.

4.3 Threat model

Location proof provides prover with a trustworthy set of information to convince verifiers
about they positions they are claiming. Therefore, the security of location proof system
could be threaten in different ways depending on the way location shares are managed by
the users of the system. To illustrate our position, imagine a user who is able to modify the
context included in the location share without invalidating the location proof. Such user
can make any verifier believes that he was at a place where he was not and thus render
the whole location proof architecture useless. We can also imagine verifiers collaborating
together to use location proof they received from a particular prover to infer information
about his social network, etc.

As a consequence, the processes of creation, verification and storage of a location share
has to be carefully designed so as to counter attacks from either provers, witnesses and

44

verifiers. Such a secure system benefits to all the users of the system as verifiers will have a
high confidence in the location proofs received from users. Moreover, provers and witnesses
must be able to control the amount of information disclosed during a verification process.

In this section, we enumerate the threats to be considered while designing each part of
a location proof system. Our model differs from the others as we give more possibilities
to a malicious verifier in attacking the system. The adversaries we introduced here are
the following: malicious prover, malicious witness, distance adversary, terrorist prover and
malicious verifier. We describe each adversary in terms of his capabilities, his goals and
the strategies he may use to attain his goal. The adversary can be any user of the system,
in particular he may have credentials received from the CA. In this case, they are labelled
as malicious because they deviate from the normal running of the protocol. We use the
term intruder to designate an attacker that is not registered within the system. Intruder
can collaborate with malicious users to attack the system. In our security model, we are
given the adversary the ability to wiretap communication taking place in his vicinity.

4.3.1 Malicious prover

A malicious prover is registered within the system by the CA. Therefore, he shares the
same capabilities as the honest users of the system. More precisely, a malicious prover
can communicate with users present in his neighbourhood, he can request location share
from them, he can process location shares into corresponding location proofs to convince
a verifier of his location claim.

The goal of a malicious prover is to forge location proofs using location shares he received
from honest witnesses. Forging a location proof means to create location proof using
location shares from a different context. To obtain location shares, this adversary acts like
in the normal way. More precisely, he run the protocol for the gathering of location shares
with witnesses within his proximity. Once the location shares received, the malicious prover
tries to create a location proof with a different context than the one included within the
location shares.

We say that a location proof system is secure against actions of a malicious prover, if it
is impossible for a prover to create location proof with a context different from the context
included within the location shares.

4.3.2 Malicious witness

A malicious witness can be any user registered by the CA within the system that deviates
from the protocol when he is acting as a witness. Because a malicious witness has valid
credential of the system, he has the same capabilities as a witness within the system. He
can listen to the network and obtain location proof request from surrounding honest prover
and he can create location share for honest prover. The goal of such adversary is to testify
a context (location and time) different from the one he received from the honest prover

45

in order to invalidate the future location proof that will be generated by the prover. The
malicious witness may also aim at infering the real identity of the prover and to link the
different actions of a targeted prover within the system.

4.3.3 Malicious verifier

A malicious verifier is a registered verifier within the system. He is given the authorization
from honest prover to process their location proof in exchange of some services. Malicious
verifier received location proof from prover. Their objective is to obtain the identity of
the witness who have helped the prover in the creation of the proof or the identity of the
prover if he is communicating to the verifier over an anonymous channel. By identifying
the witness and the time at which the prover has interacted with the witness can help the
malicious verifier to infer social network of the user and other valuable information.

4.4 Privacy

Privacy is of central importance to mobile users. Namely, we must prevent issuers and
verifiers of location proofs from violating a user’s privacy. In the context of ubiquitous
computing, privacy of users depends of two major factors that we call anonymity and
unlinkability.

4.4.1 Anonymity

In the domain of location proof systems, anonymity has been defined to require that an
adversary, not in possession of the secret information of the CA and not registered in the
system, cannot recover the identity of the prover and witnesses from a location proof and
the corresponding location shares.

While this notion preserves the indistinguishably of the users interaction according to
an attacker external to the system, we need to go beyond to comply with the principle of
data minimization. Data minimization requires that users share only the minimum set of
amount of information to obtain a service. In other terms, users of the system should hold
personal data about an individual that is sufficient for the purpose of the service they are
providing. We will now see what this means in practice.

We recall that the first principle of a location proof is to allow provers to convince
verifiers about their position. The term verifier is very broad as it includes any service
to which the prover wants to prove his location. For instance, a verifier may be police
authorities to which the prover may want to provide alibi or merchants to which a prover
may want to prove their loyalty to obtain discount. Verifier can also be any LBS which
requires verification of the location claimed by the prover before granting access to its
service. While a prover is willing to share personal information with police authorities,
this is not always the case when communicating with LBS. Because of the diversity of

46

entities that can play the role of a verifier, we do not require the verifier to be trusted by
the prover.

In this context, applying the data minimization principle shows two supplementary
notions of privacy that are the witness’ anonymity with respect to the prover and the final
verifier, and prover’ anonymity with respect to the witnesses and the final verifier.

In fact, when a prover asks his witness for a location proof, all the witnesses need
to know is the context to be certified and nothing more about the prover. Therefore,
information like for example the prover’s identity public key or any other information that
can be used to uniquely identify the prover among the users of the system has to be hidden
from the witnesses during the collection of a location share. This requirement may also
hold during the verification of location proof in which the verifier is not required to know
the identity of the prover nor the identities of the witnesses. The only information that
may be available to the verifier is the context of the location proof.

4.4.2 Unlinkability

Unlinkability is a privacy property of crucial importance. Here, a user continuously gathers
location proofs. If the (maybe colluding) parties that issue location proofs learn the user’s
identity, the user would become traceable.

In our context, unlinkability should hold for the witnesses and also for the prover. More
precisely, given two gathering sessions S1 in which the prover P receives a location share
σS1

from a witness W and S2 in which the prover receives a location share from the same
witness. Then any user of the system that has access to the proof σS1

and σS2
may not be

able to tell if the proof originated the same witness. This is needed here to avoid situation
in which attacker can exploit collocation information in order to infer private information
about the users.

4.4.3 Location granularity

Granularity designates the level of details considered in a model or decision making process.
In our context, location granularity refers to the ability of the system to be flexible in terms
of the representation of the location of its users.

Intuitively, a location proof has to contain location information in some form. The
location information in the proof not only vouches for the location of the prover, but it
might also indirectly reveal sensitive information about that person like his interests to a
verifier. For example, if a service is offered only to mobile users in Toulouse, users who
present a proof showing that they are at the Airbus site not only prove their qualification
to the service, but also reveal more location and personal information than necessary
to the service provider. Therefore, the user should be given the ability to control how
much location information to disclose in response to the location requirements of different
applications and services.

47

More precisely, the location of a prover may be hidden in the location proof and repre-
sented into different levels of granularity, like city, neighbourhood, or an exact geographical
point. Therefore, when a prover tries to claim his location to a verifier, he can decide of
the level of granularity he is willing to reveal to that particular verifier without revealing
more private information than needed.

4.4.4 Location sovereignty

Location sovereignty is the guarantee that users have control over the location shares they
have collected.

In fact, in [ZC11], location shares of users are stored on a central server that needs to
be contacted by the verifier during the verification of the location claimed by the prover.
Storing private information of the users on a remote server poses many privacy concerns.
At a high-level, these privacy concerns stem from two issues: first, users must rely on
the infrastructure not to be malicious; and second, the infrastructure must provide access
control and data sharing policies that are easy to use and satisfy the requirements of users.
While both issues are challenging in practice, we suggest to design a system that put users
in control of their privacy policies. Therefore, location proof system should put the users
in control of the location shares they have collected.

Users can continuously collect location proofs and store them locally on their devices.
The role of the infrastructure may be restricted to providing location shares to those
provers. Provers can then use the set of location shares they have collected over time for
a multitude of services of their choice. This puts users in control to decide how they want
to use this information and who they want to share it with.

4.4.5 Location privacy

A location share should protect the location privacy of a prover, by ensuring that the
location information does not appear in clear in the proof. Therefore, an attacker cannot
deduce the location of the prover from the knowledge of the location share alone. We
also require that the location proof does not reveal information about the location of
witnesses involved in its generation. Indeed while it is obvious that witnesses are in the
communication range of the prover during the creation of the proof, the resulting location
share may not reveal more fine-grained location information about witnesses and their
identities.

4.5 Security

In this section, we motivate the security properties that are required for location proof
systems.

48

4.5.1 Ownership proof

Location is the basic component in the process of creation of location proof. Prover may
collect location shares from immediate witnesses in order to generate corresponding location
proof for a particular verifier. A location share represents a piece of contextual information
testifying of the presence of the prover nearby the corresponding witness. Location share
acts like a testimonial of the witness telling to the verifier that he have seen the prover
at position P and time T . Therefore, location proof should include information that can
be used to link them to their genuine owners. In other words, location shares and the
corresponding location proofs should be personal and not transferable.

4.5.2 Unforgeability

In [WF03], Walters and Felten have defined unforgeability of location proof based on a
bipartite approach as being the impossibility for an attacker to create location proof on
their own as long as the private keys of the access points are not compromised.

However, in a collaborative approach, user can be both prover and witness depending of
the role they are playing during the collection of the proof. Therefore, it becomes difficult
for the verifier to know if the proof has been created by the prover himself or by a witness
because the prover is allowed to act as his own witness. In this particular case, verifier
may require the prover to provide at least two location shares to validate a location proof.
With the condition that each witness can deliver only one location share to the prover in
a particular context. In practice, it means that it should exists an algorithm which when
provided two location shares from the same context, returns true if the shares has been
created by the same user and false otherwise. We call this the uniqueness of location share.

Therefore, provided that location share has uniqueness property and the prover needs
at least two location shares to validate his location proof then the verifier can easily check
that the prover can not forge location proofs on his own.

4.5.3 Resistance to localization attacks

Localization attacks constitute a major threat against location proof system. In fact,
consider a user situated in a context and trying to obtain location shares from a different
context. To succeed this attack, the prover can launch in real-time a wormhole attack
against the witnesses situated at the desired location. The wormhole would be responsible
for relaying messages between the targeted location and the location of the attacker without
the witnesses being able to detect such situations. While many location proof systems
do not consider such attacks, some [SW09] has proposed RTT-like techniques echoing
challenges between the prover and the witnesses. However, the techniques proposed by such
systems are not very effective as they are vulnerable to attacks related to RTT measurement
like distance fraud, mafia fraud, terrorist fraud and distance hijacking (See Chapter 5 for

49

more details). To our knowledge, the only secure alternative is the use of distance-bounding
protocol.

4.5.4 Collusion prover-prover

A collusion prover-prover [WZP+] puts in relation a malicious prover and one or more
colluders (the colluding party). Their objective is to provide the malicious prover with
location shares for a context in which the latter is not. In the sequel, we call the context
in which the prover is not physically present the targeted context.

To be valid, a collusion prover-prover requires the malicious prover to have valid cre-
dentials from the CA, with the condition that he never discloses these credentials to the
colluding party. The colluder role can be played by either a user registered in the system
or not. During the collection of the location shares, the colluder may receive information
from the malicious prover in real time. For this purpose, we give the colluder and the
dishonest prover a secure communication channel in which they can exchange information.

4.5.5 Collusion prover-witness

The term collusion prover-witness has been first introduced in [WZP+]. It denotes an
attack in which a witness colludes with a prover to create a location proof share for the
latter, even though one or both of them are not at the location as claimed in the location
proof share. To the best of our knowledge, there is no effective solution to detect this type
of collusion yet. Thus, it remains one of the most challenging attacks to protect against in
location verification.

4.6 Analysis of previous work

Based on the notions we have presented in Section 4.4 and Section 4.5, we investigate the
security and privacy properties of state-of-the-art location proof systems. The result of
the analysis is shown in the Table 4.6. In terms of notation, a checked cell means that the
protocol ensures this property while a blank cell indicates the opposite.

4.7 Conclusion

In this chapter, we have introduced a model for studying the properties, in terms of the
security and privacy, offered by location proof systems described in Chapter 3. The ad-
versary model we elaborate differs from the others as we give more possibilities to verifier
in attacking the system. In fact, the verifier’s role can be played by any party without re-
quiring the prover to trust him. A malicious verifier is interested in learning the identity of
the users in order to profile them, thus users need to be anonymous regarding the verifier.

50

Properties
Protocol [LH10] [SW09] [WF03] [ZC11] [GG09] [TCB12] [DCF12] [WZP+]

APPLAUS SLVPGP LINK STAMP

SE
C

U
R

IT
Y

Correctness X X X X X X X

Ownership proof X X X X X X X X

Unforgeability X X X X X X X X

Resistance to distance fraud X X X X X

Resistance to mafia fraud X X X

Resistance to distance hijacking X

No single point of failure X X X X X

Resistance to terrorist fraud X X

Proof share uniqueness X

P
R

IV
A

C
Y

Prover anonymity & unlinkability (gathering phase) X X X X X X

Prover anonymity & unlinkability (verification phase)
Witness anonymity & unlinkability (gathering phase) X X X X

Witness anonymity & unlinkability (verification phase) X X X X X

Witness location privacy X X X

Confidentiality X X X

Location sovereignty X X

Table 4.1: Comparison of different location proof systems

The comparison shows that many of the location proof systems we analyse are vul-
nerable to some sort of localization attacks in which malicious prover relays the signal to
made them appear at a location where they are not. Therefore, location proof system may
provide the witnesses with security mechanisms to properly determine that the prover is
present within proximity. The next chapter introduces the concept of distance-bounding
protocol, a cryptographic primitive that can be used to threaten the process of gathering
location proofs.

51

52

Les protocoles démiteurs de
distance

L’authentification sur les réseaux conventionnels tels que l’Internet, est construit sur quelque
chose que l’utilisateur sait (un mot de passe, etc.), quelque chose que l’utilisateur a (une
carte d’accès, etc.) ou ce que l’utilisateur est (biométrie). Dans les réseaux sans fil,
l’information de localisation peut être utilisée pour authentifier un périphérique ou un
utilisateur. Ce chapitre introduit les protocoles délimteurs de distance ou protocoles de
distance-bounding, leurs contextes d’application et les attaques contre lesquelle elles protè-
gent. Les protocoles délimteurs de distance sont des protocoles de sécurité qui permettent
à un vérificateur V de s’assurer qu’un prouveur P se trouve à une distance bornée et définie
de lui même. Ces protocoles sont issus des travaux réalisés par Stefan Brands et David
Chaum en 1993, dont le but est d’améliorer les mécanismes d’authentification traditionnels.
Les protocoles délimiteurs de distance permettent entre autre de se prémunir des attaques
du type man-in-the-middle (MITM) et de ses dérivés (cf. Section 5.3), en calculant la
distance séparant V et P. Cette distance est obtenue en multipliant la vitesse de prop-
agation de l’onde électromagnétique par le temps que met P à répondre aux challenges
envoyés par V. Il existe deux grandes familles de protocoles délimiteurs de distance. Ceux
basés sur la cryptographie symmétrique et ceux basés sur la cryptographie asymmétrique.
Les protocoles délimiteurs de distance symmétriques à la différence des protocoles asym-
métriques nécessitent que P et V partagent un secret commun au préalable. La sécurité de
ces protocoles est évaluée en considérant quatre types d’attaque, que nous décrivons dans
ce chapitre ainsi que les modèles de sécurité formelle s’y afférant.

53

54

Chapter 5

Distance Bounding protocols

5.1 Introduction

In the previous chapter, we have seen that before sending a location proof to the prover,
the witness has to ensure that the prover that has initialized the session is indeed within
physical proximity as a countermeasure to wormhole attacks. This chapter introduces
distance-bounding (DB): a process whereby a party (the verifier) is assured (i) of the
identity of a second party (the prover) and (ii) that the prover is located in his close
vicinity (known as neighbourhood).

This chapter starts by defining the notion of distance-bounding before presenting the
actors involved and the terminology used in such system (see Section 5.2). Then we inves-
tigate the security of DB protocols by presenting the different attacks such protocol must
be able to thwart along with the security model used to analyse the security properties
of distance-bounding protocol (See Section 5.3). Finally in Section 5.4, we give a security
analysis of some existing DB protocols.

5.2 Overview of distance-bounding

Authentication protocols are classically run between two entities namely a prover and a
verifier and enable the latter to decide whether the prover is legitimate or not. Such
protocols enable access control, and are used in logistics, public transport, or personal
identification. However, security models for classical authentication schemes do not capture
relay attack in which a Man-In-The-Middle (MITM) adversary just forwards data between
the prover and the verifier trying to impersonate an honest prover in front of the verifier.
Relay attack is a concept first proposed in 1976 by Conway in a scenario referred to as
the "Grand master chess problem" [Con76]. In this scenario any player, even a person not
familiar with the rules of chess, could play against two grand masters by challenging both
of them to a game by post. The player would then simply forward the move received from

55

one grand master to the other, effectively making them play against one another. This
results in the player either winning one match, or earning a draw in both matches. The
concept of relay attacks as described above has been extended to authentication protocol
by Desmedt with an attack on the Fiat-Shamir identification protocol [Des88]. In this
scenario, the MITM adversary is typically a coalition of two adversaries, a leech, which
interacts with the prover, impersonating a verifier, and a ghost, which interacts with the
verifier, impersonating a prover. The two adversaries usually communicate via fast, reliable
communication channels, and by relaying correct, honestly-generated information between
them, they ensure that the ghost, which is an illegitimate party, authenticates to the verifier
thus defeating the security requirements.

Following the idea that relays seem to cause a processing delay in the MITM attacker,
Brands and Chaum introduced Distance-Bounding protocols [BC93] as a feature to en-
hance traditional authentication mechanisms to withstand MITM relay attacks. In such
protocol, a clock is mounted on the verifier, such that it can measure the Time-of-Flight
(ToF) between sending a challenge and receiving a response from the prover. The number
of challenge-response interactions is determined by a chosen security parameter. To be
correctly authenticated, the prover must reply such that the measure RTT of the signal is
less than a pre-set value tmax representing an upper bound associated with the maximum
trusted communication distance. Assuming that the communication speed is constant and
very fast, if the protocol succeeds then (1) the verifier is convinced that the prover is le-
gitimate, and (2) the prover is within the maximum distance associated with tmax. In
a distance-bounding protocol, not all exchanged messages are subject to round-trip-time
measurements. In general, a DB protocol can be divided into the three following phases.

1. Initialization phase: This is the first step of the protocol in which the prover and
verifier exchange information to initialize the session. There is no time-constraint for
this phase, which is why it is also called lazy phase.

2. Distance-bounding phase: During this step, prover and verifier exchange bits at very
high speed. The verifier sends a challenge bit to the prover and measures the time
ti from the moment he sent a challenge to the moment the corresponding response
is received. In fact, once a challenge bit is received, the prover must compute a
response bit using a response function and then forwards the response as soon as
possible. The response function serves at the same time to authenticate the prover
and to prove that he actually receives the challenges. To effectively obtain a secure
distance estimate, the time taken to calculate the response must be minimal and
constant. This round is repeated several times to increase the robustness and the
security of the estimate provided.

3. Verification phase: this step allows the verifier to decide if the authentication succeeds
or not.

56

More formally, by considering a single verifier V and a single prover P, we can define a
distance-bounding authentication scheme as follows. .

Definition 1 (Distance-bounding authentication). A distance-bounding authentication scheme
for timing parameters (tmax, Tmax, Emax, Nc) is a triplet of efficient algorithms DB =
(Kg, P, V) in which:

(i) Kg is a key generation algorithm with parameter n ∈ N . Kg generates a keypair
sk/pk, the verifier is initialized with the public part of the key, namely pk and the
prover with the secret part of the key sk.

(ii) The authentication algorithm run on the joint execution of algorithms P(sk) and
V(pk) generates, depending on tmax, Tmax, Emax, Nc, a verifier outputs b ∈ {0, 1}.

The value Nc denotes the number of rounds in the time-critical phase, tmax is the upper-
bound associated with the timing of each round of the time critical phase. With the value
Tmax represents the number of rounds in the time critical phase exceeding tmax. Similarly,
Emax is the maximum number of time-critical phases with erroneous transmissions. When
we have pk=sk , then the DB scheme is said to be symmetric otherwise if pk Ó= sk, the DB
scheme is said to be asymmetric.

We require the DB scheme to be complete. Thus, for any pair of key (sk, pk), the
decision bit b produced by an honest verifier V(pk) interacting with honest prover P(sk)
under the requirements following from the timing parameters tmax, is 1 with probability
(negligibly close to) 1. In addition, the protocol should be sound in the sense that if
the decision bit b produced by the honest party V(pk) is 1, then the party P(sk) is in
the proximity distance as defined by the parameter tmax. Such protocols were recently
implemented by Rasmussen and co-authors [Rv10].

5.3 Security of distance bounding protocol

The security of distance bounding protocols largely depends on the assumption that the
prover’s processing time is negligible compared to the measured challenge-response round-
trip times. Given that the verifier does not trust the prover and cannot estimate the
prover’s hardware and processing capabilities, the safest assumption that the verifier can
make is that the prover is able to process the challenges and transmit the replies in negligible
time. If the verifier overestimates the prover’s processing time (i.e., the prover is able to
process signals in a shorter time than expected), the prover would be able to pretend to
be closer, thus violating the distance bound. Despite this fact, DB protocols must be able
to withstand four main types of location attacks that we describe thereafter.

57

Distance fraud

Definition 2 (Distance fraud.). In the distance fraud, two parties are involved: one of them
(the verifier V) is not aware of the fraud that is going on, the other one (the malicious
prover P̄ is placed far from the verifier) performs the fraud. The fraud enables P̄ to
authenticate to V, thus proving a fake statement related to his physical distance to V.

Distance fraud was first introduced by Brands and Chaum in [BC93]. The fraud is
effective when the malicious prover knows the response before he receives the challenge
from the verifier, then he can reply in advance, thus fooling the verifier’s clock. In practice,
the prover can guess the challenge, or he can wisely select some initialization parameters
so as to make sure that the responses do not depend of the challenges for some rounds.
We say that a protocol is resistant to distance fraud if a dishonest prover situated outside
the proximity of the verifier has negligible probability to be accepted.

Mafia fraud

Definition 3 (Mafia fraud.). In the mafia fraud, three parties are involved: two of them
(the honest prover P and the verifier V) are not aware of the fraud that is going, on while
the third party (the Man-In-The-Middle adversary consists of two collaborating parties V̂
and P̂) performs the fraud. V̂ impersonates V in front of P and P̂ impersonates P in front
of V . The fraud enables P̂ to convince V of an assertion related to the private key of P .

This fraud was first introduced by Desmedt in [Des88]. The adversary is modelled by
a couple of collaborating entities (P̂ ,V̂) relaying messages between P and V. P̂ initiates a
session with V and V̂ initiates a session with V, then they relay messages between the two
sessions initiated. The adversary’s aim is to be authenticated by the honest verifier. Due to
the delay introduced by the transmission of messages between the adversaries (P̂ ,V̂), they
are not allowed to purely relayed messages during the distance-bounding phase. Purely
relay happens when V sends a challenge b to P̂ , thinking he is communicating with P.
P̂ sends the received bit to his collaborator V̂ before than V̂ delivers b to the P. Then,
P provides V̂ with the corresponding response bit b and then V̂ sends the response bit
to P̂ that sends it to the verifier V. Such kind of interaction is not allowed because due
to the delay introduced by the interaction between P and V in the transmission of the
challenge and its associated response, this will be detected by the verifier’s clock. We say
that a distance-bounding protocol is resistant to mafia fraud is the MITM adversary has
negligible chance to be authenticated.

Terrorist fraud

Definition 4 (Terrorist fraud.). In the terrorist fraud, three parties are involved, one of
them (the verifier V) is not aware of the fraud going on, the two others (the malicious

58

prover P and the adversary A also called terrorist) collaborate to perform the fraud. The
help of P enables A to convince V of an assertion related to the private key of P.

Intuitively, during a terrorist attack, a MiM adversary situated in the vicinity of the
verifier actively colludes with a malicious prover (which is situated outside of the proximity
of the verifier) to impersonate the latter. While the prover is not allowed to give trivial
information such as the whole secret key. The restriction on how much a prover can help the
terrorist has been formalized in the distance-bounding literature according to three main
security models [ABK+11, DFKO11a, FO13b, Vau13]. The objective here is to discourage
malicious provers to collaborate with an adversary because it will implicitly leak helpful
information to the adversary to authenticate latter.

The first model [ABK+11] introduced by Avoine and co-authors says that the protocol
resists terrorist fraud if when the terrorist authenticates to the verifier then the terrorist
gains any information about the secret (even some bit of the secret key). In other terms, to
perform such attack the secret key should be information-theoretically hidden during the
fraud. This notion is rather weak as many attacks are ruled out such the one proposed by
Hancke [Han12] that proposes to use the noise tolerance of DB scheme to perform terrorist
attack.

The second notion called GameTF introduced by Fischlin and Onete in [FO13b] stipu-
lates that a protocol resists to terrorist fraud if the terrorist adversary gains advantage to
launch better mafia fraud.

The third notion called SimTF introduced by Dürlrhoz and co-authors in [DFKO11a]
says that a protocol resists terrorist fraud if there exists a simulator based on the state of
the adversary that must always authenticate. Here, the malicious prover can provide the
terrorist with any kind of information excluded the data contained in the prover’s internal
state (the secret key). This definition is very broad, enabling syntactic attacks like the one
in [FO12] against the scheme of Reid and co-authors.

As introduced early, the definition of [ABK+11] [ABK+11] is weak but it enables effi-
cient constructions. The notion of SimTF [FO13b] is very strong and difficult to achieve in
practice as recognized by its authors. Finally, the GameTF [FO13b], which is a game-based
notion, for terrorist-fraud is strong enough for practical applications.

Terrorist fraud is a very strong attack and thus many existing DB protocols (notably
including that of Hancke and Kuhn [HK05a]) do not address it. Terrorist Fraud resilient
protocols preserve the basic structure of distance bounding protocols, but bind the prover’s
private key to the nonces that are exchanged in the protocol. This prevents the prover
from simply handing over the nonces to the external attacker without disclosing its secret.
Most of the terrorist resistant DB protocols are in general symmetric. This is the case
for the Swiss-Knife protocol [KAK+09] and for the scheme of Avoine, Lauradoux, and
Martin [ALM11], which resists terrorist fraud according to the definition of Avoine and
co-authors [ABK+11]. The class of SKI protocols [BMV13b], which thwart terrorist fraud
using the definition of [Vau13] in a provable way, is also symmetric.

59

A notable exception to this approach is the DBPK-Log protocol [BB05a] due to Bussard
and Bagga. This protocol also requires secret sharing, but does not involve a shared secret
between the prover and the verifier.

Distance hijacking

Another type of fraud, known as distance hijacking [CRSC12], has recently been proposed
by Cremers, Rasmussen, Schmidt and Capkun. The fraud considers a malicious prover
who aims to convince a verifier that he is located within the verifier’s neighbourhood. To
realize this, he will abuse some other provers who are indeed in the verifier’s neighbour-
hood. For example, a malicious prover can reach his goal by hijacking the fast phase of
a distance-bounding protocol executed between an honest (closer) prover and the verifier.
Conceptually, distance hijacking is situated somewhere between distance fraud and terror-
ist fraud. In contrast to terrorist fraud, where a dishonest prover colludes with another
attacker, distance hijacking considers a dishonest prover who interacts with (abuses) other
honest provers. Unlike distance fraud that only involves a dishonest prover and a verifier,
distance hijacking also involves other honest provers. Avoine and Tchamkerten [AT09b] also
suggested another attack, namely slow-phase impersonation resistance. This attack is espe-
cially applicable to cases where distance-bounding protocols are implemented on resource-
constrained devices (e.g., RFID tags) that cannot support many time-critical rounds. Since
in many distance-bounding protocols the level of impersonation security heavily depends
on the number of time-critical rounds, the overall security level for resource-constrained
implementations would then become too low in practice. By employing lazy-phase authen-
tication, the security level of the protocol is increased.

5.4 Overview of the state-of-the-art

As introduced early, Brands and Chaum [BC93] were the first to introduce distance-
bounding protocol in the literature. The heart of their protocol resides in the design
of the response function. In fact, the response function simply consists of a XOR operation
that takes as input a fresh challenge generated by the verifier and a secret information only
known to the prover. Then, the prover must reply with the response bit to the verifier as
soon as possible to avoid the authentication session to fail. The protocol also uses commit-
ment and signature schemes to intertwine the physical time measurement and the prover
authentication. These methods allow the protocol to achieve resistance against distance
and mafia frauds with probabitlity (1

2)m, with m being the number of rounds during the
distance-bounding phase.

Another category of distance-bounding protocol is the one proposed by Hancke and
Kuhn [HK05b]. Their idea is to optimize the the Brands and Chaum protocol for RFID
devices. Then, their protocol uses precomputed registers to compute the response bits
during the distance-bounding-phase and no additional messages need to be transmitted

60

during the verification stage. However, with the computation lightening, Hancke and
Kuhn’s protocol has two issues: its vulnerability against the terrorist fraud, and its non-
optimality concerning mafia and distance frauds (i.e., the protocol optimal bound against
mafia fraud is (3

4)m). All Hancke and Kuhn’s protocol descendants attempt to solve one
of these issues.

Bussard and Bagga had the idea to interleave the prover’s secret and his answers during
the fast phase to prevent terrorist fraud. Their protocol [BB05a] uses the precomputed
registers due to Hancke and Kuhn, but it has mafia fraud resistance to (1

2)m at the cost of
a complex zero-knowledge proof of knowledge. To decrease the computational cost of the
Bussard and Bagga protocol, Reid and co-authors introduce a terrorist resistant distance-
bounding protocol [RNTS07] with a mafia security bound of (3

4)m. Its direct descendant, Tu
and Piramuthu’s protocol [TP07] proposes a protocol composed of a succession of fast and
slow phases. However this protocol suffers from vulnerabilities, and two articles [KAK+09,
MP08] attacked it. These attacks demonstrate in particular that the prover’s secret can be
leaked to an eavesdropper. Moreover, this attack can be fasten, if the adversary interacts
with the parties during the protocol session. The other descendant of the protocol of Reid
and co-authors, the Swiss-knife [KAK+09] fixes the poor mafia fraud resistance problem by
adding a third phase. In addition, it provides mutual authentication. In [PLHCvdLT09],
the authors claim that they found an attack on the Swiss-knife, and propose Hitomi,
a descendant of the latter, to solve this issue. However, the attack is based on nonces
repetitions. Moreover, under the same assumption, nonces repetitions, Hitomi suffers, to a
similar flaw. The other Swiss-knife descendant [ALM11] explicitly introduces secret-sharing
to counter the terrorist fraud, and studied the best settings to use it. The study led to
the explanation of some vulnerabilities found in previous protocols designed to mitigate
the terrorist fraud. Table 5.1 depicts a comparison of the properties of several well-known
distance-bounding protocols.

5.5 Conclusion

This chapter has introduced the concept of distance-bouding protocol, which is a crypto-
graphically secure protocol aiming to prove the proximity of two devices relative to each
other. We have also seen that the security of these protocols is evaluated against five mains
attacks which are the distance fraud, mafia fraud, terrorsit fraud, impersonation and dis-
tance hijacking. The resistance to these attacks has been covered in literature within three
main security models: namely DFKO [DFKO11a], and ABKLM [ABK+11] and [Vau13].
The models cover resistance to distance fraud, mafia fraud, terrorist fraud and imperson-
ation in respectively formal and informal methods. Actually, the ABKLM is considered
outdated because it has been shown by Hancke that its definition of terrorist fraud re-
sistance is rather weak (a terrorist adversary can still defeat the protocol by exploiting
the noise tolerance threshold). Many of the distance-bounding protocol offering resistance

61

Protocol
Fraud

Impersonation Mafia Terrorist Distance

Symmetric

Reid et al. [RNTS07] 1 ?∗ No ?∗

Tu & Piramuthu [TP07] 1 1 No
(

3
4

)m

Swiss-Knife [KAK+09]
(

1
2

)m
+ AdvUnf

A

(

1
2

)m
Yes

(

3
4

)m

Avoine and co-authors [ALM11] 1
(

2
3

)m
Yes ?∗∗

SKIpro [BMV13a] (1
2)m

(

2
3

)m
Yes

(

3
4

)m

Asymmetric
Brands and Chaum [BC93]

(

1
2

)m
+ AdvUnf

A

(

1
2

)m
+ AdvUnf

A No
(

1
2

)m

GOR [GOR14] 2−|G|
(

1
2

)m
No

(

3
4

)m

DBPK-Log [BB05a]
(

1
2

)4m′ (

1
2

)m
No 1

Table 5.1: Success probability of classical attacks against well-known DB in noiseless con-
ditions. ∗ No generic bounds applicable; one specific instantiation is NOT Mafia-Fraud
resistant, but resists distance fraud with probability 3

4 per round [FO13a]. ∗∗ Bay and co-
authors show that stronger assumptions on f are necessary to achieve the claimed bound
of 3

4 per round. The value m′ := 50 is a system parameter defined by [BB05a].

to all types of frauds found in the literature are symmetric. However symmetry is not
a desirable property to ensure privacy within location proof system. Furthermore, the
only terrorist resistant distance-bounding protocol that offer resistance to terrorist fraud
has been showed insecure by Reid and co-authors. Therefore, the next chapter present
our proposal for an asymmetric distance-bounding protocol which offer provable security
against all the frauds using the DFKO model.

62

VSSDB: Un protocol délimiteur de
distance asymmétrique

Dans ce chapitre, nous introduisons la première contribution de nos travaux présentés
dans ce manuscript. Il s’agit de VSSDB (Verifiable Secret Sharing Distance-Bounding
protocol), un protocol délimiteur de distance basé sur la cryptographie asymmétrique.
Dans ce chaptire, nous commençons par décrire DBPK-Log, un protocole délimiteur de
distance asymmétrique proposé par Laurent Bussard et Walid Bagga. DBPK-Log est basé
sur la cryptographie asymmétrique et a été initialement conçu pour résister à l’attaque
terroriste. Cependant, Bay et al. ont récemment montré des limites quant à la sécurité de
DBPK-Log contre les attaques terroristes et par distance.

À la différence des protocoles délimiteur de distance présents dans la littérature, VSSDB
utilise la version vérifiable des schémas de partage de secret. Ainsi, à partir d’une clé
publique, le vérifieur est capable d’authentifier bit par bit la clé secrète correspondante,
empêchant ainsi le scénario d’attaque terrosite décrit par Bay et al. contre DBPK-Log.
De plus, la fonction de réponse de VSSDB est basé un système de modes. Les modes sont
des bits choisis de manière aléatoires par le vérifieur lors de la phase d’initialisation du
protocole. Ils sont utilisés en complément des challenges habituels émis par le vérifieur lors
de la phase d’échange rapide. Nous prouvons par la suite qu’ils permettent effectivement
d’améliorer la sécurité générale du schéma proposé. VSSDB est construit sur une fonction
de réponse pouvant utiliser au choix deux ou quatre modes de réponses. D’un point de vue
pratique, opter pour la fonction à deux modes implique une réduction des temps de calcul
mais nécessite que les clés privées soient générées par une autorité centrale et de confiance;
Ce qui n’est pas le cas pour la fonction à quatre modes.

Finalement, nous prouvons la sécurité formelle de notre protocole contre la fraude
distance, la fraude mafia et la fraude terroriste.

63

64

Chapter 6

VSSDB: an asymmetric
distance-bounding protocol
resistant to terrorist fraud

6.1 Introduction

Relay attacks are a critical threat to both authentication and proximity-testing protocols,
as demonstrated for RFID-based Passive Keyless Entry and Start (PKES) systems in
cars [FDv11], NFC smartcards [FHMM10], geosocial networks such as Foursquare [CP12]
and location proof systems. DB protocols (see Chapter 5) were specifically designed by
Brands and Chaum [BC93] to counter this type of attacks. DB specifically enables a
verifier to authenticate the prover only if the latter is within a specific proximity and
knows a secret key registered within the system. Indeed, the DB verifier is equipped with
a clock used to measure the RTT between the sending of a challenge and the reception of
the associated response from the prover. The measured RTT is compared to a predefined
bound tmax, which corresponds to a trusted distance (also called proximity) to the verifier.
DB protocols may aim to prevent several attacks, amongst which terrorist fraud, where a
dishonest prover helps the adversary to authenticate, but without passing data that allows
the adversary to later authenticate on its own. However, most of the DB scheme that offer
resistance to this type of fraud are symmetrics then a verifier can always link the actions of
a prover within the system. Therefore they do not fit the privacy requirements for location
proof systems.

In this chapter, we introduce a new distance-bounding protocol called Vssdb (A Ver-
ifiable Secret Sharing Distance-Bounding protocol) for use within location proof system.
Like the original protocol of Bussard and Bagga [BB05a], Vssdb is asymmetric and uses
homomorphic bit commitment to hide the secret of the prover within the nonces exchanged
during the session. In addition, the prover can demonstrate to the verifier that he knows

65

the secret key used to create the nonces used during the session without revealing it. This
chapter is organized as follow: in Section 6.2, we review the basis of the Bussard and
Bagga protocol (namely DBPK-Log) and why it fails to achieve resistance to terrorist and
distance frauds. In Section 6.3, we present the concept of verifiable secret sharing and how
it can be used to implement distance-bounding through the presentation of toy protocol.
Then, we propose our practical solution for a secure and asymmetric distance-bounding
protocol (cf. Section 6.4). Afterward, in Section 6.5 we prove the security of our protocol
in the formal security model proposed by Dülrhoz, Fichlin, Kasper and Onete (DFKO)
in [DFKO11b]. Finally, Section 6.6 discusses some practical considerations about the pro-
tocol and Section 6.7 summarizes the present chapter.

6.2 The distance-bounding proof of knowledge protocol

In general, most DB protocols in the literature that offer resistance to terrorist fraud are
symmetric (e.g., they use a secret shared between the prover and the verifier). This is
the case for the Swiss-Knife protocol [KAK+09] and for the scheme of Avoine and co-
authors [ALM11], which address terrorist fraud by using secret sharing. In these schemes,
the shared private key is masked by another random string and used to respond to fast
challenges. The class of SKI protocols [BMV13b], which prevent terrorist fraud in a
provable way, is also symmetric. Asymmetric distance-bounding protocols were proposed
by Gambs and co-authors [GOR14], Hermans and co-authors [HPO13] and Brands and
Chaum [BC93], but they fail to thwart terrorist fraud. Bussard and Bagga were the first
to consider terrorist-fraud resistance in an asymmetric setting [BB05a]. The next section
introduces their protocol and shows the most recent attacks that have been developed
against it in [BBM+12].

6.2.1 Presentation

Bussard and Bagga have proposed DBPK-Log, which is a distance-bounding protocol based
on a proof of knowledge and a commitment scheme. This protocol (see Figure 1) is run
in a cyclic multiplicative group G of prime order p −1 generated by an element g. The
prover P has a secret key x along with an associated public key y := Γ(x) = gx certified
by a trusted third party and known to the verifier V. DBPK-Log is based on three ingre-
dients: a (2, 2) secret-sharing scheme (i.e., two shares are distributed and both are needed
to reconstruct the secret), a homomorphic bit commitment scheme (namely Pedersen’s
commitment [Ped92]) and a zero-knowledge proof of knowledge (ZKPoK) protocol.

During the initialization phase the prover picks a random m-bit integer k and uses
it to encrypt the long-term secret x as e ← Ek(x) = x − k mod p. The values k and
e act as shares in a (2,2)-secret-sharing scheme. Then, the prover commits in a bitwise

66

Protocol 1: DBPK-Log [BB05a]

Verifier V Prover P
Public key y := Γ(x) Private key x

Initialization phase

k
$

← {0, 1}m

e ← Ek(x)
For i = 1 · · · m

vi, wi
$

← {0, 1}∗

ai = Ω(ki, vi)
bi = Ω(ei, wi)

{ai, bi}
m
i=1←−−−−−−−−−−−−−−−−

Interactive phase

For i = 1 to m

Choose ci
$

← {0, 1}
ci−−−−−−−−−−−−−−−−→ ri =

{

ki if ci = 0
ei otherwise

Measure δti
ri←−−−−−−−−−−−−−−−−

Verification phase

γi←−−−−−−−−−−−−−−−− γi =

{

vi if ci = 0
wi otherwise

ZKPoK[well formed]
←−−−−−−−−−−−−−−−→

Accept if and only if all ri are coherent with respect to ai, bi, γi, δti ≤ tmax ∀i, and ZKPoK verifies.

manner to each bit of each share using a homomorphic commitment scheme1, which leads to
commitments of the form a = {ai}

m
i=1 and b = {bi}

m
i=1, with ai = Ω(ki, vi) = gkihvi mod p

and bi = Ω(ei, wi) = geihwi mod p. Finally, this string of commitments is sent to the
verifier, thus completing the initialization phase.

Afterwards during the distance-bounding phase, the prover and verifier exchange binary
challenges and their corresponding binary responses to estimate the RTT. Each response
is equal to either a bit of the random share k or a bit of the encrypted secret e.

Finally during the verification phase, the prover sends the randomness (either vi or wi)
used to generate the commitment of the fast round responses (this value is denoted as γi).
Since the commitment is homomorphic, the verifier can compute z =

∏m
i=1 (aibi)

2i−1

=
Ω((k + e), v). Then, the prover and verifier runs a zero-knowledge proof of knowledge
(ZKPoK) protocol in which the prover demonstrates the knowledge of a tuple (x, v) such
that z = Ω(x, v) and y = Γ(x)]. The verifier accepts if (1) all the fast responses are

1The authors suggest to use Pedersen’s commitments [Ped92].

67

coherent with respect to the committed values, (2) all RTT values are below tmax and (3)
the ZKPoK succeeds. .

6.2.2 Attacks against DBPK-Log

Avoine, Lauradoux and Martin [ALM11] proposed a key-recovery attack against DBPK-
Log as well as other DB protocols. This key-leakage attack also enables to conduct a
mafia fraud against another protocol due to Bussard and Bagga (see [FO13a] for more
details). In this attack, the adversary uses faulty challenges during the protocol to get
the two shares and thus recover the key. Note, However, this key-recovery attack does not
work if the prover is honest in the DBPK-Log protocol. Indeed when sent the complement
of the challenge, the prover will also send the randomness to open the commitment for
the complementary challenge, thus preventing the adversary from knowing whether or not
ki = ei for some round i. They conclude that a (t, 3) secret-sharing scheme should be used,
with t ≥ 3 an arbitrary number of shares, instead of the original (2, 2) scheme.

Recently, at Inscrypt 2012, Bay and co-authors [BBM+12] proposed another terrorist
fraud whose probability of success is 1

2 against DBPK-Log. Their attack is based on the
observation that the homomorphic commitment check proceeds over all the commitments.
Thus, the adversary A can generate random values for the shares k and e and use them, as
long as it sacrifices one of the commitments to add a value given by the prover ensuring the
correct homomorphic verification. More precisely, the prover computes z′ := Ω(x, v′) with
a newly generated v′ and sends z′ to the adversary A. Now A generates two random m-bit
strings k and e, for which he generates honestly the commitments ai and bi (for i = 1 to
m). Using these values, A constructs two strings of commitments to send to the verifier,
using as many of the honestly-computed commitments as possible, but also ensuring that
the homomorphic verification still holds. More specifically A sends two arrays A and B
with m elements each, which he fills from position 2 to m with the commitments ai and bi

that he has generated himself. For A1 and B1, the adversary guesses c1 with probability
1
2 and inserts in the corresponding array (A if ci = 0 and B otherwise) the correct, self-
generated commitment (i.e., a1, respectively bi). In the other array (corresponding to the
complement of c1), A adds a value ensuring that z =

∏m
i=1(AiBi)

2i−1

mod p. Now A can
correctly answer to all challenges and reveal unconditionally the correct randomness for
the rounds 2 to m as well as the correct randomness for the round 1 if he has correctly
guessed c1. Afterwards, the malicious prover helps the adversary to succeed in conducting
the ZKPoK. Thus, no information about x is leaked (except a commitment and a ZKPoK,
which reveal nothing) and the adversary A wins with probability 1

2 .

6.3 Verifiable secret sharing

In cryptography, secret sharing refers to a method that allows one entity called the dealer
to distribute a secret amongst a group of n users. In fact, the dealer gives different share of

68

the secret to the users, but only when specific conditions are fulfilled will the users be able
to reconstruct the secret from their shares. For example, the secret can be reconstructed
only when a sufficient number of shares are combined together. Secret sharing has been
introduced independently by Adi Shamir [Sha79] and George Blakley [B+] in 1979. The
idea to use secret-sharing within distance-bounding protocol is due to Avoine and co-
authors [ALM11]. Indeed, they proved that secret sharing can counter terrorist fraud, and
detail a method that can be applied directly to most existing distance bounding protocols to
implement resistance to such attack in the framework [ABK+11]. However, their framework
only works for DB protocols in which the prover and the verifier share the same secret key
(symmetric DB). Therefore, the prover can not cheat while creating the nonces (which are
the shares of his secret key) because this will be detected by the verifier. However, when
the distance-bounding protocol is ran in a asymmetric setting, we propose to switch to
another variant of secret sharing called Verifiable Secret Sharing (VSS).

A secret sharing scheme is verifiable if auxiliary information is included that allows the
users to verify their shares as consistent. More formally, verifiable secret sharing ensures
that even if the dealer is malicious there is a well-defined secret that the players can later
reconstruct. The concept of verifiable secret sharing (VSS) was first introduced in 1985 by
Chor and co-authors [CGMA85].

A VSS protocol consists of two phases: a sharing phase and a reconstruction phase.

1. Sharing: initially the dealer holds a secret as input and each user holds an indepen-
dent random input. The sharing phase may consist of several rounds. At each round
each player can privately send messages to other players and it can also broadcast a
message. Each message sent or broadcasted by a user is determined by his input, his
randomness and messages received from other players in previous rounds.

2. Reconstruction: in this phase each player provides his entire view from the sharing
phase and a reconstruction function is applied and is taken as the protocol’s output.

Verifiable secret sharing is important for secure multi-party computation [Gol98]. Multi-
party computation is typically accomplished by making secret shares of the inputs, and
manipulating the shares to compute some function.

In the following we present a simple VSS scheme that is the protocol by Paul Feld-
man in [Fel87b]. The scheme is based on Shamir’s secret sharing scheme combined with
any homomorphic encryption scheme. Then, we show how this algorithm can be used to
implement distance-bounding protocol.

6.3.1 Feldman’s verifiable secret sharing

Feldman’s verifiable secret sharing [Fel87a] combines a classical secret sharing scheme and
an homomorphic commitment scheme. Let us consider g the generator of a cyclic group G
of prime order p. The dealer wants to distribute a secret x over n participants such that

69

each group of t participants can reconstruct the secret. The dealer generates (and keeps
secret) a random polynomial

P (X) = x + α1 × X + · · · + αt × Xt.

The coefficients αi are chosen in Zp. The dealer also computes βi = gαi and y = gx.
Finally, he reveals publicly all the βi as well as y, g and p. Each of the n participants
receives as input a share si = P (i), which can be verified using the following formula:

gsi = y ×
t

∏

j=1

(βj)ij−1

.

6.3.2 Application of verifiable secret-sharing to distance-bounding

Protocol 2 shows how verifiable secret sharing can be used to create a DB protocol. This
toy protocol has a unique round compared to regular distance-bounding protocol and is
described here only for pedagogical purpose. In this example, we use a (3, 3) secret sharing
scheme, which means that all the three shares are needed to recover the secret.

Protocol 2: Toy protocol

Verifier V Prover P
Public key y = gx Private key x

Initialization phase

k, ℓ ∈R G
e = x − k − ℓ
a = gk, b = gℓ

d = ge

a,b,d
←−−−−−−−−−−−−−−−−

Interactive phase

Choose c ∈R {0, 1, 2}
c

−−−−−−−−−−−−−−→ r =

k if c = 0
ℓ if c = 1
e otherwise

Measures δt
r

←−−−−−−−−−−−−

Verification phase

Accept if and only if y =all are coherent with respect to ai, bi, γi, δti ≤ tmax ∀i, and ZKPoK verifies.

70

Initialization phase. The prover generates randomly two shares k and ℓ and computes
e = x − k − ℓ. He also computes a = gk, b = gℓ and d = ge, which are respectively the
commitments of k, ℓ and d. Then, he sends these commitments to the verifier.

Interactive phase. During the interactive phase, the verifier and the prover use a single
challenge/response to measure the time of flight. Depending on the value of c, the prover
answers with a given share.

Verification phase. The verification phase is composed of two steps. First for each
share, the verifier checks that the received share matches the commitment and that the
timing respects a predefined upper bound tmax. Then, he verifies that all the shares are
related to y. For instance, consider the case that c = 0, which corresponds to r = k. In
this situation, the verifier checks that the relation y = gr × b × d holds.

Sketch of the security analysis. We do not give here a complete security analysis of
our toy protocol. Nonetheless, we briefly discuss the resistance of this protocol with respect
to an impersonation attack. Let us assume that an adversary knows y and executes the
protocol with a verifier. The adversary picks his own k′ and ℓ′ and computes a′ = gk′

,
b′ = gℓ′

and d′ = y × g−k′

× g−ℓ′

. However, even if he cannot compute e′ = x − k′ − ℓ′, we
still have y = a′ × b′ × d′. Then, the adversary sent a′, b′ and d′ to the verifier. During the
interactive phase, the adversary answers randomly if c = 2. All the values used during the
verification are consistent except if c = 2. In this case, the probability that he gave the
correct share is 1

|G| , in which |G| is the size of the group. Therefore, the success probability
of an impersonation attack is:

P(impersonation) =
2

3
+

1

3|G|
. (6.1)

One possible modification to enhance the security of this toy protocol could be to chose
a different secret sharing scheme such as the following one.

e = x − k − ℓ,

f = x + k,

h = ℓ − x.

In this version, the prover computes a = gf , b = gh and d = ge. For the verifier, this
modification has no consequence and the protocol is unchanged from his point of view.

From the knowledge of y, an adversary can compute valid commitments but cannot
only answer randomly when a share is asked. However, this is not the best strategy for
the adversary. For instance, suppose that the adversary still picks his own k′ and ℓ′ and

71

computes a′ = gk′

, b′ = gℓ′

and d′ = y×g−k′

×g−ℓ′

. While he cannot compute e′ = x−k′−ℓ′,
it is still true that y = a′ × b′ × d′. Thus, his exact probability of success is still described
by Equation (6.1). The choice of the secret-sharing scheme has no impact on the security
level because of the homomorphic commitment.

In this toy example, the prover and the verifier have exchanged values belonging to
large group during the interactive phase, while in most DB protocols it is generally assume
that single bits are exchanged during this phase. In the following, we propose a protocol
based on verifiable secret-sharing that achieves stronger security properties.

6.4 Verifiable secret-sharing based distance-bounding pro-
tocol

Our construction, called Vssdb, is summarized in Protocol 3. In this section, we first
discuss the intuition behind it before describing it in details. In addition, we define a
relaxation of the GameTF terrorist-fraud resistance [FO13b]. We also prove that Vssdb

achieves this relaxation, called KeyTF security. Finally, we provide in 6.5.5 a version of
Vssdb achieving GameTF-security, while preserving the resistance to other frauds of the
original Vssdb protocol.

6.4.1 Overview of the protocol

The main idea behind our protocol is to make the prover choose at each round of the
distance-bounding phase two m-bit strings, denoted respectively ki and ℓi, that are used to
hide the bit xi of the private key x among three values ki, ℓi, and ei. At initialization, the
prover generates these values and sends them to the verifier. The latter generates a m-bit
random value, essentially a string of m-bit values Mi ∈ {0, 1}, encoding a specific response
mode among two possible ones. The response bits subsequently given by the prover during
the time-critical rounds will depend both on the fast-phase challenges and on the mode. In
particular, the response function, denoted f, takes as input Mi and the round challenge ci,
and outputs a corresponding response ri. The fact that the modes are chosen honestly by
the verifier and the response components (i.e., ki, ℓi and ei) are committed before receiving
the mode values enforce distance-fraud resistance. We hide the committed values from the
adversary by encrypting them into Enc with the verifier’s public key. Furthermore, we
prevent the adversary from forwarding self-generated values by including a signature with
the prover’s private key on these values within the plaintext to be encrypted. Finally, we
avoid replay attacks by making the verifier send a session-specific nonce at each session.
The use of homomorphic commitments allows one to verify that ai × bi × di corresponds
to the i-th component of the prover’s public key denoted as Comi. Furthermore, a non-
interactive zero-knowledge (ZKPoK) proof of knowledge ensures that the value used by the
prover is really his secret key, consistent with the values Comi and with the ciphertext Enc.

72

During the time-critical rounds, the verifier measures and stores the RTT of each ex-
change, denoted δti. In order to enable the verifier to check the response values ri, the
prover must then open the relevant commitments of the values used to generate the re-
sponse. Thus, in a subsequent verification step, the prover sends the necessary auxiliary
information (the randomness used to commit and possibly the response values themselves),
which we denote as a function γ, which takes two inputs Mi and ci. Due to the use of
commitments, the values of xi are hidden in each session of the protocol. Finally, we use
the countermeasure proposed in [KAK+09] and sign the session transcript (e.g., the modes,
challenges, and responses used in this session, as well as the session-specific nonce) thus
ensuring that a MIM adversary cannot tamper with the exchanged messages and their
order.

More specifically, the protocol consists of the following phases.

6.4.2 Setup phase

The Trusted Third Party (TTP) begins by setting-up the global parameters: he picks at
random two distinct large prime numbers p and q and computes their product n ← pq.

The TTP also generates t
$

← Z
∗
n such that t Ó= ±1 of order ϕ(n)/4 and computes s = t2

mod n. In particular, it holds that s2 = 1 mod n and, for any two bits a and b, it holds
that sa+b = sa⊕b. The parameters n and s are considered to be public and thus known to
all parties, while p and q are secret parameters known only to the TTP. These parameters
will enable the use of the (homomorphic) commitment scheme (originally called a blob)
due to Brassard, Chaum and Crépeau [BCC88].

6.4.3 Registration phase

All the provers and verifiers are initialized by the TTP acting as a registration authority.
At prover registration, the TTP generates a private/public signature keypair:

(skSign, pkSign) ← SSKGen().

The signature scheme is modelled as a tuple S = (SSKGen, Sign, Vf) and can be any un-
forgeable signature scheme (e.g., El-gamal or DSA). The TTP also generates a secret x
for the prover. Afterwards, each bit xi is committed to a value Comi as follows: the TTP
generates a witness zi and sets

Comi ← z2
i sxi mod n ; zi = Hi(x).

In this equation, H denotes a cryptographically secure hash function modeled as a random
oracle, while Hi(x) represents the ith iteration of this function on input x. The tuple
Com := (Com1, . . . , Comm), pkSign is the prover’s public key and is given to all verifiers.
We delegate the generation of the keypair (skSign, pkSign) and x to the TTP to rule out

some attack using some weak key (see Section 6.6 for more details).

73

6.4.4 Initialization phase

At the beginning of the protocol, the verifier generates a session-specific nonce NV that
he sends to the prover. We add at the beginning a 0 to this value as an encoding, to
differentiate between an honest protocol run and the all-or-nothing disclosure function. As
intuitively described above, at the beginning of each session the prover must generate two
m-long bitstrings k and ℓ. These strings are used to symmetrically encrypt (we specifically
use bitwise XOR) each bit xi of the private key.

ei ← Eki||ℓi
(xi) = xi ⊕ ki ⊕ ℓi.

Subsequently, the prover uses a secure bit-commitment scheme Cmt = (Commit, COpen)
to commit to each bit ki, ℓi, and ei, using respectively the randomly generated witnesses
ui, vi, and a value wi ← (uivi)

−1Hi(x) mod n. Each commitment takes two inputs,
the committed value b and the randomness r, and outputs Commit(b, r) := r2sb for the
parameter s generated at setup.

ai = Commit(ki, ui) = ui
2 × ski mod n

bi = Commit(ℓi, vi) = vi
2 × sℓi mod n

di = Commit(ei, wi) = wi
2 × sei mod n

Afterwards, the prover sends all the committed values ai, bi, and di to the verifier, who
generates randomly a sequence of m response modes Mi ∈ {0, 1}. The modes M ∈ {0, 1}
form one of the two inputs required for the computation of the responses during the time-
critical rounds. Finally, the prover pre-computes the responses for each received mode Mi

and for each possible bit challenge ci = {0, 1}. The responses function f : {0, 1}×{0, 1} −→
{0, 1} is computed as follows, in which for a bit b we use the notation b to denote the
complementary bit (i.e., b := b ⊕ 1):

f(Mi = 0, ci) =

{

ei if ci = 0
ki ⊕ ℓi if ci = 1

f(Mi = 1, ci) =

{

ki if ci = 0
ei ⊕ ℓi if ci = 1

Furthermore, for each tuple of inputs (Mi, ci), the function γ : {0, 1} × {0, 1} −→
Z

2|u1| × Z
2|a1| lists values allowing the verifier to later open the relevant commitments

amongst ai, bi and di and verify the responses. Although we define the range of γ to be a
tuple of four values, two of the bit-length of the randomness to commit (i.e., ui) and two
of the bit-length of the output commitments (i.e., ai), the prover sometimes needs to send
only a subset of these values. In this case by convention the remaining output values are
ignored by the verifier. More precisely for each input (Mi, ci), the function γ outputs the
values of the shares used to compute f(Mi, ci) if these are not given in clear (but rather
XORed) and the relevant witnesses. For example, since f(0, 0) = ei, the corresponding

74

γ(0, 0) is equal to wi, which is the randomness used to construct the commitment di of
ei. In contrast, f(0, 1) = ki ⊕ ℓi, thus the output γ(0, 1) will consist of the two component
shares ki, ℓi, as well as the randomness ui, vi that opens the respective commitments ai, bi.
The complete output space of γ is given in Figure 3.

6.4.5 Distance-bounding phase

The prover and verifier then begin the time-critical rounds, which are effectively a sequence
of m challenge-response exchanges in which the verifier sends a bit challenge ci ∈ {0, 1}
and the prover replies with the response bit f(Mi, ci). The verifier stores δti the RTT of
the exchange for each round. We point out that implementing a precise measurement of
the RTT during the challenge-response rounds is still a difficult technological challenge,
although one implementation has been recently proposed [RTv+12].

6.4.6 Verification

During this phase, the prover provides the output γ(Mi, ci) for each round, as well as a
final signature over the entire transcript of the protocol generated with his signature key
skSign. Then, the verifier performs the following verification steps.

1. He checks the received signature σ̂ based on his view of the transcript,

2. he opens the commitments and validates the received responses,

3. he verifies that δti ≤ tmax for all i = 1, . . . , m, in which tmax is the trusted proximity
bound,

4. he checks that for each i = 1, . . . , m, it holds that Comi = aibidi mod n.

If any of these verification steps fails, the verifier aborts, which means rejecting the prover.
Otherwise, the verifier accepts (i.e., authenticates) the prover.

6.5 Security analysis

In this section, we present the security proofs for the Vssdb protocol from Section 6.4,
providing in particular exact bounds for its security. More precisely, our protocol is ana-
lyzed in the DFKO security model [DFKO11a] in which terrorist fraud is defined using a
game based approach called GameTF.

6.5.1 Resistance against distance fraud

Theorem 1 (Distance fraud resistance). For any (t, qV)-distance-fraud adversary A against
VSSDB with m challenge-response exchanges, there exists an adversary A1 against the

75

binding property of the commitment scheme Cmt such that

Adv
Dist
A ≤ 4mqV Adv

Cmt.Bind
A1

+

(

3

4

)m

Proof. Our proof relies on the fact that, since for each mode M̂i, the XOR sum of the
responses for the two challenges f(M̂i, 0) ⊕ f(M̂i, 1) = xi, a value that is 1 with probability
exactly 1

2 if x is honestly chosen at random. In particular, for each mode the adversary has
a probability of at most 3

4 to win the round, regardless of his choice of ki and ℓi. We first
rule out cheating on the commitments (which would allow the adversary to claim a false
response as the correct one), thus losing a term 4mqV AdvCmt.Bind

A1
(accounting also for the

commitments to x).

More formally, this is the same as assuming that the adversary now plays the game
against a protocol wherein the prover has to also give the values of ki, ℓi, ei, as well as the
commitments ai, bi, di and the randomness used for each commitment, in the first message.
The prover also has to give the bits of the secret x and the randomness used to generate
the commitments Comi. The verifier does not check consistency of the responses with the
responses/randomness included in the initialization. However, clearly if the prover is able
to commit to one value in, for instance ai, and then use the conjugate value with a different
randomness at the end, he breaks the binding property of the commitment. We use this
for our forgery in the reduction. We have to hope that the forged commitment is actually
queried by the verifier and that this verifier-adversary session is successful, which is why
we lose a factor 4mqV . This factor includes the m bit-commitments to the bits of x.

We now exclude the probability of the prover using different values that those he
has committed to. Since the commitments are sent before receiving the string of modes
{Mi}

m
i=1, we argue that whatever strategy the prover employs in maliciously choosing con-

venient k, ℓ at each round, these values are chosen to facilitate an answer µi for each round i
before knowing Mi. Depending on the choice of k and ℓ, as well as on the bits of x, the proba-
bility that µi is the correct answer at each round is different. We denote Prob[µi = ei] =: p1,
Prob[µi = ki ⊕ ℓi] =: p2, Prob[µi = ei ⊕ ℓi] =: p3, and Prob[µi = ki] =: p4. We stress that
the value of µi does not reflect the fact that the adversary must commit to a response
before knowing Mi, but rather that the adversary must commit to a choice of ki and ℓi

before knowing the modes. This skews the probability that, for a certain mode, the ad-
versary is able to give a better response and indeed maximizes the distance-fraud success
probabilities. As a consequence, we are indeed able to even indicate the most successful
adversarial strategy in distance fraud.

We now bound the probability that, with these values already set, the adversary can
win one of the interactive rounds.

76

Prob[A wins 1 round] ≤
3

∑

k=0

Prob[Mi = k]Prob[µi = f(Mi, ci)]

=
1

4

3
∑

k=0

Prob[µi = f(Mi, ci)]

=
1

4

3
∑

k=0

1
∑

b=0

Prob[ci = b]Prob[µi = f(Mi, b)]

=
1

8

3
∑

k=0

1
∑

b=0

Prob[µi = f(Mi, b)]

1
=

1

8
[p1 + p2 + p3 + p4 + p1 + (1 − p2) + p3 + (1 − p4)]

=
1

8
[2 + 2p1 + 2p3] ≤

1

8
[2 + 2 + 2] =

3

4
.

We remark that the equality 1
= holds due to our notation. Indeed, we have that

Prob[µi = f(0, 0)] = Prob[µi = f(2, 0)] = p1, Prob[µi = f(0, 1)] = p2, Prob[µi = f(1, 0)] =
Prob[µi = f(3, 0)] = p3, Prob[µi = f(1, 1)] = p4. Since f(0, 1) = f(2, 1) and f(1, 1) = f(3, 1),
it holds that Prob[µi = f(2, 1)] = 1−p2 and Prob[µi = f(3, 1)] = 1−p4. The final inequality
holds due to the fact that noting that p1 ≤ 1 and p3 ≤ 1. Indeed, the prover can maximize
these probabilities by choosing ℓi = 0 for all i, irrespective of the values of ki.

6.5.2 Resistance against Mafia Fraud

Theorem 2 (Mafia fraud resistance). For any (t, qobs, qP , qV)-mafia-fraud adversary A
against VSSDB, there exists: an adversary A1 against the hiding property of the commit-
ment scheme Cmt=(Commit, COpen), an adversary A2 against the unforgeability of the
signature scheme S = (SSKGen, Sign, Vf) and an adversary A3 against the pseudorandom-
ness of function f (in the random oracle model), such that

Adv
Mafia
A ≤

(

1

2

)m

+ Adv
Unf
A2

+ m(qP + qV)[4Adv
Cmt.Hide
A1

+ Adv
H−PRF
A3

]

+

(

qobs + qV

2

)

2−2m +

(

qP + qobs

2

)

2−3m−3|u1|

Proof. For mafia fraud resistance, we first replace the randomness wi by truly random
values, losing a term m(qP + qV)AdvH−PRF

A3
. At this point we can be sure that the hiding

properties of the commitment does not suffer from the fact that the wi is not chosen truly
at random. The next step is to consistently replace the committed values chosen by the

77

prover each prover-verifier and adversary-prover session by values independent of the real
choice of the prover, losing the advantage of an adversary against the hiding property of
the commitment, 4m(qP + qV)AdvCmt.Hide

A1
.

We next rule out the probability that in two different sessions, the honest verifier
chooses exactly the same string of modes, losing a term

(qobs+qV

2

)

2−2m. Furthermore, we
exclude the possibility that the prover chooses the exact same randomness and the same
shares k and ℓ in two sessions. We lose a term

(qP +qobs

2

)

2−3m−3|u1|. As a consequence, for
each verifier-adversary session there is at most one adversary-prover session sharing the
same mode values (this is a session in which the adversary forwards the same modes seen
before). The next step is to rule out that the adversary is able, for the two concurrent
sessions sid and sid∗, the first one being a verifier-adversary session while the second one is
an adversary-prover session, to change any of the verifier’s input and yet be able to forge
the signature at the end. We lose here a term AdvUnf

A2
.

Now the adversary’s only solution is to guess either: (a) the values of all the challenges
(which happens with probability 2−m), (b) the value of the bits of the key x (which happens
with probability 2−m, but in this case the adversary also needs to forge the signature or the
values of all the pertinent witnesses for the verification), (c) the values of all the responses
(with probability 2−m). Combining all these results this leads to the indicated bound.

6.5.3 Resistance against slow phase impersonation

Theorem 3 (Slow phase impersonation resistance). For any (t, qobs, qP , qV)-impersonation
adversary A against VSSDB, there exists an adversary A1 against the unforgeability of the
signature scheme S = (SSKGen, Sign, Vf) such that:

Adv
ImpSec
A ≤

(

qobs + qV

2

)

2−2m +

(

qP + qobs

2

)

2−3m−3|u1| + Adv
Unf
A1

.

Proof. We first rule out the possibility that the verifier chooses the same modes in
two different sessions, and then the possibility that the prover chooses the same shares
and randomness for two different sessions, thus losing the same two terms as for mafia-
fraud resistance. Thus, any verifier-adversary session the adversary opens has at most one
adversary-prover session for which it shares modes and commitments. At this point, the
definition requires that the adversary wins without producing the same transcripts with
the concurrent adversary-prover session. We upper-bound this probability by observing
that any change in the transcript requires the adversary to be able to forge the signature,
thus obtaining the claimed bound.

6.5.4 Resistance against Terrorist fraud (KeyTF-security)

Theorem 4 (KeyTF-Security). The VSSDB protocol is KeyTF-secure.

78

Proof. We prove this statement in two steps. We first consider a successful terrorist
fraud adversary A. Our goal is to show that either this adversary has a negligible success
probability or that he is helpful to a mafia-fraud adversary A′. In the first step of the
proof, we show how the adversary A′ reconstructs a guess of the secret x by running A
as a black box. In the second stage of the proof, we show that this gives A′ an advantage
over any other mafia-fraud adversary.

We consider an adversary A′ who runs A internally, and who ends up with a guess x̂
of x. For each verifier-adversary session of the terrorist-fraud adversary A, the adversary
A′ queries A for each fast round and each of the two challenges (A′ does not change the
mode). If A answers on both branches, A′ sets x̂i to be the XOR of the two responses. If
the adversary does not respond on at least one branch, A′ sets x̂i to be a randomly-chosen
bit. The following statements hold.

• A knew both bits correctly. In this case, A always passes the round, but the guessed
bit x̂i is also correct.

• A gets exactly one bit correctly. In this case, A′ has the wrong bit. On the other
hand, the adversary fails the session with probability 1

2 .

• A gets both bits wrong, in which case A fails the session, but A′ gets the right bit.

• A refuses to answer at least for one branch. At this point the adversary has a
probability of at least 1

2 to fail, while A′ guesses the corresponding guessed bit of x
is 1

2 .

In fact the number of bits of x that the adversary A′ expects to retrieve is A’s success
probability to succeed in the fast rounds. The adversary A′ does the same thing for each
of the qV sessions A has with the verifier. Thus, LeakA′(x||skSign) = P[A wins].

In contrast, for any mafia-fraud resistant adversary, the expected number of retrieved
bits is 0, since with high probability nor the signatures, neither the committed values cannot
be forged. In addition, since the modes and commitments are picked at random by the
honest prover and the honest verifier, it is highly unlikely to have two sessions with exactly
the same committed values, and for which at least one round of the distance-bounding
phase have the same modes with different challenges.

We now show that A′ is more successful than any mafia-fraud adversary B. If B’s
strategy is to change any of the input between the prover and the verifier during that
session, then A′ runs the first part of the protocol (which depends on x) using his guess of
it in every session with the verifier, succeeding with the same probability as A, and uses
the same strategy to forge the signature as B does.

79

6.5.5 Introducing cheat modes to tackle terrorist fraud security (Ga-
meTF security)

In order to ensure terrorist-fraud resistance, we have to build a backdoor into the protocol.
To do this, we use an idea similar to that proposed by Fischlin and Onete in [FO13b].
However, we cannot directly import their solution as our protocol is asymmetric, whereas
the original trick assumes that the verifier knows the prover’s secret key. Instead, we take
an approach similar to all-or-nothing security and modify the protocol in two steps. More
precisely during the first step, if the prover receives a message starting with a 1 instead of
the first protocol message (0|NV), he will compare the remainder of the message with the
secret key x. If the received message is sufficiently close, he returns the full key x as well
as the witnesses (H)i(x) that were used by the TTP to compute the commitments Comi

as depicted in Protocol 4.
Any party, including an adversary, can run this strategy. However, note that the

protocol does not return the secret signature key of the prover, thus on its own knowing x
will not significantly help an adversary to authenticate due to the final signature. To enable
a successful terrorist-fraud adversary to authenticate afterwards without the prover’s help,
we also change the authentication protocol. More precisely, we introduce a "cheat" running
mode, in which a party can use the values of x and vi to authenticate just by echoing the
received challenges. As an honest prover only discloses the values of x and vi in exchange
for a good guess of the secret key x, these values will not occur in observed honest-prover
to honest-verifier communication. We also prevent distance fraud, as using this strategy
will reduce the success probability of a distance-fraud adversary to just 1

2 per round (the
probability of guessing the challenges in advance). However, if a malicious prover helps a
MIM adversary to authenticate during terrorist fraud, the adversary will learn a significant
part of the secret key x. This will enable the terrorist-fraud MIM adversary to learn (with
high probability) the values of x and vi, which in turn enable him to make the verifier run
the protocol in cheat mode, as depicted in Protocol 5.

Theorem 5. GameTF-Security The VSSDB protocol is GameTF-secure.

Proof. The first part of the proof goes as for the VSSDB protocol. We conclude that
the mafia fraud adversary A′ gains as many bits of x as is the terrorist adversary A’s
probability to win. We denote by pA the probability that A wins. Then the cheating mode
is activated with exactly this probability. In this case, one the two following events holds:

• pA is negligible, in which case we dismiss him.

• pA is non-negligible and thus larger than the (negligible) mafia-fraud resistance of
the protocol.

80

6.6 Improving the response functions

In section 6.4, we have designed a distance-bounding protocol that uses modes in conjunc-
tion with the default challenge bit scheme that is usual to distance-bounding protocols.
We introduce the notion of modes to prevent a malicious prover from selecting the values
ki and ℓi in order to maximize his success probability in a distance fraud like described in
section 6.2.2. In fact, during the initialization phase, the prover commit to the xi, ki and
ℓi. Then, the verifier announces the mode for each round of the distance-bounding phase.
Provided that the modes are chosen at random by the verifier, the adversary cannot reply
in advance during the distance-bounding phase because the responses bit of the modes are
never the same regardless of the value of xi, ki and ℓi chosen in advance. Therefore, for
each round of the protocol, the distance adversary may receive the challenges from the ver-
ifier before sending the corresponding response to the verifier. To succeed a distance faud,
the adversary has two options: (i) he guesses each mode of the distance-bounding phase in
advance with probability 1

2 of success. (ii) if the bit xi = 0 then he chooses ki = ℓi = xi = 0
then regardless of the modes, he win the round with probability 1 (see the first line of the
table 6.6.

From the point (ii) we see that the advantage of an adversary to succeed a distance
fraud can be correlated to the number of bits of his secret key equal to 0. In the latter we
refer to this type of key (with as many bits equal 0 as weak key).

81

Protocol 3: Verifiable Secret Sharing and Distance-Bounding (VSSDB).

Verifier V Prover P

Public key pk = {Com, pkSign} Private key x, skSign, {ν1, . . . νm}

with Com := (Com1, . . . , Comm)
Private encryption key: skV

Initialization phase

For i = 1 to m generate:

ki, ℓi
$

← {0, 1}
ei = Eki||ℓi

(xi)

ui, vi
$

← Z
∗
n

wi = u−1
i v−1

i Hi(x) mod n
ai = Commit(ki, ui)
bi = Commit(ℓi, vi)
di = Commit(ei, wi)

0||NV−−−−−−−−−−−−−−−−→
Set: mP := {ai, bi, di}

m
i=1||NV

Compute: cP = EncpkV
(mP ||Sign(skSign, mP))

Set: W := {x, {ki, ℓi, ei, ui, vi, wi,
ai, bi, di, νi}

m
i=1, skSign}

π := Prove{W : cP well formed∧
consistent with {Comi}

m
i=1}

cP , π
←−−−−−−−−−−−−−−−−

Decrypt cP to m′||N∗
V||σ∗;

If π, σ∗ do not check or N∗
V Ó= NV, abort.

For i = 1 to m generate

Mi
$

← {0, 1}
{Mi}

m
i=1−−−−−−−−−−−−−−−−→

Parse as:
M̂1, . . . M̂m ∈ {0, 1}

For i = 1 to m, compute f(M̂i, 0), f(M̂i, 1),

γ(M̂i, 0), and γ(M̂i, 0) as below:
f(0, 0) =← ei

f(0, 1) =← ki ⊕ ℓi

f(1, 0) =← ki

f(1, 1) =← ei ⊕ ℓi

γ(0, 0) =← wi

γ(0, 1) ← (ki, ui, ℓi, vi)
γ(1, 0) ← ui

γ(1, 1) =← (ei, wi, ℓi, vi)

Interactive phase

For i = 1 to m

Picks ci
$

← {0, 1}
ci−−−−−−−−−−−−−−−−→ Parse as ĉi

Store ri and RTT δti
ri←−−−−−−−−−−−−−−−− ri ← f(M̂i, ĉi)

Verification Phase

{γ(M̂i, ci)}
m
i=1←−−−−−−−−−−−−−−−− σ ← Sign(skSign, {Mi}

m
i=1||{ci, ri}

m
i=1||NV)

σ
←−−−−−−−−−−−−−−−−

Verify σ, open commit for f(M̂i, ĉi) with γ(M̂i, ĉi), check δti ≤ tmax ∀i. Accept iff. all checks succeed.

82

Protocol 4: All-or-nothing key disclosure.
Party Prt Prover P

Input x̂ Private key x, skSign, {ν1, . . . νm}

1||x̂
−−−−−−−−−−−−−−−−→

With probability 2−(x⊕x̂) do:
Set: Keys := {x, skSign, {ν1, . . . , νm}}.

Keys
←−−−−−−−−−−−−−−−−

Protocol 5: Terrorist VSSDB.
Verifier V Prover P

Public key {Com, pkSign} Private key x, skSign

with Com := (Com1, . . . , Comm)
Private encryption key: skV

Initialization phase

Initialize as in Figure 3.
0||NV−−−−−−−−−−−−−−−−→

If first bit is 0, run protocol in Protocol 3.
Else react as in Figure 4 and halt.

0|cP , π
←−−−−−−−−−−−−−−−−

If first bit is 0, run protocol as in Figure 3.
Else: parse message as x̂, {ν̂i}

m
i=1

If ∃i such that Commit(x̂i, ν̂i) Ó= Comi reject P .
Else, set SBit = cheat.

Interactive phase

For i = 1 · · · m

Pick ci
$

← {0, 1}
ci−−−−−−−−−−−−−−−−→

Store ri and RTT δti
ri←−−−−−−−−−−−−−−−−

Verification Phase

Accept if and only if for all i, ri = ci and δti ≤ tmax .

83

xi ℓi ei ki ⊕ ℓi ki ei ⊕ ℓi

0 0 0 0 0 0
0 0 1 1 1 1
0 1 1 1 0 1
0 1 0 0 1 1

1 0 1 0 0 1
1 1 0 1 0 1
1 0 0 1 1 0
1 1 1 0 1 0

Table 6.1: Truth table representing the response function with two modes.

One solution to rule out such possibility is to assume that the keys are always generated
by the TTP honestly, thus ensuring that each bit of the key is 0 with probability 1

2 (inde-
pendently). This assumption is used in the bound for our distance-fraud resistance above.
While this assumption is sufficient in theory, in some case, we would like that the prover
register a key without revealing the actual key to the TTP. Therefore a second response
function is needed.

In the following, we construct an improved response function that resolves the problem
mentioned previously (it does not rely on the assumption that the TTP generates the secret
key for the user). Therefore, any party can register a key directly with the CA.

The new response function we propose, is based on the default response function. For
the mode 0 and 1 we keep the same behaviour as the default response function. We create
the two remaining modes by flipping (the bit is x-ored with the value 1) the bit of one
response-bit out of the two available.

f(Mi = 0, ci) =

{

ei if ci = 0
ki ⊕ ℓi if ci = 1

f(Mi = 2, ci) =

{

ei if ci = 0
ki ⊕ ℓi if ci = 1

f(Mi = 1, ci) =

{

ei ⊕ ℓi if ci = 0
ki if ci = 1

f(Mi = 3, ci) =

{

ei ⊕ ℓi if ci = 0
ki if ci = 1

Then during the verification phase, the prover reveals the value γ(Mi, ci) in which Mi

reprensents the modes and ci the challenge received from the verifier.

γ(Mi = 0 or 2, ci) =

{

wi if ci = 0
ki, ui, ℓi, vi if ci = 1

γ(Mi = 1 or 3, ci) =

{

ei, wi, ℓi, vi if ci = 0
ui if ci = 1

Therefore, we have always the condition that revealing the response bits of one mode
reveals the corresponding bit of the secret key. By forcing one response-bit to its opposite
value (x-ored with 1), we rule out the possibility that the choice of the value xi = ki = ℓi

has incidence on the construction of the response-bits .

84

xi ℓi ei ki ⊕ ℓi ki ⊕ ℓi ei ⊕ ℓi ki ki

0 0 0 0 1 0 0 1
0 1 1 1 0 0 0 1
0 0 1 1 0 1 1 0
0 1 0 0 1 1 1 0

1 0 1 0 1 1 0 1
1 1 0 1 0 1 0 1
1 0 0 1 0 0 1 0
1 1 1 0 1 0 1 0

Table 6.2: Truth table representing the response function with four modes.

From the table 6.6, we see that with any value for xi, ki, ℓi the adversary can maximize
his success probability for at most two modes out of the four availables. As the modes
are selected at random by the verifier, and the prover does not know them during the
commitment phase, then the adversary success probability is equivalent to the probability
to guess the mode in advance that is 1

2 .

6.7 Conclusion

In this chapter, we have presented a DB protocol called Vssdb, which is asymmetric (i.e.,
the prover and verifier do not share secrets) while provably resisting terrorist-fraud attacks
(as captured by the GameTF flavor of terrorist-fraud resistance [FO13b]). One of the main
novelty of our protocol is the use of modes, which are communicated during slow phases,
and complement the challenges sent during the time-critical rounds. More precisely, the
responses answered by the prover during one of these rounds depend both on the mode of
this round and the challenge. This feature improves the protocol’s security, while preserving
the lightweightness of calculations performed during the time-critical rounds. In addition,
in contrast to other DB protocols, we rely on the use of three shares rather than two, which
allows for more richness in the responses while better hiding the secret. In particular,
by using a homomorphic commitment scheme and bitwise verification of the commitment,
we essentially prevent the attack of Bay and co-authors [BBM+12] against DBPK-Log
scheme on which Vssdb builds. We also rely on the countermeasure of signing the entire
protocol transcript at the end to ensure strong mafia-fraud resistance. Finally to achieve
GameTF-security, we add a cheating mode that relies on a trick proposed by Fischlin and
Onete [FO13b]. In a nutshell, if the adversary can supply a close-enough guess of the secret
key x, the prover will return the correct secret key x as well as the witnesses that were
used to generate the commitments of each bit of x that the verifier has. By using these
values, the adversary can then authenticate to the verifier.

85

86

PROPS: Un système de preuves
de localisation respectueux de la
vie privée

Comme énoncé précédemment, les services basés sur la localisation doivent répondre à de
nouvelles exigences sécuritaires, à savoir garantir l’authenticité de la position annoncée
par un utilisateur sans la disponibilité au préalable d’une architecture de confiance. En
se basant sur le modèle de sécurité présenté au chapitre 4, nous proposons un système de
preuve de localisation baptisé PROPS (Pivacy-pReserving lOcation Proof System).

PROPS emploie une approche collaborative au problème des preuves de localisation,
permettant ainsi à des dispositifs voisins de se générer mutuellement des preuves de locali-
sation. Plus précisément, le protocole se déroule en trois phases: la phase d’enregistrement,
la phase de collecte et la phase de vérification. Lors de la phase d’enregistrement, chaque
utilisateur reçoit une clé secrète certifiée par une autorité de certification. Cette clé se-
crète est unique à chaque utilisateur et nous supposons qu’elle n’est jamais partagée avec
d’autres entités. Ensuite, lors de la phase de collecte, le prouveur demande aux témoins
présents dans son voisinnage immédiat de lui signer sa position (au format encodé) et une
mise en gage sur son identité secrète. Chaque témoin désireux de participer à la création
de la preuve, procède à la vérification de la présence physique du prouveur dans son voisin-
nage immédiat, auquel cas, il lui génère sa preuve de localisation sinon la phase de collecte
est annulée et possiblement reportée à une autorité de gestion de fraudes. La vérification
de la position du prouveur est réalisée à l’aide d’une primitive appelée ProximityTesting

construite à partir d’un protocole délimiteur de distance (voir Section 7.3 pour plus de
détails). Finalement, lors de la phase de vérification des preuves, le prouveur présente ses
preuves de localisation au vérifieur accompagnée d’une preuve de connaissance de l’identité
secrète contenu dans les mise en gage et une granularité liée à la position encodée. Les
propriétés de sécurité que nous garantissons par le biais de notre protocole sont les suiv-
antes: la non-transférabilité des preuves, la non-forgeabilité de celles-ci et la résistance
contre les attaques de localisation lors de la phase de collecte (voir Section 7.5 pour plus de
détails). Du point de vue de la protection de la vie privée, nous garantissons l’anonymat

87

de l’identité secrète du prouveur et des témoins durant la phase de collecte et la phase
de vérification. Nous garantissons aussi la non-chaînabilité de leurs actions à travers le
système (voir Section 7.5 pour plus de détails).

88

Chapter 7

PROPS: a PRivacy-preserving
lOcation Proof System

7.1 Introduction

A secure LBS requires that a mobile user certifies his position before gaining access to a
resource. This is especially the case for location sensitive application like location-based
access control and defining location-aware security policies (e.g., this laptop should not
be taken out of this building, this file should not be opened outside of a secure room,
etc..). Currently, most of the existing solutions addressing this issue do not offer enough
security or privacy guarantees to their user (see Chapter 3). In this chapter, we describe
our protocol for a secure and decentralized location proof system. Our design aims to
satisfy the security and privacy properties we have defined in Chapter 3. We also rely on
the concept of distance bounding, to provide a method of detecting various situation of
localization attacks. In fact, we have shown in Chatper 5 that a distance-bounding protocol
is an accurate method of gauging a prover’s presence within range of the witness.

The structure of this chapter is as follows: in Section 7.2, we describe how users interact
within the system and describe the system assumptions. Then, in section 7.3, we present
the cryptographic primitives we used in the design of our protocol. In Section 7.4, we
describe the process for users of collecting location shares from their witnesses and how
verifier can check for the validity of location proofs. Next, in Section 7.5 we analyse the
security and privacy properties of our proposal. Section 7.6 reviews the implementation
and performance of our protocol. Finally, in Section 7.7 we summarize this chapter.

7.2 Preliminaries

In this section, we discuss the technical information pertaining to Props. More precisely,
we give a global overview of the architecture, then we define the algorithms used by the

89

system before presenting the system assumptions. We discuss the relevant threats that
Props must protect against and the security properties required in order to meet our
definition of a complete and secure protocol. Finally, we briefly outline the role of the
verifier within the protocol.

7.2.1 User interactions

Our system consists of a set of mobile users equipped with location enabled devices that are
all synchronized according to a global clock. Each mobile device is capable of obtaining his
current absolute position thanks to a positioning system and we suppose that these systems
are interoperable. For sake of simplicity, let be a user P visiting a location L at time T . P

can request a location proof from other users present at the same location L during time T .
During this interaction, the device of P plays the role of the prover while the other devices
that collaborate to create the proof are called the witnesses. The first step of the protocol
is for the prover to broadcast a request (location proof request) stating his current secure
pseudonym, the claimed location and the current time to potential witnesses present at
the same location. When a surrounding user accepts to testify the presence of the prover,
the latter becomes a witness for that session. Then, the rest of the procedure consists in a
secure bipartite computation between the prover and that witness during which the witness
is responsible for verifying the correctness of the spatio-temporal information claimed by
the prover; that is he is indeed at the location L close to the witness at global time T.
To counter localization attacks (see Chapter 2), the prover engages in a distance-bounding
protocol (see Chapter 5 and Chapter 7) with each of the witnesses to ascertain that he is
within proximity of that device, thus proving himself to that particular proof provider. It
is assumed that the distance-bounding process employed will provide an accurate reading
of the proximity of the prover to a witness. The ability of distance-bounding to accurately
place a device in an area is an underlying security property of Props and is required for its
correct functionality. It is also assumed that proxy/terrorist fraud attacks will be detected
through the use of the distance-bounding protocol employed. When the prover behaves
honestly, he obtains a location proof share (LPS) from his witness. The location proof share
contains the cryptographic pseudonym of the prover, the results of the distance bounding
exchanges and the encryption of the spatio-temporal information (location and time). At
this stage, the location proof shares can be aggregated to create a location proof (LP).
A location proof may be used by the prover to convince a verifier (for example police
authorities, location-based service, etc.) of his presence at the location L. The verifier
then makes his decision based on this proof information. This situation is illustrated
in Figure 7.1. Users are registered to the system by a trusted central authority called
the certification authority (CA). CA is the trusted third party responsible for issuing the
credentials to newly registered users. These credentials can be considered as being the
“secret identity” of these users. The cryptographic pseudonyms are derived from the secret
key of the user. The anonymity lifter (AL) is the trusted party that has the capacity to lift

90

the anonymity of a particular user from a location proof when needed (for instance upon
request from a judge).

Figure 7.1: Global overview and data flow of Props.

7.2.2 Definition of the algorithms

The architecture of Props is summarized in Figure 7.1 and consists of the following four
different procedures.

• Initialisation. During the set up of the location proof system, the Certification
Authority (CA) runs the Setup algorithm to generate the group public parameter
gpk = (V KG, V KCert) in which V KG represents the public verification key for
the unique group signature and V KCert the public verification key for CL-signature
certificate issued by the CA. It should also be possible for the CA to generate is-
suance keys that will be used by authorised issuer party to dynamically add users to
the system. The CA also decides at that time on the values of parameters such as
m, the maximum number of malicious users tolerated by the system and k the min-
imum number of different location shares needed to generate a valid location proof
certificate. By assumption, we always have m < k.

91

• Join. When a user want to join the system, he needs to run the procedure VRegister

together with the CA or an authorized Issuer to obtain his anonymous credentials
usk = (SKGu, Su, certSu) in which SKGU represents his private key for unique group
signature, Su the secret identifier of the user and certSu) a certificate over Su made
by the certification authority or an authorized issuer such that the user can later
prove that he has a valid CA-certificate on his secret identifier in a zero-knowledge
way.

• Location proof gathering. When a prover wants to obtain a proof of his current
location, he runs the procedure LTestify in collaboration with neighbouring users
(i.e., witnesses) to obtain location shares. After collecting at least k shares from
different witnesses, the prover can produce a location proof by running the algorithm
LProve.

• Location proof verification. During this step, the prover run Vf with a verifier to
prove to the latter that he was at a specific location at a particular moment in time.
In our case, this verification process (cf. Section 7.4.2) requires a proof of ownership
by the current prover and also a check from the verifier that the location proof of
the previous step contains at least k shares from different witnesses. It is possible
to envision that if the verifier suspects a cheating attempt from the current prover
(e.g., if the location proofs is composed of two or more shares generated by the same
witness), then he may forwards the fraud evidence to the Anonymity Lifter (AL) who
has the capacity to reveal the identity of the cheating witnesses.

7.2.3 System Assumptions

Within the architecture of Props, we make the following system assumptions.
Positioning capability. Users are mobile entities capable of positioning themselves into
space. For instance, a user might be able to localize himself by using his GPS or through the
help of a dedicated positioning infrastructure. We assume the imprecision of the location
computed to be negligible.
Synchronized clocks. Each user possesses a local clock on his device that is synchronized
with the clocks of other users. Thus, when two users communicate together, they rely on
the same time referential. In practice, users can use the clocks of their GPS or GSM device.
Anonymous communication channel. Provers can broadcast message to neighboring
witnesses without disclosing identifying information (e.g., MAC or IP addresses).

7.3 Building blocks

We assume that users of Props have access to standard cryptographic tools such as
(pseudo-)random number generators, hash functions and public key signature schemes.

92

However, our protocol also relies on other cryptographic primitives that we use as building
blocks. These primitives are detailed thereafter.

7.3.1 Unique group signatures

Group signature schemes have been introduced by Chaum and van Heyst to provide
anonymity to the signer of a message [CvH91].

In fact, there is a single public verification key for the group, but each member of the
group receives a different private signing key from the group manager (who could be for
instance the CA). A group signature scheme (with optional anonymity removing) consists
in general of the four following operations.

• Registration of the user. During the Join operation, the CA assigns to the user a new
private signature key, which we denote by SKGU .

• Signature of a message in behalf of the group. The SignGroup operation takes as
input a message m and a signing key SKGU and produces a signature σG,U (m) of
the message m.

• Verification of a group signature. The VerifySignGroup operation allows to check the
validity of a group signature. It requires as input a verification key for the group
V KG, which has been setup by the CA and is publicly known, as well as a message
m and a group signature on this message σG,U (m). VerifySignGroup produces a binary
output : accept or reject depending on the validity of the signature.

• Anonymity removing. From the point of view of the verifier, it is impossible to
distinguish if two group signatures come from the same individual or not. However
in exceptional situations, the AL can (in association with the verifier) retrieve the
identity of a particular signer via the LiftAnonymity operation. This operation takes
as input a message m and a group signature on this message σG,U (m) and produces
as output the identity of the signer U. In practice, this is often done by first finding
the corresponding signature key SKGU and then retrieving the identity associated
to this key.

Group signatures provide multiple-show unlinkability in the sense that, from the point
of view of the verifier, it is impossible to distinguish if two group signatures originates
from the same individual or not. However, in some specific cases, such as the situation
in which the same message is signed twice, it might be interesting to be able to link the
signatures performed by the same user. For instance, in the context of location proof
we want to ensure that all the shares of a location proof are signed by different unique
witnesses (uniqueness property). In order to enforce this property, we use an extension
of group signatures known as unique group signature [FZ12]. More precisely, in a unique
group signature if a signer produces two different signatures of the same message (i.e., two

93

location shares of the same proof), then both signatures while randomized will always have
a large common component with high probability. This component can act as a unique
identifier in order to link these signatures. Therefore, unique group signatures are usually
equipped with a detection algorithm that can infer if two signatures on the same message
have been issued by the same signer, and raises an alarm if this situation occurs.

7.3.2 Commitment schemes

Commitment schemes [GS07,DF02] arise from the need for parties to hide from the others
a choice until they decide to reveal that choice in such a way that it is fair to all parties.
The main problem here is that we do not want one party to find out about any party’s
commitment before the latter opens this value (hiding property). On the other hand, we do
not want a party to be able to open its commitment in multiple ways (binding property).

More formally, a commitment scheme consists of a triple of algorithms (Setup, Commit,
Open) that are respectively used during the initialization of the commitment scheme, the
commit phase and the opening phase. For an example of how a commitment scheme
works, let consider Bob who wants to send a commitment to Alice. At the beginning of
the protocol, the commitment scheme may be initialized by a trusted party that we called
Oscar using the Setup algorithm.

During the commit phase, Bob uses the algorithm Commit that takes as input a pri-
vate input m and a random string r, then the algorithm outputs a value C called the
commitment, (i.e., C ← Commit(m, r)). Actually, the value C is revealed to Alice.

Later, when Bob wants to open the commit C to Alice, he sends the value r. Then
Alice runs algorithm m̃ ← Open(C, r) and accepts if the value m̃ Ó= ⊥. This step is called
the opening phase.

7.3.3 Zero-knowledge proof

Zero-knowledge proof [GMR85] is a protocol enabling a party (the prover) to convince
another party (the verifier) about the validity of a statement without revealing any infor-
mation apart from the veracity of the statement itself. If proving the statement requires
knowledge of some secret information on the part of the prover, the definition implies that
the verifier will not be able to prove the statement in turn to anyone else, since the verifier
does not possess the secret information.

Indeed, a zero-knowledge protocol may not allow the verifier to learn any computational
information about the secret input of the prover. Let W denote a boolean statement, (i.e., a
function that on input α either outputs 1 (true) or 0 (false)). Suppose a prover P that knows
some valid input string w, (i.e. . . , w is valid iff W (w) = 1. P wants to convince V that he
knows some valid input without revealing that value in fact to V). Such a zero-knowledge
protocol can be denoted by ZKProof{(w) : W (w) = 1}. At the end, if the protocol outputs
true, then V can be assured that P knows a string w′ such that W (w′) = 1. In fact, our

94

notational convention is that the elements listed in the brackets denote knowledge of which
is being proved and not known to the verifier. A zero-knowledge proof must satisfy at
least the three following fundamental properties, which are completeness, soundness and
zero-knowledge.

The completeness property means that if the statement is true then a verifier who fol-
lows the recipe of the protocol will always be convinced provided that the prover knows the
secret input. The soundness property ensures that if the statement is false then the prover
cannot convince the verifier about the validity of the statement, except with a negligible
probability. Finally, the zero-knowledge property guarantees that the interactions between
the prover and the verifier do not convey any information about the secret information
except its validity.

Possible application of zero-knowledge proofs is the design of privacy-preserving iden-
tification schemes and anonymous credentials [FS87,FFS88,GQ88,BCL06].

7.3.4 Proximity testing protocol

We assume that each user has access to a proximity testing protocol, which will be used
to convince the witness that the prover is indeed located within some range. We do not
make any a priori assumptions about the technology used to implement this protocol, but
rather we will use it as a black-box during the execution of the location proof protocol.
However, we are conscious that the choice of a particular implementation of a proximity
testing protocol (as well as the underlying technology) will influence the resulting security
of the architecture. For instance, most of the current proximity testing protocols robust
against the proxy attack only exist currently as research prototypes. Distance bounding
(see Chapter 6) is employed within this research to provide proof of a device’s presence
in the area for use by the location proof system. The technique allows the witness to
distinguish whether the prover is physically present within the claimed area.

Implementing the Bussard and Bagga protocol

Here, we describe how to incorporate a distance bounding protocol in our setting. Mainly,
we use the Bussard and Bagga [BB05b] because it is asymmetric and preserves the anonymity
of the prover but our architecture is actually agnostic to the DB protocol used.

The proximity testing procedure consists of three phases. The first phase is the prepa-
ration one, in which the prover encrypts his private key SU with a random symmetric key
k and gets the corresponding encrypted message e. Then, the prover commits individually
to each bit of e and k, which results in two sequences of bit commitments R0 and R1. This
phase can be performed offline by the prover to save time.

During the second phase, the prover sends R0 and R1 to the witness, which then
starts a multi-round fast-bit-exchange with the prover. In each round i, the witness sends
a challenge bit bi ∈ {0, 1}, to which the prover replies with the i-th bit of Rb. Since the

95

witness never learns both bit values, he will also never learn the secret SU . After the multi-
round fast-bit-exchange, the witness verifies the corresponding bit commitments of R0 and
R1 (only for the received bits) by asking the prover to provide the opening information for
these commitments.

During the third phase, the values R0 and R1 are used by the witness to derive a
pseudonym C2. Finally, the prover convinces the witness that C2 and C1 correspond to
Pedersen commitments on the same value through a zero-knowledge proof [CL03]. For
more details about how the pseudonym C2 is constructed, we refer the reader to [BB05b].

In contrast to the original protocol from [BB05b] and its implementation in STAMP [WZP+],
the witness and the verifier do not need to have a public key to authenticate the prover.
Instead the authentication is performed using pseudonyms and zero-knowledge proofs to
preserve the privacy of the prover. Revealing the values k and e to a colluder also disclose
the long-term secret of the prover, thus ensuring that the proximity testing procedure is
resistant to terrorist frauds.

Thereafter, we refer to the black-box primitive executing the proximity testing protocol
as ProximityTesting(∆), in which ∆ represents the distance threshold of the protocol. This
primitive outputs accept if the prover is indeed within ∆ range of the witness and reject

otherwise.

7.3.5 Hash chains

A hash chain C is a set of values x0, . . . , xn where xi = h(xi−1) such that h is a cryptographic
hash function, i ∈ [1, n] and x0 is a valid input for h. The length of a hash chain is equal
to the number of evaluations of the hash function required to create the hash chain. For
instance, a hash chain with values x0, . . . , xn is said to have length n. In this paper, we
will use the hash chain as a primitive for a user to control the precision of the location
information disclosed while still ensuring that the location proof remains valid using the
approach described in [LMP11]. In the following, we describe the three mains algorithms
used in this approach, mainly Hide, Reveal and Verify.

Without loss of generality, we assume that a location data pos can be represented by
n location parameters, pos = {x0, . . . , xn}. In practice, a well-formed GPS location data
has a length n = 3 and a location pos = (lat, long, time), in which lat is the (normalized)
latitude, long is the longitude and time is the actual time. We assume that each location
parameter xi is a natural number and that it consists (possibly after padding with zeroes)
of d digits. For instance for 1 ≤ i ≤ n, we have xi = xi

d−1xi
d−2 . . . xi

0, where xi
d−1

is the most significant digit of xi and xi
0 the least significant one. The accuracy of the

parameter xi can be controlled by hiding its rightmost digits. Let pos|p (for d − 1 ≤ p ≤ 0)
denotes the location pos of which the p least significant digits of each of the parameters are
blinded. Let h be a cryptographic hash function satisfying pre-image resistance, second
pre-image resistance and collision resistance. To encode a location data pos using the
procedure Hide, Bob has to encode each location parameter xi in pos. Indeed, for each

96

xi, (1 ≤ i ≤ n) in pos, Bob computes a hash chain Kxi
= Kxi

d, Kxi

d−1, . . . , Kxi

0 in which
Kxi

0 is a randomly chosen seed and Kxi

j+1 = h(xi
j , Kxi

j) (for d − 1 ≥ j ≥ 0). Thus,
the next hash value in a chain contains the following most significant digits of the location
parameter xi. Finally, the encoded value of pos is the hash chain for the different location
parameters Kpos = (Kx1

, Kx2
, . . . , Kxn). Here, Bob gives Kpos to Alice. Alice compute

S=Sign(Kpos) and sends S to Bob. Now, Bob can reveal different granularity over the
position pos to Oscar using the procedure Reveal. To do so, Bob first determines a
precision p (for d − 1 ≤ p ≤ 0) and then reveals the hash value of the chain associated with
that precision, Kpos

p, together with the partially blinded location pos|p to Oscar. Then,
during the Verify procedure, Oscar reconstructs the parts of the hash following Kpos

p and
compares the final value with the one contained in the signature S. Using this method,
Oscar only learns and checks the d − p most significant bits of the location parameters
certified by Alice, while the least significant bits remain unknown to him.

To encode the temporal information, the prover format the current time into five values
(i.e., {x

′

1, . . . , x
′

5}) that correspond to the time (hh:mm:ss), period of the day (morning,
afternoon or night), day, month and year. Then, he also relies on a hash chain to encode
the temporal information in the LPS. The uncertainty of the position revealed depends
of the number of digits hidden by the function Hide has illustrated in Table 7.1. A GPS
coordinate relies on seven digits for the precision, thus the prover can hide a maximum of
six digits.

Number of hidden digits 1 2 3 4 5 6
Radius in meters 0,1 1,3 13 136 1 369 13 701

Table 7.1: Radius of uncertainty with respect to the hidden digits.

7.4 Overview of PROPS

In this section, we describe in more details location proof gathering phase and the location
proof verification phase.

7.4.1 Location proof gathering

The proof gathering protocol between a prover and a witness (summarized in Figure 7.2)
consists of the following four rounds. The gathering process starts with an initialization
phase in which the prover P generates random values key and rand1 and uses them to
compute the following values :

Kpos = hide(pos, key) and Ktime = hide(time, key) and C1 = [Commit(Si
U , randi), i = 0, · · · , m.]

97

Witness Prover1. m|σP (m)

2. {Kpos|R}kAB
|NB

3. {ZKProofR{C1 is well formed}|Kpos|key}kAB

4. proximityTesting(δ, C1)

5. {LP S = s|σj(s)}kAB

Figure 7.2: The location proof gathering phase.

The values Kpos, Ktime represent the encryption of pos and time under key, and C1 is a serie
of the homomorphic bit commitments on the each bit of the secret SU . It also corresponds
to the cryptographic secure pseudonym of the prover for this session.

The prover P then broadcasts a location proof request to his neighbouring users over
an insecure (i.e. unencrypted and unauthenticated) channel:

(1) P → ∗ : {LPSReq = m|σG,P (m) , m = pos|time|C1|Kpos|Ktime|NA}.

The request contains the following information: pos, the current position of the user and its
encryption Kpos, time the actual time and its encryption Ktime, C1 acting as a pseudonym,
as well as NA a share of the Diffie-Hellman key agreement and finally σG,P (m) a group
signature to authenticate the request.

Upon receiving the request Req, the witness W computes the following values: NB

a random share of a Diffie-Hellman key agreement, which is then combined with NA in
order to generate a session key kAB. This session key kAB will then be used to encrypt all
subsequent communications between P and W by relying on a symmetric cryptosystem,
thus ensuring the confidentiality and integrity of communications and R a fresh challenge
for the zero-knowledge proof.

Afterwards, the witness W notifies the prover that he accepts to continue the generation
process:

(2) W → P : {LPSReply = Encrypt((Kpos|R), kAB)|NB}.

The request LPSReply contains the value of NB in clear, the value Kpos and a challenge R
encrypted as an acknowledgement to the previous phase. At the reception of LPSReply,
P can reconstruct the session key kAB using NB and retrieves the challenge R of the
zero-knowledge proof. P replies to W with the following zero-knowledge proof:

(3) P → W : {ZK = Encrypt((ZKProof(C1 wellformed)|Kpos|key), kAB)}

The message ZK contains a zero-knowledge proof that the C1 are valid commitments over
the bits of the secret SU certified by the CA. It also contains the value key to convince the

98

witness that Kpos and Ktime are valid encoding of pos and time.

ZKProof{(certSU
, SU , randi) : C1} ← ZKProof

{

(certSU
, SU) :

VerifyCommit(Ci
1, SU , randi) = 1 ∧

CLS.VerifySign(SU , certSU
, pkcert) = 1

}

.

In order to ensure the freshness of the proof, the zero-knowledge proof will also depend on
R, the nonce generated by the witness at the previous step. This is made possible by the
use of zero-knowledge proofs based on CL-signatures.

Figure 7.3: Overview of the gathering procedure.

Afterwards, P starts the proximity testing protocol with W .

(4) P ⇆ W : {ProximityTesting(δ, C1)}

This protocol consists in a sequence of fast bit exchanges between the prover and the
witness. More precisely, the witness selects a bit b ∈ {0, 1} and sends it to the prover.
Then, the prover replies with a response r. W records the time needed by the prover to
produce the response to each of the challenges. These timings are used to estimate the
proximity of the prover and this process is repeated several times in order to increase the
robustness of the proximity testing protocol. If the timings are close enough to δ, then the
ProximityTesting(δ, C1) procedure outputs accept, while otherwise it outputs reject. At this
point, W is convinced that P is within proximity.

Finally, Finally, W creates a LPS s = {C1|Kpos|Ktime} and a signature σW (s) =
UGS.GroupSign(s, gskW). P receives from W :

(5) W → P : {Encrypt(LPS, kAB)}, LPS = s|σW (s)

Afterwards, the prover locally stores the LPSs collected from surrounding witness, the
associated variables (the encoding key key) and the current spatio-temporal context (time
and pos).

99

After collecting at least k different shares coming from k unique witnesses, the prover
P can aggregate them into a location proof that we denote thereafter as certificate.

7.4.2 Location proof verification

The proof verification phase described in Figure 7.4 enables a prover to convince a verifier
that he was at a specific location at a particular moment in time. The verification process
requires a proof of ownership by the current prover and also a check from the verifier that
the location proof contains LPSs from different witnesses. If this last verification fails,
then the verifier will forward the evidences of the fraudulent LPS to the AL who has the
capacity to reveal the identity of the cheater using the opening key ok.

Without loss of generality, consider that the prover has collected k LPSs before sending
a LP verification request to a verifier. A LP is generated as follows:

P → V : LP = s|σW1
(s)| . . . |σWk

(s)|auxpos|Lpos|auxtime|Ltime

in which Lpos (resp. Ltime) represents the granularity of the position (respectively the time)
to be revealed. The values auxpos and auxtime are used to check that these granularities
are conformed with the values Kpos and Ktime of LP. These values are computed using the
function Reveal (cf. Section 7.3.5).

Once he has received the LP , the verifier V runs sequentially the following verifications
steps.

1. First, V checks for each LPS σi(s) in certificate whether UGS.GroupVerif(s, σi(s), gpk)
returns accept. More precisely, the function UGS.GroupVerif(s, σWi

(s), gpk) verifies
the validity of the group signature of each of the k LPSs σi(s):

k
∧

i=1

(UGS.GroupVerif(s, σWi
(s), gpk)) = true.

2. Then, the verifier validates the uniqueness of the LPS in LP by verifying that all
these LPSs have been generated by different witnesses:

k
∧

i=1

k
∧

j=i+1

(UGS.Detect(s, σWi
(s), σj(s))) = false.

3. Next, V anonymously authenticates the prover P as the legal owner of LP by running
a zero-knowledge proof protocol with him. At the end of this step, V is convinced
that P knows the secret SU used to generate the commitments C1 and that this secret
has been certified by the CA.

4. Finally, V uses the Kpos and Ktime contained within LP to evaluate the validity of
the spatio-temporal information (Lpos, Ltime) claimed by the prover:

Check(Kpos, auxpos, Lpos) ∧ Check(Ktime, auxtime, Ltime).

100

Figure 7.4: Overview of the verification procedure.

7.5 Protocol analysis

In this section, we analyze how Props fulfils the security and privacy properties described
in Chapter 4.

7.5.1 Privacy

Anonymity and unlinkability of prover and witnesses. Due to the use of commit-
ments and zero-knowledge proofs in Props, users can remain anonymous in the system
as long as they behave honestly. Furthermore, the prover creates periodically nonces to
generate the commitments C1. Therefore, due to the hiding property of the underlying
commitment scheme, these commitments do not disclose any information that can be used
to trace back to the identity of the prover. In addition, the anonymity and unlinkability of
witnesses are ensured by the use of group signature. Finally, the use of a zero-knowledge
proof enables the prover to anonymously authenticate himself to the verifier as the owner
of a LP.

Witness location privacy. When establishing a LP, a witness never discloses his
exact position but rather checks that the position claimed by the prover is in the vicinity
using the proximity testing protocol. Therefore, a local eavesdropper can only infer that
the witness is in the proximity of the prover but does not learn his exact position.

Prover location privacy. The location information is first encoded into the hash
chains before being endorsed by the witness. This information cannot be modified later by
the prover and it does not appear in clear in the LP.

Location sovereignty. Within Props, the LPs gathered by a user are saved locally on
his device in contrast with other schemes in which the proofs are stored and controlled by
remote servers. Finally, due to the use of hash chains the prover can decide the granularity
of the information he wants to disclose (cf. Section 7.3.5).

101

7.5.2 Security

Correctness. The correctness property is trivial. Once a LPS is received by the prover,
he can verify that the spatio-temporal information contained within it is valid. The spatial
and temporal soundness are ensured because revealing a geolocated context that does not
match the one contained in the LP will be detected during the Step 4 of the verification
process. Thus, a malicious prover cannot alter the integrity of a LPS and fool the verifier
by claiming a different location than the one contained in the LPS. In the following, we give
more details about how Props ensures the spatial soundness property (cf. Section 2.7.2) by
proving its resistance to the distance fraud and mafia fraud.
Resistance to distance fraud. In a distance fraud, a malicious prover tries to convince an
honest witness that he is closer than in reality. By assumption in Props, the distance
fraud is prevented by the use of the ProximityTesting(δ, C1) protocol.
Resistance to mafia fraud. Let P be an honest prover located at position Lp and W an
honest witness located at position Lw such that dist(Lp, Lw) > δ with dist(., .) the euclidean
distance. Consider W̄ and P̄ , which are two different colluding users or the same malicious
user playing two different roles. In the mafia fraud, the objective of an adversary is to
replay a session that involved a honest prover P to fool W and make him believe that P
is closer than he really is. Thus, two sessions need to be run, the first one involving W̄
and P with the objective to get commitments from P followed by a second one performed
between P̄ and W in which the commitments of the first protocol are replayed in order to
obtain a location share on behalf of P . In the second session P̄ will need to compute a
fresh zero-knowledge proof using R from W to prove knowledge of the identity SU of P ,
which is impossible without the knowledge of SU .

Proof of ownership and non-transferability. During the verification phase, the
verifier checks that the current prover is effectively the legitimate owner of the LP by run-
ning a zero-knowledge protocol over the pseudonym C1 included in the proof. Therefore,
without the knowledge of the secret SU involved in the creation of these commitments, it
is impossible to claim the ownership of that location proof, which is also the case for a
malicious verifier that wants to use a location proof that he has observed from an honest
prover.
Within Props, the non-transferability property is equivalent to the resistance to the col-
lusion P − P . The resilience to the collusion P − P follows directly from the resilience
to the terrorist fraud of the distance-boudning protocol we have used to implement the
ProximityTestting tool.

Unforgeability. The unforgeability is ensured partially by the uniqueness property
provided by unique group signature, which prevents the adversary controlling a collusion
of m malicious users to gather enough LPSs as long as the size of the collusion is less than
the number of shares needed (i.e., k > m).
Resistance to distance hijacking. In a distance hijacking attack, a malicious user M tries
to hijack the gathering session of an honest prover P . More precisely, M waits until P

102

has successfully proved that he is in the vicinity of an honest witness W and then hijacks
P ’s session to collect its LPS. However in Props, a witness verifies that the entity who
ran ProximityTesting(δ, C1), is the same as the one that computes the commitments C1.
Therefore, such an attack will be detected by W and the gathering process will be aborted
before the malicious prover receives the LPS, thus avoiding the possibility of hijacking the
session.

7.6 Implementation

In this section, we briefly report on the current proof-of-concept implementation of Props.
Our main objective is to demonstrate that the architecture of Props can be implemented
with currently available technology. Our implementation relies on Idemix1 2.3.4, a Java
library containing advanced cryptographic primitives such as CL-signatures, commitment
schemes and zero-knowledge proofs (cf. Section 7.3). Section 7.6.1 describes the test bench,
while Section 7.6.2 gives the result of our experimentation.

7.6.1 Overview of the implementation

We implemented a Java prototype client application on Android. Our experiments are
carried out on two Android devices: (1) a Samsung Galaxy Note 2 equipped with a Quad
Core 1.6 GHz processor, 2GB of RAM, a GPS and running Android OS 4.1.2, acting as a
prover, and (2) a Google Nexus 7 (2012 version) equipped with a Nvidia Tegra processor
and 1 GB of RAM acting as a witness. The measurements that we report for each phase
have been computed by averaging over 10 independent trials. In our testbed, we illustrate
a scenario in which the witness listens to the network until he receives a location proof
request from a nearby prover. As a result, the witness decides whether he accepts to serve
the request or not. If the request is accepted, the witness sends an acknowledgement back
to the prover. This process is denoted as the initialization phase in Figure 7.5. After the
initialization phase, the witness checks that the prover possesses a valid credential from the
CA on the value that is contained in the commitment (authentication phase), otherwise a
cheating prover could encrypt gibberish or someone else’s identity. Afterwards, the prover
and the witness executes the proof creation phase. Finally, we also test the proof sending
phase in which the witness sends the location share to the prover. During our experiments,
we have measured the computational time (also an indicator of power consumption) and
storage that are needed to run our current implementation Props on real smartphone
devices.

103

!"#$%&%

'$(%

)"*%&%

+(%

!"#,%&%

',(%

)")+%&%

*(%

-./012/3104.%

56789.0:;104.%

<=44>%;=9104.%

<=44>%&9.?/.@%

Figure 7.5: Cost of the different phases of the proof generation for the witness.

7.6.2 Experimental evaluation

From a memory point of view, each LPS has a size of 3444 bytes, which is higher com-
pared to those of previous works. However, Props provides stronger privacy and security
guarantees. The running time of the whole gathering phase conducted by a witness is on
average of 2.98 ± 0.02 seconds.

For the verification phase, we have designed a realistic scenario in which a prover wants
to show a LP to a remote LBS server. The server we used run on an Intel i5-2435M dual-
core processor at 2.4 Ghz with 4 GB of 1333 Mhz DDR3 SDRAM running OSX 10.8.3.
The average time needed to verify one LPS is around 0.66 ± 0.03 seconds for the verifier.

Unique group signature in the dynamic setting has been proven efficiently realizable [FZ12]
under the CCA-anonymity assumption using any CCA-secure signature scheme (i.e.secure
against adaptive chosen message attack) and Groth-Sahai proofs systems. In practice
uniquely sign a message is equivalent to create three signatures and two Groth-Sahai proofs.
Unique group signature in the dynamic setting verifies CPA-anonymity(i.e. the adversary
cannot query the opening oracle. It is assumed that Opener is highly trusted and adver-
sary cannot access it as long as it is honest) and CCA-anonymity. Our implementation of
unique group signatures relies on the concept of domain pseudonym offered by the Idemix
library. In a nutshell, a domain pseudonym can be used to link all the group signatures
performed by a user within the same domain. Within the context of Props, we set the
domain to the value s = {C1|Kpos|Ktime} included in the location proof, thus allowing a
verifier to check the uniqueness of the location proof share.

Regarding our proximity-testing black box, current implementation of distance bound-
ing (e.g., Rasmussen and Capkun [Rv10]) are hardware proof-of-concepts, thus they are
not mature enough to be used on mobile devices like it is the case in PROPS. Nonethe-
less, one distance bounding protocol was really suitable for our needs in term of privacy
(anonymity and unlinkability of the prover and his witnesses) but have been recently proved
insecure against terrorist fraud [BBM+12]. From these facts, we have decided to abstract
this distance bounding as a black-box while designing our protocol. In fact, the protocol
is designed in such a way that it can be rearrange when needed. In practice, the lack of

1http://www.zurich.ibm.com/security/idemix/

104

implementation of distance bounding will surely endanger the security aspect (resistance
to distance fraud, mafia fraud and terrorist fraud) of the protocol but not the privacy
principles that we highlight in Chapter 4.

7.7 Conclusion

In this chapter, we introduced Props, a novel privacy-preserving location proof system
based on a collaborative architecture. The main strengths of this location proof system are
the following: (1) the LP collected by a prover are under his control and does not reveal
any information about his identity, (2) the prover has the ability to remain anonymous
even when presenting a proof to a verifier, (3) the privacy of users is preserved with respect
to a man-in-the-middle adversary, (4) a verifier can detect abuses of a malicious user that
tries to produce fake LPs, and finally (5) the prover can selective disclose the spatial and
temporal information to the granularity of his choice. We also demonstrate the security of
Props to standard attacks such as collusion P − P/terrorist fraud, distance fraud, mafia
fraud and replay attack. In the future, we would like to extend Props to deal with the
collusion W − P in which a witness systematically reports false LPS for a colluder even
though one or both of them are not at the location claimed in the LPS. Indeed, unless
trusted infrastructures are deployed at each possible location, it seems quite difficult to
detect that a particular LPS is a result of such a collusion [TCB12, WZP+, ZC11]. A line
of research that we would like to pursue in the future is the use of anonymous peer-to-
peer reputation system as a countermeasure to frauds in this mobile environment. Finally,
another research avenue is the design of a secure multiparty computation version of the
protocol involving a joint interaction with the prover and multiple witnesses rather than
relying on pairwise interactions between the prover and each witness.

105

106

Chapter 8

Conclusion and future work

8.1 Conclusion

Over the last four decades, mobile phones have become more than just a way to make
calls. In fact, they are now “smart” enough to provide us real time assistance thanks
to the existence of location-based services. Location-based services (LBS) are a class of
services exploiting location data to deliver personalized features to its users. Examples
of location-based services include the navigation systems found in many new cars, traffic
advisories, roadside assistance and etc.

LBS help saving time in our daily tasks and become more productive in a world con-
stantly moving. For example, a user looking for a gas station may just ask for it and the
system provides him with the location and the directions to follow to get to his destination.

Actually, transmitting data regarding a user’s location to LBS causes two main prob-
lems. The first one is the lack of mechanisms for the LBS to check for the veracity of
the data it receives from the user (i.e., is the user attempting to access the service really
present at the location he declares?). The second one is the potential other uses of data
transmitted to the LBS because users are increasingly worrying about privacy and do not
want governments to learn their whereabouts, stalkers to spy on them or even a spouse to
monitor their movements.

In this thesis we have designed secure and privacy-enhanced protocols for authenticating
distance and location claims for mobile devices. The systems we have designed in this
work provide an answer to the location verification problem while embedding security
mechanisms and privacy protection features. This work extends previously existing work
by combining location proof system with distance-bounding protocols.

The first contribution of this thesis is the proposal of a distance-bounding protocol,
as described in Chapter 6 that we named VSSDB. As introduced in Chapter 5, distance-
bounding refers to a two-parties protocol that allows one entity called the verifier to authen-
ticate another entity called the prover while at the same time ensuring that the distance

107

separating them does not exceed a predefined threshold. Distance-bounding is tradition-
ally ran in three phases which are the initialization, bit-exchange and verification phases.
During the initialization phase, the prover and verifier initialize registers for the ongoing
session. The bit exchange phase is a series of challenge-response sub-protocol called round.
Each round of the bit-exchange phase is initiated by the verifier, usually by sending a
challenge to the prover. Then, each challenge received by the prover is combined with the
session registers to determine a response bit that is sent back to the verifier as soon as
possible. Finally, during the verification phase, the verifier checks that the response for
each round are related the session registers and that the time between sending a challenge
and receiving the response from the prover does not exceed a predefined threshold.

VSSDB differs from the other distance-bounding protocols found in the literature be-
cause it does not need the prover and the verifier to share a secret key to create the session
register. In fact, each prover is initiated with a public/private key pair. Then, the prover
is authenticated by the verifier using the public key. This feature removes the verifier
constraints to maintain huge database containing valid pseudonyms in the system then
avoiding leakage of the private keys when a verifier gets corrupted by attackers. Therefore
our system is more secure than state-of-the-art protocols.

Another novelty of our protocol is the use of modes, which are communicated dur-
ing the initialization phase, and complement the challenges sent during the time-critical
rounds. More precisely, the responses answered by the prover during one of these rounds
depend both on the mode of this round and the challenge. As we demonstrated, this
feature improves the protocol’s security, while preserving the lightweightness of calcula-
tions performed during the time-critical rounds. We design two response functions for the
VSSDB protocol. One that uses two responses modes and another which uses four. The
two modes response function is well suited for environments with few privacy requirements
because the private key of users need to be generated and checked by a central authority
to guarantee their security. This condition is ruled out by the four modes responses func-
tions. In addition, in contrast to other distance-bounding protocols that use secret-sharing
technique to hide the secret known to the prover within the responses bits, we rely on the
use of three shares rather than two, which allows for more richness in the responses while
better hiding the secret from man-in-the-middle attacker.

We have also defined in this thesis a notion of terrorist-fraud resistance called KeyTF-
security. Essentially, KeyTF-security is a relaxation of GameTF-security [FO13b]. While
our Vssdb protocol is KeyTF-secure, we also describe a extended version to gain GameTF-
security.

We analyse the security features of the VSSDB protocol in the framework of Dürholz,
Fischlin, Kasper and Onete [DFKO11b]. The results of this formal analysis indicate that
the security properties stated for the protocol are upheld.

The second contribution of this thesis is the design of a privacy-enhanced location proof
system for use with mobile devices. A location proof system denotes a system allowing its
users to prove their location at a particular time to remote entities called verifiers.

108

In Chapter 3 we have addressed state-of-the-art systems and given a detailed descrip-
tion of how they work. This study has revealed that there exists two main families of
location proof systems. The first one includes systems where users collect location proof
by interacting with dedicated access-Point disseminated over the localization area. We call
such an approach of implementing location proof system, the bipartite gathering approach.
Secondly, we investigate systems in which users collect location proof by collaborating to-
gether. We call this latter approach the collaborative gathering approach.

Then within Chapter 4, we have investigated the features offered by the state-of-the-
art location proofs system in terms of security and privacy. This analysis allowed us to
investigate the possibility of vulnerabilities in the design of the protocols and how we can
remedy to them. In general, many of the previous works only considered location proof as
just a signature of location data attesting the presence of a user at a location at a particular
time. In fact, a location proof system must include countermeasures against various frauds
and attacks inspired from the domain distance-bounding protocol and cryptography. We
enumerate those threats and give scenarios to justify why they must be taken into account in
the design of location proof systems. We encapsulate all our recommendations into a unified
framework compatible with previous works in the domain. Our framework can be used at
any phase during future development of location proof system. It includes an adversary
model that differs from the others as we give more possibilities to verifier in attacking the
system. In fact, the verifier’s role can be played by any party without requiring the prover
to trust him. Additionally, the framework models a location proof system as a tuple of
algorithms (Setup, URegister, VRegister, LTestify, LProve, Vf) and enumerates the threats to
be considered while designing each part of a location proof system. Because privacy is of
central importance to mobile users, we also identify the privacy requirements for each of
these algorithms. In this work, we defined privacy in terms of anonymity of the users within
the system and the unlinkability of their actions. Finally, we give a complete analysis of
the state-of-the-art protocols within the framework we proposed.

From the lessons learned in previous chapters, we proposed a location proof system
that we named PROPS (See Chapter 7) to solve the identified weaknesses of related work.
PROPS employs an ad-hoc approach to the problem of location proof, enabling neigh-
bouring devices to provide a certificate which attests of a specific device’s presence in a
claimed area. We employed distance-bounding to establish a location proof regarding the
presence of a device called the prover in a particular area, according to a neighbouring
device called the witnesses. In our scheme, the proximity of the prover device to a witness
is limited to a single hop communication range only. Anything above this is detected by
the underlying DB protocol and tagged as a proxy exchange, essentially preventing relay
attacks. By employing DB to protect the location proof gathering process, the soundness
of the location proof is guaranteed, as tampering with the distance will be detected and
the gathering session aborted.

Additionally, by protecting the confidential information pertaining to the participants
during a session of the protocol, it is more difficult for an adversary to identify who has

109

participated.
Malicious participants are prevented from linking the identity of other participants to

running sessions through the use of changing pseudonyms. The protocol protects against
external observers by encrypting the sensitive data transmitted during the slow phase
of the protocol. Due to the use of distance-bounding, it is obvious that local observers
could deduce the position of devices participating in a gathering session based on traffic
and message content analysis. However, they are not capable of discovering the identity
of the participants or any information to uniquely identify them. To better ascertain
the properties of our protocol, we analyse its properties according to the framework we
have developed in Chapter 4 and then compare our work to previous works. This latter
comparison shows that our protocol enables better security and privacy features than
previous proposals.

8.2 Perspectives

As we introduced in Chapter 2 the location verification problem has become of significant
importance with recent research turning towards ad-hoc systems. In this dissertation, we
mainly focus on the design of security protocols for authenticating distance and location
claims for mobile devices with an effort to move away from infrastructure dependence.
While the work presented in this dissertation is comprehensive, there remain a number of
avenues for future research.

A first research direction of this work would be to define verifier-side mechanisms to set
trust score to a prover according to the location proof he discloses. I would be interesting
to extend Props to deal with the collusion W − P in which a witness systematically
reports false location proof share for a colluder even though one or both of them are not
at the location claimed in the LPS. At first glance, unless some sort of trusted computing
is deployed at each possible location, it seems quite difficult for the verifier to detect that
a particular location proof shares is a result of such a collusion [TCB12, WZP+, ZC11].
Therefore, a line of research that we would like to pursue in the future is the use of
anonymous peer-to-peer reputation system as a countermeasure to the above mentioned
fraud in this particular setting.

Another research avenue would be the design of a secure multiparty computation version
of Props involving a joint interaction with the prover and multiple witnesses rather than
relying on pairwise interactions between the prover and each witness.

We also think that the popularity of distance-bounding protocols will become more and
more important because of the importance of relay attacks within traditional authentication
systems. A future research direction in this domain would be to obtain privacy for VSSDB,
of which the asymmetric nature of the prover secret key is a necessary first step, as well
as investigating the possibility of using other secret-sharing techniques to obtain better
distance- and terrorist-fraud resistance.

110

.

111

112

Bibliography

[95412] New draft European data protection regime to apply also to all US compa-
nies processing data of European residents, 2012. http://mlawgroup.de/

news/publications/detail.php?we_objectID=227.

[ABK+11] Gildas Avoine, Muhammed Ali Bingöl, Süleyman Kardas, Cédric Lau-
radoux, and Benjamin Martin. A framework for analyzing RFID distance
bounding protocols. Journal of Computer Security, 19(2):289–317, 2011.

[ADG+12] Christian Artigues, Yves Deswarte, Jérémie Guiochet, Marie-José Huguet,
Marc-Olivier Killijian, David Powell, Matthieu Roy, Christophe Bidan,
Nicolas Prigent, Emmanuelle Anceaume, et al. Amores: an architecture
for mobiquitous resilient systems. In Proceedings of the 1st European Work-
shop on AppRoaches to MObiquiTous Resilience, page 7. ACM, 2012.

[AK12] Mads Schaarup Andersen and Mikkel Baun Kjærgaard. Towards a new
classification of location privacy methods in pervasive computing. In Mo-
bile and Ubiquitous Systems: Computing, Networking, and Services, pages
150–161. Springer, 2012.

[ALM11] Gildas Avoine, Cédric Lauradoux, and Benjamin Martin. How secret-
sharing can defeat terrorist fraud. In Fourth ACM Conference on Wireless
Network Security, WISEC 2011, pages 145–156, Hamburg, Germany, June
2011. ACM.

[APR+99] Ward Andy, Steggles Pete, Curwen Rupert, Webster Paul, Addlesee Mike,
Newman Joe, Osborn Paul, and Steve Hodges. The Active Bat in-
door positioning system, 1999. http://www.cl.cam.ac.uk/research/

dtg/attarchive/bat/.

[AT09a] Gildas Avoine and Aslan Tchamkerten. An efficient distance bounding
rfid authentication protocol: balancing false-acceptance rate and memory
requirement. In Information Security, pages 250–261. Springer, 2009.

113

[AT09b] Gildas Avoine and Aslan Tchamkerten. An efficient distance bounding
RFID authentication protocol: Balancing false-acceptance rate and mem-
ory requirement. In Pierangela Samarati, Moti Yung, Fabio Martinelli, and
Claudio Ardagna, editors, Information Security, volume 5735 of Lecture
Notes in Computer Science, pages 250–261. Springer Berlin / Heidelberg,
2009.

[B+] George Robert Blakley et al. Safeguarding cryptographic keys.

[BB05a] Laurent Bussard and Walid Bagga. Distance-Bounding Proof of Knowl-
edge to Avoid Real-Time Attacks. In International Conference on Infor-
mation Security - SEC 2005, pages 223–238, Chiba, Japan, June 2005.
Springer Verlag.

[BB05b] Laurent Bussard and Walid Bagga. Distance-bounding proof of knowledge
to avoid real-time attacks. In Security and Privacy in the Age of Ubiquitous
Computing. 2005.

[BBD+91] Samy Bengio, Gilles Brassard, Yvo G Desmedt, Claude Goutier, and
Jean-Jacques Quisquater. Secure implementation of identification systems.
Journal of Cryptology, pages 175–183, 1991.

[BBM+12] Asli Bay, Ioana Boureanu, Aikaterini Mitrokotsa, Iosif Spulber, and Serge
Vaudenay. The Bussard-Bagga and Other Distance-Bounding Protocols
under Attacks. In Information Security and Cryptology - 8th International
Conference, Inscrypt 2012, Lecture Notes in Computer Science 7763, pages
371–391, Beijing, China, November 2012. Springer.

[BC93] Stefan Brands and David Chaum. Distance-Bounding Protocols. In Ad-
vances in Cryptology – EUROCRYPT’93, Lecture Notes in Computer Sci-
ence 765, pages 344–359, Lofthus, Norway, 1993. Springer-Verlag.

[BCC88] Gilles Brassard, David Chaum, and Claude Crépeau. Minimum disclosure
proofs of knowledge. Journal of Computer and System Sciences, pages
156–189, 1988.

[BCKM04] Ralf Bill, Clemens Cap, Martin Kofahl, and Thomas Mundt. Indoor and
outdoor positioning in mobile environments—a review and some investiga-
tions on wlan-positioning. Geographic Information Sciences, 10(2), 2004.

[BCL06] Endre Bangerter, Jan Camenisch, and Anna Lysyanskaya. A crypto-
graphic framework for the controlled release of certified data. In Security
Protocols. Springer Berlin Heidelberg, 2006.

114

[BMV13a] Ioana Boureanu, Aikaterini Mitrokotsa, and Serge Vaudenay. Secure and
lightweight distance-bounding. In Lightweight Cryptography for Security
and Privacy, pages 97–113. Springer, 2013.

[BMV13b] Ioana Boureanu, Aikaterini Mitrokotsa, and Serge Vaudenay. Towards
secure distance bounding. the 20th anniversary annual Fast Software En-
cryption (FSE 2013), 2013.

[BS03] Alastair R Beresford and Frank Stajano. Location privacy in pervasive
computing. IEEE Pervasive computing, (1):46–55, 2003.

[Cav11] Ann Cavoukian. Privacy by design: Origins, meaning, and prospects.
Privacy Protection Measures and Technologies in Business Organizations:
Aspects and Standards: Aspects and Standards, page 170, 2011.

[CGMA85] Benny Chor, Shafi Goldwasser, Silvio Micali, and Baruch Awerbuch. Veri-
fiable Secret Sharing and Achieving Simultaneity in the Presence of Faults.
In Symposium on Foundations of Computer Science - FOCS 1985, pages
383–395, Portland, OR, USA, October 1985. IEEE Computer Society.

[CL03] Jan Camenisch and Anna Lysyanskaya. A signature scheme with effi-
cient protocols. In Security in Communication Networks, Lecture Notes
in Computer Science, 2003.

[Con76] John Horton Conway. On numbers and games, volume 6. IMA, 1976.

[Cot11] Caitlin D Cottrill. Location privacy: Who protects? URISA Journal-
Urban and Regional InformationSystems Association, 23(2):49, 2011.

[CP12] Bogdan Carbunar and Rahul Potharaju. You unlocked the Mt. Everest
badge on foursquare! Countering location fraud in Geosocial Networks.
In IEEE International Conference on Mobile Ad-Hoc and Sensor, MASS,
pages 182–190, Las Vegas, NV, USA, October 2012. IEEE Computer So-
ciety.

[CRSC12] Cas Cremers, Kasper Bonne Rasmussen, Benedikt Schmidt, and Srdjan
Capkun. Distance hijacking attacks on distance bounding protocols. In
Security and Privacy (SP), 2012 IEEE Symposium on, pages 113–127.
IEEE, 2012.

[CS97] Jan Camenisch and Markus Stadler. Efficient group signature schemes for
large groups. In Advances in Cryptology. 1997.

[CTM07] Yingying Chen, Wade Trappe, and Richard P Martin. Attack detection
in wireless localization. In INFOCOM 2007. 26th IEEE International

115

Conference on Computer Communications. IEEE, pages 1964–1972. IEEE,
2007.

[CvH91] David Chaum and Eugene van Heyst. Group signatures. In EUROCRYPT.
LNCS 547, 1991.

[DCF12] Benjamin Davis, Hao Chen, and Matthew Franklin. Privacy-preserving
alibi systems. In 7th ACM Symposium on Information, Computer and
Communications Security, ASIACCS, Seoul, South Korea, 2012.

[Dem03] Mike Dempsey. Indoor Positioning Systems in Healthcare, 2003. http:

//www.cimit.org/pubs/ipsinhealthcare.pdf.

[Des88] Y. Desmedt. Major security problems with the ’unforgeable’ (feige)-fiat-
shamir proofs of identity and how to overcome them. In 6th Worldwide
Congress on Computer and Communications Security and Protection -
SecuriCom ’88, 1988.

[DF02] Ivan Damgard and Eiichiro Fujisaki. A statistically-hiding integer com-
mitment scheme based on groups with hidden order. In Advances in Cryp-
tology - ASIACRYPT 2002. Springer Berlin Heidelberg, 2002.

[DFKO11a] Ulrich Dürholz, Marc Fischlin, Michael Kasper, and Cristina Onete. A
formal approach to distance bounding RFID protocols. In Proc. of ISC’11,
volume 7001 of LNCS, pages 47–62. Springer-Verlag, 2011.

[DFKO11b] Ulrich Dürholz, Marc Fischlin, Michael Kasper, and Cristina Onete. A
formal approach to distance-bounding rfid protocols. In Information Se-
curity, volume 7001 of Lecture Notes in Computer Science, pages 47–62.
Springer Berlin Heidelberg, 2011.

[DR01] Goran M Djuknic and Robert E Richton. Geolocation and assisted gps.
Computer, 34(2):123–125, 2001.

[FDv11] Aurélien Francillon, Boris Danev, and Srdjan Čapkun. Relay Attacks on
Passive Keyless Entry and Start Systems in Modern Cars. In Network
and Distributed System Security Symposium, NDSS 2011, San Diego, CA,
USA, February 2011. The Internet Society.

[Fel87a] Paul Feldman. A Practical Scheme for Non-interactive Verifiable Secret
Sharing. In Symposium on Foundations of Computer Science - FOCS 1987,
pages 427–437, Los Angeles, CA, USA, October 1987. IEEE Computer
Society.

116

[Fel87b] Paul Feldman. A practical scheme for non-interactive verifiable secret
sharing. In Foundations of Computer Science, 28th Annual Symposium
on, pages 427–438. IEEE, 1987.

[FFS88] Uriel Feige, Amos Fiat, and Adi Shamir. Zero-knowledge proofs of identity.
Journal of Cryptology, 1:77–94, 1988.

[FHMM10] Lishoy Francis, Gerhard Hancke, Keith Mayes, and Konstantinos Markan-
tonakis. Practical NFC peer-to-peer relay attack using mobile phones.
In International conference on Radio frequency identification: security
and privacy issues - RFIDSec’10, pages 35–49, Istanbul, Turkey, 2010.
Springer-Verlag.

[FNI13] Zahid Farid, Rosdiadee Nordin, and Mahamod Ismail. Recent advances in
wireless indoor localization techniques and system. Journal of Computer
Networks and Communications, 2013, 2013.

[FO12] Marc Fischlin and Cristina Onete. Provably secure distance-bounding:
an analysis of prominent protocols. IACR Cryptology ePrint Archive,
2012:128, 2012.

[FO13a] Marc Fischlin and Cristina Onete. Subtle kinks in distance-bounding: an
analysis of prominent protocols. In Proc. WISec’13, pages 195–206. ACM
Press, 2013.

[FO13b] Marc Fischlin and Cristina Onete. Terrorism in distance bounding: Mod-
eling terrorist fraud resistance. In Proceedings of ACNS’13, volume 7954
of LNCS, pages 414–431. Springer-Verlag, 2013.

[Fra] Al Franken. The Location Privacy Protection Act of 2014. http://www.

franken.senate.gov/files/documents/140327Locationprivacy.pdf.

[FS87] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to
identification and signature problems. In CRYPTO. LNCS 263, 1987.

[FZ12] Matthew Franklin and Haibin Zhang. Unique group signatures. In Sara
Foresti, Moti Yung, and Fabio Martinelli, editors, ESORICS, pages 643–
660. LNCS 7459, 2012.

[GG09] Michelle Graham and David Gray. Protecting privacy and securing the
gathering of location proofs - the secure location verification proof gath-
ering protocol. LNICST, 17, 2009.

[GKaT12] S. Gambs, Marc-Olivier Killijian, and M. Roy andM. Traore. Locanyms:
Towards privacy-preserving location-based services. In 1st European Work-
shop on AppRoaches to MObiquiTous Resilience (ARMOR’2012), 2012.

117

[GKC+13] Sébastien Gambs, Marc-Olivier Killijian, Miguel Nunez Del Prado Cortez,
Moussa Traoré, et al. Towards a recommender system for bush taxis. In
3rd Conference on the Analysis of Mobile Phone Datasets (NetMob’13),
2013.

[GKdPC10] Sébastien Gambs, Marc-Olivier Killijian, and Miguel Núñez del
Prado Cortez. Show me how you move and i will tell you who you are.
In Proceedings of the 3rd ACM SIGSPATIAL International Workshop on
Security and Privacy in GIS and LBS, SPRINGL ’10, pages 34–41, New
York, NY, USA, 2010. ACM.

[GKL+] Sébastien Gambs, Marc-Olivier Killijian, Cédric Lauradoux, Cristina
Onete, Matthieu Roy, and Moussa Traoré. Vssdb: A verifiable secret-
sharing and distance-bounding protocol. In International Conference on
Cryptography and Information security (BalkanCryptSec’14).

[GKRT14] Sébastien Gambs, Marc-Olivier Killijian, Matthieu Roy, and Moussa
Traoré. Props: A privacy-preserving location proof system. In 2014 IEEE
33rd International Symposium on Reliable Distributed Systems (SRDS),
pages 1–10. IEEE, 2014.

[GLN09] Yanying Gu, A Lo, and I Niemegeers. A survey of indoor positioning sys-
tems for wireless personal networks. Communications Surveys Tutorials,
IEEE, 11(1):13–32, First 2009.

[GMR85] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge com-
plexity of interactive proof-systems. In ACM STOC, 1985.

[Gol98] Oded Goldreich. Secure multi-party computation. Manuscript. Prelimi-
nary version, 1998.

[GOR14] Sébastien Gambs, Cristina Onete, and Jean-Marc Robert. Prover Anony-
mous and Deniable Distance-Bounding Authentication. In Proceedings of
ACM AsiaCCS’14, Accepted for publication. ACM Press, 2014.

[GQ88] L. C. Guillou and J.-J. Quisquater. A practical zero-knowledge protocol
fitted to security microprocessor minimizing both transmission and mem-
ory. In EUROCRYPT. 1988.

[GS07] Jens Groth and Amit Sahai. Efficient non-interactive proof systems for
bilinear groups. Cryptology ePrint Archive, Report 2007 155, 2007.

[Han12] Gerhard P Hancke. Distance-bounding for rfid: Effectiveness of ‘terrorist
fraud’in the presence of bit errors. In RFID-Technologies and Applications

118

(RFID-TA), 2012 IEEE International Conference on, pages 91–96. IEEE,
2012.

[HHP03] Alefiya Hussain, John Heidemann, and Christos Papadopoulos. A frame-
work for classifying denial of service attacks. In Proceedings of the 2003
conference on Applications, technologies, architectures, and protocols for
computer communications, pages 99–110. ACM, 2003.

[HK05a] Gerhard P. Hancke and Markus G. Kuhn. An RFID distance bounding
protocol. In Security and Privacy for Emerging Areas in Communications
Networks, 2005. SecureComm 2005. First International Conference on,
pages 67–73. IEEE, 2005.

[HK05b] G.P. Hancke and M.G. Kuhn. An rfid distance bounding protocol. In
Procs of SecureComm 2005, pages 67 – 73, sept. 2005.

[HPALP09] Ville Honkavirta, Tommi Perälä, Simo Ali-Löytty, and Robert Piché. A
comparative survey of wlan location fingerprinting methods. In Position-
ing, Navigation and Communication, 2009. WPNC 2009. 6th Workshop
on, pages 243–251. IEEE, 2009.

[HPO13] Jens Hermans, Roel Peeters, and Cristina Onete. Efficient, secure, private
distance bounding without key updates. In ACM Conference on Security
and Privacy in Wireless and Mobile Networks, WISEC’13, pages 207–218,
Budapest, Hungary, April 2013. ACM.

[HWK04] Qi He, Dapeng Wu, and Pradeep Khosla. The quest for personal con-
trol over mobile location privacy. Communications Magazine, IEEE,
42(5):130–136, May 2004.

[ISO] ISO/IEC 29100 Directives. https://www.iso.org/obp/ui/#iso:std:

iso-iec:29100:ed-1:v1:en.

[KAK+09] Chong Hee Kim, Gildas Avoine, François Koeune, François-Xavier Stan-
daert, and Olivier Pereira. The swiss-knife RFID distance bounding pro-
tocol. In Information Security and Cryptology–ICISC 2008, pages 98–115.
Springer, 2009.

[LH10] Wanying Luo and Urs Hengartner. Proving your location without giving
up your privacy. In ACM HotMobile, 2010.

[LMP11] Gabriele Lenzini, Sjouke Mauw, and Jun Pang. Selective location blinding
using hash chains. In Security Protocols Workshop, LNCS 7114, 2011.

119

[Mar12] Konstantinos Markantonakis. Practical relay attack on contactless trans-
actions by using nfc mobile phones. Radio Frequency Identification System
Security: RFIDsec, 12:21, 2012.

[MP08] Jorge Munilla and Alberto Peinado. Security analysis of tu and pira-
muthu’s protocol. In New Technologies, Mobility and Security, 2008.
NTMS’08., pages 1–5. IEEE, 2008.

[NXP11] NXP. MF1PLUSx0y1 Mainstream contactless smart card IC for fast and
easy solution development. Technical report, 2011. Revision 3.2.

[oNC11] ACLU of Northern California. Location-Based Services: Time
for a Privacy check-in, 2011. http://aclunc-tech.org/files/

lbs-privacy-checkin.pdf.

[PC] DIRECTIVE 95/46/EC OF THE EUROPEAN PARLIAMENT and
OF THE COUNCIL. Directive 95/46/EC of the European Parliament
and of the Council of 24 October 1995 on the protection of individuals
with regard to the processing of personal data and on the free movement
of such data. http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?

uri=CELEX:31995L0046:en:HTML.

[PCB00] Nissanka B Priyantha, Anit Chakraborty, and Hari Balakrishnan. The
cricket location-support system. In Proceedings of the 6th annual inter-
national conference on Mobile computing and networking, pages 32–43.
ACM, 2000.

[Ped92] Torben Pryds Pedersen. Non-interactive and information-theoretic secure
verifiable secret sharing. In Advances in Cryptology-CRYPTO’91, pages
129–140. Springer, 1992.

[PLHCvdLT09] Pedro Peris-Lopez, Julio C Hernandez-Castro, Jan CA van der Lubbe, and
JME Tapiador. Shedding some light on rfid distance bounding protocols
and terrorist attacks. Technical report, 2009.

[PVA00] Bahl Paramvir, Padmanabhan Venkata, N., and Balachandran Anand.
Enhancements to the radar user location and tracking system. Technical
report, Microsoft Reserach, University of California at San Diego, 2000.

[RMT+02] Teemu Roos, Petri Myllymäki, Henry Tirri, Pauli Misikangas, and Juha
Sievänen. A probabilistic approach to wlan user location estimation. Inter-
national Journal of Wireless Information Networks, 9(3):155–164, 2002.

120

[RNTS07] Jason Reid, Juan M Gonzalez Nieto, Tee Tang, and Bouchra Senadji.
Detecting relay attacks with timing-based protocols. In Proceedings of
the 2nd ACM symposium on Information, computer and communications
security, pages 204–213. ACM, 2007.

[RTv+12] Aanjhan Ranganathan, Nils Ole Tippenhauer, Boris Škorić, Dave Singelée,
and Srdjan Čapkun. Design and implementation of a terrorist-fraud re-
silient distance bounding system. In Proceedings of the 17th European Sym-
posium on Research in Computer Security (ESORICS’12), volume 7459 of
LNCS, pages 415 – 432. Springer-Verlag, 2012.

[Rv10] Kasper Bonne Rasmussen and Srdjan Čapkun. Realization of rf distance
bounding. In Proceedings of the USENIX Security Symposium, 2010.

[Sch94] Bruce Schneier. Applied cryptography–protocols, algorithms, and... 1994.

[Sha79] Adi Shamir. How to share a secret. Communication of the ACM,
22(11):612–613, 1979.

[She10] Sidney Shek. Next-generation location-based services for mobile devices.
In Leading Edge Forum, Computer Science Corporation, pages 1–66, 2010.

[SW07] Avinash Srinivasan and Jie Wu. A survey on secure localization in wireless
sensor networks. Encyclopedia of Wireless and Mobile communications,
2007.

[SW09] S. Saroiu and A. Wolman. Enabling new mobile applications with location
proofs. In ACM HotMobile, 2009.

[TCB12] Manoop Talasila, Reza Curtmola, and Cristian Borcea. Link: Location
verification through immediate neighbors knowledge. Springer, LNICST
73, 2012.

[TP07] Yu-Ju Tu and Selwyn Piramuthu. Rfid distance bounding protocols. In
First International EURASIP Workshop on RFID Technology, Vienna,
Austria (September 2007), 2007.

[TRPČ09] Nils Ole Tippenhauer, Kasper Bonne Rasmussen, Christina Pöpper, and
Srdjan Čapkun. Attacks on public wlan-based positioning systems. In
Proceedings of the 7th international conference on Mobile systems, appli-
cations, and services, pages 29–40. ACM, 2009.

[Vau13] Serge Vaudenay. On modeling terrorist frauds – addressing collusion in
distance bounding protocols. In Proceedings of the 7th Conference on Prov-
able Security (ProvSec’13), volume 8209 of LNCS, pages 1–20. Springer-
Verlag, 2013.

121

[VJS+07] Hien Nguyen Van, Yunye Jin, Wee-Seng Soh, et al. Indoor localization
using multiple wireless technologies. In Mobile Adhoc and Sensor Systems,
2007. MASS 2007. IEEE International Conference on, pages 1–8. IEEE,
2007.

[Wes68] Alan F Westin. Privacy and freedom. Washington and Lee Law Review,
25(1):166, 1968.

[WF03] Brent Waters and Edward Felten. Secure, private proofs of location. Tech-
nical report, Department of Computer Science, Princeton University, Tech.
Rep. TR-667-03, 2003.

[WHFaG92] Roy Want, Andy Hopper, Veronica Falcão, and Jonathan Gibbons. The
active badge location system. ACM Trans. Inf. Syst., 10(1):91–102, Jan-
uary 1992.

[WZP+] Xinlei Oscar Wang, Jindan Zhu, Amit Pande, Arun Raghuramu, Prasant
Mohapatra, Tarek Abdelzaher, and Raghu Ganti. Stamp: Ad hoc spatial-
temporal provenance assurance for mobile users.

[YLAU11] Lei Yu, Mohamed Laaraiedh, Stéphane Avrillon, and Bernard Uguen. Fin-
gerprinting localization based on neural networks and ultra-wideband sig-
nals. In Signal Processing and Information Technology (ISSPIT), 2011
IEEE International Symposium on, pages 184–189. IEEE, 2011.

[ZC11] Zhichao Zhu and Guohong Cao. Applaus: A privacy-preserving location
proof updating system for location-based services. In INFOCOM, pages
1889–1897, 2011.

122

	Contents
	Chapter 1 General introduction
	Chapter 2 Background
	2.1 Introduction
	2.2 Positioning
	2.2.1 What is positioning?
	2.2.2 Positioning techniques
	2.2.3 Localization attacks

	2.3 Positioning systems
	2.3.1 Outdoor positioning systems
	2.3.2 Indoor positioning systems
	2.3.3 Hybrid positioning systems

	2.4 Location-based services
	2.5 Privacy and LBS
	2.5.1 Location privacy
	2.5.2 Privacy regulation

	2.6 Privacy solutions
	2.6.1 Anonymisation
	2.6.2 Cryptography
	2.6.3 Location granularity

	2.7 The secure location verification problem
	2.7.1 Distance-bounding protocol
	2.7.2 Location proof systems

	2.8 Conclusion

	Chapter 3 Location proof systems
	3.1 Introduction
	3.2 State-of-the-art
	3.2.1 Bipartite gathering approach
	3.2.2 Cooperative gathering approach
	3.2.3 Comparison

	3.3 Conclusion

	Chapter 4 Security model forprivacy-preserving location proofsystem
	4.1 Introduction
	4.2 Preliminaries
	4.2.1 Modelling of users and their interactions
	4.2.2 Definition of the algorithms

	4.3 Threat model
	4.3.1 Malicious prover
	4.3.2 Malicious witness
	4.3.3 Malicious verifier

	4.4 Privacy
	4.4.1 Anonymity
	4.4.2 Unlinkability
	4.4.3 Location granularity
	4.4.4 Location sovereignty
	4.4.5 Location privacy

	4.5 Security
	4.5.1 Ownership proof
	4.5.2 Unforgeability
	4.5.3 Resistance to localization attacks
	4.5.4 Collusion prover-prover
	4.5.5 Collusion prover-witness

	4.6 Analysis of previous work
	4.7 Conclusion

	Chapter 5 Distance Bounding protocols
	5.1 Introduction
	5.2 Overview of distance-bounding
	5.3 Security of distance bounding protocol
	5.4 Overview of the state-of-the-art
	5.5 Conclusion

	Chapter 6 VSSDB: an asymmetricdistance-bounding protocolresistant to terrorist fraud
	6.1 Introduction
	6.2 The distance-bounding proof of knowledge protocol
	6.2.1 Presentation
	6.2.2 Attacks against DBPK-Log

	6.3 Verifiable secret sharing
	6.3.1 Feldman’s verifiable secret sharing
	6.3.2 Application of verifiable secret-sharing to distance-bounding

	6.4 Verifiable secret-sharing based distance-bounding protocol
	6.4.1 Overview of the protocol
	6.4.2 Setup phase
	6.4.3 Registration phase
	6.4.4 Initialization phase
	6.4.5 Distance-bounding phase
	6.4.6 Verification

	6.5 Security analysis
	6.5.1 Resistance against distance fraud
	6.5.2 Resistance against Mafia Fraud
	6.5.3 Resistance against slow phase impersonation
	6.5.4 Resistance against Terrorist fraud (KeyTF-security)
	6.5.5 Introducing cheat modes to tackle terrorist fraud security (GameTFsecurity)

	6.6 Improving the response functions
	6.7 Conclusion

	Chapter 7 PROPS: a PRivacy-preservinglOcation Proof System
	7.1 Introduction
	7.2 Preliminaries
	7.2.1 User interactions
	7.2.2 Definition of the algorithms
	7.2.3 System Assumptions

	7.3 Building blocks
	7.3.1 Unique group signatures
	7.3.2 Commitment schemes
	7.3.3 Zero-knowledge proof
	7.3.4 Proximity testing protocol
	7.3.5 Hash chains

	7.4 Overview of PROPS
	7.4.1 Location proof gathering
	7.4.2 Location proof verification

	7.5 Protocol analysis
	7.5.1 Privacy
	7.5.2 Security

	7.6 Implementation
	7.6.1 Overview of the implementation
	7.6.2 Experimental evaluation

	7.7 Conclusion

	Chapter 8 Conclusion and future work
	8.1 Conclusion
	8.2 Perspectives

	Bibliography

