221 research outputs found

    Speech-driven head motion generation from waveforms

    Get PDF
    Head motion generation task for speech-driven virtual agent animation is commonly explored with handcrafted audio features, such as MFCCs as input features, plus additional features, such as energy and F0 in the literature. In this paper, we study the direct use of speech waveform to generate head motion. We claim that creating a task-specific feature from waveform to generate head motion leads to better performance than using standard acoustic features to generate head motion overall. At the same time, we completely abandon the handcrafted feature extraction process, leading to more effectiveness. However, the difficulty of creating a task-specific feature from waveform is their staggering quantity of irrelevant information, implicating potential cumbrance for neural network training. Thus, we apply a canonical-correlation-constrained autoencoder (CCCAE), where we are able to compress the high-dimensional waveform into a low-dimensional embedded feature, with the minimal error in reconstruction, and sustain the relevant information with the maximal cannonical correlation to head motion. We extend our previous research by including more speakers in our dataset and also adapt with a recurrent neural network, to show the feasibility of our proposed feature. Through comparisons between different acoustic features, our proposed feature, WavCCCAE, shows at least a 20% improvement in the correlation from the waveform, and outperforms the popular acoustic feature, MFCC, by at least 5% respectively for all speakers. Through the comparison in the feedforward neural network regression (FNN-regression) system, the WavCCCAE-based system shows comparable performance in objective evaluation. In long short-term memory (LSTM) experiments, LSTM-models improve the overall performance in normalised mean square error (NMSE) and CCA metrics, and adapt the WavCCCAEfeature better, which makes the proposed LSTM-regression system outperform the MFCC-based system. We also re-design the subjective evaluation, and the subjective results show the animations generated by models where WavCCCAEwas chosen to be better than the other models by the participants of MUSHRA test

    Building Embodied Conversational Agents:Observations on human nonverbal behaviour as a resource for the development of artificial characters

    Get PDF
    "Wow this is so cool!" This is what I most probably yelled, back in the 90s, when my first computer program on our MSX computer turned out to do exactly what I wanted it to do. The program contained the following instruction: COLOR 10(1.1) After hitting enter, it would change the screen color from light blue to dark yellow. A few years after that experience, Microsoft Windows was introduced. Windows came with an intuitive graphical user interface that was designed to allow all people, so also those who would not consider themselves to be experienced computer addicts, to interact with the computer. This was a major step forward in human-computer interaction, as from that point forward no complex programming skills were required anymore to perform such actions as adapting the screen color. Changing the background was just a matter of pointing the mouse to the desired color on a color palette. "Wow this is so cool!". This is what I shouted, again, 20 years later. This time my new smartphone successfully skipped to the next song on Spotify because I literally told my smartphone, with my voice, to do so. Being able to operate your smartphone with natural language through voice-control can be extremely handy, for instance when listening to music while showering. Again, the option to handle a computer with voice instructions turned out to be a significant optimization in human-computer interaction. From now on, computers could be instructed without the use of a screen, mouse or keyboard, and instead could operate successfully simply by telling the machine what to do. In other words, I have personally witnessed how, within only a few decades, the way people interact with computers has changed drastically, starting as a rather technical and abstract enterprise to becoming something that was both natural and intuitive, and did not require any advanced computer background. Accordingly, while computers used to be machines that could only be operated by technically-oriented individuals, they had gradually changed into devices that are part of many people’s household, just as much as a television, a vacuum cleaner or a microwave oven. The introduction of voice control is a significant feature of the newer generation of interfaces in the sense that these have become more "antropomorphic" and try to mimic the way people interact in daily life, where indeed the voice is a universally used device that humans exploit in their exchanges with others. The question then arises whether it would be possible to go even one step further, where people, like in science-fiction movies, interact with avatars or humanoid robots, whereby users can have a proper conversation with a computer-simulated human that is indistinguishable from a real human. An interaction with a human-like representation of a computer that behaves, talks and reacts like a real person would imply that the computer is able to not only produce and understand messages transmitted auditorily through the voice, but also could rely on the perception and generation of different forms of body language, such as facial expressions, gestures or body posture. At the time of writing, developments of this next step in human-computer interaction are in full swing, but the type of such interactions is still rather constrained when compared to the way humans have their exchanges with other humans. It is interesting to reflect on how such future humanmachine interactions may look like. When we consider other products that have been created in history, it sometimes is striking to see that some of these have been inspired by things that can be observed in our environment, yet at the same do not have to be exact copies of those phenomena. For instance, an airplane has wings just as birds, yet the wings of an airplane do not make those typical movements a bird would produce to fly. Moreover, an airplane has wheels, whereas a bird has legs. At the same time, an airplane has made it possible for a humans to cover long distances in a fast and smooth manner in a way that was unthinkable before it was invented. The example of the airplane shows how new technologies can have "unnatural" properties, but can nonetheless be very beneficial and impactful for human beings. This dissertation centers on this practical question of how virtual humans can be programmed to act more human-like. The four studies presented in this dissertation all have the equivalent underlying question of how parts of human behavior can be captured, such that computers can use it to become more human-like. Each study differs in method, perspective and specific questions, but they are all aimed to gain insights and directions that would help further push the computer developments of human-like behavior and investigate (the simulation of) human conversational behavior. The rest of this introductory chapter gives a general overview of virtual humans (also known as embodied conversational agents), their potential uses and the engineering challenges, followed by an overview of the four studies

    Building Embodied Conversational Agents:Observations on human nonverbal behaviour as a resource for the development of artificial characters

    Get PDF
    "Wow this is so cool!" This is what I most probably yelled, back in the 90s, when my first computer program on our MSX computer turned out to do exactly what I wanted it to do. The program contained the following instruction: COLOR 10(1.1) After hitting enter, it would change the screen color from light blue to dark yellow. A few years after that experience, Microsoft Windows was introduced. Windows came with an intuitive graphical user interface that was designed to allow all people, so also those who would not consider themselves to be experienced computer addicts, to interact with the computer. This was a major step forward in human-computer interaction, as from that point forward no complex programming skills were required anymore to perform such actions as adapting the screen color. Changing the background was just a matter of pointing the mouse to the desired color on a color palette. "Wow this is so cool!". This is what I shouted, again, 20 years later. This time my new smartphone successfully skipped to the next song on Spotify because I literally told my smartphone, with my voice, to do so. Being able to operate your smartphone with natural language through voice-control can be extremely handy, for instance when listening to music while showering. Again, the option to handle a computer with voice instructions turned out to be a significant optimization in human-computer interaction. From now on, computers could be instructed without the use of a screen, mouse or keyboard, and instead could operate successfully simply by telling the machine what to do. In other words, I have personally witnessed how, within only a few decades, the way people interact with computers has changed drastically, starting as a rather technical and abstract enterprise to becoming something that was both natural and intuitive, and did not require any advanced computer background. Accordingly, while computers used to be machines that could only be operated by technically-oriented individuals, they had gradually changed into devices that are part of many people’s household, just as much as a television, a vacuum cleaner or a microwave oven. The introduction of voice control is a significant feature of the newer generation of interfaces in the sense that these have become more "antropomorphic" and try to mimic the way people interact in daily life, where indeed the voice is a universally used device that humans exploit in their exchanges with others. The question then arises whether it would be possible to go even one step further, where people, like in science-fiction movies, interact with avatars or humanoid robots, whereby users can have a proper conversation with a computer-simulated human that is indistinguishable from a real human. An interaction with a human-like representation of a computer that behaves, talks and reacts like a real person would imply that the computer is able to not only produce and understand messages transmitted auditorily through the voice, but also could rely on the perception and generation of different forms of body language, such as facial expressions, gestures or body posture. At the time of writing, developments of this next step in human-computer interaction are in full swing, but the type of such interactions is still rather constrained when compared to the way humans have their exchanges with other humans. It is interesting to reflect on how such future humanmachine interactions may look like. When we consider other products that have been created in history, it sometimes is striking to see that some of these have been inspired by things that can be observed in our environment, yet at the same do not have to be exact copies of those phenomena. For instance, an airplane has wings just as birds, yet the wings of an airplane do not make those typical movements a bird would produce to fly. Moreover, an airplane has wheels, whereas a bird has legs. At the same time, an airplane has made it possible for a humans to cover long distances in a fast and smooth manner in a way that was unthinkable before it was invented. The example of the airplane shows how new technologies can have "unnatural" properties, but can nonetheless be very beneficial and impactful for human beings. This dissertation centers on this practical question of how virtual humans can be programmed to act more human-like. The four studies presented in this dissertation all have the equivalent underlying question of how parts of human behavior can be captured, such that computers can use it to become more human-like. Each study differs in method, perspective and specific questions, but they are all aimed to gain insights and directions that would help further push the computer developments of human-like behavior and investigate (the simulation of) human conversational behavior. The rest of this introductory chapter gives a general overview of virtual humans (also known as embodied conversational agents), their potential uses and the engineering challenges, followed by an overview of the four studies

    Cohousing IoT:Technology Design for Life In Community

    Get PDF
    This paper presents a research-through-design project to develop and interpret speculative smart home technologies for cohousing communities—Cohousing IoT. Fieldwork at multiple sites coupled to a constructive design research process led to three prototypes designed for cohousing communities: Cohousing Radio, Physical RSVP, and Participation Scales. These were brought back to the communities that inspired them as a form of evaluation, but also to generate new understandings of designing for cohousing. In discussing how they understand these prototypes, this paper offers an account of how research though design generates knowledge that is specific to the conditions and issues that matter to communities. This contributes to design research more broadly in two ways. First, it demonstrates how contemporary ideas of smart home technology are or could be made relevant to broader ways of living in the future. Second, it provides an example of how a design research process can serve to uncover community values, issues, and goals

    The Role of Emotional and Facial Expression in Synthesised Sign Language Avatars

    Get PDF
    This thesis explores the role that underlying emotional facial expressions might have in regards to understandability in sign language avatars. Focusing specifically on Irish Sign Language (ISL), we examine the Deaf community’s requirement for a visual-gestural language as well as some linguistic attributes of ISL which we consider fundamental to this research. Unlike spoken language, visual-gestural languages such as ISL have no standard written representation. Given this, we compare current methods of written representation for signed languages as we consider: which, if any, is the most suitable transcription method for the medical receptionist dialogue corpus. A growing body of work is emerging from the field of sign language avatar synthesis. These works are now at a point where they can benefit greatly from introducing methods currently used in the field of humanoid animation and, more specifically, the application of morphs to represent facial expression. The hypothesis underpinning this research is: augmenting an existing avatar (eSIGN) with various combinations of the 7 widely accepted universal emotions identified by Ekman (1999) to deliver underlying facial expressions, will make that avatar more human-like. This research accepts as true that this is a factor in improving usability and understandability for ISL users. Using human evaluation methods (Huenerfauth, et al., 2008) the research compares an augmented set of avatar utterances against a baseline set with regards to 2 key areas: comprehension and naturalness of facial configuration. We outline our approach to the evaluation including our choice of ISL participants, interview environment, and evaluation methodology. Remarkably, the results of this manual evaluation show that there was very little difference between the comprehension scores of the baseline avatars and those augmented withEFEs. However, after comparing the comprehension results for the synthetic human avatar “Anna” against the caricature type avatar “Luna”, the synthetic human avatar Anna was the clear winner. The qualitative feedback allowed us an insight into why comprehension scores were not higher in each avatar and we feel that this feedback will be invaluable to the research community in the future development of sign language avatars. Other questions asked in the evaluation focused on sign language avatar technology in a more general manner. Significantly, participant feedback in regard to these questions indicates a rise in the level of literacy amongst Deaf adults as a result of mobile technology

    Paralinguistic vocal control of interactive media: how untapped elements of voice might enhance the role of non-speech voice input in the user's experience of multimedia.

    Get PDF
    Much interactive media development, especially commercial development, implies the dominance of the visual modality, with sound as a limited supporting channel. The development of multimedia technologies such as augmented reality and virtual reality has further revealed a distinct partiality to visual media. Sound, however, and particularly voice, have many aspects which have yet to be adequately investigated. Exploration of these aspects may show that sound can, in some respects, be superior to graphics in creating immersive and expressive interactive experiences. With this in mind, this thesis investigates the use of non-speech voice characteristics as a complementary input mechanism in controlling multimedia applications. It presents a number of projects that employ the paralinguistic elements of voice as input to interactive media including both screen-based and physical systems. These projects are used as a means of exploring the factors that seem likely to affect users’ preferences and interaction patterns during non-speech voice control. This exploration forms the basis for an examination of potential roles for paralinguistic voice input. The research includes the conceptual and practical development of the projects and a set of evaluative studies. The work submitted for Ph.D. comprises practical projects (50 percent) and a written dissertation (50 percent). The thesis aims to advance understanding of how voice can be used both on its own and in combination with other input mechanisms in controlling multimedia applications. It offers a step forward in the attempts to integrate the paralinguistic components of voice as a complementary input mode to speech input applications in order to create a synergistic combination that might let the strengths of each mode overcome the weaknesses of the other

    The Effects of Instructor-Avatar Immediacy in Second Life, an Immersive and Interactive 3D Virtual Environment

    Get PDF
    Growing interest of educational institutions in desktop 3D graphic virtual environments for hybrid and distance education prompts questions on the efficacy of such tools. Virtual worlds, such as Second Life®, enable computer-mediated immersion and interactions encompassing multimodal communication channels including audio, video, and text-. These are enriched by avatar-mediated body language and physical manipulation of the environment. In this para-physical world, instructors and students alike employ avatars to establish their social presence in a wide variety of curricular and extra-curricular contexts. As a proxy for the human body in synthetic 3D environments, an avatar represents a \u27real\u27 human computer user and incorporates default behavior patterns (e.g., autonomous gestures such as changes in body orientation or movement of hands) as well as expressive movements directly controlled by the user through keyboard \u27shortcuts.\u27 Use of headset microphones and various stereophonic effects allows users to project their speech directly from the apparent location of their avatar. In addition, personalized information displays allow users to share graphical information, including text messages and hypertext links. These \u27channels\u27 of information constituted an integrated and dynamic framework for projecting avatar \u27immediacy\u27 behaviors (including gestures, intonation, and patterns of interaction with students), that may positively or negatively affect the degree to which other observers of the virtual world perceive the user represented by the avatar as \u27socially present\u27 in the virtual world. This study contributes to the nascent research on educational implementations of Second Life in higher education. Although education researchers have investigated the impact of instructor immediacy behaviors on student perception of instructor social presence, students\u27 satisfaction, motivation, and learning, few researchers have examined the effects of immediacy behaviors in a 3D virtual environment or the effects of immediacy behaviors manifested by avatars representing instructors. The study employed a two-factor experimental design to investigate the relationship between instructor avatars\u27 immediacy behaviors (high vs. low) and students\u27 perception of instructor immediacy, instructor social presence, student avatars co-presence and learning outcomes in Second Life. The study replicates and extends aspects of an earlier study conducted by Maria Schutt, Brock S. Allen, and Mark Laumakis, including components of the experimental treatments that manipulated the frequency of various types of immediacy behaviors identified by other researchers as potentially related to perception of social presence in face-to-face and mediated instruction. Participants were 281 students enrolled in an introductory psychology course at San Diego State University who were randomly assigned to one of four groups. Each group viewed a different version of the 28-minute teaching session in Second Life on current perspective in psychology. Data were gathered from student survey responses and tests on the lesson content. Analysis of variance revealed significant differences between the treatment groups (F (3,113) = 6.5,p = .000). Students who viewed the high immediacy machinimas (Group 1 HiHi and Group 2 HiLo) rated the immediacy behaviors of the instructor-avatar more highly than those who viewed the low-immediacy machinimas (Group 3 LoHi and Group 4 LoLo). Findings also demonstrate strong correlations between students\u27 perception of instructor avatar immediacy and instructor social presence (r = .769). These outcomes in the context of a 3D virtual world are consistent with findings on instructor immediacy and social presence literature in traditional and online classes. Results relative to learning showed that all groups tested higher after viewing the treatment, with no significant differences between groups. Recommendations for current and future practice of using instructor-avatars include paralanguage behaviors such as voice quality, emotion and prosodic features and nonverbal behaviors such as proxemics and gestures, facial expression, lip synchronization and eye contact

    Multimodal Based Audio-Visual Speech Recognition for Hard-of-Hearing: State of the Art Techniques and Challenges

    Get PDF
    Multimodal Integration (MI) is the study of merging the knowledge acquired by the nervous system using sensory modalities such as speech, vision, touch, and gesture. The applications of MI expand over the areas of Audio-Visual Speech Recognition (AVSR), Sign Language Recognition (SLR), Emotion Recognition (ER), Bio Metrics Applications (BMA), Affect Recognition (AR), Multimedia Retrieval (MR), etc. The fusion of modalities such as hand gestures- facial, lip- hand position, etc., are mainly used sensory modalities for the development of hearing-impaired multimodal systems. This paper encapsulates an overview of multimodal systems available within literature towards hearing impaired studies. This paper also discusses some of the studies related to hearing-impaired acoustic analysis. It is observed that very less algorithms have been developed for hearing impaired AVSR as compared to normal hearing. Thus, the study of audio-visual based speech recognition systems for the hearing impaired is highly demanded for the people who are trying to communicate with natively speaking languages.  This paper also highlights the state-of-the-art techniques in AVSR and the challenges faced by the researchers for the development of AVSR systems
    corecore