12 research outputs found

    An open source LoRa based vehicle tracking system

    Get PDF
    This work describes an open source tracking system that determines the location and speed of a vehicle in real-time. The system was inspired by the need to track tourist boats in UNESCO Kilim Karst Geoforest Park, Malaysia. Boats that travel too fast generate wakes that are suspected to cause ecological damage. In this work, geolocation information is provided by Arduino based transponders with Global Positioning System (GPS). Transponders periodically transmit location and speed data using LoRa through a gateway to a cloud server. On the server, open source software components implement a Geographical Information System (GIS) to manage the location and speed data for display and further analysis. The resulting prototype performed the required functions as expected

    Real-time Internet of Things Architecture for Wireless Livestock Tracking

    Get PDF
    Automatic livestock tracking is necessary for countries facing stock theft problems, like South Africa and Kenya. This paper presents a conceptual design of architecture for real-time wireless livestock tracking based on Internet of Things paradigm. It is a hierarchical model consisting of three building blocks, where the first block is represented with wireless sensor network. Additionally, we have developed a low-power device for livestock tracking in an outdoor environment. The animal tracking device (AnTrack) is self-sustainable with a watertight solar panel(s), designed as a collar to be worn by the animals. A detailed analysis of the AnTrack power consumption proves that the device is capable to generate enough supply power, even when there is no sunshine for a week. This device can be used as a robust building block of future real-time Internet of Things livestock tracking solutions

    Real-time extensive livestock monitoring using lpwan smart wearable and infrastructure

    Get PDF
    Extensive unsupervised livestock farming is a habitual technique in many places around the globe. Animal release can be done for months, in large areas and with different species packing and behaving very differently. Nevertheless, the farmer’s needs are similar: where livestock is (and where has been) and how healthy they are. The geographical areas involved usually have difficult access with harsh orography and lack of communications infrastructure. This paper presents the design of a solution for extensive livestock monitoring in these areas. Our proposal is based in a wearable equipped with inertial sensors, global positioning system and wireless communications; and a Low-Power Wide Area Network infrastructure that can run with and without internet connection. Using adaptive analysis and data compression, we provide real-time monitoring and logging of cattle’s position and activities. Hardware and firmware design achieve very low energy consumption allowing months of battery life. We have thoroughly tested the devices in different laboratory setups and evaluated the system performance in real scenarios in the mountains and in the forest

    agroString: Visibility and Provenance through a Private Blockchain Platform for Agricultural Dispense towards Consumers

    Get PDF
    It is a known fact that large quantities of farm and meat products rot and are wasted if correct actions are not taken, which may lead to serious health issues if consumed. There is no proper system for tracking and communicating the status of the goods to their respective stakeholders in a secure way. Consumers have every right to know the quality of the products they consume. Using monitoring tools, such as the Internet of Agricultural Things (IoAT), and modern data protection techniques for storing and sharing, will help mitigate data integrity issues during the transmission of sensor records, increasing the data quality. The visibility state at the customer end is also improved, and they are aware of the agricultural product’s conditions throughout the real-time distribution process. In this paper, we developed and implemented a CorDapp application to manage the data for the supply chain, called “agroString”. We collected the temperature and humidity data using IoAT-Edge devices and various datasets from multiple sources. We then sent those readings to the CorDapp agroString and successfully shared them among the relevant parties. With the help of a Corda private blockchain, we attempted to increase data integrity, trust, visibility, provenance, and quality at each logistic step, while decreasing blockchain and central system limitations

    A multi-species evaluation of digital wildlife monitoring using the Sigfox IoT network

    Get PDF
    DATA AVAILABILITY : The Amazon rainforest datasets are publicly available at Movebank (www. movebank.org [26]) (Movebank study ID: 2122748764). The other datasets generated and or analysed during the current study are not publicly avail able due to ongoing studies and to protect animals from poaching but are almost entirely archived on Movebank (Movebank study IDs: 2155070222, 1409712816, 894254831, 1365616235, 1493312931, 1296030530, 1725249380, 1431850095, 1323242594, 1732512659, 1286005281, 1291290503, 1600771155, 1670322706, 1623175929, 1323163019, 1323668146, 2057805903, 2198940839), and can be made available by the authors upon reasonable request.Bio-telemetry from small tags attached to animals is one of the principal methods for studying the ecology and behaviour of wildlife. The field has constantly evolved over the last 80 years as technological improvement enabled a diversity of sensors to be integrated into the tags (e.g., GPS, accelerometers, etc.). However, retrieving data from tags on free-ranging animals remains a challenge since satellite and GSM networks are relatively expensive and or power hungry. Recently a new class of low-power communication networks have been developed and deployed worldwide to connect the internet of things (IoT). Here, we evaluated one of these, the Sigfox IoT network, for the potential as a real-time multi-sensor data retrieval and tag commanding system for studying fauna across a diversity of species and ecosystems. We tracked 312 individuals across 30 species (from 25 g bats to 3 t elephants) with seven different device concepts, resulting in more than 177,742 successful transmissions. We found a maximum line of sight communication distance of 280 km (on a flying cape vulture [Gyps coprotheres]), which sets a new documented record for animal-borne digital data transmission using terrestrial infrastructure. The average transmission success rate amounted to 68.3% (SD 22.1) on flying species and 54.1% (SD 27.4) on terrestrial species. In addition to GPS data, we also collected and transmitted data products from accelerometers, barometers, and thermometers. Further, we assessed the performance of Sigfox Atlas Native, a low-power method for positional estimates based on radio signal strengths and found a median accuracy of 12.89 km (MAD 5.17) on animals. We found that robust real-time communication (median message delay of 1.49 s), the extremely small size of the tags (starting at 1.28 g without GPS), and the low power demands (as low as 5.8 µAh per transmitted byte) unlock new possibilities for ecological data collection and global animal observation.The Deutsche Forschungsgemeinschaft (DFG, German Research Foundation). Open Access funding enabled and organized by Projekt DEAL.https://animalbiotelemetry.biomedcentral.comVeterinary Tropical Disease

    Agro-Meteorological data Collection using a LoRaWAN-Based IoTSensor Network

    Get PDF
    This research article was published by the International Journal of Advances in Scientific Research and Engineering, Volume 8, Issue 2, 2022Generally, the variation of meteorological conditions has a significant influence on the agriculture sector in general. In Tanzania, the study conducted in 2015 found most of the existing automatic meteorological stations are not working, and the surveyed manual meteorological stations record meteorological data in the cards daily, but cards are sent in a month to month time interval to the respective organs, this makesthe concept of early warning difficult. Therefore having near-real-time meteorological data will enable the crop monitoring and forecasting systems to monitor crop development and provide early warning to the farmers and the government. The advancement of the Internet of Things (IoT) offers possibilities for developing an integrated sensors network to collect meteorological data on a near-real-time basis. In this study, the developed integrated sensor network includes sensors, which record remote meteorological data such as rainfall, humidity and temperature, a communicationnetwork, and a web application thatenhance data visualization in both graphical and tabular format. In the communication system, the LoRa technology was used, which is more preferable compared to other Low Power Wide Area Network (LPWAN) technologies such as NB-IoT and Sigfox for this application. The developed system uses the LoRa Gateway Operating system which provides capabilities to build a private network, and make it more cost-efficient by reducing the operation cost for account subscription, in online platforms such as The Things Network (TTN), ThingPark, ThingSpeak, and Loriot to avoid free accounts limitations. Moreover, the developed system can work in remote areas with limited Internet access as the meteorological stations can communicate with the gateway at a distance of up to 25km

    Smart contract and web dapp for tracing sustainability indicators in the textile and clothing value chain

    Get PDF
    Mestrado em Engenharia Informática na Escola Superior de Tecnologia e Gestão do Instituto Politécnico de Viana do CasteloNa sociedade atual, o têxtil e vestuário é um dos maiores setores de mercado do mundo. O rápido crescimento desta indústria está a ter impactos sem precedentes na sustentabilidade do planeta, respondendo por consequências negativas ambientais, sociais e de saúde. As tendências da fast-fashion, juntamente com a falta de transparência na cadeia de valor têxtil global, somam-se a cenários desfavoráveis para o mundo, à medida que os níveis crescentes de poluição e consumo de recursos dentro da cadeia de valor atingem máximos históricos a cada ano que passa. O ciclo de vida de uma peça de roupa precisa de se adaptar a um modelo económico regenerativo em vez de linear, que acaba no equivalente a um caminhão de lixo de produtos têxteis sendo descartado num aterro sanitário a cada segundo [1]. Não só as indústrias precisam de reformular os seus processos para circularizar as suas cadeias de valor e promover ações sustentáveis, mas também os consumidores precisam de participar do processo de manter os produtos no círculo da cadeia de valor, pois cabe a eles decidir o destino final de um produto vestuário aquando o seu fim da vida útil. Com estas questões em mente, esta dissertação visa desenvolver duas soluções que possam mitigar os problemas a cima mencionados e promover ações sustentáveis rumo a uma economia circular na cadeia de valor do têxtil e vestuário. Uma solução business-to-business baseada em smart contracts do Hyperledger Fabric para gerir a cadeia de valor do têxtil e vestuário com funcionalidade de rastreabilidade foi desenvolvida como prova de conceito para apoiar as reivindicações de sustentabilidade dos participantes na cadeia de valor, da fibra à peça final de vestuário. A actual funcionabilidade de rastreabilidade desenvolvida no smart contract fornece aos operadores da cadeia de valor a capacidade de rastrear um lote até à sua origem, contudo, também limita a escalabilidade devido ao aumento exponencial do tamanho do bloco, especialmente se considerarmos uma cadeia de valor circular. Para os consumidores, foi proposta uma aplicação descentralizada business-to-consumer-to-consumer com elementos de eco-gamificação para promover o envolvimento e motivação do utilizador para a realização de tarefas que contribuam para a adoção de uma economia circular na cadeia de valor do têxtil e vestuário. Após testar a usabilidade da aplicação com o questionário AttrakDiff, concluiu-se que o sistema precisa de focar a sua usabilidade em prol de um produto orientado à tarefa em vez da orientação pessoal atual da aplicação a fim de promover ações que contribuam para a economia circular da cadeia de valor do têxtil e vestuário.In today’s society, Textile and Clothing (T&C) is one of the biggest market sectors world wide.The sheer size and fast growth of this industry is having unprecedented impacts on sustainability, accounting for negative environmental, social and health consequences. The fast-fashion trends along side the lack of transparency in the global T&C value chain add up to unfavorable scenarios for the world as the increas- ing levels of pollution and resource consumption within the value chain reach historic highs with every year that passes. The lifecycle of a clothing item needs to adapt to a regenerative economic model instead of a linear one that ends up in the equivalent of a garbage truck full of textiles being disposed into a landfill every second [1]. Not only do the industries need to revamp their processes to circularize their value chains and promote sustainable actions, but the consumers also need to partake in the process of keeping the products in the value chain loop as it is up to them to make the final decision upon the end-of-life of an item of clothing. With these issues in mind,this dissertation aims to develop two solutions that can mitigate the aforementioned problems and promote sustainable actions towards a circular economy in the T&C value chain. A Proof-of-Concept (PoC) Business-to-Business (B2B) T&C value chainmanagement smart contract solution builton Hyperledger Fabric with traceability features was developed to support the sustainability claims of participants in the value chain, from fiber to garment. The current traceability feature developed into the smart contract provides value chain operators the capabilities to trace a batch back to its origin, however, it also constraints scalability due to the exponential in crease in block size specially if considering a circular value chain. For the consumers, a Business-to-Consumer-to-Consumer (B2C2C) Decentralized Application (DApp) was proposed with eco-gamification elements fo rpromoting the user’s engagement and motivation to complete tasks that contribute for the adoption of a circular economy in the T&C value chain. After testing the consumer DApp’s usability with the AttrakDiff survey, it was concluded that the system needs to focus it susability towards a task-oriented product instead of the current self-oriented results in order to promote actions that contribute to the circular economy of the T&C value chain

    Development of integrated sensor network for agro-meteorological data collection in Tanzania

    Get PDF
    A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Master’s in Information and Communication Science and Engineering of the Nelson Mandela African Institution of Science and TechnologyGenerally, the variation of meteorological conditions has a significant influence on the agriculture sector. In Tanzania, most of the existing automatic meteorological stations are not working, and during the data collection the surveyed manual meteorological stations record meteorological data in the cards daily, but cards are sent in a month to month time interval to the respective organs, this makes the concept of early warning difficult. Therefore, having near-real-time meteorological data will enable crop monitoring and forecasting systems to monitor crop development and provide early warning to the farmers and the government. The advancement of the Internet of Things (IoT) offers possibilities for developing an integrated sensors network to collect meteorological data on a near real-time basis. In his study, the developed integrated sensor network includes sensors, which record remote meteorological data such as rainfall, humidity and temperature, a communication network, and a web application that enhance data visualisation in both graphical and tabular format. In the communication system, the LoRa technology was used, which is preferable compared to other Low Power Wide Area Network (LPWAN), technologies such as NB-IoT and SigFox for this application. The developed system uses the LoRa Gateway Operating system which provides capabilities to build a private network, and make it more cost-efficient by reducing the operation cost for account subscription, in online platforms such as The Things Network (TTN), ThingPark, ThingSpeak, and Loriot to avoid free accounts limitations. Moreover, the developed system can work in remote areas with limited Internet access as the meteorological stations can communicate with the gateway at a distance of up to 25 km
    corecore