4 research outputs found

    Desarrollo de un dispositivo biomecatr贸nico adaptable al miembro superior humano para potenciaci贸n de ejercicios funcionales de acondicionamiento f铆sico

    Get PDF
    In this work, the development of a biomechatronic device adaptable to the human upper limb with dual functionality is presented, first, prevention of diseases associated with sedentary lifestyle through the enhancement of functional conditioning exercises, mainly one hundred and fifty in the first phases after an exercise. Injury. Second, rehabilitation for people with mobility difficulties in the upper limb, either due to natural or accidental causes, providing in a portable device the ability to prevent and rehabilitate in prison and / or injuries to the upper limb. In the process of the development of the device, stages of planning, generation and evaluation of concepts, detailed design, construction, tests, and adjustments were carried out, to finally arrive at the prototype that managed to satisfactorily supply the muscle building phases.En este trabajo se presenta el desarrollo de un dispositivo biomecatr贸nico adaptable al miembro superior humano con doble funcionalidad, la primera es la de la prevenci贸n de enfermedades asociadas al sedentarismo a trav茅s de la potenciaci贸n de ejercicios funcionales de acondicionamiento f铆sico, enfoc谩ndose principalmente en el fortalecimiento y musculaci贸n en las primeras fases posteriores a una lesi贸n. La segunda es la de rehabilitaci贸n para personas con dificultades de movilidad en miembro superior, bien sea por causas naturales o accidentales, brindando en un s贸lo dispositivo port谩til la capacidad de prevenir y rehabilitar enfermedades y/o lesiones del miembro superior. En el proceso del desarrollo del dispositivo se realizaron etapas de planificaci贸n, generaci贸n y evaluaci贸n de conceptos, dise帽o detallado, construcci贸n, pruebas y ajustes, para finalmente llegar al prototipo que logr贸 suplir de manera satisfactoria las fases de musculaci贸n y rehabilitaci贸n

    CMOS Hyperbolic Sine ELIN filters for low/audio frequency biomedical applications

    Get PDF
    Hyperbolic-Sine (Sinh) filters form a subclass of Externally-Linear-Internally-Non- Linear (ELIN) systems. They can handle large-signals in a low power environment under half the capacitor area required by the more popular ELIN Log-domain filters. Their inherent class-AB nature stems from the odd property of the sinh function at the heart of their companding operation. Despite this early realisation, the Sinh filtering paradigm has not attracted the interest it deserves to date probably due to its mathematical and circuit-level complexity. This Thesis presents an overview of the CMOS weak inversion Sinh filtering paradigm and explains how biomedical systems of low- to audio-frequency range could benefit from it. Its dual scope is to: consolidate the theory behind the synthesis and design of high order Sinh continuous鈥搕ime filters and more importantly to confirm their micro-power consumption and 100+ dB of DR through measured results presented for the first time. Novel high order Sinh topologies are designed by means of a systematic mathematical framework introduced. They employ a recently proposed CMOS Sinh integrator comprising only p-type devices in its translinear loops. The performance of the high order topologies is evaluated both solely and in comparison with their Log domain counterparts. A 5th order Sinh Chebyshev low pass filter is compared head-to-head with a corresponding and also novel Log domain class-AB topology, confirming that Sinh filters constitute a solution of equally high DR (100+ dB) with half the capacitor area at the expense of higher complexity and power consumption. The theoretical findings are validated by means of measured results from an 8th order notch filter for 50/60Hz noise fabricated in a 0.35渭m CMOS technology. Measured results confirm a DR of 102dB, a moderate SNR of ~60dB and 74渭W power consumption from 2V power supply

    Biomechanical Model of a Prosthetic Leg

    Get PDF
    [EN] This paper presents the biomechanical model of a prosthetic leg. In order to study the change of speed in the joint prosthesisstump upon impact of the foot with the ground is modeled as a spring-damper system, allowing demonstrate the need to build the stump-prosthesis junction impedance devices mechanical variable. This platform is also proposed with the aim of simulating virtual representations to a patient with prosthesis, as a stage prior to the actual implementation thereof.[ES] En este trabajo se presenta el modelo biomec谩nico de una pr贸tesis de pierna. Con el objetivo de estudiar el cambio de velocidad en la uni贸n pr贸tesis-mu帽贸n al momento del impacto del pie con el suelo, est谩 se model贸 como un sistema resorte-amortiguador, per- mitiendo evidenciar la necesidad de construir la uni贸n mu帽贸n-pr贸tesis con dispositivos de impedancia mec谩nica variable. Adema's se desarroll贸 un simulador con el objetivo de hacer representaciones virtuales de un paciente con pr贸tesis. Para ello se model贸 al paciente como un robot b虂谋pedo planar, el simulador permite estudiar el efecto de las fuerzas de impacto con el suelo de la uni贸n pr贸tesis-mu帽贸n como una etapa anterior a la implementaci贸n real de la misma.Los autores expresan sus mas sinceros agradecimientos a la Universidad del Cauca en Colombia por todo el apoyo acad茅mico y financiero brindado en este proyecto.Bravo M., DA.; Rengifo R., CF. (2014). Modelo Biomec谩nico de una Pr贸tesis de Pierna. Revista Iberoamericana de Autom谩tica e Inform谩tica industrial. 11(4):417-425. https://doi.org/10.1016/j.riai.2014.08.003OJS417425114Anitescu, M., & Potra, F. A. (1997). Nonlinear Dynamics, 14(3), 231-247. doi:10.1023/a:1008292328909Colombo, G., Filippi, S., Rizzi, C., & Rotini, F. (2010). A new design paradigm for the development of custom-fit soft sockets for lower limb prostheses. Computers in Industry, 61(6), 513-523. doi:10.1016/j.compind.2010.03.008Dellon, B., & Matsuoka, Y. (2007). Prosthetics, exoskeletons, and rehabilitation [Grand Challenges of Robotics]. IEEE Robotics & Automation Magazine, 14(1), 30-34. doi:10.1109/mra.2007.339622Ferris, A. E., Aldridge, J. M., R谩bago, C. A., & Wilken, J. M. (2012). Evaluation of a Powered Ankle-Foot Prosthetic System During Walking. Archives of Physical Medicine and Rehabilitation, 93(11), 1911-1918. doi:10.1016/j.apmr.2012.06.009Hobara, H., Baum, B. S., Kwon, H.-J., Miller, R. H., Ogata, T., Kim, Y. H., & Shim, J. K. (2013). Amputee locomotion: Spring-like leg behavior and stiffness regulation using running-specific prostheses. Journal of Biomechanics, 46(14), 2483-2489. doi:10.1016/j.jbiomech.2013.07.009Jim茅nez-Fabi谩n, R., & Verlinden, O. (2012). Review of control algorithms for robotic ankle systems in lower-limb orthoses, prostheses, and exoskeletons. Medical Engineering & Physics, 34(4), 397-408. doi:10.1016/j.medengphy.2011.11.018Lee, J. H., Yi, B.-J., & Lee, J. Y. (2012). Adjustable spring mechanisms inspired by human musculoskeletal structure. Mechanism and Machine Theory, 54, 76-98. doi:10.1016/j.mechmachtheory.2012.03.012Martins, M. M., Santos, C. P., Frizera-Neto, A., & Ceres, R. (2012). Assistive mobility devices focusing on Smart Walkers: Classification and review. Robotics and Autonomous Systems, 60(4), 548-562. doi:10.1016/j.robot.2011.11.015Nandi, G. C., Ijspeert, A. J., Chakraborty, P., & Nandi, A. (2009). Development of Adaptive Modular Active Leg (AMAL) using bipedal robotics technology. Robotics and Autonomous Systems, 57(6-7), 603-616. doi:10.1016/j.robot.2009.02.002Wentink, E. C., Koopman, H. F. J. M., Stramigioli, S., Rietman, J. S., & Veltink, P. H. (2013). Variable stiffness actuated prosthetic knee to restore knee buckling during stance: A modeling study. Medical Engineering & Physics, 35(6), 838-845. doi:10.1016/j.medengphy.2012.08.016Whittlesey, S. N., van Emmerik, R. E. A., & Hamill, J. (2000). The Swing Phase of Human Walking Is Not a Passive Movement. Motor Control, 4(3), 273-292. doi:10.1123/mcj.4.3.273Xie, H.-L., Liang, Z.-Z., Li, F., & Guo, L.-X. (2010). The knee joint design and control of above-knee intelligent bionic leg based on magneto-rheological damper. International Journal of Automation and Computing, 7(3), 277-282. doi:10.1007/s11633-010-0503-
    corecore